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With the explosion of Internet of Things (IoT) worldwide, there is an increasing threat from malicious software (malware) attackers
that calls for efficient monitoring of vulnerable systems. Large amounts of data collected from computer networks, servers, and
mobile devices need to be analysed for malware proliferation. Effective analysis methods are needed to match with the scale
and complexity of such a data-intensive environment. In today’s Big Data contexts, visualisation techniques can support malware
analysts going through the time-consuming process of analysing suspicious activities thoroughly. This paper takes a step further
in contributing to the evolving realm of visualisation techniques used in the information security field. The aim of the paper is
twofold: (1) to provide a comprehensive overview of the existing visualisation techniques for detecting suspicious behaviour of
systems and (2) to design a novel visualisation using similarity matrix method for establishing malware classification accurately.
The prime motivation of our proposal is to identify obfuscated malware using visualisation of the extended x86 IA-32 (opcode)
similarity patterns, which are hard to detect with the existing approaches. Our approach uses hybrid models wherein static and
dynamic malware analysis techniques are combined effectively along with visualisation of similarity matrices in order to detect and
classify zero-day malware efficiently. Overall, the high accuracy of classification achieved with our proposed method can be visually

observed since different malware families exhibit significantly dissimilar behaviour patterns.

1. Introduction

Malicious software (malware) is a computer program that
has the intention of causing harm to the operating system
kernel or some security sensitive application or data without
the user’s consent [1, 2]. Malware includes computer viruses,
worms, potentially unwanted programs (PUP), and others
that could even compromise a computer. Internet crime
using such malware is affecting many businesses and people
worldwide. There have been many malicious activities on
the web with new attacks caused by unknown variants of
existing malware that obfuscate their behaviour to evade from
detection [3]. These malware are called zero-day malware
(new malware) as there are zero-days between the unknown
malware’s first attack and the time it is discovered. Such
attacks are also called zero-day attacks.

The commonly applied malware detection approaches fall
under two main techniques: static and dynamic analysis [4-
7]. Static analysis uses the syntax and structural properties of

a file by disassembling the program binary in order to extract
the features. On the other hand, dynamic analysis of the file
is required to be conducted during its running time in order
to extract characteristic actions performed by the program.
Theoretically, a static analysis is faster and more effective as
compared to dynamic analysis due to its advantages from
the information captured relating to structural properties
such as sequence of byte “signatures” and anomalies in file
content. Dynamic analysis can be effective with runtime
information, such as running process or by using control flow
graph that could be less prone to obfuscated malware. Several
previous studies have combined the two approaches for
better results [8, 9]. Malware writers use many metamorphic
and polymorphic obfuscation techniques such as dead-code
insertion, subroutine reordering, code transposition, instruc-
tion substitution, code integration, and register reassignment
to create variants of an existing malware family in order
to evade detection [3, 10]. In addition, packers obfuscate
the entire program and ensure that the code can be only
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analysed at runtime [11]. Since nonstandard and custom-
made packing could make it difficult to disassemble code for
reverse engineering, the binary has to be executed in virtual
environment for unpacking to perform reverse engineering
of the code [12]. Data mining and machine learning tech-
niques have provided promising results to detect such hidden
malware effectively in applications over a variety of platforms
including smartphones and devices [13-15]. A number of
static malware detection approaches have differentiated their
work by studying different classifiers such as support vector
machine (SVM), k-Nearest Neighbor (KNN), and Naive
Bayes (NB) [16]. Recent studies have also used various data
mining techniques for permission usage analysis in mobile
applications and the results show that SVM classifier could
achieve over 90% accuracy [17]. Overall, several features,
from high-level such as API calls or even relevant permissions
as well as low-level opcode for n-grams based malware
detection, have been explored in previous studies [18-20]. In
this work, we have adopted machine learning and similarity
mining approaches that have been effectively applied to both
static and dynamic malware detection with visualisation as
the main focus.

With Big Data and Internet of Things (IoT), the task
of a malware analyst becomes highly labour intensive and
complex since the existing automatic approaches and tech-
niques are available to detect, identify, or capture only known
malware and there is an ever-increasing number of attacks
due to unknown obfuscated malware [21]. Even though
automated data analysis methods are being developed to
mimic this process as much as possible, they still require
the domain experts to correct and disambiguate intermediate
results [22]. Malware analysts or domain experts are required
to analyse large volumes of executable codes, transaction
logs, or network traffic data to identify anomalies as exist-
ing automated analysis techniques cannot replace them in
detecting zero-day malware. The use of visualisation could
be considered to support this analysis process of detect-
ing suspicious unknown malware that exhibits anomalous
behaviour patterns. Visualisation techniques could be used
to effectively intertwine human and computerized analysis
processes to provide malware analysts with a powerful visual
tool using visual representations of data as an effective user
interface. The key advantage of visualisation is its capability
of presenting huge amounts of data in a more intuitive and
interactive manner.

Some recent studies have delved on visualisation tech-
niques to speed up the malware detection process signifi-
cantly [23, 24]. Visual analytics suit Big Data contexts where
complex data requires data analysis to combine automa-
tion with analytical reasoning of human experts. In visual
analytics, similarity mining is a machine learning method
based on the analysis of similarities of the distance measures
and has been recently adopted to detect malware. In this
paper, we provide a visualisation of the similarity matrix
between different malware programs that are commonly
employed by attackers. In addition, we use the visualisation
technique to compare malware dataset with benign dataset
to demonstrate their significant difference in behaviour
patterns.
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In summary, the main contribution of this paper is due
to a signature-free anomaly based detection method using
visualisation techniques. The key objective of the proposal is
to cope with packed and polymorphic transformations and
metamorphic obfuscations of malware for achieving effective
and efficient solutions in order to address the zero-day mal-
ware detection problem. The approach uses the knowledge
of normal behaviour patterns of the Application Program-
ming Interface (API) and investigates patterns of obfuscated
code further by adopting several data mining techniques of
extracted features and statistical n-gram opcode analysis with
innovative techniques to classify whether the binary content
is benign or malicious. The knowledge of API function
calls features along with various distance measures of vector
models are used in a visual way to detect obfuscated malware
families.

We have organised the overall structure of the paper
as follows. In Section 2 we discuss the commonly used
visualisation techniques in the computer security field. In
Section 3, we describe how the proposed method adopted
for this study combines both frequency and knowledge of
binary features as well as the use of key similarity measures
for visualisation and thereby differentiate this study uniquely
from previous research investigations. Section 4 presents
the experimental results of investigating our visualisation
approach with datasets containing both malware and benign
files. An in-depth analysis of how our approach achieves high
classification accuracy using machine learning algorithms is
presented along with limitations and challenges of the study.
Finally, we provide our conclusions and future research work
in Section 5.

2. Visualisation Techniques for
Computer Security

In general, visualisation using similarity techniques falls
under two main categories: (1) projection-oriented or (2)
semantic-oriented [25]. Text visualisation techniques are
predominantly used in many applications with five main
purposes: (1) to visualise document similarity, (2) to identify
content, (3) to reveal sentiments and emotions in text, (4)
to explore document corpus, and (5) to analyse various
domain-specific rich-text corpus, such as social media data,
online news, emails, poetry, and prose. Various application
domains could employ visual analytics to reap the benefits of
visualisation, including malware analysis.

In the field of computer security, visualisation tools have
evolved over a period of time and they are becoming more
useful with Big Data and processing large files. State-of-
the-art techniques for malware analysis can be found in
literature [2], and these fall under two main categories of
static and dynamic analysis [3-6]. Using such techniques,
malware analysts can analyse a file in a hex editor with
relative ease, but such tools do not provide the structure of
the log contents or a relationship between the data in the
logs. Two-dimensional visualisation of a similarity matrix
is a traditional technique used in both static and dynamic
analysis to capture the relevant similarity measures between
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FIGURE 1: Visualisation of SSH brute force attempts.

objects. It provides three key properties: (i) once the similarity
space is formed, the high-dimensionality of the data does not
affect further processing; (ii) clusters of equal importance get
formed; and (iii) clusters that are related to one another are
shown adjacent to each other aiding in visualisation of results
[25-27]. The advantage of visualisation is to make a judgment
for cluster enhancements. A commonly found application
is at the document level, where similarities of content are
visually represented for summarizing document collections.
It is a common practice to visually represent documents as
points on either a 2D or 3D plane. The distance between each
pair of points shows how similar the two documents are;
i.e,, the closer they are, the more similar the two document
contents are [28].

Recently, some research studies have employed visuali-
sation in the analysis of network security attacks [29]. For
example, Figure 1 shows a visualisation of secure shell (SSH)
brute force attempts and one could zoom in to different
colour-coded areas for investigating the details of UserIDs
and Internet Protocol (IP) addresses related to various
anomalies [30].

Visualisation techniques can be used to display an
overview of large packets at a time as well as to show the
relationships between network packets and allow analysts
to zoom into interesting sections to see more detailed data.
Figure 2 shows such features with a visualisation matrix of a
network host displaying port activities and a table of packets
[31].

Next, it is also possible to use visualisation to conduct
timeline analysis to explain the chronology of a malware
attack [32]. For example, Figure 3 shows a timeline analysis
flowchart of different stages in a spear phishing attack with
colours indicating which stages were successful.

After identifying such anomalies and attacks, more
critical information could be extracted using colour-coded
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FIGURE 2: Visualisation matrix of a network host showing port
activities and packets with zoom levels.
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FIGURE 3: Visualisation of spear phishing attack timeline.

visualisation of the different characteristics and types of
connections to the attacked system. Figure 4 shows the infor-
mation on “what,” “where,” and “when” of these connections
and how the distances to other hosts could be estimated using
their IP addresses [33, 34]. Different types of alerts are shown
as separate sectors of concentric rings in consecutive time
intervals and possible attacks depicting many connections to
the same host.

Next, malware analysts are required to analyse the mal-
ware codes that caused the attack and classify them for
a proactive prevention of future attacks. Malware coders
modify small parts of the source code of an existing malware
to produce a new variant or obfuscated malware resulting
in zero-day attacks. For instance, the register reassignment
transformation replaces code between registers by exchang-
ing register names with no other effect on program behaviour
[3]. If register ebx is dead throughout a given live range of the
register eax, it can replace eax in that live range. The signature
that encodes [PUSH ebx] is not the same as the one that
encodes [PUSH eax] and hence becomes obfuscated. Register
reassignment such as replacing [PUSH ebx] with [PUSH eax]
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FIGURE 4: Visualisation of network connection types (what),
resources (where) attacked, and the time (when).
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FIGURE 5: Text visualisation of register reassignment.

to exchange register names and text visualisation to identify
such an obfuscated malware is shown in Figure 5.

While text visualisation is time-consuming in today’s
world of Big Data, texture-based analysis of image visualisa-
tion of different sections of the executable binary codes could
improve the productivity of a malware analyst. The advantage
of images used in visualisation is that they can give more
information about the structure of the malware and could
display even small code changes while retaining the whole
structure of the code. For example, Figure 6 shows different
sections of the code to have unique texture that help in
identifying similar patterns [35]. Malware variants belonging
to the same existing malware family exhibit similar images as
observed in Figure 7 for a known malware Dialplatform.B (a)
and Fakerean (b).

There are limitations with texture-based image analy-
sis of malware. Such an approach cannot be applied to
analyse behaviour patterns for detecting obfuscated code
changes. In addition, malware could be packed using different
packing methods and with different resolution, which leads
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FIGURE 6: Visual representation of the sections of malware code.

to ambiguity in the classification of malware unknown.
These factors make texture based visualisation technique not
always reliable. This warrants more research work towards
a robust method of classifying malware using visualisation
techniques [36]. Much research studies reported in the litera-
ture are quite restricted with a focus on network traffic and
infiltration analysis [37-39]. In this paper, we demonstrate
how visualisation of similarity mining could be applied for
detection as well as classification of zero-day malware. We
innovatively apply visualisation of similarity matrices for an
accurate detection and classification of unknown malware.
Our proposed technique is described in the next section.

3. Proposed Method Using Similarity Mining

The accuracy of malware detection techniques is based on
how well the behaviour patterns exhibited by malicious code
could be extracted and correlated. In general, the intrusion
techniques and attack methods adopted by malware could
be broadly classified as static, dynamic, and hybrid [40,
41]. While static approaches use code syntax manipulations,
dynamic approaches use process changes. In some cases,
hybrid methods combine both code manipulation and pro-
cess changes. For easy and quick implementation, malware
code writers adopt one of the main forms of automatic
generation of new malware resulting in zero-day attacks as
listed below:

(i) Installation or software bundling (static): malicious
code is plugged into host software or bundled in
additional components by taking advantage of an
installation exploit. The malicious code runs every
time the software/component is used and it gets
installed into a system and modifies that system.

(ii) Self-replication (static): malware gets onto new tar-
gets that are associated with an existing one.
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(b) 3 variants of Fakerean

FIGURE 7: Visual similarity in different variants of a known malware.

(iii) Scanning or surveying (dynamic): malware could be
operating from remote, finding new targets for its
attack

(iv) Injection into process or data (hybrid): the malicious-
ness gets injected into other running processes or data
so as to gain additional privileges.

(v) Concealment (hybrid): this method is used to hide
the presence of certain processes, files, or system
resources or to prevent the disabling of software,
processes, or security settings.

(vi) Payload (hybrid): this method is used to download
or to send content (personal data, processes, and
behaviour patterns) from or to third parties.

Investigating a compromise requires the understanding of the
above forms of malware implementations. Rootkits, log files,
password/hidden files, and processes are some of the avenues
through which compromises could be analysed contextually
using automatic and semiautomatic tools primarily based
on the patterns exhibited by malware [42]. However, with
the present Big Data scenario, such analysis becomes com-
plex and time-consuming to undergo a comprehensive and
thorough investigation of malware samples and to accurately

detect and classify zero-day malware [43, 44]. We propose a
visualisation of malware behaviour patterns to address this
problem.

Our proposed method is based on the premise that visu-
alisation can be used to support both individual behaviour
analysis of a malware sample and accurate malware classifi-
cation of a new malware (zero-day malware). The malware
classification uses comparison of malware samples to identify
common behaviour exhibited by known malware families.
As exemplified in previous section, there are two broad
categories of visualisation techniques adopted for malware
comparison, namely, image-based and feature-based [10, 45].
Image-based techniques make use of visual images of either
binary data or behaviour logs of the malware samples [46].
Images generated in this approach are similar to those
shown in Figures 1 and 2, where visual mappings are used
to generate an image for each malware sample. Feature-
based technique compares different malware samples based
on extracted features [10]. Though this approach could be
harder to compare a large set of characteristics with each
other quickly using a visual overview, various visual analytics
techniques and tools are available to let the user filter, search,
compare, and explore a wide range of patterns occurring
during malware comparisons [47, 48].



Previous studies have considered a combination of both
image-based and feature-based technique for malware clas-
sification without execution or disassembly of malware code
as shown in Figure 7 [35]. However, due to their inability to
analyse behaviour patterns of malware and their limitation
on operating with only selected file formats and packing
methods, we propose a new visualisation technique using
similarity matrices of features depicting behaviour patterns
of malware as well as displaying them in image form for
faster analysis. In another related work, opcode sequences
are converted into RGB pixels in an image matrix and the
similarity of image matrices is computed [49]. Our approach
is different in two ways based on enhancements with previous
work [18, 19]. Firstly, we make use of a huge dataset of about
52,000 malware samples for our study while the previous
work experiments with only 290 malware samples with
16 families. Secondly, using similarity matrices, we adopt
a hybrid approach with feature-based technique for direct
comparison of various features, which helps to understand
which features correlate any two malware binaries and which
do not [20, 50]. At the same time, we project these similarity
matrices as image patterns for a faster identification and
classification of new malware into their correct malware
families.

We model our proposed malware analysis method to
consist of three main stages as follows:

Stage 1: preprocessing stage

Stage 2: feature processing stage

Stage 3: visualisation stage

By following through these three stages, we derive four
modelling steps that are described next.

Stage 1 (preprocessing stage). Stage 1 involves preprocessing
of the dataset to identify packed (compressed) files since
malware writers adopt packing of binaries for employing
polymorphic obfuscation of malicious code in order to
evade detection [11, 12]. Most recent malware programs are
generated with various packing techniques making it very
difficult to detect using static or dynamic analysis. We have
adopted multiple techniques of packed binary detectors to
separate packed and unpacked files from the dataset [19, 20].
In the experiment conducted on the dataset of about 52,000
samples, the result at the preprocessing stage indicates that
about 77% of malware programs were packed and 23% were
unpacked.

We converted the malware files into images, extracted
features of these images from a pretrained deep convolutional
neural networks (CNN) model, and then embedded these
into 2 dimensions using t-Distributed Stochastic Neighbor
Embedding (t-SNE), so we can visualize. We then clustered
the malware in image feature space, using k-means; Figure 8
shows what clustering algorithm outcome looks like for 6
different families. Different colours correspond to different
clusters by the k-means.

Stage 2 (feature processing stage). In Stage 2, all files are
unpacked in order to disassemble the binary executable to
retrieve the assembly program. This stage involves deob-
fuscating and reverse-engineering the program codes and
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FIGURE 8: Simulated data with six clusters.

applying feature extraction techniques effectively to conduct
feature analysis using data mining techniques. The details of
the feature processing stage in Stage 2 consist of first two
modelling steps as shown below.

Step 1. The executable program is disassembled using reverse
engineering tools. Each disassembled executable (P) repre-
sents a vector of functions x, y. (P’) is the variant malware
of the original executable (P). Each function is represented
as an array of vector of functions. All executable programs,
malicious or benign, have the goal to perform an action
using API function calls. In this step, we extracted API calls
and important machine-code features from the assembly
program. A statistical analysis of the Windows API call-
ing sequence reflects the behaviour of a particular piece
of code. We identified commonly used API function call
features that are based on the malicious behaviour patterns
to predominantly fall under six groups, namely, “search
files,” “copy/delete files,” “get file information,” “move files,”
“read/write files,” and “change file attributes.” We adopt
intelligent extraction of the behaviour of features of API
function calls that relate to (i) hooking of system services,
(ii) creating or modifying files, and (iii) getting information
from the file for changing information about the DLLs loaded
by the malware. Binary n-gram features are also extracted for
analysis. We perform n-gram statistical modeling to obtain
the distribution of the executables for n-values ranging from
1 to 5. Extracting binary n-gram features to complement the
API call features has uniquely helped to train the classifier
correctly. We adopt a supervised learning approach that uses a
dataset to train, validate, and test an array of classifiers, which
results in building a model using support vector machine
(SVM). The model is measured based on factors such as
accuracy, false positives, and false negatives. In addition,
the model needs to be tested against larger sets of malware
samples for verifying the accuracy of the modelled system.
Opverall, this step is used for achieving a robust identification
of malicious code as against benign code using SVM to
train the classifier as part of the machine learning process.
The extracted features undergo a statistical test to determine
the malware class accurately based on suspicious behaviour
patterns.
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Step 2. The similarity between the functions of programs
(P) and (P') is computed using similarity mining of different
distance measures. A similarity matrix is generated for each
comparison. After obtaining the API sequence from binaries,
the signature database is updated based on these API calls.
This sequence is compared to a sequence or signature (from
the signature database) and is passed through the similarity
measure module to generate the similarity report. Different
distance measures are implemented and similarity analysis is
performed by using eight commonly used distance measures
in vector models, namely, Cosine, Bray-Curtis, Canberra,
Chebyshev, Manhattan, Correlation, Euclidean, and Ham-
ming distance similarity measure for Nearest Neighbor (NN).
The definitions of these measures are provided below.

In similarity mining, we implemented eight different
similarity metrics in vector models and similarity analysis
was performed with distance measures such as Cosine,
Bray-Curtis, Canberra, Chebyshev, Manhattan, Correlation,
Euclidean, and Hamming distance. We provide below the
details of these eight metrics adopted in this study.

The distance measures defined under each of the eight
metrics use the following variables:

(i) u is the opcode sequence of the test file
(ii) v is the opcode sequence of a file in the database
(iii) # is the vectors dimension

(iv) D is the distance between vectors u and v

3.1. Cosine Distance. The Cosine distance computed between
two n-vectors u and v is defined as

u VT

D=1-—— )

[[eall [1v11,

3.2. Bray-Curtis Distance. The Bray-Curtis distance mea-
sured between two n-vectors u and v is defined as

D= Zlui_vil (2)

- Z|“i+"i|

3.3. Canberra Distance. The Canberra distance between two
n-vectors u and v is defined as

_ DY |”i—"i|
b= DY l“i + Vi| ¥

3.4. Chebyshev Distance. The Chebyshev distance computed
between two n-vectors u and v is defined as

D = max; |u,- - vi| (4)

3.5. Manhattan Distance. The Manhattan distance between
two n-vectors u and v is defined as

D:Z|”i“’i| (5)

3.6. Correlation Distance. The correlation distance computed
between two n-vectors u and v is defined as

D=1~ frac(-@) (v=9) w-Dl,lv-7l, (6

where 7 is the mean of a vectors elements and n is the
common dimensionality of u and v.

3.7 Euclidean Distance. 'The Euclidean distance between two
n-vectors u and v is defined as

D = lu-vl, @)

3.8. Hamming Distance. The Hamming distance between two
n-vectors u and v is simply the proportion of disagreeing
components in uand v and is defined as

_ Co1 +Cy
n

D (8)

where C;; is the number of occurrences of u[k] = i and v[k] =
jfork<n

Stage 3 (visualisation stage). Stage 3, namely, the visualisation
stage, consists of the last two modelling steps of our proposed
model as shown below.

Step 3. The similarity matrix values are then compared
with the threshold values. Different colour schemes depict
different distances from threshold values. The image patterns
are used to determine if the executable is malicious or
not. Comparison of the values with other samples can help
to identify groups or malware families. The classification
methods require training data to validate the models for-
mulated in arriving at the threshold values for the similarity
matrix. Therefore, K-fold cross-validation has been used for
evaluating the results of a statistical analysis generating an
independent dataset using 10 folds. Having k=10 folds using
90% of full data is used for training (and 10% for testing) in
each fold test. Evaluation (feature selection + classification)
was done inside 10-fold cross-validation loop on all malware
and benign dataset. Then SVM is applied to the training data
with the goal to produce a model, which is then used to
predict the target of the test data. In order to achieve a higher
accuracy of the predictive model for generalisation, K-fold
cross-validation approach is used and applied for test data,
with k=10. This value is commonly used to estimate how well
the trained SVM model is going to perform in the future.

Step 4. Benchmarking of the results is conducted in this
step. Different similarity mining metrics are adopted, and
their performances are compared. A minimum of eight
distance measures was used as similarity metrics in this step.
The classification algorithm follows a supervised learning
algorithm with four different variations to validate the results
obtained. Among the four basic types of kernels used by
SVM to map the training vectors to the N-dimensional space,
the Radial Basic Function (RBF) kernel is applied, as it can
handle the nonlinear cases. Classification performance is



tested based on 1/0? and C parameters from (9) given below,
where C > 0 is the penalty parameter of error term.

2
K(x,y) =exp<—u> )

o

The accuracies achieved for malware classifications are com-
pared based on the following standard measures:

(1) True positive (TP): number of correctly identified
malicious codes

(2) False positive (FP): number of wrongly identified
benign codes, when a detector detects benign file as
a malware

(3) True negative (TN): number of correctly identified
benign codes

(4) False negative (FN): number of wrongly identified
malicious codes, when a detector fails to detect
malware

The efficiency of the proposed method is evaluated using the
following performance measures:

Positive (P): the predicted attribute belongs to the
right class.

P=TP+FN (10)

Negative (N): the predicted attribute belongs to the
wrong class.

N=FP+TN 11)

Opverall accuracy: percentage of correctly identified code,
given by

TP +TN
TP +TN + FP + FN

_TP+TN
~ P+N

In summary, malware writers make use of metamorphic and
polymorphic engines to generate new dissimilar malware
variants for zero-day attacks. A “similarity analysis” can
quantify the level of similarity and the difference between two
binary executables. Our proposed malware detection method
is based on the degree of similarity of the extracted Win
API function calls and opcode sequence features between
malware and benign files. The maliciousness of a code is esti-
mated using the eight distance measures given in (1)-(8) with
support vector machine (SVM) mining algorithms and the
classification performance is measured using (9). Similarity
based detection is well-suited for static metamorphic and
polymorphic malware analysis since new malware programs
are generated as variants of existing ones to achieve zero-
day attacks. In previous research studies, API calls have been
analysed as well as how they could be used to profile malware
[18-20]. In this study, we enhance the recent research work
[50] in terms of addition of visualisation features. Further,
we have conducted validation of results resulting in high
accuracies for malware classification and these findings are
presented in the next section.

Overall Accuracy =
(12)
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FIGURE 9: Similarity matrix of the malware familyTrojan.Down-
loaderWin32.Dadobra.
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4. Experimental Results and Discussion

The experimental investigation of the similarity analysis
was carried out by implementing distance measures and
analysis of the various data mining algorithms in Python
Programming Language. The experiment was run in three
different processors, which aided in the effective malware
classification, and was evaluated using very large real-life
malware dataset consisting of about 75,000 samples obtained
through public databases such as VX heavens [51]. More than
two-thirds of the samples were malware and the remaining
were benign samples. The similarity distance system devel-
oped in this research was able to automatically identify all
malware variants. Figures 9 and 10 provide an illustration of
the similarity matrices for malware in the same family. In
these matrices, the similarity measures calculated are colour-
coded based on the distance from the threshold values. These
distance measures can take values between 0 and 1, blue
colour or positive correlations are displayed in blue which
means high similarity, and red colour is low or zero similarity.
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FIGURE 11: Similarity matrix of two malware families Tro-
jan.Downloader.Win32.Dadobra vs Worm.Win32.Delf.

Color intensity and the size of the circle are proportional to
the correlation coeflicients. In order to scale the values from
[0,1] to [-1,1] and to reverse direction since 0 was similar
in original data, ((1 — M) — 0.5) * 2 was used. We used the
similarity generated data to visualise the correlation matrix
using Correlogram. R corrplot function is used to plot the
graph of the correlation matrix.

From the visualisation analysis, the security analyst can
see the entire cell in Figure 9 to have close similarity of the
malware Win32.Dadobra (a Trojan), and Figure 10 can be
detected as a variant of the original malware Win32.Delf (a
Worm). Further, we conducted experimental comparisons
between any two malware families to understand whether
their behaviour patterns are similar. As an example, Figure 11
shows the similarity matrix between two different malware
families, Win32.Dadobra and Win32.Delf, and Figure 12
shows the similarity matrix obtained for all the benign files.

The similarity matrix for two malware datasets from
different families can be easily visualized in Figure 11. The
visualisation results from Figures 9, 10, and 11 show that there
is a low distance/high similarity between malware variants
but not with the benign programs. Figure 12 demonstrates
that there is high distance/low similarity between the benign
datasets.

Table 1 provides the mean values obtained for each of
the eight distance measures applied for the entire dataset.
Analysing the overall results of the similarity metrics in
Table 1, we observe that the Euclidean similarity metric
strongly differentiates with mean values falling far apart while
performing similarity comparisons between (i) malware-
benign, (ii) malware-malware, and (iii) benign-benign. It
would be an interesting investigation to explore further on the
comparative performance of these metrics, which is beyond
the scope of this study. Overall, our experiments demonstrate
that the proposed model finds high similarities between
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FIGURE 12: Similarity matrix of benign files.

malware variants but not with the benign programs, which
makes it easy to differentiate even unknown malware from
benign ones and classify them accurately.

Using hybrid visualisation approaches of feature-based
and image-based analysis shown in Figures 9. 10. 11, and
12 along with Table 1, it can be seen that similarity mining
is very efficient and effective to detect malware variants
from the same family or different families of malware.
Also, the experiments confirm that there is no similarity
among the different benign files, but they exhibit a similar
image representation of similarity matrix, which is uniquely
different from that of malware. This important observation is
as follows: it is very hard to find any image similarity between
the malware dataset and the benign dataset which validates
that the proposed system is able to clearly distinguish between
malware and benign datasets.

In the classification algorithms, the training data and
testing data were selected by making a partition on the
database of malware and benign files for carrying out the
experiments. We adopted the most common type of cross-
validation, namely, k-fold cross-validation that is a standard
practice adopted in similar research studies adopted for
many classifiers [52, 53]. For the similarity mining, we
adopted Sequential Minimal Optimization (SMO) algorithm
in support vector machine (SVM) method with 4 different
kernels; (i) SMO-Normalized Polynomial Kernel Function,
(ii) SMO-Polynomial Kernel Function, (iii) SMO-Radial
Basis Function (RBF), and (iv) SMO-Pearson VII Kernel
function (PUK). The advantage of SMO is its ability to solve
the Lagrange multipliers analytically with fast implemen-
tation of support vector machines. Further, it is a popular
supervised learning algorithm used for classification and
regression problems. In Figure 13, the overall accuracy rate for
malware detection achieved using the four kernels of SMO for
our experimental datasets is shown. Normalized Polynomial
Kernel provides the highest accuracy for all the k cross-
validations, with k = {2,3,4,5,6,7,8,9,10}. In particular,
with k=10, we achieved about 98.6% accuracy for malware
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TABLE 1: Mean measures obtained using the eight similarity metrics.
Distance Method Malware - Benign Malware - Malware Benign - Benign
Cosine 0.34 0.29 0.39
Bray Curtis 0.84 0.77 0.86
Canberra 0.84 0.77 0.86
Chebyshev 61.27 31.45 79.98
Manhattan 14.32 96.24 18.03
Correlation 0.35 0.243 0.403
Euclidean 78.94 44.31 106.39
Hamming 0.034 0.04 0.03
100.00 security devices connected via the Internet every day. Hence,
there is a rapidly increasing threat from malware attackers
95.00 warranting an efficient monitoring of vulnerable systems.
These heterogenous devices are collecting mountains of
90.00 data collected from computer networks, servers, and mobile
devices leading to Big Data environment. Efficient monitor-
85.00 ing and analysis of such Big Data for malware proliferation
80.00 are ggining importance. In such IoT en'Vironment of Big Dgta
’ evolving in the recent years, blockchain technology is being
7500 adopted to protect the integrity of data storage and ensure
2 3 4 5 6 7 8 9 10 process transparency [59]. However, open challenges still
+ NPoly RBE exist in this direction, and this paper does not delve into the

-m- PolyKernel PUK Kernel

FIGURE 13: Accuracy of malware classification using SMO with k
cross-validations (k=2 to 10).

detection which is among the best so far reported in literature
using large datasets.

In visualisation of malware comparisons, one of the major
challenges faced is to deal with unanticipated patterns that
may appear and that would require further investigation and
analysis [54-56]. In addition, with the proliferation of IoT
devices, the application layer is prone to malware attacks
due to their increasing popularity and platform accessibility.
Typically, an IoT device application layer includes local web
applications, cloud-based applications, and smartphone apps
that are accessible to numerous third party app markets
leading to security threats [57, 58]. Hence, multiple IoT
malware attacks are possible and these fall under two main
categories according to the way in which IoT malware infects
devices: (i) by brute force attacks through a dictionary of
weak usernames and passwords; (ii) by exploiting unfixed
or zero-day vulnerabilities found in IoT devices [43]. With
Big Data and IoT, the malware datasets could be complex
and unstructured that require more dynamic and scalable
visualisation and more efficient feature extraction [44]. We
anticipate further enhancing our visualisation framework to
address these challenges in the future. Next, we provide the
limitations of the current study and key challenges that would
trigger future research directions.

4.1. Limitations and Challenges. Today, we witness an explo-
sion of Internet of Things (IoT) worldwide with millions of

intersection of our proposed zero-day malware detection and
visualisation approach with blockchain technology.

Another limitation of this study is in the coverage of
juice filming charging (JFC) attacks that can steal users’
sensitive and private information from smartphone devices
during phone charging in public places such as airports
and shopping malls. Since such attacks take place during
the charging period when the users’ information can be
leaked through a standard micro USB connector without
the need for any permission or installation of apps, the
increase in the processor usage could be studied to identify
the attack [60]. However, it is not within the scope of
this paper and visualisation techniques for detecting the
suspicious behaviour of smartphones during charging would
pose another challenging problem.

From recent literature we find that there is a need to
provide visual representations appropriate for IT-security
experts with the ability to externalize knowledge for sharing
purposes. Some developments towards a knowledge-assisted
visualization system for behavior-based malware analysis
have been reported [61]. While this research work has not
considered knowledge externalization methods, with rising
Big Data infrastructure, future malware analysis process
would depend heavily on knowledge-based visual analytics
techniques.

5. Conclusions and Future Work

This paper proposed a new hybrid method of feature-
based and image-based visualisation of similarity mining to
identify and classify malware accurately. Our visualisation
technique is effectively used to compare malware samples
for better communication of their behaviour patterns and
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faster detection and classification of new malware (zero-
day malware). We calculated the similarities between the
malware variants using eight different distance measures to
generate similarity matrices and to identify the malware
family by adopting visualisation of the distance scores. The
experimental study of our proposed method involved large
datasets of about 75,000 samples with more than two-thirds
consisting of malware samples and benign samples forming
the rest. By performing similarity mining of the innumerable
obfuscations of extended x86 IA-32 (opcodes) found in these
malware samples, we were successfully able to detect and
classify unknown malware that had escaped from traditional
detection methods. The proposed method is efficient and
accurate in identifying malware visually due to three main
properties observed through our experimental results:

(1) Malware opcodes exhibit significant dissimilarity
of behaviour patterns as compared to the benign
opcodes and hence result in very high true positives

(2) For malware programs belonging to the same family,
the uniqueness and closeness in similarity can be
visually deciphered through the colour-coded dis-
tance measures of the similarity matrix and each
malware family exhibits a unique visual pattern of
the similarity matrix. This property warranties cor-
rectness in assigning any new malware to its original
malware family from where it was obfuscated

(3) The image of the similarity matrix for benign codes
is unique with distance measures either close to 0
(red) or close to 1 (yellow) as shown in Figure 12. This
property helps in accurately identifying benign codes
thereby resulting in almost zero false positives.

We have also performed a comparison of the most commonly
used classifier, namely, Sequential Minimum Optimisation
(SMO) algorithm of support vector machine (SVM) with
four different kernels such as Normalised Polynomial Kernel,
Polynomial Kernel, Radial Basis Function (RBF), and Pearson
VII kernel function (PUK). The data mining based detection
system implemented for this study to detect obfuscated mal-
ware has achieved high true positive (TP) rate of about 98.6%
and low false positive (FP) rate of less than 2%, which has not
been achieved in literature so far. With almost 99% accuracy
achieved in the case of SMO-Normalised Polynomial Kernel,
we envisage that our visualisation approach using similarity
mining would effectively differentiate the behaviour patterns
of zero-day malware and would enable security analysts to
detect and classify new malware (zero-day malware) quickly
and accurately. These results are much higher than those
reported in literature; this paper has taken a step further in
contributing to the evolving realm of visualisation techniques
used in the information security field.

As future work, the results of similarity mining forming
images of matrices would be analysed in arriving at image
or graphical-signatures for different malware families. Tools
could further be developed to process these image patterns
as graphical-signatures to detect malware variants automat-
ically. In addition, the proposed similarity mining based
detection and classification of malware could be studied
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in terms of efficiency in the security analysts’ speed and
performance within real-time environments. Variations in
the parameters such as distance measures, SVM kernels, and
image colours used could be studied for their effect, and these
investigations could lead to the proposal and use of more
advanced feature selection techniques. Research findings in
this direction would play a key role when more computing
memory and time for processing the extracted features are
required by very large datasets due to Big Data and IoT
predictions of the future.
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