

Research Article

Development and Validation of Gene-Based SSR Markers in the Genus *Mesembryanthemum*

Muhanad Akash ^(b),¹ Safwan Shiyab,¹ Mohammed Saleh ^(b),² Shireen M. Hasan,³ Mahmoud AbuHussein,⁴ and Wajdy Al-Awaida ^(b)

¹Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan
 ²Department of Nutrition and Food Technology, School of Agriculture, The University of Jordan, Amman 11942, Jordan
 ³Hamdi Mango Center for Scientific Research (HMCSR), The University of Jordan, Amman, Jordan
 ⁴Higher Council for Science and Technology (HCST), Amman, Jordan
 ⁵Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan

Correspondence should be addressed to Muhanad Akash; makash@ju.edu.jo

Received 6 June 2023; Revised 26 September 2023; Accepted 14 October 2023; Published 30 October 2023

Academic Editor: Dick de Ridder

Copyright © 2023 Muhanad Akash et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics tools have been employed for the direct development of gene-based simple sequence repeat (SSR) markers. Through the analysis of 28,056 *Mesembryanthemum* expressed sequence tag (EST) sequences, a total of 5,851 ESTs containing SSRs were identified, amounting to approximately 17.07 Mb. Among these, 938 EST sequences harbored more than one SSR marker, and 788 EST-SSR sequences were found in compound form. The most prevalent types of SSR motifs were mononucleotide repeats (MNRs), accounting for 44%, followed by di-nucleotide repeats (DNRs) at 37%, and trinucleotide repeats (TNRs) at 16%. Notably, TNR or longer SSR motifs primarily consisted of shorter repeat lengths, with only 51 motifs containing 10 or more repeats. The BLASTX analysis successfully assigned functions to 4,623 (79%) of the EST sequences. Among the developed primer sets, 21 primers amplified a total of 65 alleles, with primer PMA79 EST-SSR exhibiting the maximum of six alleles. The polymorphic information content (PIC) values ranged from 0 to 0.76, with a mean of 0.47. The marker index (MI) and discriminating power (D) values reached 0.66 (primer PMA63) and 0.95 (primer PMA20), respectively. Utilizing the unweighted pair group method with arithmetic mean (UPGMA), a dendrogram was constructed, successfully segregating the 24 *Mesembryanthemum* genotypes into three distinct clusters, with a similarity coefficient ranging from 0.96 to 0.38. In this study, we have developed a total of 83 EST-SSR primer pairs specific to the *Mesembryanthemum* genus. These newly developed EST-SSRs will serve as valuable tools for researchers, particularly molecular breeders, enabling gene-based identification and trait selection through marker-assisted breeding approaches.

1. Introduction

Mesembryanthemoideae (*Aizoaceae*) comprises a single genus, *Mesembryanthemum*, which consists of approximately 101 species and is indigenous to arid and semiarid regions of South Africa [1]. It is also found in the Mediterranean region, the Atlantic Islands, Saudi Arabia, South Australia, and California [2]. *Mesembryanthemum* plays a significant role in its native habitat by thriving in harsh, arid environments where other plants struggle to survive [3]. Several species of *Mesembryanthemum* have been recognized for their antioxidant properties, nutritional and medicinal importance, and ability to accumulate salt, thereby contributing to bioremediation effects [2, 4, 5]. Despite its diverse significance, certain species of *Mesembryanthemum* are classified as endangered or critically endangered by the International Union for Conservation of Nature (IUCN) [6]. Furthermore, molecular research, including the assessment of genetic diversity and genome mapping, has been hindered by the

TABLE 1: Expressed sequence tag-simple sequence repeats (EST-SSRs) frequencies by repeat motif in Mesembryanthemum.

SSR motif	5	6	7	8	9	10	11-20	21-30	31-40	41-50	>50	Total
A /T	0	0	0	0	0	800	1567	257	42	20	28	2813
C/G	0	0	0	0	0	112	202	11	4	0	1	330
AC/GT	0	107	9	6	1	3	4	0	0	0	0	130
AG/CT	0	971	286	191	214	154	386	52	37	14	14	2319
AT/AT	0	134	51	5	3	2	30	52 7	1	0	0	2317
CG/CG	0	2	2	0	0	0	2	0	0	0	0	6
AAC/GTT	64	22	10	9	6	5	0	0	0	0	0	116
AAG/CTT	119	58	45	16	6	7	10	0	0	0	0	261
AAT/ATT	14	130	13	1	1	0	10	0	0	0	0	160
ACC/GGT	71	102	9	29	4	4	0	0	0	0	0	219
ACG/CGT	11	102	3	0	- -	0	0	0	0	0	0	18
ACT/AGT	13	3	1	0	0	0	2	0	0	0	0	10
AGC/CTG	31	16	10	25	2	1	0	0	0	0	0	85
AGG/CCT	24	9	8	0	0	1	0	0	0	0	0	42
ATC/ATG	116	39	25	5	17	11	9	0	0	0	0	222
CCG/CGG	31	1	0	0	3	0	0	0	0	0	0	35
A A A C/GTTT	0	0	1	0	0	0	0	0	0	0	0	1
AAAG/CTTT	3	2	0	0	0	0	0	0	0	0	0	5
A A AT/ATTT	0	2	1	0	0	0	0	0	0	0	0	3
AAGG/CCTT	4	5	9	0	0	0	0	0	0	0	0	18
AATC/ATTG	2	0	0	0	0	0	0	0	0	0	0	2
AATT/AATT	2	0	0	0	0	0	0	0	0	0	0	2
ACAT/ATGT	12	0	0	0	0	0	0	0	0	0	0	12
ACTC/AGTG	0	0	3	0	0	0	0	0	0	0	0	3
AGAT/ATCT	0	0	0	0	1	0	0	0	0	0	0	1
AGCC/CTGG	1	0	0	0	0	0	0	0	0	0	0	1
AGGG/CCCT	1	0	0	0	0	0	0	0	0	0	0	1
ATGC/ATGC	0	1	0	0	0	0	0	0	0	0	0	1
A A A A G/CTTTT	9	0	0	0	0	0	0	0	0	0	0	9
A A ATC/ATTTG	1	0	0	0	0	0	0	0	0	0	0	1
AAGAG/CTCTT	0	11	0	0	0	0	0	0	0	0	0	11
AATCG/ATTCG	1	0	0	0	0	0	0	0	0	0	0	1
ACAGC/CTGTG	1	0	0	0	0	0	0	0	0	0	0	1
ACCTC/AGGTG	2	0	0	0	0	0	0	0	0	0	0	2
ACTCT/AGAGT	0	1	0	0	0	0	0	0	0	0	0	1
AGAGG/CCTCT	2	0	Ő	0	Ő	Ő	Õ	Õ	0	Ő	0 0	2
AGGGG/CCCCT	8	0	0	0	0	0	0	0	0	0	0	8
ATATC/ATATG	1	0	0	0	0	0	0	0	0	0	0	1
ATCCG/ATCGG	2	0	0	0	0	0	0	0	0	0	0	2
A A A A TC/ATTTTG	0	1	0	0	0	0	0	0	0	0	0	1
A A A A A G/CTTTTT	1	0	0	0	0	0	0	0	0	0	0	1
AAAGAC/CTTTGT	0	1	0	0	0	0	0	0	0	0	0	1
AAAGAG/CTCTTT	1	0	1	0	0	0	0	0	0	0	0	2
AAATGC/ATTTGC	1	0	0	0	0	0	0	0	0	0	0	1
AAATTG/AATTTC	0	3	Ő	0	Ő	Ő	Õ	Õ	0	Ő	0 0	3
AACACC/GGTGTT	6	0	1	0	Ő	Ő	Õ	Õ	0	Ő	0 0	7
AACAGC/CTGTTG	22	0	0	3	Ő	Ő	Õ	Õ	0	Ő	0 0	25
AACATC/ATGTTG	1	0	Ő	0	Ő	Ő	Õ	Õ	0	Ő	0 0	1
AACCAC/GGTTGT	1	0	Ő	0	Ő	Ő	Õ	Õ	0	Ő	0 0	1
AACCAT/ATGGTT	3	0	Ő	0	Ő	Ő	Õ	Õ	0	Ő	0 0	3
AACTAC/AGTTGT	1	0	1	0	Ő	Ő	Õ	Õ	0	Ő	0 0	2
AACTGC/AGTTGC	2	0	0	0	Ő	Ő	Õ	Õ	0	Ő	0 0	2
AAGAGG/CCTCTT	3	0	0	0	0	0	0	0	0	0	0	3
AAGATG/ATCTTC	2	1	1	0	0	0	0	0	0	0	0	4
AAGGAC/CCTTGT	2	0	0	0	0	0	0	0	0	0	0	2
AATCCC/ATTGGG	1	0	0	0	0	0	0	0	0	0	0	1
AATTAC/AATTGT	1	0	0	0	0	0	0	0	0	0	0	1
ACACAT/ATGTGT	0	2	0	0	0	0	0	0	0	0	0	2
ACAGGG/CCCTGT	1	0	0	0	0	0	0	0	0	0	0	1
ACCCTG/AGGGTC	1	0	0	0	0	0	0 0	0	Ő	0	0	1
	1	0	5	5	0	5	5	5	5	5	5	1

SSR motif	5	6	7	8	9	10	11-20	21-30	31-40	41-50	>50	Total
AGAGAT/ATCTCT	1	0	0	0	0	0	0	0	0	0	0	1
AGAGGG/CCCTCT	0	2	0	0	0	0	0	0	0	0	0	2
AGCAGG/CCTGCT	13	0	0	0	0	0	0	0	0	0	0	13
AGGATG/ATCCTC	1	0	0	0	0	0	0	0	0	0	0	1
AGGGAT/ATCCCT	0	0	2	0	0	0	0	0	0	0	0	2

limited availability of codominant molecular markers such as simple sequence repeats (SSRs).

Initially identified in humans, SSRs or microsatellites are repetitive DNA sequences consisting of 1-6 nucleotide core units [7, 8]. These markers are widely distributed throughout most plant genomes. SSR markers possess several advantages, including high variability, codominant inheritance, easy detection, multiallelic nature, transferability between species, and amenability to PCR amplification [7, 9, 10]. However, the development of specific SSR markers typically involves labor-intensive, time-consuming, and costly procedures. The emergence of expressed sequence tag-simple sequence repeats (EST-SSRs) derived from EST and cDNA sequences [11] has become the preferred choice for SSR markers, given the growing availability of EST and cDNA sequences in global sequence databases such as NCBI [12]. Moreover, EST-SSR markers are located in the coding region of the genome, making them ideal DNA markers for crossspecies transferability and gene tagging for desired traits [13, 14]. EST-derived SSR markers are expected to exhibit higher conservation and greater abundance among related species compared to anonymous sequence-derived SSR markers [14]. In barley (Hordeum vulgare L.), approximately 78% of the 165 EST-SSR markers used successfully amplified in wheat, followed by 75% in rye (Secale cereale L.) and 42% in rice (Oryza sativa L.) [14].

While EST-SSR markers have been developed and validated for numerous eudicot plants, including *Vicia faba* [15], *Vigna angularis* [16], and *Lens culinaris* Medik [17], to the best of our knowledge, SSR markers have not yet been developed in *Mesembryanthemum*. Therefore, this study was conducted to generate EST-SSR markers specific to the *Mesembryanthemum* genus.

2. Materials and Methods

In May 2021, a total of 28,056 *Mesembryanthemum* EST sequences corresponding to 17.07 Mb were retrieved from the National Center for Biotechnology Information (NCBI) website (https://www.ncbi.nlm.nih.gov). These sequences underwent a cleaning process to remove poly-A and poly-T tails using the TRIMEST program sourced from EMBOSS [18]. The identification of EST-SSRs was carried out using the MISA-web program developed by Beier et al. [19]. By employing the MISA-web engine online (https://webblast. ipk-gatersleben.de/misa/), mono, di, tri, tetra, penta, and hexa tandem repeats with minimum repeat unit criteria of 10, 6, 5, 5, 5, and 5, respectively, were selected (Table 1). A total of 7,181 SSR loci were discovered across 5,851 EST sequences. To design EST-SSR primers, the Primer3web

TABLE 2: The *Mesembryanthemum* genotypes, totaling 24, along with details of their collection sites.

Constrans	Collectio	n sites
Genotypes	Names	Coordinates
1–6	Dead Sea, Jordan	31.3685010, 355447180
7–11	Al-Mudawwara, Jordan	29.2196370, 36.0684550
12-15	Al-Azraq, Jordan	31.7555520, 36.8079137
16–18	Batn Al-Ghoul, Jordan	29.5389940, 35.9398650
19, 20	Alkarama, Jordan	32.0145451, 35.5510075
21, 22	Jordan	_
23, 24	Kingdom of Saudi Arabia	30.5154780, 38.2216491

TABLE 3: Details of expressed sequence tag-simple sequence repeats (EST-SSRs) identified in *Mesembryanthemum*.

Parameters	Numbers
Total number of sequences examined	28056
Total size of examined sequences (bp)	17074324
Total number of identified SSRs	7181
Number of SSR containing sequences	5851
Number of sequences containing more than 1 SSR	938
Number of SSRs present in compound formation	788

FIGURE 1: Distribution of different repeat types in *Mesembryanthemum*.

software was utilized. The "targets" option was employed to indicate the location of the SSR motif to ensure the selection of appropriate flanking primers. The remaining software settings were maintained as default, except for the annealing temperature (set at $60^{\circ}C \pm 3^{\circ}C$) and primer length (set at 20 bp with a range of +6, -2 bp). A BLASTX search was conducted on the NCBI database to determine the putative function of the developed SSR markers. However, only 28 EST-SSR primers were employed for amplifying the genomic DNA from 24 *Mesembryanthemum* genotypes

Nucleotide repeat type	5	6	7	8	9	10	11-20	21-30	31-40	41-50	>50	Total
Mono		_	_	_	_	1011	1769	268	46	20	29	3143
Di	_	1214	348	202	218	159	422	59	38	14	14	2688
Tri	494	384	124	85	39	29	22	0	0	0	0	1177
Tetra	25	10	14	0	1	0	0	0	0	0	0	50
Penta	27	12	0	0	0	0	0	0	0	0	0	39
Hexa	65	10	6	3	0	0	0	0	0	0	0	84

TABLE 4: Expressed sequence tag-simple sequence repeats (EST-SSRs) frequencies by nucleotide repeat type in Mesembryanthemum.

(Table 2). The iMEC online software [20] was utilized to calculate the polymorphism information content (PIC), heterozygosity index (H), discriminating power (D), marker index (MI), average heterozygosity (av. H), and resolving power (R) for each primer. In addition, a dendrogram representing the 24 *Mesembryanthemum* genotypes was constructed using NTSYS software and the unweighted pair group method with arithmetic mean (UPGMA) [21].

3. Results and Discussion

We present the novel development of unique EST-SSR markers derived from easily accessible ESTs for Mesembryanthemum. Approximately 17.07 Mb of Mesembryanthemum EST sequences, totaling 28,056 sequences, were analyzed to identify 7,181 EST-SSR markers (Table 3). Among these markers, 5,851 ESTs contained a total of 7,181 SSR repeats, indicating that 20.8% of the EST sequences harbored at least one SSR. The frequency of SSR occurrence was calculated as one repeat per 2.38 kb, which is comparable to the frequencies observed in Mentha piperita (1/3.4 kb) and pepper (1/3.8 kb) [22, 23]. Varshney et al. [14] reported that around 5% of ESTs contain SSRs when the minimum repeat length is set to 20 bp, indicating that the frequency of SSRs can vary significantly depending on the search criteria employed. Out of the 5,851 SSRs identified, 938 sequences contained multiple SSRs, and 788 SSRs occurred in compound form (Table 3).

The distribution and frequency of different motifs in SSRs have been observed to vary widely across plant species. In this study, mononucleotide repeats (MNR) were the most abundant (44%), followed by di-nucleotide repeats (37%), and trinucleotide repeats (16%), as depicted in Figure 1. MNRs have been shown to be valuable in bridging gaps in linkage maps constructed using SSR markers [24].

The majority of trinucleotide repeats (TNRs) or longer motifs consisted of shorter repeat lengths, with only 51 motifs containing 10 or more repeats (Table 4). In total, 65 different EST-SSR motifs were identified (Table 1). The most prevalent SSR motifs were A/T (39.2%) for MNRs, AG/CT (32.3%) for di-nucleotide repeats (DNRs), AAG/CTT (3.6%) for trinucleotide repeats (TNRs), AAG/CTT (10.8%) and AAGG/CCTT (0.3%) for tetra-nucleotide repeats (TtNRs), AAGAG/CTCTT (0.2%) for penta-nucleotide repeats (PNRs), and AACAGC/CTGTTG (0.3%) for hexanucleotide repeats (HNRs) (Table 1). Similar findings have been reported previously [12, 22, 25, 26]. Considering the increasing percentage of polymorphic markers with longer repeats, only EST-SSRs with 100 bp or more were selected for designing primer pairs. Consequently, 83 primer pairs were developed for *Mesembryanthemum* (Table 5). These SSR markers can be utilized in diversity studies, the construction of genetic linkage maps, and marker-assisted breeding. Furthermore, due to the high transferability of EST-SSRs across species, they can be employed in related species where a limited number of SSRs are available [12, 27].

The BLASTX searches successfully assigned putative functions to 4,623 (79%) of the identified EST-SSRs. This information is valuable for guiding the development of specific markers targeting desired genes and facilitating further exploration of gene-related information [27].

4. Validation

Twenty-eight recently designed EST-SSR primers (provided in Table 1) were carefully chosen to encompass all types of nucleotide repeats. These primers were utilized to amplify genomic DNA extracted from 24 Mesembryanthemum genotypes. Out of the 22 primers that successfully produced amplification, 21 primers exhibited polymorphic amplification profiles, resulting in a total of 65 alleles being amplified (Table 5). The maximum number of alleles, six in total, was observed for the PMA79 EST-SSR primer. The polymorphic information content (PIC) values, which estimate the discriminatory power of a locus based on allele number and frequencies, ranged from 0 to 0.76, with an average of 0.47 (Table 6). The marker index (MI), which assesses the overall efficiency of a molecular marker, varied from 0 (PMA44) to 0.66 (PMA63), with a mean of 0.41. In addition, the discriminating power (D) of the primers ranged from 0 (PMA44) to 0.95 (PMA20), averaging at 0.67 (Table 6).

The resulting UPGMA dendrogram (Figure 2), which is a visual representation of the genetic relationships, classified the *Mesembryanthemum* genotypes into three distinct clusters. This clustering indicates that there are underlying genetic similarities and differences among the genotypes. The UPGMA method organizes the genotypes based on their genetic profiles, allowing us to observe patterns of relatedness.

The similarity coefficient, ranging from 0.38 to 0.96 with a mean of 0.67, provides a quantitative measure of genetic similarity or dissimilarity among the genotypes. A higher similarity coefficient suggests a closer genetic relationship,

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	-		•	х <i>х</i> н
Locus name	Primer sequence $(5' \longrightarrow 3')$	T_m (°C)	Expected size (bp)	GenBank no.	Putative function
PMA01	CCAACAGAACCATCAGCAGC/GCTTCACAAAACCTT ACACCT	59.48/ 59.04	176	CA834522.1	PREDICTED: transcription factor VIP1 (Beta vulgaris subsp. vulgaris)
PMA02	AGCATCACATTCAAATCCACTCT/AGAGTCAAGAAG AAAAGGAGGGT	58.40/ 59.02	189	CA838453.1	No significant similarity found
PMA03	TACAACCAGACCACACGGG/AATCATCATCCAACA AGAAGTGAAT	59.89/ 57.29	194	AI366624.1	PREDICTED: gibberellin-regulated protein 1 isoform X2 (Beta vulgaris) vulgaris subsp. vulgaris)
PMA04	TCTATAGACTATCGCGGCCG/AGAGACGGTGAGCAC TTTCG	58.63/ 60.04	246	BE033938.1	No significant similarity found
PMA05 [§]	AATGTCGACCACTCCGCTCC/ACTCCAGTAGCTATTGAG TACCA	59.75/ 58.13	238	AI823067.1	No significant similarity found
PMA06 [§]	GCAGAAGTTGATGAAGAAGCCT/TTGATGGGCCGCTAC AAGG	58.92/ 60.08	397	BE033380.1	Hypothetical protein TanjilG_11831 (Lupinus angustifolius)
PMA07	TGGGATTGCTTGCTGATCGT/AGAAGGGCAGCAAC TTGGT	60.04/ 60.11	234	CA840307.1	Uncharacterized protein LOC110732016 isoform X2 (<i>Chenopodium</i>
PMA08	TACAACCAGACCACACACGG/AATCATCATCCAACA AGAAGTGAAT	59.89/ 57.29	195	CA834353.1	PREDICTED: gibberellin-regulated protein 1 isoform X2 (Beta vuloaris subso. vuloaris)
PMA09	TACAACCAGACACACGGG/AATCATCATCCAACA AGAAGTGAAT	59.89/ 57.29	194	BM300798.1	PREDICTED: gibberellin-regulated protein 1 isoform X2 (Beta vuloaris subst. vuloaris)
PMA10	TCCTTGATCCGATCTGACTGAC/GGAGAGGGGTGTTTT GCTCa	59.31/	249	BM300496.1	No significant similarity found
PMA11 [§]	TACAACCAGACCACACAGG/AGAATCCAATTTTCC AACCGACA	59.85/ 58.85	167	AW053699.1	PREDICTED: gibberellin-regulated protein 1 isoform X2 (Beta vuloaris)
PMA12	TGGTGAAGCTTTGATCGAACG/TGTTTTGGTTTCATG GCCCA	59.2/58.5	493	BE034914.1	RecName: full = antimicrobial peptide 1; flags: precursor
PMA13	TACAACCAGACCACACGGGGAATCATCATCCAACA AGAAGTGAAT	59.89/ 57.29	195	BE033529.1	gibberellin-regulated protein 1-like (Chenopodium quinoa)
PMA14 [§]	AGTCCTGATCCAATTCGCGG/GGACTACGAGGAGTG TGTGC	60.18/ 60.11	197	BE033452.1	PREDICTED: Uncharacterized protein At1g03900 (Beta vulgaris subsp. vulgaris)
PMA15	GCAGCAACCAACTAA/ACTCACATACCCAAG AATTCCA	60.83/ 57.07	203	BM300387.1	Similar to mipB gene product in <i>Mesembryanthemum crystallinum</i> , encoded by GenBank accession number L36097; MIP homolog; method: conceptual translation supplied by author, partial
PMA16	CCTTCCTTTCTCCATCAGCCA/CTTGGCTAACACCGC AACAC	59.72/ 60.04	240	BE034350.1	(Mesembryanthemum crystallinum) transmembrane 9 superfamily member 2-like (Chenopodium auinoa)
PMA17 [§]	ACTGATGATCTGTGGTTGTATACA/TCTCCAACAAAAAAAAAA	57.46/ 58.77	214	BE035316.1	No significant similarity found
PMA18	CGATGAGCAGAGGAGAGAGAGAGGAGGTTTTTGTGG TGGGG	58.03/ 60.54	240	BE036430.1	PREDICTED: 40S ribosomal protein S27-2-like (Nelumbo nucifera)
PMA19	AGTTTTCTTTTCCCTCCTCCTCA/GAAATAGGAGCGGGC GAAGA	59.28/ 59.9	228	BE036273.1	Hypothetical protein M569_05046 (Genlisea aurea)
PMA20 [§]	TTTCCAATGTCGGTGCTCCA/TGGCGTAACGGATCAAAT TTG	59.89/ 57.52	248	BM301706.1	No significant similarity found

TABLE 5: List and characteristics of Mesembryanthemum expressed sequence tag-simple sequence repeat (EST-SSR) markers.

	FCCCCAATACAACCTTTC 59.96/ 59.19 59.19 GACGCCTCACAGAACTA 60.18/ 59.19 59.19 FCGT/TAAACGCCAGCC 59.91/ GG 59.91 GG 59.91 GG 59.91 GG 59.91 GG 59.91 GG 59.91 GG 59.94 GG 60.84 59.9 59.96 DA 60.64 SA 59.96 AATGG/GGTGGGTACCGTTAA 60.13 CA 59.08 AATGG/GGTGGGTGGGAAA 60.13 CC 59.03 AATGG/GGTGGGTGGGAAA 59.03 ACTGATGGTGCCTCCCC 59.38 CTGATGGTGCCTCCCC 59.38 CT 59	222 BE0 244 CA8 244 BE0 195 CA8 332 BE0 557 BE0 241 DY0 239 BM3	36540.1 34703.1 34701	24-methylenesterol C-methyltransferase 3 (Spinacia oleracea)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$.GACGCTCACAGAACTA 60.18/ 59.19 .ICGT/TAAACGCCAGCC 59.91/ 6G .GGAGTTCTCATCCATGG 59.91/ 59.9 .UGTGGAATGTACACG 59.96/ 59.96 .CGAGTTCCATCCATGG 59.96/ 59.08 .CGAGTTCCATCCATGG 59.96/ 59.08 .A ATGG/GGTGGGTACGGTAA .C 60.04 .C 60.04 .C 59.03/ .C 60.04 .C 60.04 .C 60.04 .C 59.03/ .C 60.04 .C 59.03/ .C 59.03/ .C 59.03/ .C 59.38 .CT 59.38 .CT 59.38 .CT 59.38 .CT 59.38 .CT 59.99 .CT 59.99 .CT 59.05 .C 59.05 .C 59.05 .C 59.05 .CT 59.05 .C 59.05 .C 59.05 .C<	244 CA8 244 BE0 195 CA8 332 BE0 557 BE0 241 DY0 239 BM3	34703.1 36370 1	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	TCGT/TAACGCCAGCC 59.91/ GG 58.83 GG 58.83 CGAGTTCTCATCCATGG 58.83 0.64/ 59.96/ 59.9 59.96/ 59.9 59.96/ 59.9 59.96/ 59.9 59.96/ 50.03 59.96/ 50.03 59.08 50.03 59.08 50.03 59.03 70 60.04 50.03 60.03 70 60.39 70 59.03 70 59.03 70 59.03 70 59.38 70 59.38 70 59.38 70 59.38 70 59.38 70 59.38 70 59.38 70 59.38 70 59.38 70 59.99 70 59.99 70 59.95 70 59.05 70 59.05 70 59.05	244 BE0. 195 CA8 332 BE0. 557 BE0. 241 DY0 239 BM3	36370 1	RecName: full = ferredoxin-1, chloroplastic; AltName: full = ferredoxin I; flags: precursor
PMA24 CCACCTCCAAGTTCTCCATGGAGTTCTCATCATGG 59.9 195 CA8406621 PMA25 CAGGGGAAATTGGAGGGTCA/GTGGAAATGTACGG 59.96 332 BE0368051 PMA26 CAGGGGAAATTGAGGGGTCA/GTGGAAATGTACCG 59.96 332 BE0368051 PMA26 GGGCATGTATATTATTGCGCATGG/GGTCGGAAA 59.03 571 BE0350561 PMA27 TCCTCCCTCACTCACTTGCAGGGGGGGGGGGGGGGGGGG	CGAGTTCCATCCATGG 60.84/ 59.9 VGTGGAATGTACACG 59.96/ 59.96/ 59.08 AATGG/GGTCCCGTTAA 60.13/ 60.13/ 60.04 CC 60.04 CC 60.04 CC 69.03/ 60.04 CC 60.04 CC 59.03/ 60.04 CC 60.04 CC 59.03/ 59.38 CTGATGGTGCGTTCCTC 59.38 CT 59.39 SITT 57.36 CT 59.99 SITT 57.36 CCAATTAGCGGCCAC 60.83/ AGG 59.05 CCAATTTAGCGGCCAC 60.83/	195 CA8 332 BE0 557 BE0 241 DY0 239 BM3 250 DR9	1.0/000	No significant similarity found
PMA25CACGGGAATTGGAGGGTCA/GTGGAATGTACACG $$996/$ 332 $BE03605.1$ PMA26ATACGCAATACGCA 59.08 332 $BE03605.1$ PMA26GGGCATGTAATTATTCCCCAATGG/GGTGGGGTGCGAAA $60.13'$ 557 $BE035036.1$ PMA27TCCTCCCTCACTCACTTCAC/CGGGTGGGTGGGTGCGAAA $59.03'$ 241 $DY032226.1$ PMA28GACCGCCAATCTTCAC/CGGGTGGGTGGGAAA $59.38'$ 239 $BM301459.1$ PMA296TTTTCCACTAAATTTGCCCCTT/AGAGGTGGTGCAATGGAATGT $57.36'$ 239 $BM301459.1$ PMA296TGTGTGGAGCTTGATCAGGAATGGAATGGAATGT $59.38'$ 250 $DR995796.1$ PMA306TGTGTGGAGCTTGATCAGGGAATGGAATGGAATGT $59.36'$ 218 $BE035606.1$ PMA307TGTGTGGAGCTTGATCAGGGAAAGGGTGTA $59.99'$ $236'$ $BE034671.1$ PMA308TGTGTGGGAGATGAGGGAAAAGGGTGTA $59.99'$ $236'$ $BE034671.1$ PMA31CACTGTGGTTGCTTTGCCAATTTAGCGGCACA $59.99'$ $236'$ $BE034671.1$ PMA32AGTGGGGGGAAAAGGGGAAATGGCGGGCACA $59.95'$ $236'$ $BE034671.1$ PMA31CACTGTGGTTGCTTGCTTTAGCGAATTTAGCG $59.95'$ $236'$ $BE034671.1$ PMA32AGTGGGGGGGAAAAGGGGAAATTTGGGGGCACA $59.85'$ $236'$ $BE034671.1$ PMA33AGTGGGGGGGAAAAGGGGTGTA $59.85'$ $236'$ $BE034671.1$ PMA33AGTGGGGGGAAAAGGGGAAATGTCCCAATTTAGCA $59.85'$ $236'$ $BE034671.1$ PMA33AGTGGGGGGGAAAAGGGGAAATGCCCCAATTTAGCAAATGCACGGGCGCG $59.85'$ $236'$ $BE034671.1$ PMA34ACT	V/GTGGAAATGTACACG 59.96/ 2A 59.08 AATGG/GGTCCCCGTTAA 60.13/ CC 60.04 CC 60.04 CC 60.04 CC 60.39 A 60.39 CTGATGGTGCCTTCCTC 59.75/ 59.38 TT/AGAGCAATGGAATGT 57.38/ CT 59.99 CT 57.36 CT 59.99 CT 57.36 CT 5	332 BE0 557 BE0 241 DY0 239 BM3 250 DR9	40662.1 PI	EDICTED: E3 ubiquitin ligase BIG BROTHER-related isoform X2 (Theobroma cacao)
PMA26GGGCATGTATATTATTCCCCAATGG/GGTCCCGTTAA 60.3 / 60.04 557 BE035036.1PMA27TCCTCCCTCACTTCAC/CGGGTGGGGGGGGGGGGGGGGGG	AATGG/GGTCCCCGTTAA 60.13/ AATGG/GGTGGGTGGGAAA 60.04 C 60.04 A 60.04 CCGGGTGGGTGGGGTGCGAAA 59.03/ A 60.39 CCTGATGGTGCCTTCCTC 59.75/ STAGAGCAATGGAATGT 59.38/ CT 59.38/ A 57.38/ CT 59.99 SATGAGTACTACAGAT 59.99 SATGAGTACTACAGAT 59.99 STTT 57.36 GGGGAAAAGGGTGTA 58.97/ AGG 59.05 CCCAATTTAGCGGCCAC 60.83/	557 BE0. 241 DY0 239 BM3 250 DR9	36805.1	Protein SRC2-like (<i>Chenopodium quinoa</i>)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CGGGTGGGTGCGAAA 59.03/ A 60.39 CTGATGGTGCCTTCCTC 59.75/ CTGATGGTGCCTTCCTC 59.38 TT/AGAGCAATGGAATGT 57.38/ SOT 57.36/ SOT 57.36 SOT 57.36 SOT 57.36 SOT 59.05 AGG 59.05 SOCCAATTAGCGGCCCAC 60.83/ 60.32 60.32	241 DY0 239 BM3 250 DR9	35036.1	No significant similarity found
PMA28GACCGGCAATCTTCCT/TCTGATGGTGCTTCCTC 59.38 239 $BM3014591.$ $PMA29^{6}$ TTTTCCACTAAATTTGCACCCTT/AGAGGAATGGAATGT 59.38 239 $BM3014591.$ $PMA30^{6}$ TGTGTGGAGCTTGAATTTGCACCCTT/AGAGGAATGGAAT	CTGATGGTGCCTTCCTC 59.75/ TT/AGAGCAATGGAATGT 59.38 SCT 57.38/ SCT 59.99 SATGAGTACTACAGAT 59.99 STTT 59.99 TTTT 57.36 GGGGAAAAGGGTGTA 59.05 AGG 59.05 CCAATTTAGCGGCCAC 60.83/	239 BM3 250 DR9	32226.1	No significant similarity found
PMA295TTTTCCACTAATTTGCACCCTT/AGAGCATGGAATGT57.36250DR995796.1PMA305TGTGTGGAGCTTGATCAGGATCTT59.99250DR995796.1PMA306TGTGTGGAGCTTGATCAGGGAAAGGGTAT59.67218BE035606.1PMA31CACTGTGGTTGGTT/GGGGAAAGGGTGTA59.67218BE034685.1PMA31CACTGTGGTTGGTT/GGGGAAAGGGTGTA58.97236BE034685.1PMA325CCCGGGCTGCAGGGAATTC/ACCCAATTTAGCGGCCAC60.32236BE034671.1PMA32GTGGGGGGGAAATC/ACCCAATTTAGCGGCCAC60.32236BE034671.1PMA33AGTGGGGGGAAATC/ACCCAATTTAGCGGCCAC60.32236BE034671.1PMA33AGTGGGGGGAAATC/ACCCAATTTAGCGGCCAC60.32236BE034671.1PMA34ACTATTGATGAAGGGGAA/TTCGTGGTTTACCA59.8/57.2190CA837391.1PMA34ACTATTGATGAAGGCGCGCAGGAAAGG57.55/208BE577295.1PMA35TTCCCGTCATCTCCAATGGCGGGGAAAAGT59.37/239AI822921.1PMA35TTCCCGTCATCTCCCTCT/ACCAATGGCGGGGAAAAGT59.37/239AI822921.1	TT/AGAGCAATGGAATGT 57.38/ CT 59.99 ATGAGTACTACAGAT 59.67/ ATTT 57.36 TTT 57.36 AGGGAAAAGGGTGTA 58.97/ AGG 59.05 CCCAATTTAGCGGCCAC 60.83/ 60.32 60.32	250 DR9	01459.1	CASP-like protein 4C1 (<i>Chenopodium quinoa</i>)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	5/ATGAGTACTACAGAT 59.67/ 377T 57.36 /GGGGAAAGGGTGTA 58.97/ AGG 59.05 CCAATTTAGCGGCCAC 60.83/ 60.32		95796.1	PREDICTED: ferredoxin-NADP reductase, leaf isozyme, chloroplastic (Malus domestica)
PMA31CACTGTGGTTTGCTCTGCTT/GGGGAAAGGGTGTA58.97/ 59.05236BE034885.1PMA32*CCCGGGCTGCAGGAATTC/ACCCAATTTAGCGGCCAC60.33236BE034671.1PMA33AGTGGAGGAAAGGGGAA/TTTCGTGTTTTACCA60.32236BE034671.1PMA33AGTGGAGGAAAGGGGAA/TTTCGTGTTTTACCA59.8/57.2190CA837391.1PMA34ACTATTTGATGAAGGCGCAATG/TCCCAGGCTCCC57.55/208BE577295.1PMA34ACTATTTGATGAAGCCTGGAATG/TCCCAGGCTCCC57.55/208BE577295.1PMA35TTCCCGTCATCTC/ACCAATGGCGGGAGAAGT59.37/239A1822921.1	/GGGGAAAGGGTGTA 58.97/ AGG 59.05 SCCAATTTAGCGGCCAC 60.83/ 60.32	218 BE0	35606.1	Hypothetical protein, partial (Vitis vinifera)
PMA32 [§] CCCGGGCTGCAGGCATTTAGCGGCCAC60.32236BE034671.1PMA33AGTGGAGGGAAATTC/ACCCAATTTAGCGGCCAC60.32236BE034671.1PMA33AGTGGAGGGAAAGGGGAAATTCGTGTTTACCA59.8/57.2190CA837391.1PMA34ACTATTTGATGAAGGCGCGAATG/TCCCAGGCTCCC57.55/208BE577295.1PMA35TTCCCGTCATCTCCAATGGCGGGAGAAAGT59.37/239AI822921.1PMA35GUGT59.37/59.37/239AI822921.1	CCCAATTTAGCGGCCAC 60.83/ 60.32	236 BE0:	34885.1	No significant similarity found
PMA33 AGTGGAGGAAAGGGGAA/TTTCGTGTTTTACCA 59.8/57.2 190 CA837391.1 TAATCCGAA PMA34 ACTATTTGATGAAGCACCTGAATG/TCCCAGGCTCCC 57.55/ 208 BE577295.1 AATATACCA PMA35 TTCCCGTCATCTCT/ACCAATGGCGGGAGAAGT 59.37/ 239 A1822921.1 GT 59.37/ 239 A1822921.1		236 BE0	34671.1	No significant similarity found
PMA34 ACTATTTGATGATGATGATG/TCCCAGGCTCCC 57.55/ 208 BE577295.1 AATATACCA PMA35 TTCCCGTCATCTCCCAATGGCGGAGAAGT 59.37/ 239 AI822921.1 GT 59.37/ 239 AI822921.1	A/TTTCGTGTTTTACCA 59.8/57.2	190 CA8	37391.1	No significant similarity found
PMA35 TTCCCGTCATCTCTCTCATGGCGGGGGGAAAGT 59.37/ 239 AI822921.1 GT 59.89 239 AI822921.1	AATG/TCCCAGGCTCCC 57.55/ CA	208 BE5	77295.1 F	REDICTED: zinc finger CCCH domain-containing protein 66 (<i>Reta vulgaris</i> subsy vulgaris)
	CCAATGGCGGGGGGAAAGT 59.37/ 59.89	239 AI8:	22921.1	PREDICTED: V-type proton ATPase subunit c"2 (Pyrus x bretschneideri)
PMA36 AGACATGCAAATTCAATCAATCAATCAATCAAGAA 37.277 258 BE033663.1 GGCCCGGG	ACCT/TTTGTAAAGAG 57.27/ GG	258 BE0	33663.1	No significant similarity found
PMA37 CTCACCTCTTCGTCTCCAGC/ATTCCACCCTCGACGAAT 59.83/ 215 BE035371.1	TTCCACCTCGACGAAT 59.83/	215 BE0	35371.1 P	tEDICTED: mitochondrial uncoupling protein 5 (Beta vulgaris
PMA38 [§] TGGAAGACTTGCTCTCTGACT/CCCCTAAATTTTAAA 58.4/ 244 BE036658.1 AGCGGCC 58.47 244 BE036658.1	T/CCCTAAATTTTAAA 58.4/ CC 58.47	244 BE0:	36658.1	PREDICTED: uncharacterized protein LOC104896568 (Beta vulgaris subsp. vulgaris)
PMA39 CACCCTTCCATTCCATGTTCCA/CCTAGATTGAAAGCG 58.84/ 250 BM300354.1 AAAGGGG 59.05 59.05	A/CCTAGATTGAAAGCG 58.84/ 3G 59.05	250 BM3	00354.1	No significant similarity found
PMA40 [§] GCATTTATTCCTTTGC/AGATGTGTGTTTCC 57.65/ 227 CA835303.1 GGGTATTCCT 59.16 59.16	CTTGC/AGATGTGTTTCC 57.65/ CCT 59.16	227 CA8	35303.1	chloroplast envelope membrane protein (chloroplast) (<i>Mesembryanthemum crystallinum</i>)
PMA4I TCTCTCTCTCCTTGTTGTTGT/GTGGCCGGAGAT 59.47/ 194 BM300809.1 ATGAGCTG 60.32 194 BM300809.1	ITGT/GTGGCCGGAGAT 59.47/ TG 60.32	194 BM3	00809.1	No significant similarity found

TABLE 5: Continued.

6

ocus iame	Primer sequence $(5' \longrightarrow 3')$	T_m (°C)	Expected size (bp)	GenBank no.	Putative function
MA42	CCACCAGTCACATATTACACGC/AGACGAATAGGT TAGTGTTCAGT	59.94/ 59.76	693	BE034183.1	No significant similarity found
MA43	CTTCCCTCAGGCTGCGAG/AGGGTTAGGCATTGTTGT TGGA	59.81/ 60.16	247	BE033637.1	PREDICTED: peptidyl-prolyl cis-trans isomerase 1 (Vigna angularis)
MA44 [§]	TGCAATATCTGGAAACGCGA/TGAAATGATAGAGAG ATCCACCAGG	57.98/ 59.69	297	CA835421.1	chloroplast envelope membrane protein (chloroplast) (<i>Mesembryanthemum crystallinum</i>)
MA45	TCCTGTGCTCATTTTCCTCTGT/TTCCGCCCTGTCCT AAATG	59.63/ 59.75	295	BE036291.1	No significant similarity found
MA46	CTCCGACATGCAGAACTCCC/GCTAGCTGGTCTGGG TTGAA	60.46/ 59.68	243	BG269304.1	No significant similarity found
MA47	TCGGGCTGCAGGAATTCG/GGCAAGCAAACAACAAG GA	60.13/ 57.69	250	BE034598.1	Hypothetical protein BVRB_5g115740 (Beta vulgaris subsp. vulgaris)
9MA48 ^{\$}	CTGAGTCCCGTTGCTAGACC/GTGTATGACGTTGCGCTC G	59.83/ 59.66	242	BE033493.1	No significant similarity found
°MA49	CGGGTTCGTCGATAAAGAAAGA/TCCTTTCTCTGTTGT TGTTTCTCT	59.08/ 58.25	216	CA837106.1	PREDICTED: tubulin alpha-3 chain-like, partial (Raphanus sativus)
PMA50	AGGAAACAAAGGAGCGGCTC/GGTTGACCTCCCAAT CTCGT	60.61/ 59.39	244	AW266506.1	BEL1-like homeodomain protein 1 (<i>Chenopodium quinoa</i>)
PMA51	ATTGTGTTATGAGCTTATGTGTTCA/TCCTCCTTATAT GGGCCAGTTG	57.31/ 59.29	230	BE035895.1	PREDICTED: peamaclein-like (Juglans regia)
PMA52	ACAAACAACAACAACAACAACACACT/GCCCTTGTTCTT GATGCGGA	59.91/ 60.96	249	BF479882.1	Hypothetical protein BVRB_3g062460 (Beta vulgaris subsp. vulgaris)
PMA53	CCCGGGCTGCAGGAATTC/TGACACTCAATCACTCGG CG	60.83/ 60.39	190	BE033624.1	No significant similarity found
PMA54	CCAATTCAAGAGCCGCACTG/GGTGGAAGGAGAGAG GGTGA	59.83/ 60.25	347	BE034293.1	gibberellin 2-beta-dioxygenase 2-like (<i>Chenopodium quinoa</i>)
PMA55 ^{\$}	CAAGCTGGGATAATGGTGTCA/AGGATGGAAGAGAAA GAGAGAAAA	58/57.31	241	BE037070.1	PREDICTED: triosephosphate isomerase, chloroplastic (<i>Beta vulgaris</i>)
PMA56	GAGATAAGCACCTGGGGCCTG/TAATGCTTGGGTGGT GGTGG	60.18/ 60.25	214	BF480398.1	Hypothetical protein VITISV_000212 (Vitis vinifera)
PMA57 ^{\$}	TCTGGAACTAGTATGTTGATGGAGT/ATAAGGGGAAAT TGGGGGCGG	59.04/ 60.11	242	BE035959.1	No significant similarity found
PMA58	AGGGAGTTTGTATGTCAGCCA/CTCACTAGGCAATGG ACCGG	59.01/ 60.18	239	BE035417.1	No significant similarity found
PMA59	TGGTTGGAGAAGATGGAAGACA/CTCATCAAATCATGC TGCCTCA	59.02/ 59.05	248	CA840173.1	No significant similarity found
PMA60	TGTTCTAGTCCCGTCCGCAT/AAGGAGGGAAGGAGG GAAGG	60.97/ 60.25	598	BE034770.1	No significant similarity found
PMA61	CTCTCGCTGCTCCATCCCTT/TGAGTTGGATTGGAAATT AGGGA	61.68/ 57.47	203	BE577610.1	No significant similarity found
PMA62 [§]	CCCGGTGTTGGTGGTAGATAG/TGCCGAGAAATAGGA AAGAACA	59.86/ 57.72	343	BE035340.1	No significant similarity found

Locus name	Primer sequence $(5' \longrightarrow 3')$	T_m (°C)	Expected size (bp)	GenBank no.	Putative function
PMA63 [§]	TCGACCTCCATCTCCACTGT/TTTTACCCCAAGAGCCGAA CG	59.96/ 58.48	823	BE033728.1	No significant similarity found
PMA64 [§]	CAGAATCCATCCCATACTTCCCA/AGGATAATGATGATT TTGGGTTTGGA	59.6/59.1	212	BM302080.1	Uncharacterized protein LOC110734179 (Chenopodium quinoa)
PMA65	AGAAATTGGAAATTGTTTGGCC/CAATCTGAAGGG AGAGCGCC	57.31/ 60.81	208	BE036649.1	No significant similarity found
PMA66	TTTGGGCTGCTTCTGGGATT/ACCACACCTTCATTACA	59.89/ 58.13	487	BE036567.1	No significant similarity found
PMA67 ^{\$}	AGGTCAGAAGGAATCGGCAC/AGTAAATTTGTGTGTTT TGAAGGGGA	59.75/ 57.81	233	BE035280.1	No significant similarity found
PMA68	CCCTCGTTGACACTGGCATA/TCTAGGGGTTTTTGGGCGT TC	59.75/ 60.25	488	BE036046.1	No significant similarity found
PMA69 [§]	TGTGGTGCAATTCTCTCATTCA/TGTTCTGTCCCGGCC TTTTT	59.47	300	BE036153.1	No significant similarity found
PMA70	AGAGCAGCTGAACCAACCAA/TTGGAATTCTGCATC TGGGC	59.82/ 58.52	284	CA840329.1	PREDICTED: probable protein phosphatase 2C 27 (Beta vulgaris subsp. vulgaris)
PMA71	GGAAGGGGATGTTCGCCAA/GGGAAAATTTGGGGA AGGGG	60.04/ 58.71	359	BE034955.1	No significant similarity found
PMA72	CCTCTGCCAATCTTCTTCCCC/GCAGCTTGAGGGAGA GAGAA	60.41/59.1	244	BF479953.1	No significant similarity found
PMA73	AATCCATGGCCTTGTGAAGC/TGTGTTTTTGGGAGGG GTGTT	58.81/ 59.66	297	BE033627.1	No significant similarity found
PMA74	CTTCTAGCTGCAGGAATTCGG/GCAAAGAAACACACC CTCCG	58.79/ 59.69	287	BE037450.1	Salt-inducible zinc finger 1 (Sesuvium portulacastrum)
PMA75	GCCGAATTTGGGGACGAGG/AAAGGAGACCGCCCGAG	58.5/ 61.39	250	BE035632.1	No significant similarity found
PMA76 [§]	GGAGGAGGAGGAGGAGGAGG/AATTGGGCGCGGGAA ATAAC	59.52/ 59.54	400	BE035976.1	Hypothetical protein M569_05046, partial (Genlisea aurea)
PMA77 ^{\$}	AAACCCTTTTACCACCCCAAATC/GGACTTTCCCCGGTGG TTGG	57.03/ 60.6	494	BE036766.1	No significant similarity found
PMA78	CCAGGCCTTAAGATGCTGCA/CAAAAGCACACGGGG AACAA	60.39/ 59.54	393	BE036806.1	Polyadenylate-binding protein (<i>Medicago truncatula</i>)
PMA79 [§]	GACTGAAGTAATTCGCGGCC/CGCGCTTTGTGTTTCTCT CC	59.35/ 60.11	398	BE033686.1	No significant similarity found
$\rm PMA80^{\$}$	ATAGGTCTGCAGGCATTCG/GGGTTAAGGGGGCGCGTAA	57.31/ 59.73	460	BE034828.1	No significant similarity found
PMA81	AACGCTCATCTCCTGCTGTC/TTGGTGGTTGTTGGGGG TT	60.11/ 60.25	500	BE033954.1	No significant similarity found
PMA82	TCCCACGACTGCAGGAATTC/CTAGCGGGGTATGAG TGAGC	60.04/ 59.68	471	BE033727.1	No significant similarity found
PMA83 [§]	ATGCGCCGACACTCCGAG/GCTTTCTGTGCGTGTGC	62.5/ 60.66	600	BE033402.1	No significant similarity found
[§] Selected for	diversity analysis.				

TABLE 5: Continued.

8

TABLE 6: Number of alleles, size range of amplified fragments, and polymorphism statistics calculated with iMEC for 24 Mesembryanthemum genotypes using 21 expressed sequence tag-simple sequence repeat (EST-SSR) loci.

udume_gen	e seduction teheau (Tr						
Locus	Number of alleles	Size range (bp)	Polymorphic information content (PIC)	Heterozygosity index (H)	Average heterozygosity (av. H)	Marker index (MI)	Discriminating power (D)
PMA5	2	850-1100	0.47	0.38	0.38	0.38	0.94
PMA11	5	167 - 2000	0.43	0.47	0.47	0.47	0.62
PMA20	1	248	0.47	0.38	0.38	0.38	0.95
PMA21	4	400 - 950	0.51	0.36	0.36	0.36	0.34
PMA23	1	300	0.53	0.16	0.16	0.16	0.16
PMA29	33	250 - 700	0.47	0.61	0.61	0.61	0.52
PMA30	1	200	0.54	0.08	0.08	0.08	1
PMA32	5	250-750	0.42	0.5	0.5	0.5	0.8
PMA38	1	244	0.53	0.15	0.15	0.15	1
PMA40	2	230 - 305	0.41	0.5	0.5	0.5	0.73
PMA44	1	297	0.54	0	0	0	0
PMA48	5	350-1000	0.43	0.47	0.47	0.47	0.86
PMA57	4	350 - 1000	0.48	0.54	0.54	0.54	0.54
PMA62	1	500	0.46	0.47	0.47	0.47	0.49
PMA63	2	120 - 800	0.46	0.66	0.66	0.66	0.63
PMA64	5	212-900	0.41	0.5	0.5	0.5	0.74
PMA67	4	233-650	0.42	0.48	0.48	0.48	0.84
PMA76	3	150 - 400	0.43	0.47	0.47	0.47	0.86
PMA77	4	350-750	0.45	0.41	0.41	0.41	0.92
PMA79	9	250–900	0.42	0.5	0.5	0.5	0.78
PMA80	3	600-800	0.44	0.51	0.51	0.51	0.38
PMA83	2	500 - 600	0.43	0.48	0.48	0.48	0.64

Scientifica

FIGURE 2: The unweighted pair group method with arithmetic mean- (UPGMA-) based diversity analysis of 24 *Mesembryanthemum* genotypes using 21 expressed sequence tag-simple sequence repeats (EST-SSRs) markers and dice coefficient [28].

indicating that genotypes with coefficients closer to 1.0 share a larger proportion of genetic material.

The diversity in the range of similarity coefficients (0.38 to 0.96) signifies a substantial genetic variation within the *Mesembryanthemum* genotypes being studied. The mean similarity coefficient of 0.67 suggests a moderate level of genetic similarity on average, implying a balanced mix of genetic relatedness and diversity among the genotypes. Understanding the genetic diversity and relationships among these *Mesembryanthemum* genotypes is crucial for various applications, including breeding programs, conservation efforts, and understanding the evolutionary history of these genotypes.

Due to their gene specificity, EST-SSRs are valuable tools for gene tagging and comparative investigations. They can be employed in the development of linkage maps and studies on diversity across related species, as demonstrated by Sahu et al. [27] and Akash and Myers [12]. The newly developed set of EST-SSRs presented in this study offers molecular breeders enhanced resources for gene-based identification and selection of traits through marker-assisted breeding.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the Deanship of Academic Research The University of Jordan.

References

- C. Klak, P. V. Bruyns, and T. A. Hedderson, "A phylogeny and new classification for Mesembryanthemoideae (Aizoaceae)," *Taxon*, vol. 56, no. 3, pp. 737–756, 2007.
- [2] M. I. Soliman, M. S. Zaghloul, and Y. M. Heikal, "Genetic variation within and among three Egyptian *Mesembryanthemum* species using different genetic markers," *Egyptian Journal of Basic and Applied Sciences*, vol. 1, no. 3-4, pp. 127–135, 2014.
- [3] M. L. Cocks, K. J. Esler, and R. M. Cowling, "Mesembryanthemaceae," in *Handbook of Succulent Plants*, pp. 235– 288, Springer, Singapore, 2013.
- [4] B. Ibtissem, C. Abdelly, and S. Sfar, "Antioxidant and antibacterial properties of *Mesembryanthemum crystallinum* and *Carpobrotus edulis* extracts," *Advances in Chemical Engineering and Science*, vol. 2, no. 3, pp. 359–365, 2012.
- [5] A. I. Mustafa, M. S. Al-Jassir, M. A. Nawawy, and S. E. Ahmed, "Studies on samh seeds (*Mesembryanthemum forsskalei* Hochst) growing in Saudi Arabia: 3. Utilization of samh seeds in bakery products," *Plant Foods for Human Nutrition*, vol. 48, no. 4, pp. 279–286, 1995.
- [6] C. Hilton-Taylor, IUCN Red List of Threatened Species, International Union for Conservation of Nature, Gland, Switzerland, 2008.
- [7] P. B. Cregan and C. V. Quigley, "Simple sequence repeat DNA marker analysis," in *DNA Markers: Protocols, Applications, and Overviews*, G. Caetano- Anolles and P. M. Gresshoff, Eds., pp. 173–185, Wiley-Liss, Inc, Hoboken, NJ, USA, 1997.
- [8] M. Litt and J. A. Luty, "A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene," *The American Journal of Human Genetics*, vol. 44, no. 3, pp. 397–401, 1989.
- [9] D. De Vienne, S. Santoni, and M. Falque, "Principal sources of molecular markers," in *Molecular Markers in Plant Genetics and Biotechnology*, D. De Vienne, Ed., pp. 3–46, Science Publishers, INC, Versailles, France, 2003.

- [10] N. Jones, H. Ougham, H. Thomas, and I. Pasakinskiene, "Markers and mapping revisited: finding your gene," *New Phytologist*, vol. 183, no. 4, pp. 935–966, 2009.
- [11] M. C. Saha, M. A. Mian, I. Eujayl, J. C. Zwonitzer, L. Wang, and G. D. May, "Tall fescue EST-SSR markers with transferability across several grass species," *Theoretical and Applied Genetics*, vol. 109, no. 4, pp. 783–791, 2004.
- [12] M. W. Akash and G. O. Myers, "The development of faba bean expressed sequence tag-simple sequence repeats (EST-SSRs) and their validity in diversity analysis," *Plant Breeding*, vol. 131, no. 4, pp. 522–530, 2012.
- [13] H. Chen, L. Li, X. Wei et al., "Development, chromosome location and genetic mapping of EST-SSR markers in wheat," *Chinese Science Bulletin*, vol. 50, no. 20, pp. 2328–2336, 2005.
- [14] R. K. Varshney, A. Graner, and M. E. Sorrells, "Genic microsatellite markers in plants: features and applications," *Trends in Biotechnology*, vol. 23, no. 1, pp. 48–55, 2005.
- [15] W. El-Rodeny, M. Kimura, H. Hirakawa et al., "Development of EST-SSR markers and construction of a linkage map in faba bean (*Vicia faba*)," *Breeding Science*, vol. 64, no. 3, pp. 252– 263, 2014.
- [16] H. Chen, L. Liu, L. Wang, S. Wang, P. Somta, and X. Cheng, "Development and validation of EST-SSR markers from the transcriptome of adzuki bean (*Vigna angularis*)," *PLoS One*, vol. 10, no. 7, Article ID e0131939, 2015.
- [17] P. Verma, N. Shah, and S. Bhatia, "Development of an expressed gene catalogue and molecular markers from the de novo assembly of short sequence reads of the lentil (*Lens culinaris* Medik.) transcriptome," *Plant Biotechnology Journal*, vol. 11, no. 7, pp. 894–905, 2013.
- [18] P. Rice, I. Longden, and A. Bleasby, "EMBOSS: the European molecular biology open software suite," *Trends in Genetics*, vol. 16, no. 6, pp. 276-277, 2000.
- [19] S. Beier, T. Thiel, T. Münch, U. Scholz, and M. Mascher, "MISA-web: a web server for microsatellite prediction," *Bioinformatics*, vol. 33, no. 16, pp. 2583–2585, 2017.
- [20] A. Amiryousefi, J. Hyvönen, and P. Poczai, "iMEC: online marker efficiency calculator," *Applications in Plant Sciences*, vol. 6, no. 6, p. e01159, 2018.
- [21] F. J. Rohlf, NTSYS-Pc: Numerical Taxonomy and Multivariate Analysis System, Version 2.02, Applied Biostatistics, New York, NY, USA, 1998.
- [22] B. Kumar, U. Kumar, and H. K. Yadav, "Identification of EST-SSRs and molecular diversity analysis in *Mentha piperita*," *The Crop Journal*, vol. 3, no. 4, pp. 335–342, 2015.
- [23] G. Yi, J. M. Lee, S. Lee, D. Choi, and B. D. Kim, "Exploitation of pepper EST-SSRs and an SSR-based linkage map," *Theoretical and Applied Genetics*, vol. 114, no. 1, pp. 113–130, 2006.
- [24] S. P. Kumpatla and S. Mukhopadhyay, "Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species," *Genome*, vol. 48, no. 6, pp. 985–998, 2005.
- [25] A. A. Raji, J. V. Anderson, O. A. Kolade, C. D. Ugwu, A. G. Dixon, and I. L. Ingelbrecht, "Gene-based microsatellites for cassava (*Manihot esculenta* Crantz): prevalence, polymorphisms, and cross-taxa utility," *BMC Plant Biology*, vol. 9, no. 1, p. 118, 2009.
- [26] H. Zhang, L. Wei, H. Miao, T. Zhang, and C. Wang, "Development and validation of genic-SSR markers in sesame by RNA-seq," *BMC Genomics*, vol. 13, no. 1, p. 316, 2012.
- [27] J. Sahu, R. Sarmah, B. Dehury et al., "Mining for SSRs and FDMs from expressed sequence tags of Camellia sinensis," *Bioinformation*, vol. 8, no. 6, pp. 260–266, 2012.

[28] L. R. Dice, "Measures of the amount of ecologic association between species," *Ecology*, vol. 26, no. 3, pp. 297–302, 1945.