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The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such
as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing
different species. Ontologymatching is a kind of solutions to find semantic correspondences between entities of different ontologies.
Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology
matching.We combine several differentmatching strategies throughfirst-order logic formulas according to the structure of anatomy
ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed
approach in terms of the quality of result alignment.

1. Introduction

Ontological techniques have been widely applied to medical
and biological research [1]. The anatomy of model species
is described in ontologies, which are used to standardize
the annotations of experimental data, such as gene expres-
sion patterns. Such ontologies of anatomy and development
facilitate the organization of functional data pertaining to a
species. To compare such data between species, we need to
establish relationships between ontologies describing differ-
ent species [2]. For example, all gene expression patterns
described in ZFIN (the ZebrafishModel OrganismDatabase)
are annotated using the zebrafish anatomy ontology. A list of
such ontologies is kept on the Open Biomedical Ontologies
(OBO) website [3].

Heterogeneity is an inherent characteristic of ontologies
developed by different parties for the same (or similar)
domains. Semantic heterogeneity has become one of themain
obstacles to sharing and interoperation amongheterogeneous
ontologies. Ontology matching, which finds semantic cor-
respondences between entities of different ontologies, is a
kind of solutions to the semantic heterogeneity problem [4].
The matching techniques can be classified in a first level
as element-level techniques and structure-level techniques.
Element-level techniques obtain the correspondences by con-
sidering the entities in the ontologies in isolation, therefore

ignoring that they are part of the structure of the ontology.
Structure-level techniques obtain the correspondences by
analyzing how the entities fit in the structure of the ontology
[5].

Recently, probabilistic approaches to ontology matching
which compare ontology entities in a global way have pro-
duced competitive matching result [6–9]. OMEN [6] was the
first approach that uses a probabilistic representation of onto-
logy mapping rules and probabilistic inference to improve
the quality of existing ontology mappings. It uses a Bayesian
net to represent the influences between potential concept
mappings across ontologies. Based on OMEN, Albagli et
al. [7] introduced a novel probabilistic scheme iMatch for
ontology matching by using Markov networks rather than
Bayesian networks with several improvements. The iMatch
better supports the noncausal nature of the dependencies
for using undirected networks. Niepert et al. [8] presented a
probabilistic-logical framework for ontology matching based
on Markov logic. Markov logic has several advantages over
existing matching approach and provides a unified syntax
that supports different matching strategies in the same lan-
guage. Li et al. [9] improve the Markov logic model with
match propagation strategy and user feedback. References
[8, 9] have shown the effectiveness of Markov logic model on
conference datasets.
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Figure 1: Matching system architecture.

In this paper, we consider the Markov logic based frame-
work for anatomy ontology matching. We combine several
different matching strategies through first-order logic formu-
las according to the structure of anatomy ontologies.

2. Materials

To evaluate the performance of our proposed approach,
we conduct an experimental study using the adult mouse
anatomy (2744 classes) and the NCIThesaurus (3304 classes)
describing the human anatomy, which are large and carefully
designed ontologies. They also differ from other ontologies
with respect to the use of specific annotations and roles, for
example, the extensive use of the part of relation. The two
resources are part of the Open Biomedical Ontologies (OBO)
[3]. We download the owl version of the two ontologies and
the reference alignment (with 1516 correspondences) from
OAEI anatomy track [10].

NCI Thesaurus published by the National Cancer Insti-
tute (NCI) contains the working terminology of many data
systems in use at NCI. Its scope is broad as it covers vocabu-
lary for clinical care aswell as translational and basic research.
Among its 37,386 concepts, 4,410 (11.8%) correspond to
anatomical entities (anatomic structure, system, or substance
hierarchy). Adult mouse anatomy ontology has been devel-
oped as part of the mouse Gene Expression Database (GXD)
project to provide standardized nomenclature for anatomical
entities in the postnatalmouse. It will be used to annotate and
integrate different types of data pertinent to anatomy, such as
gene expression patterns and phenotype information, which
will contribute to an integrated description of biological
phenomena in the mouse [11].

3. Methods

In this section, we present our Markov logic model for
anatomy ontology matching. Our model deviates from [8, 9]
in several important ways. First, we model the important
hierarchy structure defined by the property of part of, while
previous works consider only subclass-superclass hierarchy.
In contrast, our model does not model property correspon-
dences for there are few properties definitions in anatomy
ontologies. Another difference is in computing a priori

similarities. For conference data sets, [8, 9] apply a similarity
measure on the name of matchable entities. However, the
class name in anatomy ontology is meaningless signature
such as “NCI C12877.” Therefore, we apply a similarity
measure on the labels of classes.

We compute an alignment for anatomy ontologies
through the following three steps. First, we compute a priori
similarity based on Levenshtein distance between labels of
two classes from different ontologies and apply a threshold
to generate candidate matches. Then, we convert the rep-
resentation of input ontologies to first-order logic predicate
and define a set of formulas as matching strategy. Finally, we
execute MAP inference in generated Markov networks as
alignment process and output the optimal alignment. Our
matching system architecture based on Markov logic net-
works is illustrated in Figure 1.

3.1. Markov Logic Networks. Markov logic networks [12] is
a statistical relational learning language based on first-order
logic and Markov networks. A set of formulas in first-order
logic can be seen as a set of hard constraints on the set
of possible worlds: if a world violates even one formula, it
has zero probability. The basic idea in Markov logic is to
soften these constraints: when a world violates one formula
it is less probable, but not impossible. The fewer formulas a
world violates, the more probable it is. Each formula has an
associatedweight that reflects how strong a constraint it is: the
higher the weight, the greater the difference in log probability
between a world that satisfies the formula and one that does
not, other things being equal.

Definition 1. A Markov logic network 𝐿 is a set of pairs
(𝐹
𝑖
, 𝑤
𝑖
), where 𝐹

𝑖
is a formula in first-order logic and 𝑤

𝑖
is

a real number. Together with a finite set of constants 𝐶 =

{𝑐
1
, 𝑐
2
, . . . , 𝑐

|𝐶|
}, it defines a Markov network𝑀

𝐿,𝐶
as follows:

(1) 𝑀
𝐿,𝐶

contains one binary node for each possible
grounding of each predicate appearing in 𝐿.The value
of the node is 1 if the ground atom is true and 0
otherwise.

(2) 𝑀
𝐿,𝐶

contains one feature for each possible grounding
of each formula 𝐹

𝑖
in 𝐿. The value of this feature is

1 if the ground formula is true and 0 otherwise. The
weight of the feature is 𝑤

𝑖
associated with 𝐹

𝑖
in 𝐿.
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<owl:Class rdf:about= >

<rdfs:label rdf:datatype= >Vascular System</rdfs:label>
<rdfs:subClassOf rdf:resource= />
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource= part of />
<owl:someValuesFrom rdf:resource= />

</owl:Restriction>
</rdfs:subClassOf>
<oboInOwl:hasRelatedSynonym rdf:resource= />

</owl:Class>
<owl:Class rdf:about= >

<rdfs:label rdf:datatype= >Microanatomy</rdfs:label>
<rdfs:subClassOf rdf:resource= />
<owl:disjointWith rdf:resource= />

</owl:Class>

· · ·

· · ·

· · ·

" "

" "

" "

" "

" "

" "

" "

" "

" "

" "

Figure 2: Example ontology fragments from the human anatomy ontology.

An MLN can be viewed as a template for constructing
Markov networks. Given different sets of constants, it will
produce different networks, but all will have certain regular-
ities in structure and parameters, given by the MLN (e.g., all
groundings of the same formula will have the same weight).
We call each of these networks a ground Markov network to
distinguish it from the first-order MLN. From Definition 1,
the probability distribution over possible worlds 𝑥 specified
by the ground Markov network𝑀

𝐿,𝐶
is given by

𝑃 (𝑋 = 𝑥) =
1

𝑍
exp(∑

𝑖

𝜔
𝑖
𝑛
𝑖 (𝑥)) =

1

𝑍
∏

𝑖

𝜙
𝑖
(𝑥
{𝑖}
)
𝑛𝑖(𝑥)

, (1)

where 𝑛
𝑖
(𝑥) is the number of true groundings of 𝐹

𝑖
in 𝑥, 𝑥

{𝑖}

is the state (true values) of the atoms appearing in 𝐹
𝑖
, and

𝜙
𝑖
(𝑥
{𝑖}
) = 𝑒
𝜔𝑖 .

In the context of ontology matching, possible worlds
correspond to possible alignment and the goal is to determine
the most probable alignment given the evidence. It was
shown thatMarkov logic provides an excellent framework for
ontologymatching as it captures both hard logical axioms and
soft uncertain statements about potential correspondences
between ontological entities.

3.2. Ontology Representation. An ontology specifies a con-
ceptualization of a domain in terms of classes and properties
and consists of a set of axioms. Matching is the process
of finding relationships or correspondences between entities
from different ontologies. An alignment is a set of corre-
spondences. A correspondence is a triple ⟨𝑒, 𝑒

󸀠
, 𝑟⟩ asserting

that the relation 𝑟 holds between the ontology entities 𝑒 and
𝑒
󸀠, where 𝑒 is an entity from ontology 𝑂 and 𝑒

󸀠 is an entity
from ontology 𝑂

󸀠 [4]. The generic form of correspondence
captures a wide range of correspondences by varying what
is admissible as matchable element and semantic relation,
for example, equivalence (=), more general (⊒). In the fol-
lowing we are only interested in equivalence correspondence
between classes across anatomy ontologies.

Table 1: Core predicates for anatomical ontology matching.

Predicate Description

Observed

𝑐𝑙𝑎𝑠𝑠
𝑖
(𝑐) 𝑐 is a class from ontology 𝑂

𝑖
, 𝑖 ∈ {1, 2}

𝑙𝑎𝑏𝑒𝑙
𝑖
(𝑐, 𝑙) Class 𝑐 has a label 𝑙

𝑠𝑢𝑏
𝑖
(𝑎, 𝑏) 𝑎 is a subclass of 𝑏

𝑝𝑎𝑟𝑡
𝑖
(𝑎, 𝑏) 𝑎 is a part of 𝑏

𝑑𝑖𝑠
𝑖
(𝑎, 𝑏) 𝑎 is disjoint with 𝑏

𝑠𝑖𝑚(𝑙
1
, 𝑙
2
, 𝜎)

Labels 𝑙
1
and 𝑙
2
are similar to a similarity

of 𝜎

Hidden 𝑚𝑎𝑝(𝑐
1
, 𝑐
2
)

Class 𝑐
1
from 𝑂

1
corresponds to class 𝑐

2

from 𝑂
2

The two input ontologies are described in OWL (Web
Ontology Language). Classes are concepts organized in a
subclass-superclass hierarchy with multiple inheritances. The
properties of is a and part of describe the part and whole
relationship between two classes. The properties of disjoin-
tWith describes relationship between two classes which is
interpreted as the emptiness of the intersection of their inter-
pretations. For example, in OWL we can say that Plant and
Animal are disjoint classes: no individual can be both a plant
and an animal (which would have the unfortunate conse-
quence of making SlimeMold an empty class). SaltwaterFish
might be the intersection of Fish and the class SeaDwellers.
Figure 2 depicts fragments of human and mouse anatomy
ontologies.

We introduce a set of predicates to model the structure
of ontologies to be matched. The defined predicates are
shown in Table 1. We use predicate 𝑐𝑙𝑎𝑠𝑠

𝑖
to represent a class

from ontology 𝑂
𝑖
. For example, 𝑐𝑙𝑎𝑠𝑠

1
(“NCI C33854”) rep-

resenting “NCI C33854” is a class from ontology 𝑂
1
. We use

predicate 𝑠𝑢𝑏
𝑖
and 𝑝𝑎𝑟𝑡

𝑖
tomodel the class hierarchy in ontol-

ogy 𝑂
𝑖
, for example, 𝑠𝑢𝑏

1
(“NCI C33854”, “NCI C25762”)

and𝑝𝑎𝑟𝑡
1
(“NCI C33854”, “NCI C12686”).The predicate𝑑𝑖𝑠

𝑖

models the disjointness relationship between two classes,
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for example, 𝑑𝑖𝑠
1
(“NCI C21599”, “NCI C25444”). The pred-

icate 𝑙𝑎𝑏𝑒𝑙
1
(“NCI C33854”, “Vascular System”) represents

class “NCI C33854” with label “Vascular System.” We also
propose a predicate 𝑠𝑖𝑚 to represent the similarity between
labels of two classes from different ontologies, for example,
𝑠𝑖𝑚(“Vascular Endothelium”, “blood vessel endothelium”,
𝜎), where 𝜎 is a real number. If we apply a similarity mea-
sure based on the Levenshtein distance [13], we have 𝜎

(“Vascular Endothelium,” “blood vessel endothelium”) equal
to 0.54. The application of a threshold 𝜏 is a standard tech-
nique in ontology matching. We only generate ground atoms
of 𝑠𝑖𝑚 for those pairs of labels whose similarity is greater than
𝜏. Correspondences with a similarity less than 𝜏 are deemed
incorrect.

We differentiate between two types of predicates: hidden
and observed. The ground atoms of observed predicates are
seen and describe the knowledge encoded in the ontologies.
The ground atoms of hidden predicates are not seen and have
to be predicted using MAP inference. We use hidden predi-
cates𝑚𝑎𝑝 to model the sought-after class correspondences.

We use the following notation conventions in Table 1 and
through the rest of this paper:

(1) All entities from ontology 𝑂
1
have a subscript “1”; all

entities from ontology 𝑂
2
have a subscript “2.”

(2) Lowercase 𝑎, 𝑏, and 𝑐 with or without a subscript are
a class.

(3) Lowercase 𝑙 with or without a subscript is a label.

3.3.Matching Formulas. With predicates defined,we cannow
go on to incorporate our strategies about the task using
weighted first-order logic formulas. Markov logic combines
both hard and soft first-order formulas. This allows the
inclusion of both known logical statements and uncertain
formulas modeling potential correspondences and structural
properties of the ontologies. Then it makes joint inference of
two and more interdependent hidden predicates.

We will introduce five types of constraints to model
different matching strategies, namely, a priori confidences,
cardinality constraints, coherence constraints, stability con-
straints, and match propagation. The formula without a
weight is a hard constraint and holds in every computed
alignment. The formula with a weight is a soft constraint and
the weight reflects how strong a constraint it is. For simplicity,
we will from now on assume that the predicate 𝑐𝑙𝑎𝑠𝑠

𝑖
is

implicitly added as a precondition to every formula for each
class appearing in the formula.
APriori Confidences.We compute an initial a priori similarity
𝜎 for each pair of labels of two classes across ontologies based
on the Levenshtein distance [13] and use a cut-off threshold 𝜏

to produce matching candidates, above which ground atoms
of predicates 𝑠𝑖𝑚 are added to the ground Markov network.
The higher the similarity between labels of two classes is, the
more likely the correspondence between the two classes is
correct. We introduce the following formula to model the a
priori confidences of a correspondence:

𝜎

𝑙𝑎𝑏𝑒𝑙
1
(𝑐
1
, 𝑙
1
) ∧ 𝑙𝑎𝑏𝑒𝑙

2
(𝑐
2
, 𝑙
2
) ∧ 𝑠𝑖𝑚 (𝑙

1
, 𝑙
2
, 𝜎)

=> 𝑚𝑎𝑝 (𝑐
1
, 𝑐
2
) .

(2)

Here,we use the similarity𝜎between labels as the formula
weight since the confidence of a correspondence to be correct
depends on how similar their labels are.
Cardinality Constraints. In general, alignments can be of
various cardinalities: 1 : 1 (one to one), 1 : m (one to many),
n : 1 (many to one), andm : n (many tomany). In this work, we
assume the one to one constraint. We use two hard formulas
stating that one concept from ontology 𝑂

1
can be equivalent

to at most one concept in ontology 𝑂
2
, which ensures the

consistency of a computed alignment and vice versa:

𝑚𝑎𝑝 (𝑎
1
, 𝑎
2
) ∧ 𝑚𝑎𝑝 (𝑎

1
, 𝑏
2
) => 𝑎

2
= 𝑏
2

𝑚𝑎𝑝 (𝑎
1
, 𝑎
2
) ∧ 𝑚𝑎𝑝 (𝑏

1
, 𝑎
2
) => 𝑎

1
= 𝑏
1
.

(3)

Coherence Constraints. Coherence constraints reduce inco-
herence during the alignment process. These constraints for-
mulas are added as hard formulas to ensure satisfaction in the
computed result alignment. The following formulas describe
that two disjoint classes of ontology 𝑂

1
will not match two

classes of ontology 𝑂
2
with subclass relationship respective

simultaneously and vice versa:

𝑠𝑢𝑏
1
(𝑎
1
, 𝑏
1
) ∧ 𝑑𝑖𝑠

2
(𝑎
2
, 𝑏
2
)

=>! (𝑚𝑎𝑝 (𝑎
1
, 𝑎
2
) ∧ 𝑚𝑎𝑝 (𝑏

1
, 𝑏
2
))

𝑑𝑖𝑠
1
(𝑎
1
, 𝑏
1
) ∧ 𝑠𝑢𝑏

2
(𝑎
2
, 𝑏
2
)

=>! (𝑚𝑎𝑝 (𝑎
1
, 𝑎
2
) ∧ 𝑚𝑎𝑝 (𝑏

1
, 𝑏
2
)) .

(4)

Stability Constraints. The idea of stability constraints is that
an alignment should not introduce new structural knowl-
edge. The formulas for stability constraints are soft formulas
associated with weights reflecting how strong the constraints
are. When an alignment violates one soft formula it is less
probable, but not impossible. Formulas (5) and (6) decrease
the probability of alignments that map concept 𝑎

1
to 𝑎
2
and

𝑏
1
to 𝑏
2
if 𝑎
1
is a subclass of 𝑏

1
but 𝑎
2
is not a subclass of 𝑏

2
:

𝜔
1

𝑠𝑢𝑏
1
(𝑎
1
, 𝑏
1
) ∧!𝑠𝑢𝑏

2
(𝑎
2
, 𝑏
2
)

=> 𝑚𝑎𝑝 (𝑎
1
, 𝑎
2
) ∧ 𝑚𝑎𝑝 (𝑏

1
, 𝑏
2
) .

(5)

𝜔
2

!𝑠𝑢𝑏
1
(𝑎
1
, 𝑏
1
) ∧ 𝑠𝑢𝑏

2
(𝑎
2
, 𝑏
2
)

=> 𝑚𝑎𝑝 (𝑎
1
, 𝑎
2
) ∧ 𝑚𝑎𝑝 (𝑏

1
, 𝑏
2
) .

(6)

Here, 𝜔
1
and 𝜔

2
are negative real-valued weights, ren-

dering alignments that satisfy the formulas possibly but less
likely.
Match Propagation. Generally speaking, if two concepts 𝑎

1

and 𝑎
2
match, and there is a relationship 𝑟 between 𝑎

1
and
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𝑏
1
in 𝑂
1
and a matching relationship 𝑟

󸀠 between 𝑎
2
and 𝑏
2
in

𝑂
2
, then we can increase the probability of match between 𝑎

2

and 𝑏
2
.This is accomplished by adding the following formulas

to the model. Formula (7) states that if two classes match, it
is more likely that their parent classes match too. Formula (8)
describes that if parts of two classes match, it is more likely
that the classes match too:

𝜔
3

𝑠𝑢𝑏
1
(𝑎
1
, 𝑏
1
) ∧ 𝑠𝑢𝑏

2
(𝑎
2
, 𝑏
2
) ∧ 𝑚𝑎𝑝 (𝑎

1
, 𝑎
2
)

=> 𝑚𝑎𝑝 (𝑏
1
, 𝑏
2
) .

(7)

𝜔
4

𝑝𝑎𝑟𝑡
1
(𝑎
1
, 𝑏
1
) ∧ 𝑝𝑎𝑟𝑡

2
(𝑎
2
, 𝑏
2
) ∧ 𝑚𝑎𝑝 (𝑎

1
, 𝑎
2
)

=> 𝑚𝑎𝑝 (𝑏
1
, 𝑏
2
) .

(8)

Here, 𝜔
3
and 𝜔

4
are positive real-valued weights, prop-

agating alignment across the structure of ontologies. These
formulas capture the influence of the ontology structure and
the semantics of ontology relations and increase the probabil-
ity of matches between entities that are neighbors of already
matched entities in the two ontologies.These formulas help to
identify correct correspondences and enable deriving missed
correspondences based on the hypothesis.

3.4. MAP Inference as Alignment Process. After we gener-
ate all ground atoms of observed predicates introduced in
previous section, we can select an optimal alignment from
the incoming hypotheses using MAP inference in Markov
logic networks generated by matching formulas. Give two
ontologies, we compute the set of ground atoms of the hidden
predicates that maximizes the probability given both the
ground atoms of observed predicates and the ground formu-
las. Let 𝑥 be the set of ground atoms of observed predicates
and let 𝑦 be the set of ground atoms of hidden predicates𝑚𝑎𝑝

with respect to the given ontologies, we compute

max
𝑦

𝑃 (𝑦 | 𝑥) = max
𝑦

∑

𝑖

𝜔
𝑖
𝑛
𝑖
(𝑥, 𝑦) , (9)

where 𝜔
𝑖
is the weight of formula 𝐹

𝑖
and 𝑛

𝑖
(𝑥, 𝑦) is the

number of possible worlds where formula 𝐹
𝑖
holds.

4. Results and Discussion

4.1. Experimental Setup. We conducted experiments that
were implemented in java using the Jena API (jena.apache
.org) and SecondString library [14] to create ground atoms
and compute the similarity between labels based on Lev-
enshtein distance. Then we applied theBeast [15] for MAP
inference in Markov logic networks, using integer linear
program (ILP) as base solver. theBeast is a software tool that
provides means of inference and learning for Markov logic
networks. Experiments were conducted on Fedora 7 with an
Intel i5 CPU@3.10Ghz and 4GB memory.

We evaluated our model for anatomy ontology matching
with thresholds on the similarity 𝜎 ranging from 0.65 to
0.95. The weights of soft formulas are determined manually.
Although the weights for formulas can be learned with an
online learner, being able to set qualitative weights manually
is crucial as training data is often unavailable. Further,
learning weights from reference alignment as training data
would lead to results overfitting the data. We set the weights
for stability constraints dealing with class hierarchy to −0.01
and set the weight for match propagation to 0.05 based on
the consideration that they are reciprocal ideas with stability
constraints, hence with roughly equivalent importance.

We evaluated five different settings:

prior: the formulation includes only a priori confi-
dence.
ca: the formulation includes a priori confidence and
cardinality constraints.
ca + co: the formulation includes a priori confidence,
cardinality, and coherence constraints.
ca + co + st: the formulation includes a priori confi-
dence, cardinality constraints, coherence constraints,
and stability constraints.
ca + co + st + mp: the formulation includes a
priori confidence, cardinality constraints, coherence
constraints, stability constraints, and matching prop-
agation.

4.2. Experimental Results. We use precision, recall, and F-
measure to measure the performance of the matching results.
Given the reference alignment, we compute the precision as
the number of correct correspondences over the total number
of correspondences in the computed alignment. We compute
the recall as the number of correct correspondences over the
number of correspondences in the reference alignment.Then,
we compute the F-measure as

𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗
𝑟𝑒𝑐𝑎𝑙𝑙

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
. (10)

Figure 3 compares precision, recall, and F-measure scores
of generated alignments over the reference alignment for
thresholds ranging from 0.65 to 0.95 under different settings.
From Figure 3, we can see that our method achieves the
highest precision in the setting of ca + co + st + sp, while
achieving the highest recall in the setting of priori. We obtain
significant improvement on 𝐹-measure when adding more
matching formulas into the model. We also note that there
is no obvious difference between ca and ca + co. It is because
only the human anatomy ontology defines the relationships
of disjointWith. However, we keep coherence constraints
in our model since it can further improve the quality of
results if the relationships of disjointWithwere added into the
mouse anatomy ontology in the future. Overall, the precision
increases with the growth of the threshold, while the recall
slightly decreases for higher thresholds in various settings.
The margins between different settings become smaller for
higher thresholds than for lower thresholds. It is because
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Figure 3: Results for thresholds ranging from 0.65 to 0.95.

there is only a small number of incorrect correspondences in
candidates when we apply a threshold greater than 0.8. We
achieve the maximum 𝐹-measure score at threshold 0.8.

We manually sample several false positive correspon-
dences and false negative correspondences to analysis. We
found that false positive correspondencesweremainly caused
by similar labels in spelling. For example, false correspon-
dence (“NCI C33592”, “MA 0002058”) has similar labels of
“Spiral Artery” and “sural artery.” Furthermore, the super-
class of “NCI C33592” (“NCI C12372”) and the superclass
of “MA 0002058” (“MA 0002058”) happen to be matched,
while false positive correspondences were mainly caused
by the dissimilarity of labels, such as “Tarsal Plate” for

“NCI C33736” and “eyelid tarsus” for “MA 0000270.” And
“NCI C33736” has no subclass and subpart; hence we cannot
find the correspondence through formula (7) or (8).

Figure 4 is a comparison of the performance of our
method and participating systems of OAEI 2014 which also
produce coherent alignment in anatomy track. From Fig-
ure 4, we can see that our method (MLN-OM) outperforms
most of systems and is comparable with the best system
(LogMapLite). Notice that we use a simple similaritymeasure
based on Levenshtein distance in pruning phase and focus
on the Markov logic model for ontology matching, while
LogMapLite uses an external lexicon (e.g., WordNet or
UMLS-lexicon) in the phase of computing an initial set of
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Figure 4: Comparing with results of OAEI 2014.

equivalence anchor mappings, which can be easily adopted
by our method in the pruning phase to further improve the
quality of matching results.

5. Conclusions

In this paper, we propose a Markov logic model for anatomy
ontology matching.Themodel combines five types of match-
ing strategies, namely, a priori confidences, cardinality con-
straints, coherence constraints, stability constraints, and
match propagation. Experimental results demonstrate the
effectiveness of the proposed approach.
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