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Background. As people live longer, there is an increasing need for hard tissue regeneration and whole-tooth regeneration. Despite
the advancements in the field of medicine, the field of regenerative dentistry is still challenging due to the complexity of dental
hard tissues. Cross-disciplinary collaboration among material scientists, cellular biologists, and odontologists aimed at developing
strategies and uncovering solutions related to dental tissue regeneration. Methodology. A search of the literature was done for
pertinent research. Consistent with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020
Statement, the electronic databases looked at were PubMed, Science Direct, Scopus, and Google Scholar, with the keyword search
“hard dental tissue regeneration.” Results. Database analysis yielded a total of 476 articles. 222 duplicate articles have been
removed in total. Articles that have no connection to the directed regeneration of hard dental tissue were disregarded. The review
concluded with the inclusion of four studies that were relevant to our research objective. Conclusion. Current molecular signaling
network investigations and novel viewpoints on cellular heterogeneity have made advancements in understanding of the kinetics
of dental hard tissue regeneration possible. Here, we outline the fundamentals of stem hard dental tissue maintenance, re-
generation, and repair, as well as recent advancements in the field of hard tissue regeneration. These intriguing findings help
establish a framework that will eventually enable basic research findings to be utilized towards oral health-improving medicines.

1. Introduction

Hard tissues comprise dental enamel, cementum, and bone
[1]. They are also known as calcified tissues because hard
tissues include calcium-phosphate minerals [1]. With an
aging population worldwide, there is a greater demand than
ever for hard tissue regeneration and repair [2, 3]. Mal-
unions, abnormalities, and fractures of the bones have

become major global health issues [4, 5]. In 2004, the US
gross domestic product was 7.7%, or $849 billion, after
missed wages and medical expenses for those with mus-
culoskeletal illnesses [6]. With an aging population, this cost
is rising rapidly [6]. Autografts are the best option, but their
limited supply and potential for donor site morbidity limit
their use. The risk of infection and the increased incidence of
nonunion with host tissues present difficulties for allografts.
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Smart biomaterials, along with tissue engineering structures,
present intriguing alternatives to autogenous bone grafts
with a plethora of potential applications [3, 7, 8].

The most prevalent disease affecting other hard tissues in
humans is tooth caries. Dental caries significantly impairs
oral and general health, lowers quality of life, and signifi-
cantly increases public health expenses [9, 10]. In the US,
more than 200 million dental cavity restorations are per-
formed annually, with a $46 billion cost associated with these
treatments in 2005 [10]. As life expectancy and the per-
centage of tooth retention in seniors rise, the need is growing
quickly [11]. Mineral loss results from acidogenic bacteria
fermenting carbohydrates to create acids, which causes
caries [12]. Restorations made to treat dental cavities fre-
quently deteriorate over time, primarily as a result of sec-
ondary (recurrent) caries [13]. In addition, more than half of
all restorations are replacements for failed restorations [14].

The ongoing increases in tooth loss due to specific
bacteria that adhere to teeth metabolize carbohydrates into
acid and cause dental caries necessitates the development of
novel techniques for tooth regeneration [15]. Conventional
dental implants possess a limited lifespan and eventually
may be required to be replaced even though metal crowns,
porcelain, and resin-based composites have been demon-
strated to be quite effective in retaining hard tooth tissues.
Under this perspective, there can be significant benefits from
developing new techniques for repairing damaged dental
hard tissues [15].

The goal of the hard dental tissue regeneration process is
to restore the pulp, cement, dentin, and enamel of each
individual hard component as well as the entire tooth.
Owing to complexity of the dental hard tissues, it becomes
challenging to replace a lost tooth with a bioengineered
structure that is functional. This complexity and challenge
calls for the collaboration of biologic, genetic, or bio-
engineering approaches [16]. A variety of requirements,
including precise dental occlusion, proprioception, appro-
priate tooth-to-tooth contact, communication of chewing
duties, and cosmetic restoration, must be addressed in the
construction of the bioengineered teeth [17]. Optimizing the
orientation and interactions of the epithelial mesenchymal
cell layers with the extracellular matrix is crucial for the
creation of teeth with a predetermined form. Creating
scaffolds by 3D printing, cell seeding, or other techniques is
one strategy to achieve the required distribution of cells
inside the matrix [18].

Dentistry and regenerative medicine hold countless
assurance for the discipline of dental hard tissue re-
generation, which aims to replace or restore lost or damaged
dental structures such as cementum, dentin, and enamel
[1, 19, 20]. Human teeth are prone to a variety of problems
that can cause them to lose their structure and function, such
as decay, trauma, and wear and tear. In traditional dental
treatments, artificial restorations such as crowns and fillings
are frequently placed after diseased tissue has been removed.
These methods might not be as functional or long lasting as
they could be [1].

The goal of dental hard tissue regeneration is to cir-
cumvent these constraints by encouraging the dental
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structures’ organic growth and repair processes. Dental hard
tissue regeneration is an intriguing new area in dentistry that
may lead to more natural, long-lasting treatments for dis-
eases and damage to the teeth. Better dental treatments and
results for patients could result from ongoing study in this
area, improving their quality of life and oral health in the
process. Hence, the goal for this review is to present
a narrative review on dental tissue regeneration.

2. Methods

A literature search for relevant studies was completed. The
electronic databases searched were PubMed, Science Direct,
Scopus, and Google Scholar, utilizing the search keyword
“hard dental tissue regeneration” in accordance with the
2020 Statement of Preferred Reporting Items for Systematic
Review and Meta-Analysis (PRISMA) [21]. A review of the
relevant literature on directed hard dental tissue re-
generation was conducted in order to select only those
studies that met the review’s inclusion criteria. We only took
into consideration papers that were published in English.
Furthermore, the only materials taken into consideration
were original publications, reports, and case series. Text-
books, brief messages, letters, abstracts, interim reports, and
book chapters were excluded.

Duplicates of every study found using the search pro-
cedures were removed after importing them all into an
Endnote library. The articles that met the selection criteria
were assessed separately by the first and second authors. To
settle any disagreements, the third author, who acted as the
third reviewer, was consulted. Following this screening, two
additional reviewers (the original two authors) examined the
chosen records in detail and independently decided whether
or not to include them in the review. A third author was
again approached in case of any disagreement. The same two
reviewers extracted the data into a standard data format. The
PRISMA flow diagram shown in Figure 1 was used to
present articles that satisfied the eligibility requirements and
those that were discarded during the study selection process.

3. Results

Using the search method outlined in this study, 476 studies
in total were found through database analysis. A total of 222
duplicate articles were removed. Articles without any
bearing on guided hard dental tissue regeneration were
excluded from consideration. The articles were also excluded
for the following reasons: policy statements, thorough re-
views, and brief messages. Finally, four studies that were
pertinent to our research issue were included in the review.

Despite the fact that there have been a lot of review
publications on tooth engineering techniques published
recently, we found that only four of them have addressed
issues related to dental hard tissue regeneration [1, 22-24]
and ten have addressed issues related to hard dental tissues
and their genesis [25-34]. These studies provided good
descriptions of a number of topics pertaining to dental hard
tissue regeneration, yet only one study specifically addressed
the connection between the efficacy of the regeneration
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FiGUure 1: PRISMA flowchart of the study selection process.

procedure and the characteristics of biomaterials and/or
stem cells. The remaining ten studies illustrate the tooth
formation process, which begins during embryogenesis and
moves through several stages during pregnancy, childhood,
and adolescence until permanent teeth erupt (Table 1). The
recent developments in the investigation of many facets and
methods of hard dental tissue regeneration are the main
topic of this review. The results of the advancement are
compared to the problems that this field of study is currently
facing.

The included review’s findings showcased current de-
velopments in hard dental tissue regeneration techniques,
highlighted the regeneration of the entire tooth, and

described the primary methods for creating scaffolds that are
acceptable and offer the right conditions for stem cell de-
velopment. Stem cells were able to completely contribute to
the regeneration of the hard dental tissues and the entire
tooth, regardless of the technique used, i.e., scaffold-based or
scaffold-free approach [1, 22-24]. Knowledge of the sig-
naling pathways influencing dental tissue genesis could lead
to creating innovative cell culture methods and scaffolds
with specific functions. Due to the acellular nature of
enamel, which makes it impossible to replicate in vitro using
a purely cell-based method, functionalized biomaterials are
likely to be crucial to the regeneration of hard dental tissues
such as dentin and cementum, as well as enamel
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[25, 27-30, 33]. Researchers have studied and evaluated
a great number of potentially suitable biomaterials but only
a relatively small number of these have been applied in
clinical trials.

Furthermore, review reports and in vitro experiments
made up nearly all of the studies contained in this review.
Several issues and constraints limit the generalizability of
what has been learned about dental tissue regeneration
through these investigations. Review reports are vulnerable to
bias due to the selection of the included studies. A distorted
interpretation of the literature may result from review writers’
deliberate or inadvertent favouritism of studies that cor-
roborate their theories or from their disregard of studies with
contradicting findings. To examine the impact of different
biomaterials or growth factors on dental tissue regeneration,
in vitro research frequently uses cell or tissue cultures. These
studies might not accurately capture the intricate milieu of the
oral cavity while allowing for carefully monitored settings and
in-depth molecular investigations. Therefore, research on the
regeneration of hard tooth tissue has enhanced our un-
derstanding of regenerative therapies, yet there are a number
of methodological limitations and issues with generalizability
associated with these studies. The discipline must advance,
and research findings must be translated into practical,
beneficial medical treatments by addressing these limitations
through enhanced study designs, standardized methodolo-
gies, and rigorous clinical trials.

4. Discussion

4.1. The Cellular and Molecular Processes Involved in Tooth
Development. Developmental and stem cell biologists who
research adult tissue regeneration and embryonic mor-
phogenesis have long been interested in teeth because they
offer a superb framework for interpreting the molecular
principles of organogenesis [30]. In the past few years,
molecular signaling networks and new ideas about cellular
heterogeneity have helped us learn a lot more about the
changing interactions between epithelial and mesenchymal
cells that happen during tooth development and
homeostasis [30].

The process of developing teeth begins in the embryonic
stage and continues in stages during infancy, childhood, and
puberty, culminating in the eruption of permanent teeth.
The formation of dental tissues is inter-related to one an-
other as one tissue directs the development of the other
[25, 27, 35]. Early odontogenesis is characterized by an
epithelial-mesenchymal interaction, which is also a model
for the formation of other organs such as hair follicles and
exocrine glands [31]. The epithelium is derived from the
embryonic endoderm, while the mesenchyme is derived
from the cranial neural crest. Placodal thickenings of the
mouth epithelium along the dental lamina initialize the
cellular condensation of the underlying mesenchyme.
Subsequently, the tooth primordium undergoes multiple
morphological stages, ultimately maturing into a bell stage,
bud, and cap. The mesenchyme produces the pulp,

periodontal apparatus, and hard materials such as cemen-
tum and dentine, whereas the epithelium creates
enamel [27].

Subsequently, reciprocal induction begins in the mes-
enchyme, and epithelial components lose their inductive
odontogenic capacity. Numerous molecules interacting in
signaling pathways form a signaling program that controls
these reciprocal crosstalks. Families that act as morphoge-
netic inducers, such as Wingless/Intl, Ectodysplasin,
Hedgehog, and Bone Morphogenic Proteins are prominent
examples of these factors [26, 28, 31]. Signaling centers,
which also regulate morphogenesis and coordinate tissue
connections, are in charge of determining the size of a single
tooth. Cellular signaling also affects tooth shape in addition
to tissue variables such as mesenchymal condensation, ep-
ithelial contraction, and bone biomechanics [31, 32].

Several recognized stem cell niches exist throughout the
development of teeth. Epithelial stem cells reside in the
apical end of the advancing epithelium, known as the cer-
vical loop. These cells remain active until the tooth root
begins to form [22]. Stem cells aid in the continuous growth
of teeth, such as the incisors of mice. The double-layered
epithelial root sheath of the hertwig, which elongates the
cervical loop, functions as a signaling hub for the formation
of tooth roots. It is important to remember that the in-
teraction between the growing alveolar bone and tooth
production dictates how teeth form, and this should be
considered when constructing whole tooth regeneration
techniques [31, 33].

Comprising nonvascularized hard tissues such as dental
pulp, soft, vascularized enamel, and dentin, the adult tooth is
a complicated organ. Intimately connected to dentin, the
dental pulp contains odontoblasts, pericytes, dental pulp stem
cells, and other cellular groupings. Nerves allow the pulp and
oral environment to convey sensory information, while blood
vessels that pierce the pulp provide nutrition to its resident
cells. In cases of severe dental damage (e.g., deep cavities),
odontoblasts, their progenitors, and dental pulp stem cells can
be isolated from the tooth pulp to promote dentin repair [36].
The periodontal ligament, a sophisticated attachment tissue
that binds the tooth to the alveolar jawbone and contains
odontogenic stem cells, surrounds the tooth [29, 34].

4.2. Tissue Engineering Triad. The multidisciplinary disci-
pline of tissue engineering employs engineering and bi-
ological science ideas to create biological replacements that
have the potential to enhance, preserve, or repair tissue and
organ functioning [37]. The foundation of tissue engineering
is the regenerative process of biological tissues using growth
agents, scaffolds, and progenitor and stem cells [37, 38].
Scaffolds containing the appropriate cells and signaling
molecules must be employed to initiate the development of
new dental tissue that can homogenize with the surrounding
tissues [39-41].

It has been discovered that stem cells of diverse origins
are necessary for tissue regeneration. Stem cells include both
adult and embryonic stem cells [42]. The source of



immature, undifferentiated cells known as embryonic stem
cells is the inner cell mass of blastocysts [43, 44]. These cells
are capable of perpetual self-renewal and growth. Adult stem
and progenitor cells that are still undifferentiated possess the
capacity to develop into distinct tissue types [45]. They
protect the tissues they dwell in, including blood, skin, bone,
and tooth pulp, from breaking down structurally [46].

Growth factors were suggested to be the third crucial
element in the triad of tissue engineering and are considered
necessary for the process of regeneration. They interact with
the extracellular matrix in the surrounding area after being
released from cells, immediately offering themselves to cell
surface receptors. When growth factors attach to certain cell-
membrane-linked receptors, a number of activities and
pathways in tissue engineering are initiated [47-50]. These
comprise the following: adhesion, development, pro-
liferation, migration, survival, and differentiation into the
target cell type. It has been demonstrated that a protein
known as bone morphogenetic protein-2 (BMP-2) can
convert dental pulp stem/progenitor cells into odontoblasts
[47]. It has also been demonstrated that BMP-4 promotes
the differentiation of human embryonic stem cells into
dental epithelium, which gives rise to teeth [51]. Trans-
froming growth factor (TGF) also hastens the mineralization
process, which dental pulp stem cells control, in addition to
helping odontoblast-like cells proliferate [47]. Generally,
angiogenesis in the processes of repair and regeneration,
wound healing, and growth are all dependent on these
growth factor-mediated cell responses [50].

4.3. Tooth Regeneration. The ultimate goal of regenerative
dentistry is believed to be the replacement of an organ with
a whole tooth. For patients, this course of treatment might be
their best chance to restore damaged or missing teeth
without having to undergo prosthodontic or implantology
procedures that require artificial replacements. A complete
tooth could be created using a hybrid technique. For in-
stance, a metal or ceramic implant could be used to join
a bioengineered tissue structures like a tooth crown or the
periodontal ligament, or a prosthetic crown could be joined
with a biologically regenerated tooth root, or “bio-root.” In
the next several years, creating a complete tooth (a “bio-
tooth”) from scratch utilizing just cells and tissues is most
likely the aim. This approach is still challenging inspite of the
advancements in the basic and translational research
[34, 52-55].

Autogenous dental cells from individuals in need of
tooth regeneration would be the best way to generate entire
teeth. Various approaches to the application of these cells for
whole-tooth bioengineering have been established. Com-
bining adult stem cells with teeth embryonic progenitor cells
was one idea. Adult stem cells are to demonstrate dental
mesenchymal ability and function as a tooth inducer in
association with the mesenchymal cells. Alternatively, they
should have odontogenic competence and operate as dental
epithelium when combined with mesenchymal cells. Young
et al. began culturing cells from unerupted porcine tooth
buds as early as 2002 [56]. The aggregates were either
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implanted or generated in vitro on biodegradable scaffolds.
As aresult, a simple dental crown made of pulp, dentin, and
enamel formed. Subsequently, rat and human cells might be
used to create bioengineered tooth-like structures that are
comparable to these [57, 58]. Ohazama et al. employed an
inductive embryonic dental epithelium, which was first
implanted under the renal capsule and subsequently placed
into adult jaws in 2004, in conjunction with adult mesen-
chymal stem cells (MSCs) that were not attached to the teeth
[59]. Teeth broke through the surface and developed, in-
cluding the root. Moreover, there was an increase in bone
formation. The production of tooth-bud-like structures
in vitro was limited to MSCs generated from adipose tissue
[60]. To create a whole tooth outside of an embryo, Angelova
et al. combined embryonic mouse tooth mesenchyme with
human gingival epithelial cells [61].

4.4. Enamel Regeneration. The amelogenesis and structure of
dental enamel, the hardest tissue in the body of a human, is
a highly organized tissue that covers the outer layer of the
tooth crown. This material is unique in its mechanical and
structural properties due to its high hydroxyapatite content,
the way apatite crystals are arranged into enamel prisms, and
the way these prisms line up in a picket-fence pattern within
a tissue that is very tough and flexible [62-65]. The inner
cells of the enamel organ differentiate from specialized
epithelial cells known as ameloblasts, which produce enamel
[66]. They exhibit polarization and elongation with a pro-
tonated Golgi apparatus and endoplasmic reticulum in order
to produce and release enamel proteins and to influx
phosphate and calcium ions into the enamel matrix that is
forming [67, 68]. The three primary proteins found in
growing teeth are enamelin, amelogenin, and ameloblastin.
Enamel formation requires the presence of enamel proteins
[69]. This list now includes an enzyme known as amelotin
and a novel protein known as odontogenic ameloblast as-
sociated. These were found in the maturation stage of
amelogenesis and in the junctional epithelium [70-73].
Ameloblasts undergo reabsorption of water and degradation
of enamel proteins during the mature stage of amelogenesis,
following the development of the enamel matrix [67, 68].
Ultimately, the adult enamel turns acellular as it goes
through apoptosis. Since enamel is not biomineralized like
other hard tissues such as bone and dentin, it cannot repair
itself if it is broken [74, 75]. Therefore, cellular remineral-
ization of surface demineralized defects is largely, if not
entirely, responsible for the reparative healing of damaged
enamel [76].

The goal of this research was to restore enamel flaws
resulting from caries, trauma, or other causes by developing
artificial materials with a hardness similar to enamel [77].
Regretfully, the majority of materials in use today lack the
lost tissues’ mechanical, physical, and aesthetic qualities
[78]. Enamel tissue engineering is encountering numerous
challenges in spite of the pressing need for tooth enamel
regeneration [79-81]. Among these difficulties are the
complex posttranslational protein changes required for
crystal growth and the recapitulation of the unique motions
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of ameloblasts during the formation of hydroxyapatite
crystals into enamel prisms [82, 83]. After all these studies
and findings, there is still no feasible plan for cell-based
in vivo enamel tissue engineering [74]. The main challenge
remains producing artificial enamel with the right anatomy
to replace lost enamel-forming cells and replicate the
prismatic and interprismatic features found in natural
enamel [84].

4.5. Formation and Regeneration of Dentin. Treatment re-
garding dentin-pulp complex is most frequently associated
with dentin regeneration. It is highly desirable to find ways
to preserve pulp vitality because it is necessary for tooth
stability and homeostasis. The primary treatment for pre-
serving pulp vitality at the moment is pulp capping; how-
ever, this commonly comes with permanent pulp
inflammation and reinfections [85]. Therefore, it would be
ideal to use novel techniques and biomaterials for the pulp-
dentin compound regeneration.

In conventional endodontic therapy, hard tissue devel-
opment at the apex is created by cleaning and sealing the
pulp gap with calcium hydroxide. This formation of the hard
tissue creates a barrier for a root-filling substance. This is
done by apexification. Because this process does not en-
courage more root formation, the weak and fragile root canal
walls persist, making teeth more vulnerable to subsequent
problems [86]. One regenerative endodontic method being
studied to circumvent these limitations is remyelization. In
this instance, bleeding is produced in order to seal the dental
canal and form an endogenous clot of blood that serves as
a support structure for the recruitment of growth factors,
matrix proteins, and stem cells. Because of root develop-
ment, apical closure, and the preservation of the tooth’s
vitality, this process results in the regeneration of the pulp-
dentin complex [87, 88]. But because mesenchymal stem
cells were present in the blood that was invading, the re-
sultant tissue is more bone-like and associated with con-
nective tissue than the planned pulp-dentin complex [89].

The use of biological printing along with dental pro-
genitor and stem cells employing clinical methods of 3D
biofabrication and restoration of oral tissues is now rec-
ommended as an alternative to standard dental restorations.
It was possible to construct scaffolds with precise, repeatable
microarchitectures by using bioinks. These unique dentin-
derived extracellular matrix hybrid cell-laden hydrogel
bioinks, which were synthesized from alginate and dentin
matrix proteins, were examined and showed excellent
printability and cell survival at different doses. In addition,
the hybrid hydrogels showed that they could be embedded
with dentin molecules that are soluble in acid, which im-
proved stem/progenitor cells from apical papilla’s odonto-
genic differentiation and efficiently engineered the pulp-
dentin complex [90].

4.6. Cementum Formation and Regeneration. The peri-
odontal complex is composed of the alveolar bone, ce-
mentum, gingiva, and periodontal ligament. Cementum
regeneration occurs directly as a result of treating this

compound. Scaffolds used in periodontal complex regrowth
not only provide the injured tissue with the support it needs
but also frequently serve as a vehicle for bioactive substances
like proteins, growth factors, or gene vectors that promote
the process of healing and attract nearby stem cells to be-
come involved and settle in. The goal of creating multi-
compartment scaffolds is to address the various difficulties
associated with regenerating several tissues on a single
scaffold in periodontal lesions [91]. Furthermore, contem-
porary research includes cell-based scaffolds, such as cell
sheets, in addition to synthetic scaffolds. To use this method,
in a lab dish, numerous cell types crucial to periodontal
regeneration are cultured until robust cell-cell connections
and extracellular matrix synthesis occur. This makes it
possible to implant the cell sheet as a substance that re-
sembles a scaffold [92].

The regenerating potential of retro mineral trioxide (MTA),
a calcium silicate cement combined with tricalcium phosphate,
was examined in a study by Fakheran et al. They found that it
produced significantly more new bone and cementum than the
control group that was not treated. In addition, the use of
biodegradable tricalcium phosphate improves the low rate of
biodegradation of MTA [93]. An inorganic calciumphosphate-
based scaffold material loaded with BMP-2 was utilized by Wei
et al. in a preclinical investigation to treat gum disease in dogs
[94]. By itself, the calcium phosphate-based biomaterial sig-
nificantly increases the regeneration of mineralized tissue and
improves the adherence of the teeth to the surrounding tissue as
compared to an untreated control and a deproteinized bovi-
nebone mineral utilized as a commercial control. When BMP-2
is added, these promising outcomes could even be increased
two- and threefold in terms of the height and area of the
remineralized tissues. Unexpectedly, encapsulated BMP-2 had
a greater impact on osteogenesis than on oncementogenesis
[94]. Wang et al. followed the multicompartment scaffold
technique using a bilayered material containing growth factors.
The hybrid material consisting of a fibrobblast growth factor-2-
loaded propylene-glycol alginate gel (PLGA) on the root surface
for ligament repair and a BMP-2-loaded (PLGA/calcium
phosphate cement) for periodontal regeneration was evaluated
in vivo on nonhuman primates [95]. The authors of a promising
rodent study corroborated the findings of the prior examination
by demonstrating significantly enhanced cementum and
periodontal ligament regeneration in addition to high vascu-
larization of the newly formed periodontal ligament [95, 96].

Cementum has more fluoride than other mineralized
tissues, which makes it a great target for catalysis to promote
tissue mineralization and speed up cementum regeneration
by depositing minerals on the surfaces of tooth roots [97]. In
addition, Yang et al. have created collagen scaffolds that
include fluorine-containing amorphous calcium phosphates
(FACPs) to support the growth of mineralized tissue on
tooth-root surfaces that have precise dimensions on a mi-
cron scale. The FACP-collagen scaffold was created via the
recently created 3D scaffolding method known as Bioskiv-
ing, which makes use of decellularized tendon tissues. This
made it possible to create hierarchical structures that re-
semble cementum but with distinctive alternating collagen
lamella patterns [37]. Specifically, to arrange the micro- and
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nanostructures of collagen constructs in three dimensions,
the approach can tear away tendon-derived structures
(tendon-decellularized structures) and stack sheets of col-
lagen lamellae in alternate orientations [97, 98].

5. Clinical Application of the Study

Despite notable advancements in the regeneration of hard
dental tissues, there remain several fundamental challenges
in implementing the notion of the “processed tooth” in
clinical practice. Designing the architecture of bioengineered
teeth will require taking into account several crucial factors
to achieve this challenging goal. A study on hard dental
tissue regeneration may have clinical applications for the
creation and use of innovative regenerative therapies to treat
tooth injuries or dental caries. Application of a combination
of stem cells, growth factors, and bioactive scaffolds to
encourage dentin and enamel regeneration in an effort to
repair the tooth’s damaged structure and function is gaining
alot of attention lately. In general, the clinical use of hard
dental tissue regeneration presents opportunities for en-
hancing future research and interdisciplinary approaches to
improve tooth restoration and repair, as well as the overall
results of dental treatment.

6. Conclusion

The use of biopolymeric substances to isolate and regenerate
particular periodontal tissues (alveolar bone, cementum, or
periodontal ligaments) for the unique dimensions of spatial
boundaries has been the focus of numerous attempts in
periodontal dental tissue engineering to date. The emergence
of mineralized tissue might be particularly promoted by the
biopolymer process outlined in this review by means of
spatiotemporal control of tissue development towards
periodontal issues employing their structures, biological
substance immobilization, which lose controls by modifi-
cation of chemicals, and manufacturing methods for 3D
design. By gaining an understanding of signaling pathways
influencing the genesis of dental tissue, new approaches to
cell culture and the creation of scaffolds with specific
functions could be sparked. Given that enamel is an acellular
tissue that cannot be replicated in vitro using a purely cell-
based method, functionalized biomaterials are likely to be
crucial to other dental tissues and hard dental tissues such as
dentin and cementum are growing again. Despite the fact
that a number of potentially useful biomaterials have already
been examined and evaluated, up until this point, only a few
of them have been employed in clinical trials. Future re-
search in stem cell-based techniques will probably focus on
biomaterials that enable the release of multiple drugs in
a progressive and as-needed approach to tailor the different
cascade events that take place amid cementogenesis, den-
tinogenesis, and enamel formation, respectively.
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