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Neurological disorders are known to show similar phenotypic manifestations like anxiety, depression, and cognitive impairment.
There is a need to identify shared genetic markers and molecular pathways in these diseases, which lead to such comorbid
conditions. Our study aims to prioritize novel genetic markers that might increase the susceptibility of patients affected with
one neurological disorder to other diseases with similar manifestations. Identification of pathways involving common candidate
markers will help in the development of improved diagnosis and treatments strategies for patients affected with neurological
disorders. This systems biology study for the first time integratively uses 3D-structural protein interface descriptors and network
topological properties that characterize proteins in a neurological protein interaction network, to aid the identification of genes that
are previously not known to be shared between these diseases. Results of protein prioritization by machine learning have identified
known as well as new genetic markers which might have direct or indirect involvement in several neurological disorders. Important
gene hubs have also been identified that provide an evidence for shared molecular pathways in the neurological disease network.

1. Introduction

Seizures and comorbid conditions like anxiety, depression,
and cognitive impairment are some of the shared symptoms
in patients with neurological disorders. This observation
implies that these neurological disorders have certain shared
genetic markers and molecular pathways that lead to their
common clinical manifestations. There might be genetic
markers associated with one disease, the mutations in which
result into over- or underexpression of associated genes and
interconnected molecular pathways. Such aberrations can
cause similar observable symptoms in patients with different
neurological disorders. For example, there are reports that
suggest that epilepsy occurs in approximately 8 to 20% of
children with autism spectrum disorders with an increas-
ing prevalence of seizures occurring in the late adulthood
[1]. Also, as compared to general population, in which
the incidence/probability of developing bipolar disorder in

general population is 0.07, the probability of the same in
patients with epilepsy is 1.69 cases per 1000 person-years,
which is significantly high [2]. There have been reports of
episodic attacks in chronic disorders: epilepsy and migraine.
The diseases commonly occur together and share overlap-
ping pathophysiological mechanisms and common clinical
features. Recently identified common genetic markers and
molecular substrates for epilepsy and migraine include muta-
tions in genes like CACNAIA, ATP1A2, SLC1A3, and POLG.
However, both conditions also have several distinct and
important differences. Hence, the diagnosis and treatment of
each of these diseases must take into consideration a potential
presence of the other [3].

Keeping this in mind, we implement a strategic systems
biology approach for structural and functional analysis of
neurological protein interaction network. We aim to identify
novel putative genetic markers through network analysis that
could be the cause of comorbid conditions in neurological



disorders. The approach followed for network analysis of
neurological disorders in this study is unique and novel in
several ways.

We have targeted the human neurological proteome for
this study. Proteins function by interacting with one another
and also with other molecules of the cell, like DNA and
RNA, and mediate vital metabolic pathways, signalling cas-
cades, cellular processes, and organismal systems. The unique
function that each protein interaction confers to the system
determines its affinity and specificity. Protein interactions
therefore have a central role in the biological functioning
of an organism and a perturbation of such interactions that
might include gain of an inappropriate interaction or the
loss of an important association controls the healthy and
diseased state of an organism. Disease mutations affect the
protein’s binding interface causing biochemically dysfunc-
tional allosteric changes in the protein’s binding site. Studying
protein interactions provides insights into the molecular basis
of the disease, and this information can be used to devise
better methods for prevention, diagnosis, and treatment of
diseases [4].

The prioritization of novel candidates by machine learn-
ing in our study takes into consideration the structural
descriptors of proteins in an interaction network. Machine
learning techniques have been successfully used to find infor-
mative genes and mining critical information from raw data
supplied to the machine. These prediction models have an
increased interpretability and retain high accuracy to exploit
the supplied data and figure out the required information
effectively. Our work specifically deals with prioritizing novel
gene products, that is, proteins that are previously not known
to be associated with neurological disorders. This was done
by identifying the characteristic protein network topological
properties and 3-dimensional protein interface structural
properties that are inherent in proteins that are known to be
associated with neurological disorders. Protein interactions
take place through protein interfaces. And differences in the
structure of protein interface can lead to varied interactions.
Hence, the structural properties of the protein interface
play an important role in determining its interactions in
a network. A similar study in which binding site struc-
tural characteristics were used to describe cancer associated
human protein-protein interfaces in a cancer network shows
that cancer protein interfaces have characteristic interface
properties as compared with interfaces of normal proteins.
Interface structural properties like accessible surface area
(ASA), planarity, gap volume index, interface surface area,
percent polar residues in the interface, percent nonpolar
residues in the interface, and percent charged residues were
used to describe cancer protein interfaces [5]. Our study used
the same set of properties, calculated through the web tool
2P21 inspector (see Methodology), to characterize interfaces
of proteins involved in neurological disease network. Two
additional properties are used, namely, Gap Index and Inter-
face Size, which are calculated from the above-mentioned
seven properties.

To understand the global behaviour of proteins, the net-
work graph representation with characteristic properties that
define the participating proteins has been used previously.
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These are called network topological properties and include
degree, betweenness, closeness, centrality, and shortest path
length. The inclusion of protein interface structure and using
network topological properties to describe their effect on the
interacting proteins has been shown to identify essential hub
proteins with better accuracy than before [6]. We have taken
into consideration ten network topological properties that
were calculated by the network analyser plugin of cytoscape
(see Methodology).

Studies have shown that these protein descriptors (pro-
tein interface structural properties and network topological
properties), individually, are optimal features of prioritizing
novel candidates [7]. We have therefore considered both these
structural descriptors together for the first time to describe
and characterize known and novel potential neurological
proteins under study. It was also observed that there was a
decline in performance and accuracy of the classifiers at the
cost of eliminating some of these features. And, therefore, all
the 19 descriptors together were considered optimally fit to be
included in the study.

Machine learning classifiers were trained on these param-
eters and subjected on known set of neurological gene
products to identify their unique underlying patterns and
relationship in a network and then use these to identify
previously unknown markers of neurological disorders from
a list of human proteins that are not known to be associated
with such disorders. This structural level analysis provides
important clues about the affinity and specificity of protein
interactions, and hence only the proteins whose 3D structure
is available were considered. Identified risk markers could
be considered important to determine patient prognosis for
neurological diseases. Identifying such markers by taking into
consideration the properties of known genes and proteins
involved in the disorders under study is known as gene
prioritization [8].

Further, from the prioritized gene list, we identified
proteins hubs that have the highest number of interacting
partners in the network and can be thought to participate
simultaneously in most neurological pathways.

2. Methodology

2.1. Screening of Genes under Study. Gene sets known to
be associated with several neurological disorders, namely,
epilepsy, Alzheimer’s, Parkinson’s, autism, schizophrenia,
bipolar disorder, and migraine, were downloaded from
Genotator (http://genotator.hms.harvard.edu/) [9], which is
an online available real-time aggregation tool that has a
multiquery engine. It automatically integrates data from
11 external clinical genetics resources to provide reliable
ranking of genes in order of disease relevance and covers
both historical genetics research and recent advancements
and discoveries in disease genetics. Total number of unique
genes associated with these disorders was 2,807. A list of
4,538 proteins corresponding to these genes was downloaded
from Uniprot (http://www.uniprot.org/) [10]. For gene pri-
oritization one of the parameters under consideration was
interface structural properties of the interacting proteins
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in neurological disease network. To calculate the struc-
tural properties, the three-dimensional structures of all the
proteins were downloaded from RCSB Protein Data Bank
(PDB) (http://www.rcsb.org/) [11]. Therefore the PDB Id list
for 4,538 proteins was extracted from a total number of
47,532 available human protein structures on PDB. 17,457 3D-
protein structures corresponded to our list of 4538 proteins
associated with the group of neurological diseases under
study. This was considered as the known set of proteins
(KSOPs). Remaining 30,075 protein structures from PDB
were listed as the unknown set of proteins (USOPs), that
is, the proteins not considered to be associated with the
group of diseases under study. The list of 17,457 KSOPs
included a number of structural variants associated with
each protein. Hence this list was then manually sorted
and only the protein structure with highest resolution was
considered. Each protein chain structure was taken into
account, as the protein structural interface that takes part
in interacting with other proteins can be an assemblage
of any combination of the available chains of a protein.
Also, mutant and recombinant structures were avoided. If
multiple structures were available for each chain, a single
high resolution structure was considered specific to the
protein chain. This is mainly because high resolution crystal
structures of proteins enable understanding of their associ-
ated molecular mechanisms with high degree of precision
and accuracy. Such accurate structures help in addressing
biological questions of fundamental importance, as well as
aiding in the study of drug designing and pharmacological
research. Increase in the resolution of a structure increases
the confidence about positions of atoms in the respective con-
formation. Accurate positions of atoms in a high resolution
structure would help in specific and physiologically relevant
interactions with other proteins in an interaction network.
However, considering that high resolution has minimum
effect on the errors arising from multiple conformations of
the protein, therefore, taking the high resolution structure of
all the conformations of each protein into consideration is
important [12]. Excluding the independent chain structures
would mean losing out information on any putative protein
interface structure. This left us with a list of 2,487 KSOPs,
each associated with its available chain structure. Similarly,
30,075 USOPs were sorted and screened for available high
resolution chain structures of all proteins, and the final list
reduced to 9,434 proteins. The unique set of proteins from
2,487 KSOPs and 9,434 USOPs was used for construction of
a protein-protein interaction network that was further used
to analyse network topological properties of these proteins.
And, the entire set of 2,487 KSOPs and 9,434 USOPs was used
to fetch the structural properties of each possible interface
that could be formed by different combinations of protein
chains for each protein.

2.2. Protein-Protein Interaction Network and Analysis of
Protein Network Properties. 881 and 4,073 unique set of
total 2,487 KSOPs and 9,434 USOPs, respectively, were
used as input for STRING (http://string-db.org/) to iden-
tify the potential protein-protein interactions that might
have been predicted experimentally or computationally or

published in literature [13]. A total of 683,159 interactions
for all the proteins were extracted from STRING. The
interactions were subsequently used as input to visualise
and analyse a network using cytoscape (v 3.1.0) [14]. The
final network had 4,954 nodes (corresponding to number
of proteins in the network) and 683,159 edges (number
of interactions between proteins). The network analyser, a
well-known cytoscape plugin, was used to compute specific
network topological properties of the protein-protein inter-
action (PPI) network [15]. The 10 network properties that
were analysed for 4,954 proteins by this tool are listed in
Table 1. The functional protein interactions extracted from
STRING were also used as input for web based tool HUBBA
(http://hub.iis.sinica.edu.tw/Hubba/index.php) that analyses
potential hubs in the network [16]. Also, the set of 881 KSOPs
was used as a separate input for STRING, and the resulting
interactions were subject to HUBBA analysis, in order to
identify known protein hubs, that is, the proteins that have the
maximum number of interactions in the known neurological
protein-protein interaction network.

2.3. Inclusion of Protein Interface Structural Properties.
Protein-protein interactions take place through the binding
site of the proteins contained in the protein interface. Multiple
conformations of particularly the key residues in the binding
sites make these interactions possible. However, in contrast to
the numerous protein-protein interactions that are possible,
there are only limited and specific binding site conformations
that favour protein binding. Protein interface properties are
therefore useful to describe the preference of protein interac-
tion that could take place through that surface of the protein.
A protein interface is formed from a couple of protein chains
that provide the most favourable binding conformation to
the protein. Only certain possible combinations of a couple
of the number of protein chains associated with a single
protein can form the protein interface. The list of favourable
protein chain combinations that were involved in forming
the interface of each protein was extracted from PIFACE
(http://prism.ccbb.ku.edu.tr/piface/) [17]. The input for this
included the PDB Id of the protein and any associated
two protein chains at a time. PIFACE combinations were
extracted for 2,487 PDB Ids corresponding to KSOPs and
9,434 PDB Ids corresponding to USOPs. The number of
favourable protein chain combinations was 2,179 and 5,550
for KSOPs and USOPs, respectively. The favourable chain
combinations were used for calculating interface structural
properties, to be used as protein structural descriptors,
with the help of an online available tool 2P2I inspector
(http://2p2idb.cnrs-mrs.fr/2p2i_inspector.html) [18]. Input to
this tool is a PDB Id and a combination of protein chains
known to form a potential binding interface from PIFACE.
The 9 protein structural descriptors that were assessed using
2P21 are listed in Table 1.

2.4. Gene Prioritization by Machine Learning. The network
properties and interface properties for the KSOPs and USOPs
were combined together to prepare files for machine learning
using WEKA. Altogether there were 19 descriptors for all the
proteins. WEKA (http://www.cs.waikato.ac.nz/ml/weka/) is



TABLE I: Protein structural descriptors considered for machine
learning.

Protein interface structural

Protein network properties .
properties

Average shortest path

Total accessible surface area
length

Clustering coefficient Gap volume

Closeness centrality Average interface surface area

Eccentricity Percent average neutral residues
Stress Percent average polar residues
Percent average nonpolar
Degree . 8 P
residues
Betweenness Percent average charged residues
Neighbourhood
gbow Gap Index
connectivity
Radiality Interface Size

Topological coefficient

a data mining software that includes a collection of machine
learning algorithms [19]. For preparing the training file, the
list of 2,179 KSOPs was divided into half after random shuf-
fling. And the same number of protein entries was taken from
the unknown set after randomly shuffling it. The resulting
training file had 1,090 KSOPs and 1,090 USOPs. Various
available algorithms from WEKA, like Bagging, Naive Bayes,
Random Forest, Rotation Forest, and K-star, were trained
upon a specific set of features (network topological properties
and interface descriptors) associated with the KSOPs using
tenfold cross-validation. Building more than one model helps
explain how different classifiers make varied predictions on
the training set. The models predict the recall, ROC area,
accuracy, precision, true positive rate and the false positive
rate for the training set. The models were individually applied
to the test file to identify proteins that had features similar to
those of KSOPs. The test file included 1,089 remaining KSOPs
and 4,460 USOPs. The model that made predictions on the
test set with highest precision, recall, ROC area, and accuracy
was considered as the best fit model. The predictions of this
model were taken for further analysis.

The combined list of resulting putative neurological
candidates from the test set and the list of KSOPs from the
training and test sets were used as input for STRING to
identify corresponding protein-protein interactions. These
interactions were then used to identify hub proteins using
HUBBA. This gave a list of important proteins with most
interacting partners in the new network, which includes
additional identified protein candidates.

The three identified hub protein lists are compared to
understand the essentiality of common hubs in all the
three protein networks, namely, human structural protein
interaction network, neurologically associated structural pro-
tein interaction network, and the final network of known
and putative neurologically associated proteins. DAVID
(http://david.abcc.nciferf.gov/) analysis of hub protein list
from the third network which includes neurologically associ-
ated and newly predicted protein candidates was performed,
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to identify common pathways between new candidates and
existing neurological pathways [20, 21].

The strategic systems biology approach to identify novel
neurological candidates followed by applying the above
methodology also extends the machine learning predictions
for analysing hubs protein candidates and has been illustrated
in Figure 1.

3. Results and Conclusions

3.1. Results for Gene Prioritization by Machine Learning.
WEKA classifiers were used to build models on the training
set. The training set was built by random selection of 1,090
KSOPs and equal number of USOPs. Known proteins were
the ones that are associated with neurological disorders. The
unknown list consists of all other known human proteins
whose 3-dimensional structures were available on the Protein
Data Bank (PDB). There are 19 training features in both the
training set and test set, for quantified description of the
proteins. The features used for describing known proteins
and evaluating novel candidates were an integration of
protein network properties and interface structural prop-
erties. Five machine learning classifiers from WEKA were
applied to the training set, to obtain five corresponding
models. These include Naive Bayes, Random Forest, Bagging
with J48, Rotation Forest, and K-star. After 10-fold cross-
validation, the predictions of the above classifiers on the
training set are shown in Figure 2(a). Machine learning
performance metrics show that the classifier Random Forest
has the best predictions of precision, that is, the number
of instances that have been predicted correctly as known
proteins. Receiver operating characteristic (ROC) curve is a
graph that illustrates the performance of a classifier as its
discrimination threshold is varied; and Random Forest has
the maximum area under ROC curve. Maximum recall and
accuracy have been achieved by Bagging combined with J48.
Sensitivity/recall is the number of known proteins that have
been predicted correctly as being known. Accuracy is the
proportion of true results, that is, the known proteins, and
the unknown proteins classified as known. The performance
of a single test/classifier prediction can be calculated using the
precision and the recall. The F-score is a single measure of the
performance of the prediction, where

@

. (PRECISION % RECALL)
~ "\ PRECISION + RECALL /"

The performance/F-score for all the classifiers on training
sets were calculated by the above formula and are depicted
in Figure 2(c) [22]. The graph shows that the classifier
Bagging_J48 has the best performance.

The models that were built on training set after 10-fold
cross-validation were applied on the test dataset individually
to obtain the results. The following result predictors like pre-
cision, accuracy, recall, and area under ROC curve describe
how successful the models have been to mine candidate
proteins involved in neurological disorders, from a set of
proteins that are previously not known to be associated with
neurological disorders. The test file included 1,089 remaining
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FIGURE 1: Flowchart of the methodology followed. KSOPs is the known set of proteins, and USOPs is the unknown set of proteins.

KSOPs and 4,460 USOPs. Values of all the four performance
metrics on the test set data for the 5 classifiers used are shown
in Figure 2(b). Among the five models used for predictions
on test set data, the K-star algorithm gives best result for
precision, recall, and area under ROC curve as well as for the
accuracy of predictions. Performance/F-score is calculated
for all the models and is depicted in Figure 2(d). Different
models might perform variedly depending upon the dataset
and the information contained. For the present test set, the
model that gave best results was K-star. However, it can be
noted that Bagging_J48 has better overall performance on the
training set, whereas K-star has the third best performance in
the same dataset after Bagging_J48 and Random Forest. From
these results it can be concluded that K-star algorithm makes
better discretion of noise and signal, whereas other algo-
rithms overfit in the present data lead to inclusion of random
error/noise. K-star specifically learns the heterogeneity and
relatedness/relationship of training set data more accurately
than any other algorithm and gives the best performance in
test set data by identifying maximum true positives.

The best predicted putative candidate proteins from the
results of K-star algorithm are used for further analysis.
Table 2 shows the list of best 10 predictions of putative
protein candidates from the unknown test set as obtained
from the WEKA results of all five classifiers. Many putative
candidate protein predictions were found to be common in
all five model results. However, they have different prediction
probabilities in all results. The fact that some proteins
were commonly predicted by all the classifiers increases the
probability of those proteins as potential candidates, as they

TABLE 2: Ten best putative candidate predictions with a probability
of 1, from all five machine learning algorithms used.

. . Rotation Random

Naive Bayes Bagging-J48 Forest Forest K-star
1HRK 1S18 1ZT4 1CCo 1G82
IMRS 1J1) IMR1 1CI4 2GJX
IWNT 10PL 2K03 1CKS IMR1
1Z6X IWMH 1L9X 1CZZ INR4
2B2Y 2ARY 1130 1IDZA 1ZSV
2J4E 1130 1X86 IGWQ 1818

2NN6 2B5N 1XV9 1HLO IWPQ
1H28 1H40 1ZT4 THYN 1CKS
1IYI 1YBO 2P0O6 1IR] INLW
126U 2DSQ 2EWY 1IKHU IKNO

got mined by all classifiers. Since, in certain classifier results,
they might have lower prediction probabilities, they will not
be taken as putative markers. Best prediction probabilities
describe how accurately the previously not considered a
neurological disorder candidate protein is predicted to be
associated with neurological disorders.

3.2. Results from Hub Object Analyser. The Hub Object
analyser (HUBBA) is a web based tool that finds hub proteins
from the input protein interaction data. Hub proteins have
characteristic greater number of interactions in a network



100

Naive Bagging J48 Rotation  Random K-star
Bayes Forest Forest
B Precision m ROC area
Recall W Accuracy
(a)

100 - - -
90 . - 8643 - - 84:84 - 86:19 - 85.49-
80 - - - - - - -
70 6956 ) )
60 : : : : : : :
50 - - - - - - -
40 - - - - - - -
30 : : : : : : :
20 : : : : : : :
10 - - - - - - -
0

Naive Bagging J48 Rotation  Random K-star

Bayes Forest Forest

B Performance

(c)

Scientifica

100
90
80
70
60
50
40
30
20
10
0
Naive Bagging J48 Rotation  Random K-star
Bayes Forest Forest
B Precision m ROC area
Recall W Accuracy
(b)
90
800 s e TS T8
70 : : : : : :
60 . . . . . .
50 [4947 ) e
40 . . . . . .
30 : : : : : :
20 : : : : : :
10 : : : : : :
0
Naive Bagging J48 Rotation  Random K-star
Bayes Forest Forest

B Performance

(d)

FIGURE 2: (a) Comparative representation of the performance metrics of five models for their predictions on the training dataset. (b)
Comparative representation of the performance metrics of five models for their predictions on the test dataset. (c¢) Comparison of
performance/F-score values for five models on training set. (d) Comparison of performance/F-score values for five models on test set.

than other non-hub proteins. In other words these proteins
have more interaction partners, making them physiologically
important for the individual. Hub proteins are essential
elements and are indispensable for an individual’s survival
[23].

The first set of analysed hub proteins is from the human
protein interaction network. All the protein interactions that
were used for hub identification include proteins partners
that have an available 3D structure in PDB. The list of
prioritised hubs for the same is shown in Figure 3(a).

The hubs are ranked on the basis of decreasing order
of priority, marked by the color coding. We then find out
how many of these hubs are common to hubs in the protein
interaction network of neurological disorders, that is, the
list of KSOPs involved in neurological disorders. The list of
hub proteins from KSOPs is given in Figure 3(b). There are
21 neurologically important hub proteins that are present
in the first 100 hub proteins’ list of the human interaction
network. The third hub proteins list is predicted from protein
interaction data of known proteins and candidates prioritized
by K-star algorithm of machine learning. K-star has been

shown to predict novel neurological candidates with maxi-
mum accuracy; therefore the list of genes prioritized by this
algorithm can be relied on with more confidence and has been
used for prediction of hub proteins in the neurological net-
work. Therefore, in addition to known neurological disease
candidates, this list includes previously unknown putative
neurological candidates. Their interaction data is extracted
from STRING, and the same is used as input for HUBBA.
This analysis informs if any of the previously unknown neuro-
logical candidates act as hub proteins in human neurological
protein interaction network. The network and list of first 100
hub proteins from this analysis are shown in Figures 4(a)
and 4(b), respectively. Out of these 100 protein hubs, 44 are
the predicted putative neurological candidates by machine
learning, which tend to play important role in neurological
protein network and are highlighted in Figure 4(b).

The identified 100 high ranking hubs from the third
hub protein list were used as input for DAVID for pathway
and gene ontology analysis. The most enriched pathways,
biological processes, cellular components, and molecular
functions are represented in Figure 5.
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FIGURE 3: (a) Hub proteins identified in the human structural protein interaction network. (b) Hub proteins identified in the human
neurological protein interaction network. The hubs are ranked in the decreasing order of priority.

4. Discussion

The present study describes a structural systems biology
approach for gene prioritization of novel protein candi-
dates involved in neurological protein interaction networks.
We have considered neurological disorders like epilepsy,
Alzheimer’s, Parkinson’s, bipolar disorder, autism, migraine,
and schizophrenia for building a neurological protein net-
work. These disorders share symptoms like depression, cog-
nitive impairment, and anxiety. Experimental studies have
shown that aberrations in the same gene or genomic area
could increase the risk of acquiring several complex neu-
ropsychiatric disorders owing to the fact that there are a
number of underlying mechanisms and complex pathways
associated with multiple diseases [24]. The interplay of
numerous specific and nonspecific risk factors that result
in coexistence of psychiatric and medical conditions makes
diagnosis and treatment difficult that often results in other
abnormalities, as in case of schizophrenia [25].

Gene prioritization for neurological disorders is an
important area of research. Several studies that identify
putative candidates in disorders like autism and epileptic

encephalopathy have been carried out [26, 27]. Scoring
systems have been developed previously, using gene priori-
tization based on human population genetics data to identify
common de novo functional variants across four neuropsy-
chiatric disorders, namely, epileptic encephalopathies, severe
intellectual disability, schizophrenia, and autism spectrum
disorders. The authors in this paper have identified hot zone
de novo mutations in these disorders that occur in the most
intolerant genes [28].

In our study we use structural protein descriptors for
prioritizing novel shared genetic markers in several neuro-
logical disorders owing to the specificity and characteristic
structural properties of genes involved in similar phenotypic
expression.

Exome sequencing studies on over thousand patient
samples have identified the importance of de novo and gene-
disruption events in neurological disorders. Deciding on
potential candidates for study is dependent on many factors
including recurrence of mutation and involvement of the
gene in the disease protein network [29]. For example, recur-
rent microdeletion at the locus 1q21.1 has been associated with
numerous phenotypic abnormalities including of the brain,
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FIGURE 4: (a) Hub network of KSOPs and putative candidates. The proteins at the centre of the network are the ones that form most interactions
with other proteins. (b) Hub proteins identified in the human neurological protein interaction network that includes newly identified gene
products. The predicted gene candidates that are behaving as hubs have been highlighted.

the heart, and the eye. This emphasizes the relevance of a
genotypic approach to clinically manage the treatment of dif-
ferent patients [30]. The method used for gene prioritization
is machine learning, and the features that are used to train
the machine are structural descriptors of proteins. Therefore,
only the proteins whose 3D structure is available on the
Protein Data Bank are used for the study. The structural
descriptors include protein network properties and protein
interface structural properties. Various studies have shown
that the protein network topological properties and interface
structural properties are essential features for protein prior-
itization [31]. This study for the first time integrates these
both features for gene prioritization of novel neurological
candidates. Five machine learning algorithms were used for
protein prioritization by WEKA. These included Naive Bayes,
Rotation Forest, Random Forest, Bagging-j48, and K-star.
Maximum accuracy of 81.84%, a precision of 88%, and recall
of 76.6% were achieved by the K-star algorithm on the test
set, making its predictions the most reliable to use for further
study and analysis.

Previously also certain genetic markers and pathways
have been identified that are shared in these disorders.

However, a lot of scope remains. Our work identifies mark-
ers that are important in the network of these diseases.
Also, previously unknown markers that might be involved
in shared pathways of these neurological disorders have
been identified using HUBBA. The hubs identified in the
neurological disease network are the ones that have highest
number of interactions in the network and therefore might
be involved in multiple neurological pathways. DAVID anal-
ysis identifies the involvement of novel candidates in the
existing neurological interaction network, wherein multiple
signalling pathways like receptor binding, pathways in cancer,
and cell proliferation, among others, get enriched. Previous
studies also suggest that there are overlapping molecular
pathways implicated in neurological disorders and cancers.
Genes associated with these two groups of diseases are
associated with kinase signalling, control of cell cycle, and
cellular processes and DNA repair [32].

This comprehensive neurological disease protein network
analysis has therefore identified significant candidates that
could be responsible for existence of shared clinical mani-
festations between these diseases that makes diagnosis and
treatment difficult and also leads to resistance to treatment
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FIGURE 5: (a) Most enriched KEGG pathways from DAVID analysis. (b) Enriched biological processes. (c) Enriched cellular components.

(d) Enriched molecular functions.

in certain cases. We present a larger network view that
takes care of multiple interactions and molecular path-
ways associated with such diseases of comorbid phenotype.
Novel protein hubs that have been identified are important
potential candidates for studying neurological disorders. The
promising pattern of observations from this study and the
procedure followed sets an example to conduct such more
comprehensive analysis which can then be taken to next level
of experimental validation.
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