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Over the recent years, cloud storage services have become increasingly popular, where users can outsource data and access the
outsourced data anywhere, anytime. Accordingly, the data in the cloud is growing explosively. Among the outsourced data, most
of them are duplicated. Cloud storage service providers can save huge amounts of resources via client-side deduplication. On the
other hand, for safe outsourcing, clientswho use the cloud storage service desire data integrity and confidentiality of the outsourced
data. However, ensuring confidentiality and integrity in the cloud storage environment can be difficult. Recently, in order to achieve
integrity with deduplication, the notion of deduplicatable proof of storage has emerged, and various schemes have been proposed.
However, previous schemes are still inefficient and insecure. In this paper, we propose a symmetric key based deduplicatable proof of
storage scheme, which ensures confidentiality with dictionary attack resilience and supports integrity auditing based on symmetric
key cryptography. In our proposal, we introduce a bit-level challenge in a deduplicatable proof of storage protocol tominimize data
access. In addition, we prove the security of our proposal in the random oracle model with information theory. Implementation
results show that our scheme has the best performance.

1. Introduction

Cloud storage is an attractive service where clients can
outsource data to a remote storage and access the outsourced
data anywhere, anytime. Moreover, clients can reduce the
large burden of local storage via cloud storage. Due to these
advantages, cloud storage services are becoming increasingly
popular. Therefore, the data stored in the cloud is explosively
growing. According to a report, the volume of outsourced
data in cloud storage is expected to reach 40 trillion GB
in 2020 [1]. Among the outsourced data, most of them are
duplicated [2]. Hence, cloud storage service providers can
save huge amounts of storage space via deduplication, in
which the cloud server maintains only a single copy of the
redundant data and assigns a link of the data to all clients
that own the same data. Moreover, through client-side cross-
user deduplication, cloud servers can save not only storage
space but also network bandwidth whereby the client directly
checks data duplications to determine whether to transmit

data. Therefore, cloud servers can save storage space and
network bandwidth.

Despite these advantages, general client-side deduplica-
tion is vulnerable to a number of threats, as only a short
and fixed identifier (e.g., hash value of the data) replaces
the whole data. For example, cloud servers can be used as a
content distribution network unintentionally, and malicious
clients can launch a poison attack (Target Collison attack),
etc. [3, 4]. Thus, cloud servers that provide the client-side
cross-user deduplication have to confirm whether the client
actually owns the upload requested data [4].

In addition, through various incidents such as cloud data
leakages and corruption, the security of outsourced data
has become an important issue. Since the data in clouds
can be attacked by internal and external attackers, personal
privacy or secret information of enterprises can be leaked or
corrupted, which can be fatal. Therefore, the cloud server has
to ensure confidentiality and integrity of the outsourced data.
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However, this can destroy the deduplication goal of using
resources efficiently.

Firstly, in terms of confidentiality, if the client encrypts
the data using conventional encryption systems, deduplica-
tion will fail. Since conventional encryption systems encrypt
the data using different encryption keys for each user, it out-
puts different results even though the inputs are the same. To
overcome this, convergent encryption was proposed, where
the hash value of the data is used the encryption key [5].
With this, the same data becomes the same ciphertext after
encryption, and it enables the cloud server to deduplicate
while ensuring confidentiality. However, convergent encryp-
tion is vulnerable to brute-force attack. That is, convergent
encryption can ensure confidentiality for only unpredictable
data. Note that, without loss of generality, we assume that
that the original data has enough entropy against message
guessing attack as with [6].

Secondly, in terms of integrity, the cloud server does not
intentionally damage the client’s data, however outsourced
data can be corrupted during the internal process of the
cloud by unintentional error. The cloud server may hide the
incident to the client to maintain their reputation. Hence,
the client can require an audit for the integrity of outsourced
data periodically. However, applying conventional integrity
check techniques to the cloud system, such as message
authentication codes, can create a huge burden to both
the client and cloud server as it requires the local data to
verify integrity. To overcome this problem, Ateniese et al.
[7] introduced “provable data possession (PDP)” and Juels
and Kaliski [8] introduced “proof of retrievability (PoR)”,
which enable remote data auditing probabilistically.However,
in the perspective of deduplication, each client that has
the same data must generate metadata in order to audit
integrity. The cloud server then has to store all of their
metadata. This can lead to a huge overhead of storage
and can destroy the fundamental goal of efficient usage of
resources.

Recently, in order to achieve the goal of deduplication
while ensuring integrity in cloud storage environments,
various techniques have been proposed [1, 2, 9–12]. How-
ever, [1, 2, 9] have heavy computational costs because the
schemes are based onpublic key cryptography, and the client’s
privacy can potentially be leaked as they support publicly
verifiable integrity auditing. This means that, with respect
to a file, subsequent clients have to get the first uploader’s
public key to be used in integrity auditing. Therefore, every
subsequent client can know who has the file. In the case
of [10–12], new techniques that are not based on public
key cryptography have been proposed, which are based on
homomorphic operations. Compared to previous schemes
based on public key cryptography, they are more efficient in
terms of computation. However, they are still inefficient, and
with large variations in efficiency depending on block and file
size. Moreover, if the file size is small, almost all of the entire
file needs to be checked (e.g., if the file size is less than 2MB
and block size is 4 KB, more than 89% of the entire file needs
to be accessed). By capturing the issues mentioned above,
we apply a bit-level challenge in order to achieve data access
efficiency, even in the small data.

In this paper, we propose a secure and highly efficient
deduplicatable proof of storage scheme based on symmetric
key cryptography, namely Sec-DPoS, which ensures data
confidentialitywith brute-force attack resilience and supports
integrity auditing based on symmetric key cryptography.
In terms of secure client-side cross-user deduplication, we
achieve a proof of ownership protocol by changing the role
of prover and verifier in an integrity auditing protocol. In
addition, we apply a bit-level challenge in an ownership check
and integrity auditing protocol in order to support various
file sizes with efficiency. Moreover, we prove the confidence
of the detection probability for the bit-level challenge by
information theory. We summarize the properties of our
construction as follows:

(1) Data confidentiality with dictionary attack resil-
ience. In terms of encrypted data deduplication, we
exploit key server to ensure dictionary attack resil-
ience, as with [1, 13].The clients encrypt data using the
encryption key distributed from the key server and
the encryption key is derived from the data.

(2) Integrity auditing with deduplication based on
symmetric key cryptography. To audit the integrity
of the outsourced data, the client precomputes an
expected response to be used later over encrypted
data and uploads the expected responses to the cloud
server in encrypted form. Our integrity auditing
protocol is a motivated symmetric key based integrity
auditing scheme. We apply a bit-level challenge to
the symmetric key based integrity auditing scheme.
In addition, since the expected response is generated
using a message-derived key, a client with the same
data can audit the integrity of the outsourced data
without generating additional metadata.

(3) Secure proof of ownership over encrypted data.
Proof of ownership is similar to the integrity auditing
protocol but with the role of prover and verifier
changed. In our construction, only clients with intact
data can pass the proof of ownership protocol. Also,
since the proof of ownership protocol is performed
over encrypted data, the protocol does not expose any
information of plaintext.

(4) Privacy leakage resilience. In the public key based
solution, subsequent clients need to know the public
key generated by the first uploader to audit the
integrity. This means that subsequent clients can
immediately learn who has a file. In our construction,
we can prevent privacy leakage in the integrity audit-
ing process as the scheme is based on symmetric key
cryptography.

Our Contributions. The main contributions of our proposal
can be summarized as follows:

(1) Sec-DPoS is the first approach of deduplicatable proof
of storage based on symmetric key cryptography and
is a secure and highly efficient deduplicatable proof
of storage scheme with ensuring confidentiality. We
analyze the security of Sec-DPoS and prove that our
scheme is secure in the random oracle model.
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(2) In contrast to the previous solutions, in order to
ensure efficiency, even if the data is small, we adopt a
bit-level challenge and prove confidence of detection
probability in information theory.

(3) We implement and evaluate our proposal. The imple-
mentation results show that our scheme has the
highest performance compared to other schemes.

The remainder of this paper is organized as follows: In
Section 2, we briefly review related work. In Section 3, we
present the system construction, security model and design
goal. We then propose Sec-DPoS in Section 4 and analyze the
security of Sec-DPoS in Section 5. In Section 6, we present
the implementation of our scheme and compare with other
schemes. Finally, in Section 7, we conclude the paper.

2. Related Works

In this section, we discuss previous work related to secure
deduplication, integrity auditing and recent solutions that
achieve the goal of both deduplication and integrity auditing.

2.1. Deduplication. In cloud storage environments, cloud
servers can save storage space via deduplication, where the
cloud server keeps only a single copy of the files. In addition,
the server can save network bandwidth, as well as storage
space, via client-side deduplication. However, general client-
side deduplication has vulnerabilities as only a short and
fixed identifier (e.g., hash value of a file) replaces the entire
file [3]. Hence the server should verify that clients who
intend to upload files have the intact file. For secure client-
side deduplication, Halevi et al. [4] introduced the proof
of ownership (PoW) notion, in which only the client who
has an intact file can pass the ownership verification. They
also proposed several PoW schemes whereby the client can
efficiently prove ownership to the server based on the Merkle
hash tree. Pietro and Sorniotti [14] proposed a more efficient
PoW scheme, known as s-PoW. Since s-PoW needs only
randomly chosen k position bits, the complexity of the
protocol is independent from file size.

On the other hand, in order to achieve deduplication
over encrypted data, Douceur et al. [14] proposed convergent
encryption (CE) that uses the hash value of a file as an
encryption key. Therefore, the same files create the same
results after encryption. Similarly, Bellare et al. [6] pro-
posed a cryptographic primitive known as message-locked-
encryption (MLE). However, since both CE and MLE use the
hash value of the file as an encryption key, they are vulnerable
to dictionary attack (i.e., predictable data can be leaked by
brute force attack). To overcome this problem, Keelveedhi
et al. [13] proposed DupLESS in which clients encrypt data
using a message-derived key via interaction with a key
server. Since the encryption key is generated by an oblivious
pseudorandom function and the key generation request is
bounded by rate-limiting, outsourced data can be protected
from brute force attack. Liu et al. [15] proposed an encrypted
data deduplication scheme without additional independent
servers, while ensuring brute force attack resilience. In [15],
since the protocol is based on Password Authenticated Key

Exchange (PAKE), clients who have the same file can share an
encryption key without additional servers. In integrated net-
work environments, Qi et al. [16] proposed an encrypted data
deduplication scheme that improves the security and network
latency by introducing many key servers in the network. In
terms of combining the both functionalities, various studies
have been conducted to satisfy data confidentiality and to
support ownership check [17–20].

2.2. Integrity Auditing. From the perspective of the client,
integrity auditing of the outsourced data is one of the
important issues for secure outsourcing, as the outsourced
data can be corrupted by unintentional errors. Ateniese et
al. [7] proposed a notion of provable data possession (PDP)
for ensuring integrity of remote data, in which the client
can audit the integrity of the target file without maintaining
the entire file. Ateniese et al. [21] proposed a highly efficient
PDP scheme based on symmetric key cryptography, with
the support of a dynamic scenario except insertion. To
support dynamic scenario with insertion, Erway et al. [22]
proposed dynamic-PDP based on a rank-based skip list.
Wang et al. [23] proposed a proxy-PDP, in order to relax
the computational overhead for tag generation. Zhu et al.
[24] proposed a cooperative-PDP scheme in a multicloud
environment. Based on convergence encryption, Liu et al.
[25] proposed integrity auditing scheme and considered
integrity tag deduplication over encrypted data.

In another way to support integrity auditing, Juel and
Kaliski [8] proposed a notion of proof of retrievability
(PoR), in which integrity auditing is performed using a
sentinel inserted into the file. Compared with PDP, PoR
support retrievability, as well as integrity auditing, yet it has
a limitation in the number of queries. In order to achieve
both private and public verifiability, Shacham andWaters [26]
proposed two types of PoR schemes using a homomorphic
authenticator. Wang et al. [27] proposed an improved PoR
scheme based on the Merkle hash tree to achieve the goal
of PoR in dynamic scenarios. Xu and Chang [28] proposed
an improved PoR scheme to reduce communication costs.
Aimed at specific conditions, Li et al. [29] proposed OPoR
to support PoR over resource limited devices, and Ren et al.
[30] proposed a PoR scheme in dynamic scenarios for coded
cloud systems.

2.3. Secure Client-Side Deduplication with Integrity Auditing.
As a method that provides both secure deduplication and
integrity auditing, Zheng and Xu [9] firstly proposed proof
of storage with deduplication (POSD), based on public key
cryptography. However, an error in security occurs if the
first uploader maliciously generates a pair of public and
private keys [31], and POSD does not ensure confidentiality
of the outsourced data as it is run over plaintext. Yuan and
Yu [2] proposed a scheme called PCAD that supports both
deduplication and integrity auditing with batch auditing, in
which the server can simultaneously prove the possession
of multiple files. Li et al. [1] proposed two schemes, namely
SecCloud and SecCloud+. In both schemes, the author
introduced an auditing entity that maintains a MapReduce
cloud, which helps the client to generate block tags for
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Figure 1: The Sec-DPoS system model.

integrity auditing. Additionally, SecCloud+ ensures confi-
dentiality, where the client encrypts files using a message-
derived encryption key distributed from the key server. In
terms of efficiency improvement, Youn el al. [32] proposed a
new scheme based on the homomorphic linear authenticator
[26].

However, since the schemes in [1, 2, 9, 32] are based
on public key cryptography, they have heavy computational
cost and privacy can be leaked. For example, for the systems
that support deduplication with public key based integrity
auditing, subsequent uploaders must use the public key of the
first uploader. In this case, the subsequent uploader can know
who has the file, leading to privacy leakages.

As another approach, Du et al. [10] proposed proof of
ownership and retrievability (PoOR) based on the Merkle
hash tree and homomorphic verifiable tags. Compared with
public key based schemes, PoOR is more efficient in terms
of computational costs. As an improved PoOR, Chen et al.
[11] proposed a Message-locked PoOR scheme that applies
a message-derived key and supports remote repairing. Since
clients who have the same file can generate the same con-
vergent key, privacy leakage can be preserved. However,
Message-locked PoOR causes unnecessary block access in the
ownership check protocol as this is based on HMAC. He et
al. [12] proposed a deduplicatable dynamic proof of storage
scheme based on a homomorphic authenticated tree in order
to support dynamic scenarios. However, the schemes in [11,
12] are still inefficient and vulnerable to dictionary attack.
Moreover, there is a large variation in efficiency, depending
on block and file size. If the file size is small, almost all of the
entire file needs to be checked.

3. Models and Goal

In this section, we describe components and design the goal
of our proposal. We first illustrate the system model and
present a threat model that can occur in the cloud storage
environment. In the description of the design goal, we present
a trivial solution that is a simple combination of the secure
client-side deduplication and symmetric key based integrity
auditing scheme. Following this, by capturing problems of
a trivial solution, we describe how our approach achieves
deduplicatable proof of storage.

3.1. System Model. A structure of our proposed scheme
consists of three entities as shown in Figure 1.

(i) The cloud server (𝑆𝑟V) provides cloud storage ser-
vices. Typically, the cloud server operates a large
storage space and computational resources.The cloud
server attempts to minimize the bandwidth and to
optimize the use of storage space via client-side cross-
user deduplication. We assume that the cloud server
is honest-but-curious.

(ii) The client (𝐶𝑙𝑡) uses the cloud storage service pro-
vided from the cloud server. The client uploads data
and has access to the outsourced data at all times.

(iii) The management server (𝑀𝑠𝑟V) helps clients upload
data. The management server distributes a message-
derived secret key and manages the challenge index.
We assume that the management server is a trusted
third party (the functionality of the management
server is described in detail at Section 4).

In our system, when a client wants to upload a file 𝐹,
the client firstly interacts with the management server to get
a secret key and challenge index. The client then generates
an identifier of the file and sends an upload request with the
identifier to the cloud server.The cloud server checkswhether
the file exists in storage. If the file exists in the cloud, the client
does not need to upload the file and the cloud server provides
a link of the file to the client after identifying whether the
client actually has the file. If the file does not exist in the
cloud, the client uploads the encrypted file to the cloud with
the preprocessed information. After the upload, the client can
audit the integrity of the outsourced data at any time.

3.2. Threat Model. In this subsection, we discuss various
threats for the cross-user client-side deduplication environ-
ment within the remote data auditing system. In our system
model, we assume that the cloud server is honest-but-curious.
This means that the cloud server honestly performs system
protocols yet it can curiously intrude client’s privacy as it has
access to the client’s data. Moreover, the cloud server can be
a victim of an outside attack. Hence, the client’s data in the
cloud server can potentially be leaked inside and outside.
Thus, we design our scheme to ensure data confidentiality
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with brute-force attack resilience by introducing the manage-
ment server.

The cloud server does not intentionally damage out-
sourced data. However, the data in the cloud can be corrupted
by unintentional system errors. When the data in the cloud
is corrupted, the cloud server can hide the data loss incident
to the client in order to maintain their reputation. Thus, we
design our scheme to ensure that if the cloud server loses a
part of the outsourced data, it cannot forge integrity to the
client in the audit. Briefly, a cloud server that loses a part of the
outsourced data cannot pass the integrity auditing protocol
with a given probability (e.g., 99%). In Section 5, we prove
the security of unforgeability in detail.

In the perspective of cross-user client-side deduplication,
as mentioned previously, a malicious client that has only
partial information of a file can claim possession in order to
maliciously obtain the file. The malicious client can attempt
to convince the cloud server of its ownership with the
check protocol without the entire file. Thus, we design our
scheme to ensure that malicious clients cannot cheat the
cloud server in ownership checking. Briefly, amalicious client
cannot pass the ownership checking protocol, except with a
negligible probability. In Section 5, we prove the security of
uncheatability in detail.

3.3. Design Goal. To achieve both integrity auditing and
secure deduplication in practice, we considered Ateniese et
al.’s scheme [21], a highly efficient integrity auditing scheme
based on symmetric key cryptography. As a trivial solution,
there is a simplemethod that combineAteniese et al.’s scheme
with the cross-user client-side deduplication system, as in the
following case:

Trivial Solution. When clients intend to upload a file as a
first uploader, they first generate, then sequentially arrange,
expected responses for integrity auditing. The client then
uploads the file and the arranged set of expected responses
to the cloud. Note that the expected responses are encrypted
using authenticated encryption before upload using a ran-
domly chosen secret key. In this case, since the file is
uploaded first, the cloud server generates metadata (expected
responses used in the ownership check protocol) for secure
deduplication and sends the file to the secondary storage.

Unfortunately, there are two major limitations. The first
problem is that subsequent clients that have the same file
cannot use the expected responses generated by the first
uploader as it is encrypted by the first uploader’s private key.
Hence, subsequent clients have to generate another set of
expected responses, which can lead to intense overheads in
terms of storage space, network bandwidth and computa-
tional costs. The second problem is the management of the
challenge index. Even if the first problem is resolved, there
may be a collision problem of the challenge index. Under
the assumption that the first problem is solved, if subsequent
clients have the same file, they can use the arranged set of
expected responses generated by the first uploader. However,
every client who has the ownership of the file cannot know
that what values are used. This means that certain expected
responses can be used repeatedly. The cloud server can then

launch a replay attack i.e., the cloud server can simply avoid
the integrity auditing protocol by storing the pairs of used
challenges and responses.

In order to overcome above problems, we exploit a
management server, in which the client can get a message-
derived key from themanagement server, as in [1, 13].The key
is used in the file encryption and integrity auditing.Moreover,
we design the management server to handle the challenge
index in order to avoid the challenge index collision problem.

With respect to ownership checking, we design our proof
of ownership scheme to change the role of prover and verifier
in the integrity auditing protocol. Thus, the cloud server
generates expected responses for proof of ownership before
transmission of the file to the secondary storage and retains
the expected responses in the local storage.

As illustrated above, we achieve both the goal of secure
client-side cross-user deduplication and integrity auditing
based on symmetric key cryptography. In our construction,
the cloud server can save both storage space and network
bandwidth while efficiently ensuring data integrity and con-
fidentiality.

4. Sec-DPoS: A Symmetric Key Based
Deduplicatable Proof of Storage

In this section, we describe our proposal in detail. First, we
illustrate about preliminaries and notations. Then, our pro-
posed scheme is described in a detailed way.The components
of our scheme consists of four protocols.

4.1. Preliminaries. Firstly, we describe the building blocks as
follows:

(i) Collision-resistant hash function. A hash function𝐻 : {0, 1}∗ → {0, 1}∗ is collision-resistant if it is
impossible to find two different values x and 𝑦 that
satisfy 𝐻(𝑥) = 𝐻(𝑦) and takes a binary string of
arbitrary length as input, and outputs a binary string
of fixed length.

(ii) Key derivation function. A key derivation function𝐾𝐷𝐹 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a deterministic
function that takes a secret seed 𝑠 and an input 𝑥 and
outputs a secret key.

(iii) Pseudorandom function. A pseudorandom function𝑓 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a deterministic
function that takes a key 𝑘 and an input 𝑥 and outputs
a value𝑦 that is indistinguishable froma truly random
function of the same input 𝑥 within the same range.
We define 𝑓𝑘(𝑥) def= 𝑓(𝑘, 𝑥).

(iv) Pseudorandom permutation. A pseudorandom per-
mutation 𝜋𝑘𝑒𝑦(𝑥) : {0, 1}∗ × [0,𝑀] → [0,𝑀] is
a deterministic function that takes a key 𝑘 and an
integer 𝑥 where 1 ≤ 𝑥 ≤ 𝑀 and outputs an integer𝑦 where 1 ≤ 𝑦 ≤ 𝑀. It is indistinguishable from a
truly random permutation of the same input 𝑥. In our
construction, we use 𝜋 to extract bit indices of a file 𝐹.
Therefore,𝑀 = |𝐹|where |𝐹| denotes the bit length of
the file 𝐹. We define 𝜋𝑘𝑒𝑦(𝑥) def= 𝜋(𝑘, 𝑥).
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𝐼𝑛𝑝𝑢𝑡 : a hash value ℎ𝐹 of a file 𝐹, a master key𝑀𝐾𝑀𝑠𝑟V of management server,
a data table 𝑇 of management server

𝑂𝑢𝑡𝑝𝑢𝑡 : a secret key𝐾ℎ𝐹
, the highest challenge 𝜏ℎ𝐹 , an index subset 𝐼𝛼

(1) if ℎ𝐹 ∉ 𝑇 then
(2) 𝐾ℎ𝐹

← 𝐻(𝑀𝐾𝑀𝑠𝑟V ‖ ℎ𝐹)
(3) 𝜏ℎ𝐹 ← 0
(4) 𝐼ℎ𝐹 ← 𝐼
(5) save (𝑘𝑒𝑦 = ℎ𝐹; V𝑎𝑙𝑢𝑒 = 𝐾ℎ𝐹

, 𝜏ℎ𝐹 , 𝐼ℎ𝐹) in 𝑇
(6) else
(7) load V𝑎𝑙𝑢𝑒 corresponding to 𝑘𝑒𝑦 = ℎ𝐹 from 𝑇
(8) if 𝐼ℎ𝐹 = 0 then
(9) 𝐼ℎ𝐹 ← 𝐼
(10) 𝜏ℎ𝐹 ← 𝜏ℎ𝐹 + 𝑡
(11) randomly choose 𝐼𝛼∈𝑅𝐼ℎ𝐹
(12) return (𝐾ℎ𝐹

, 𝜏ℎ𝐹 , 𝐼𝛼)

Algorithm 1: The key and index distribution algorithm.

(v) Deterministic symmetric encryption. A determin-
istic symmetric encryption 𝐸𝑛𝑐 takes a key 𝑘 and a
plaintext 𝑚 as input and outputs a ciphertext. We
use the notation 𝐸𝑛𝑐𝑘(𝑚) to denote the deterministic
symmetric encryption algorithm.

(vi) Authenticated encryption. An authenticated en-
cryption algorithm 𝐴𝐸 takes a key 𝑘 and a plaintext𝑚
as input and outputs a ciphertext and authentication
tag. We use the notation 𝐴𝐸𝑘(𝑚) to denote the
authenticated encryption algorithm.

Secondly, we describe our notation as follows:

(i) Expected response set. An expected response set𝑅𝑒𝑠𝐴𝑟𝑟 is an array that is a set of precomputed
responses to audit the integrity of remote data. In
particular, 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡 is generated from the client to
audit integrity of outsourced data and 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V is
generated from the cloud server for proof of owner-
ship, where |𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡| = 𝑡 and |𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V| = 𝑠.

(ii) Challenge index. A challenge index 𝐼𝑑𝑥 indicates
a specific location of 𝑅𝑒𝑠𝐴𝑟𝑟. In particular, 𝐼𝑑𝑥𝑐𝑙𝑡
indicates a specific location of 𝑅𝑒𝑠𝐴𝑟𝑟𝑐𝑙𝑡 and 𝐼𝑑𝑥𝑠𝑟V
indicates a specific location of 𝑅𝑒𝑠𝐴𝑟𝑟𝑠𝑟V, where 1 ≤𝐼𝑑𝑥𝑐𝑙𝑡 ≤ 𝑡 and 1 ≤ 𝐼𝑑𝑥𝑠𝑟V ≤ 𝑠. Additionally, the
client retains 𝐼𝑑𝑥𝑐𝑙𝑡 for integrity auditing and the
cloud server retains 𝐼𝑑𝑥𝑠𝑟V for proof of ownership.

(iii) Index set. An index set 𝐼 is a set of ordered natural
numbers where |𝐼| = 𝑡. 𝐼 is divided into 𝑙-subsets and𝑡 is a multiple of 𝑙: 𝐼 = {𝐼1, 𝐼2, ⋅ ⋅ ⋅ , 𝐼𝑙}, where 𝐼𝑖 denotes𝑖-th element of 𝐼 and consists of 𝑡/𝑙 indices i.e., 𝐼𝑖 ={(𝑡/𝑙)(𝑖 − 1) + 1, (𝑡/𝑙)(𝑖 − 1) + 2, ⋅ ⋅ ⋅ , (𝑡/𝑙)(𝑖 − 1) + 𝑡/𝑙},
for 1 ≤ 𝑖 ≤ 𝑙.

4.2. The Construction of Sec-DPoS. The Sec-DPoS scheme
consists of four protocols. Firstly, we describe the key and
index distribution protocol, where we assume that the client
and management server communicate over a secure channel.
The file upload process is divided into two protocols: the

initial upload protocol and the subsequent upload protocol.
Lastly, we describe the integrity auditing protocol.

4.2.1. Key and Index Distribution Protocol. An initial
uploader generates an expected response set for a file to audit
integrity using a message-derived key that is distributed
from the management server. The expected response set is
then uploaded with the file and every subsequent client who
has the same file can use the expected response set generated
by the first uploader. Note that every client who has the same
file can get the same secret key via the management server.
In this case, one important point is that used values in the
expected response set should not be reused. However, for the
case of a naı̈ve solution, certain values can be reused as every
client, including the first uploader, cannot know what values
are used. In order to avoid the challenge index collision, we
introduce a management server to preassign indices that
are indicators of certain values in the expected response set.
In addition, since clients encrypt files using the message-
derived key that is distributed from the management server,
outsourced data is resilient to dictionary attack in our model.
The key and index distribution protocol is run as follows.

Step 1. 𝐶𝑙𝑡 computes a hash value ℎ𝐹 ← 𝐻(𝐹) and sends the
key and index request to𝑀𝑠𝑟V with ℎ𝐹.
Step 2. Upon receiving the key and index request, 𝑀𝑠𝑟V
invokes Algorithm 1 and sends outputs of Algorithm 1 to 𝐶𝑙𝑡.

Algorithm 1 generates a secret key, the highest challenge
and an index subset. Upon receiving ℎ𝐹, the management
server checks whether ℎ𝐹 is already in data table 𝑇. If not,
the management server computes 𝐾ℎ𝐹

← 𝐻(𝑀𝐾𝑀𝑠𝑟V ‖ ℎ𝐹)
using master key 𝑀𝐾𝑀𝑠𝑟V and sets 𝜏ℎ𝐹 ← 0, 𝐼ℎ𝐹 ← 𝐼,
where 𝐼 is an initial ordered index set with |𝐼| = 𝑡 (we assume
that the size of the expected response set 𝑡 is predetermined
and publicly known) and 𝜏ℎ𝐹 (in our scheme, in order to
audit integrity, the client precomputes the expected response
set that contains a number of expected responses. That is,
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𝐼𝑛𝑝𝑢𝑡 : a ciphertext 𝐶𝑇𝐹, a file tag value 𝑇𝑎𝑔𝐹,
a secret key𝐾ℎ𝐹

, the highest challenge 𝜏ℎ𝐹
𝑂𝑢𝑡𝑝𝑢𝑡 : an expected response array 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡

(1) for 𝑖 in [1, 3]
(2) 𝐾𝑖𝑛𝑡,𝑖 ← 𝐾𝐷𝐹(𝐾ℎ𝐹

, 𝑖)
(3) for 𝑗 in [1, 𝑡]
(4) 𝑐𝑡𝑟 ← 𝜏ℎ𝐹 + 𝑗
(5) 𝑘 ← 𝑓𝐾𝑖𝑛𝑡,1(𝑐𝑡𝑟)
(6) 𝑐 ← 𝑓𝐾𝑖𝑛𝑡,2(𝑐𝑡𝑟||𝑇𝑎𝑔𝐹)
(7) 𝜎 ← 𝐶𝑇𝐹[𝜋𝑘(1)]|| ⋅ ⋅ ⋅ ||𝐶𝑇𝐹[𝜋𝑘(𝑟)]
(8) V ← 𝐻(𝑐||𝜎)
(9) 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡[𝑐𝑡𝑟] ← 𝐴𝐸𝐾𝑖𝑛𝑡,3(V)
(10) return 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡

Algorithm 2: Precomputation process for integrity auditing.

the client can audit integrity as much as the number of
precomputed responses. If all are used or assigned (i.e., 𝐼ℎ𝐹 =0), a client has to generates a new expected response set.
In this case, the cloud server can hold multiple expected
response sets.The challenge index can then become confused.
Thus, we use the highest challenge 𝜏ℎ𝐹 as a track of the
challenge index in order to prevent confusion) is the highest
challenge. The management server then records new data in
𝑇, where ℎ𝐹 is saved as the lookup key and 𝐾ℎ𝐹

, 𝜏ℎ𝐹 , 𝐼ℎ𝐹
are saved as values corresponding to ℎ𝐹 (line (1)-line (5)).
If ℎ𝐹 is already in 𝑇, the management server loads values
corresponding to ℎ𝐹 from 𝑇. After values are built or loaded
(line (6)-line (10)), themanagement server randomly chooses
an element 𝐼𝛼 from 𝐼ℎ𝐹 (if 𝐼ℎ𝐹 is empty, then renewal 𝐼ℎ𝐹
to 𝐼) and sends 𝐾ℎ𝐹

, 𝜏ℎ𝐹 , 𝐼𝛼 to client. If 𝐼ℎ𝐹 was empty, the
management server sends 𝐾ℎ𝐹

, 𝜏ℎ𝐹 , 𝐼𝛼 to the client with the
expected response renewal request (line (11)-line (12)).

At the end of the key and index distribution protocol,
the client receives 𝐾ℎ𝐹

,𝜏ℎ𝐹 , 𝐼𝛼 and the management server
removes 𝐼𝛼 in 𝐼ℎ𝐹 (i.e., 𝐼ℎ𝐹 ← 𝐼ℎ𝐹 \ 𝐼𝛼).
4.2.2. Initial Upload Protocol. The initial upload process
assumes that a file is uploaded as new data that is not
previously been uploaded. Thus, the client generates the
expected response set that is to be used in the integrity
auditing and the cloud server generates another expected
response set that is to be used in the ownership check. The
initial upload protocol is run as follows.

Step 1. 𝐶𝑙𝑡 generates an encryption key 𝐾𝐹 ← 𝐾𝐷𝐹(𝐾ℎ𝐹
, 0)

and computes 𝐶𝑇𝐹 ← 𝐸𝑛𝑐𝐾𝐹(𝐹) and 𝑇𝑎𝑔𝐹 ← 𝐻(𝐶𝑇𝐹). 𝐶𝑙𝑡
then sends a file upload request to 𝑆𝑟V with 𝑇𝑎𝑔𝐹 (𝑇𝑎𝑔𝐹 is
used as a file identifier).

Step 2. Upon receiving the upload request with 𝑇𝑎𝑔𝐹, 𝑆𝑟V
checks whether 𝐶𝑇𝐹 is in the storage using 𝑇𝑎𝑔𝐹. If not, 𝑆𝑟V
sends a data transmission request to 𝐶𝑙𝑡.
Step 3. Upon receiving the data transmission request, 𝐶𝑙𝑡
generates an expected response set by invoking Algorithm 2

𝐼𝑛𝑝𝑢𝑡 : a ciphertext 𝐶𝑇𝐹, a file tag value 𝑇𝑎𝑔𝐹,
a master key𝑀𝐾𝑆𝑟V, the highest challenge 𝜏𝑇𝑎𝑔𝐹

𝑂𝑢𝑡𝑝𝑢𝑡 : an expected response array 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V
(1) for 𝑖 in [1, 2]
(2) 𝐾𝑜𝑤𝑛,𝑖 ← 𝐾𝐷𝐹(𝑀𝐾𝑆𝑟V, 𝑖||𝑇𝑎𝑔𝐹)
(3) for 𝑗 in [1, 𝑠]
(4) 𝑐𝑡𝑟 ← 𝜏𝑇𝑎𝑔𝐹 + 𝑗
(5) 𝑘 ← 𝑓𝐾𝑜𝑤𝑛,1(𝑐𝑡𝑟)
(6) 𝑐 ← 𝑓𝐾𝑜𝑤𝑛,2(𝑐𝑡𝑟||𝑇𝑎𝑔𝐹)
(7) 𝜎 ← 𝐶𝑇𝐹[𝜋𝑘(1)]|| ⋅ ⋅ ⋅ ||𝐶𝑇𝐹[𝜋𝑘(𝑑)]
(8) 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V[𝑐𝑡𝑟] ← 𝐻(𝑐||𝜎)
(9) return 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V

Algorithm 3: Precomputation process for ownership check.

and sends encrypted data 𝐶𝑇𝐹 with expected response set𝑅𝑒𝑠𝐴𝑟𝑟𝑐𝑙𝑡 to 𝑆𝑟V.
Step 4. Upon receiving 𝐶𝑇𝐹 and 𝑅𝑒𝑠𝐴𝑟𝑟𝑐𝑙𝑡, 𝑆𝑟V generates
an expected response set by invoking Algorithm 3. 𝑆𝑟V then
stores 𝐶𝑇𝐹 at a secondary storage and keeps 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡 and𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V in local storage.

Algorithm 2 generates an expected response set that
contains 𝑡 expected responses to be used in integrity auditing.
Algorithm 2 takes encrypted data 𝐶𝑇𝐹, a file tag value 𝑇𝑎𝑔𝐹,
a secret key𝐾ℎ𝐹

and the highest challenge 𝜏ℎ𝐹 as an input and
outputs an expected response set 𝑅𝑒𝑠𝐴𝑟𝑟𝑐𝑙𝑡.

Firstly, the client generates 𝐾𝑖𝑛𝑡,𝑖 ← 𝐾𝐷𝐹(𝐾ℎ𝐹
, 𝑖) for1 ≤ 𝑖 ≤ 3 (line (1)-line (2)) and makes a counter 𝑐𝑡𝑟

(line (4)). The client then generates a pseudorandom key 𝑘
and nonce 𝑐 corresponding to the counter 𝑐𝑡𝑟 (line (5)-line
(6)). Subsequently, the client extracts indices 𝜋𝑘(1), . . . , 𝜋𝑘(𝑟)
and generates a token 𝜎 by concatenating 𝑟 bits within the
encrypted data 𝐶𝑇𝐹 corresponding to the extracted indices,
where 1 ≤ 𝜋𝑘(⋅) ≤ |𝐶𝑇𝐹|, 𝑟 ≪ |𝐶𝑇𝐹| (|𝐶𝑇𝐹| denotes the bit
size of𝐶𝑇𝐹 and𝐶𝑇𝐹[𝑙] denotes 𝑙-th bit of𝐶𝑇𝐹) (line (7)).The
client then generates an expected response V by computing a
hash value of 𝜎 with 𝑐 (line (8)). Finally, the client encrypts
V via the authenticated encryption scheme (line (9)). This
procedure is repeated 𝑡 times while increasing the counter 𝑐𝑡𝑟
(line (3)-line (9)).

Algorithm 3 generates an expected response set that
contains 𝑠 expected responses to be used in the ownership
check. Algorithm 3 takes a ciphertext 𝐶𝑇𝐹, a file tag value𝑇𝑎𝑔𝐹, a master key 𝑀𝐾𝑆𝑟V and the highest challenge 𝜏𝑇𝑎𝑔𝐹
as an input and outputs an expected response set 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V.
Note that the cloud server also uses the highest challenge as a
track of the challenge index in the ownership check protocol.
In the initial upload protocol, 𝜏𝑇𝑎𝑔𝐹 = 0. The rest of the
algorithm follows Algorithm 2. However, Algorithm 3 does
not encrypt expected responses as 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V is retained and
only used by the cloud server.

At the end of the initial upload protocol, the
cloud server sets 𝐼𝑑𝑥𝑆𝑟V = 1. Finally, the client holds(𝐾ℎ𝐹

, 𝑇𝑎𝑔𝐹, 𝜏ℎ𝐹 , ℎ𝐹, 𝐼𝛼) in local storage and the cloud server
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𝐼𝑛𝑝𝑢𝑡 : 𝐶𝑙𝑡(𝐶𝑇𝐹), 𝑆𝑟V (𝑀𝐾𝑆𝑟V, 𝐼𝑑𝑥𝑆𝑟V, 𝑇𝑎𝑔𝐹, 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V)
𝑂𝑢𝑡𝑝𝑢𝑡 : “accept” or “reject”

(1) 𝑆𝑟𝑣: for 𝑖 in [1, 2]
(2) 𝐾𝑜𝑤𝑛,𝑖 ← 𝐾𝐷𝐹(𝑀𝐾𝑆𝑟V, 𝑖||𝑇𝑎𝑔𝐹)
(3) 𝜄 ← 𝜏𝑇𝑎𝑔𝐹 + 𝐼𝑑𝑥𝑆𝑟V
(4) 𝑘 ← 𝑓𝐾𝑜𝑤𝑛,1 (𝜄)
(5) 𝑐 ← 𝑓𝐾𝑜𝑤𝑛,2(𝜄||𝑇𝑎𝑔𝐹)
(6) send 𝑘, 𝑐 to 𝐶𝑙𝑡 as a challenge
(7) 𝐶𝑙𝑡: compute 𝜎 ← 𝐶𝑇𝐹[𝜋𝑘(1)]|| ⋅ ⋅ ⋅ ||𝐶𝑇𝐹[𝜋𝑘(𝑑)]
(8) 𝑃 ← 𝐻(𝑐||𝜎)
(9) send 𝑃 to 𝑆𝑟V as a response
(10) 𝑆𝑟𝑣: if 𝑃 = 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V[𝜄]
(11) return “accept”
(12) otherwise
(13) return “reject”

Algorithm 4: Ownership check protocol.

holds (𝑀𝐾𝑆𝑟V, 𝑇𝑎𝑔𝐹, 𝜏𝑇𝑎𝑔𝐹 , 𝐼𝑑𝑥𝑆𝑟V, 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡, 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V) in
local storage and saves 𝐶𝑇𝐹 at the secondary storage. Note
that all values that are stored in local storage have negligible
size compared to the file.

4.2.3. Deduplication Protocol. The deduplication process
assumes that a file is uploaded as duplicated data from a
previous upload. Thus, the cloud server must verify that
the client actually has the file. The deduplication protocol
contains the ownership check protocol and is run as follows:

Step 1. 𝐶𝑙𝑡 generates an encryption key 𝐾𝐹 ← 𝐾𝐷𝐹(𝐾ℎ𝐹
, 0)

and computes 𝐶𝑇𝐹 ← 𝐸𝑛𝑐𝐾𝐹(𝐹) and 𝑇𝑎𝑔𝐹 ← 𝐻(𝐶𝑇𝐹). 𝐶𝑙𝑡
then sends a file upload request to 𝑆𝑟V with 𝑇𝑎𝑔𝐹.
Step 2. Upon receiving the upload request, 𝑆𝑟V checks
whether 𝐶𝑇𝐹 is in the storage using 𝑇𝑎𝑔𝐹. If 𝐶𝑇𝐹 is in the
storage, 𝑆𝑟V runs Algorithm 4 with 𝐶𝑙𝑡.
Step 3. If Algorithm 4 returns “𝑎𝑐𝑐𝑒𝑝𝑡”, 𝑆𝑟V assigns a link of
the file 𝐶𝑇𝐹 to the client. Otherwise, 𝑆𝑟V returns “𝑟𝑒𝑗𝑒𝑐𝑡”.

In Algorithm 4, the cloud server interacts with the client
to verify that the client actually has the file. Firstly, the
cloud server computes 𝐾𝑜𝑤𝑛,𝑖 ← 𝐾𝐷𝐹(𝑀𝐾𝑆𝑟V, 𝑖 ‖ 𝑇𝑎𝑔𝐹)
for 1 ≤ 𝑖 ≤ 2 (line (1) ∼ line (2)), where 𝑀𝐾𝑆𝑟V is a
master secret key of the cloud server. The cloud server then
generates the challenge 𝑘 = 𝑓𝐾𝑜𝑤𝑛,1 (𝜄) and 𝑐 = 𝑓𝐾𝑜𝑤𝑛,2 (𝜄||𝑇𝑎𝑔𝐹),
and sends them to the client, where 𝜄 = 𝜏𝑇𝑎𝑔𝐹 + 𝐼𝑑𝑥𝑆𝑟V
(line (3)-line (6)). Upon receiving the challenge, the client
extracts indices 𝜋𝑘(1), . . . , 𝜋𝑘(𝑑) and generates a token 𝜎 by
concatenating𝑑 bitswithin the ciphertext𝐶𝑇𝐹 corresponding
to the extracted indices (line (7)). The client then generates a
proof 𝑃 by hashing the token 𝜎 with nonce 𝑐 (line (8)-line
(9)). Finally, the client sends the proof to the cloud server
as a response. Upon receiving the response, the cloud server
verifies the response by comparing with the 𝜄-th value of the
expected response set 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V. If the proof 𝑃 is equal to

𝐼𝑛𝑝𝑢𝑡 : 𝐶𝑙𝑡(𝐾ℎ𝐹
, 𝜏ℎ𝐹 , 𝐼𝑑𝑥𝐶𝑙𝑡), 𝑆𝑟V(𝐶𝑇𝐹, 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡)

𝑂𝑢𝑡𝑝𝑢𝑡 : “accept” or “reject”
(1) 𝐶𝑙𝑡: for 𝑖 in [1, 3]
(2) 𝐾𝑖𝑛𝑡,𝑖 ← 𝐾𝐷𝐹(𝐾h𝐹 , 𝑖)
(3) 𝜄 ← 𝜏ℎ𝐹 + 𝐼𝑑𝑥𝐶𝑙𝑡
(4) 𝑘 ← 𝑓𝐾𝑖𝑛𝑡,1(𝜄)
(5) 𝑐 ← 𝑓𝐾𝑖𝑛𝑡,2(𝜄||𝑇𝑎𝑔𝐹)
(6) send 𝑘, 𝑐, 𝜄 to 𝑆𝑟V as a challenge
(7) 𝑆𝑟𝑣: compute 𝜎 ← 𝐶𝑇𝐹[𝜋𝑘(1)]|| ⋅ ⋅ ⋅ ||𝐶𝑇𝐹[𝜋𝑘(𝑟)]
(8) 𝑃 ← 𝐻(𝑐||𝜎)
(9) send 𝑃, 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡[𝜄] to 𝐶𝑙𝑡 as a response
(10) 𝐶𝑙𝑡: compute V = 𝐴𝐸−1𝐾𝑖𝑛𝑡,3(𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡[𝜄])
(11) if V is not valid
(12) return “reject”
(13) if 𝑃 = V
(14) return “accept”
(15) otherwise
(16) return “reject”

Algorithm 5: Integrity auditing protocol.

𝑅𝑒𝑠𝑝𝐴𝑟𝑟𝑆𝑟V[𝜄], the cloud server accepts that the client actually
has the file. Otherwise, the cloud server returns “reject” (line
(10)-line (13)).

If ownership is accepted, the cloud server assigns a link of
the file to the client.Thus, the client does not need to send the
file. Note that, as every client who has the same file can get
the same secret key, these clients can audit the file integrity
without the need to upload any information.

At the end of the ownership check protocol, the cloud
server computes 𝐼𝑑𝑥𝑆𝑟V = 𝐼𝑑𝑥𝑆𝑟V + 1 and if 𝐼𝑑𝑥𝑆𝑟V ≡ 0 mod𝑠, and subsequently has to renew the expected response
set 𝑅𝑒𝑠𝐴𝑟𝑟𝑆𝑟V. The renewal process is equal to Algorithm 3,
except that the highest challenge 𝜏𝑇𝑎𝑔𝐹 = 𝜏𝑇𝑎𝑔𝐹 + 𝑠, where 𝑠 is
the size of expected response set.

4.2.4. Integrity Auditing Protocol. The client that has owner-
ship of a file 𝐹 can audit the integrity of the outsourced data𝐹 at any time. Before running the integrity auditing protocol,
the client chooses one element from the assigned index set 𝐼𝛼,
sets it to the challenge index 𝐼𝑑𝑥𝐶𝑙𝑡 and removes the element
from 𝐼𝛼.

Algorithm 5 presents the integrity auditing protocol.
Firstly, the client generates 𝐾𝑖𝑛𝑡,𝑖 ← 𝐾𝐷𝐹(𝐾ℎ𝐹

, 𝑖) for 1 ≤ 𝑖 ≤3 (line (1)-line (2)). Then, the client computes 𝑘 = 𝑓𝐾𝑖𝑛𝑡,1(𝜄)
and 𝑐 = 𝑓𝐾𝑖𝑛𝑡,2(𝜄 ‖ 𝑇𝑎𝑔𝐹), where 𝜄 = 𝜏ℎ𝐹 +𝐼𝑑𝑥𝐶𝑙𝑡 and sends 𝑘, 𝑐,𝜄 to the cloud server as a challenge (line (3)-line (6)). Upon
receiving the challenge, the cloud server extracts indices𝜋𝑘(1), . . . , 𝜋𝑘(𝑟) and generates a token 𝜎 by concatenating 𝑟
bits within the ciphertext𝐶𝑇𝐹 corresponding to the extracted
indices (line (7)). The cloud server then generates a proof𝑃 by hashing the token 𝜎 with challenged nonce 𝑐 (line
(8)). Finally, the cloud server sends the proof 𝑃 with the 𝜄-th
value of the expected response set 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡 to the client
(line (9)). Upon receiving the proof with 𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡[𝜄], the
client extracts an expected response value V by computing
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𝐴𝐸−1𝐾𝑖𝑛𝑡,3(𝑅𝑒𝑠𝐴𝑟𝑟𝐶𝑙𝑡[𝜄]) (line (10)). If V is not valid, the client
returns “reject” (line (11)-line (12)). Otherwise the client
compares the proof 𝑃 with V. If 𝑃 equals V, the client accepts
that the outsourced data is intactly stored. Otherwise, the
client returns “reject” (line (13)-line (16)).

At the end of the integrity auditing protocol, if all the
preassigned challenge index are used (i.e., 𝐼𝛼 = 0), the client
has to obtain a new challenge index set from themanagement
server. The challenge index reissuing process is similar to
Algorithm 1, however the management server does not need
to load or send the secret key. Note that if the client has to
renew the expected response set, the client runs Algorithm 2
and sends a new expected response set to the cloud server.

5. Security Analysis

In this section, we analyze the security of Sec-DPoS. Firstly,
we formalize the security definitions that consist of two
parts: client uncheatability in proof of ownership and server
unforgeability in integrity auditing.

5.1. Security Definitions. In the cross-user client-side dedu-
plication system, a malicious client that has only partial
information of a file 𝐹 can attempt to convince the cloud
server in the ownership check protocol. Thus, it is necessary
that the malicious clients cannot cheat the cloud server for
ownership of the entire file. We first summarize the overall
process of the ownership check protocol in our Sec-DPoS
scheme.

When a client attempts to upload the duplicated data, the
cloud server generates a random seed key 𝑘 with nonce 𝑐
and sends these to the client as a challenge. Upon receiving
the challenge, the client extracts indices 𝜋𝑘(1), . . . , 𝜋𝑘(𝑑)
and generates a token 𝜎 by concatenating 𝑑 bits within
the ciphertext 𝐶𝑇𝐹 corresponding to the extracted indices.
Subsequently, the client generates a proof by hashing the
token 𝜎 with nonce 𝑐 and sends the proof to the cloud server
as a response. Finally, the protocol outputs “accept” if the
proof is valid. Otherwise, the protocol returns “reject”.

Now, we present the definition of client uncheatability
over Sec-DPoS, based on game scenario between a challenger𝐶 (the role of the cloud server) and an adversary 𝐴 (the role
of the client). We prove the security of Sec-DPoS over a weak
assumption, that the adversary can build an expected token𝜎 before the challenger makes a challenge. This means that
the adversary can get 𝑑 bits of ciphertext via an oracle, even
if the adversary does not have the whole file.

In the Sec-DPoS scheme, the experiment 𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆
for uncheatability can be described as follows:

(i) Setup phase. The challenger 𝐶 randomly chooses a
data 𝐷, a master key 𝑀𝐾 ← {0, 1}𝜆 and sends 𝐷 to
an oracle. 𝐶 then sets up the ownership check system
of Sec-DPoS over 𝐷.

(ii) Learningphase.The adversary𝐴 can query the oracle
at any point in time with 𝑑 indices. If queried, the
oracle replies all bits corresponding to queried indices
from𝐷.

(iii) Challenge phase. 𝐶 run the ownership check pro-
tocol with 𝐴. If the ownership check protocol
returns “accept”, 𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 outputs 1. Otherwise,𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 outputs 0.

Definition 1 (client uncheatability). The Sec-DPoS scheme is
uncheatable if for any probabilistic polynomial time (PPT)
adversary 𝐴 and for security parameter 𝜆,

Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] ≤ 𝜖 (𝜆) , (1)

where 𝜖(⋅) is a negligible function.
Next, we have to consider server unforgeability. The client

that has the ownership of a file 𝐹 can audit integrity of the
outsourced data at any time. In our Sec-DPoS scheme, the
integrity auditing protocol is similar to the ownership check
protocol, however the role of prover and verifier is changed
and the cloud server take 𝑡 expected responses (in encrypted
form) provided by the client. According to this situation, we
can build the security game.

The definition of server unforgeability is defined based
on the game scenario between a challenger 𝐶 (the role of the
client) and an adversary𝐴 (the role of the cloud server).Then,
the experiment 𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 for unforgeability is described
as follows:

(i) Setup phase. The challenger 𝐶 randomly chooses a
data 𝐷, a secret key 𝐾 ← {0, 1}𝜆 and sends 𝐷 to an
oracle. 𝐶 then sets up the integrity auditing system of
Sec-DPoS over 𝐷.

(ii) Query phase.The adversary 𝐴 can query the oracle at
any point in time with 𝑟 indices. If queried, the oracle
replies all bits corresponding to the queried indices
from 𝐷. If the adversary 𝐴 queries the challenger 𝐶,𝐶 returns an expected response in encrypted form.

(iii) Challenge phase. 𝐶 run the integrity auditing pro-
tocol with 𝐴. If the integrity auditing protocol
returns “accept”, 𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 outputs 1. Otherwise,𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 outputs 0.

Definition 2 (server unforgeability). The Sec-DPoS scheme
is unforgeable if for any PPT adversary 𝐴 and for security
parameter 𝜆,

Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] ≤ 𝜃 (𝜆) , (2)

where 𝜃(⋅) is a negligible function.
5.2. Security Proof. In this subsection, we prove the security
of Sec-DPoS corresponds to the security definition.

Before we prove the security in terms of the security
definition, we first have to go through the data confidentiality
of Sec-DPoS. Regarding the data confidentiality in ourmodel,
we argue the following theorem.

�eorem 3. Sec-DPoS ensures confidentiality with a brute-
force attack resilience if any PPT adversary is not allowed to
compromise with the management server.
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Proof. In our system, a management server generates the
convergent key associated with a private key of the man-
agement server and we assume that the key distribution
process is run over a secure channel. Thus, no adversary who
attempts to launch a brute force attack can generate the valid
encryption key without the private key of the management
server. Therefore, even if the file is predictable, the adversary
cannot guess the plaintext by launching a brute force attack.

However, the adversary can attempt a brute force attack
via the management server as the management server cannot
make a distinction between an honest and malicious client.
Hence, by applying a per-client or per-file limitation strategy,
as in [13] or [15], we can achieve confidentiality with a brute
force attack resilience.

Now, we prove the security for uncheatability and
unforgeability under the assumption that Theorem 3 holds.

�eorem 4. Let 𝜆 be a security parameter. Let𝐻 be a random
oracle with output length 𝛿(𝜆). Assume that the pseudorandom
function 𝑓 and the pseudorandom permutation 𝜋 are secure
with key length 𝛾(𝜆). Sec-DPoS holds client uncheatability for
any PPT adversary who can make 𝑞𝐻(𝜆) queries to 𝐻 and𝑞𝑂(𝜆) queries to an oracle that returns a corresponding bit from
ciphertext to queried index.

Proof. To show that Theorem 4 holds, we consider the
experiment 𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 in Definition 1. In our experiment
𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆, the adversary can get 𝑑 ⋅ 𝑞𝑂 bits of the data 𝐷
via the oracle, where 𝑞𝑂 = 𝑞𝑂(𝜆), and the challenger runs the
ownership check protocol with the adversary. The advantage
that the adversary wins the uncheatability game is:

Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] . (3)

The second experiment 𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,2𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 is identical to
𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 except that the adversary encounters a hash
collision. Since𝐻 is a random oracle, we have

Pr [the adversary encounters the hash collision]
≤ 𝑞𝐻2𝛿 ,

(4)

where 𝑞𝐻 = 𝑞𝐻(𝜆) and 𝛿 = 𝛿(𝜆). Then, we can have

Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1]
≤ Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,2𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] + 𝑞𝐻2𝛿 .

(5)

The third experiment 𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 is identical to
𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,2𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 except that the adversary predicts the random
seed key 𝑘 and nonce 𝑐 that are to be challenged. Since we
assume that the pseudorandom function 𝑓 is secure, we have

Pr [the adversary predict 𝑘 and 𝑐] ≤ 1
2𝛾 , (6)

where 𝛾 = 𝛾(𝜆). Then, we can have

Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1]
≤ Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] + 𝑞𝐻2𝛿 + 1

2𝛾 .
(7)

The advantage of the third experiment can be determined as
follows.

Suppose that the adversary can obtain at most a 𝑙 fraction
of 𝐷(i.e., 𝑙 = (𝑑 ⋅ 𝑞𝑂)/|𝐷|). Now, we compute the probability
that an adversary who can get a 𝑙 fraction of 𝐷 will pass the
ownership checking protocol.

In the ownership checking protocol of our proposed
scheme, the client has to extract 𝑑 bits from the target data𝐷, corresponding to 𝑑 random indices. Let 𝜔 be an event that
the adversary owns 𝑙 fraction of 𝐷, and 𝑝𝑎𝑠𝑠1 be an event
that the adversary successfully passes a single-bit challenge
in 𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (i.e., 𝑑 = 1). The probability Pr(𝑝𝑎𝑠𝑠1) can
then be computed as follows:

Pr (𝑝𝑎𝑠𝑠1) = Pr (𝑝𝑎𝑠𝑠1 ∧ (𝜔 ∨ 𝜔))
= Pr (𝑝𝑎𝑠𝑠1 ∧ 𝜔) ∨ Pr (𝑝𝑎𝑠𝑠1 ∧ 𝜔)
= Pr (𝑝𝑎𝑠𝑠1 | 𝜔) 𝑃 (𝜔)

+ Pr (𝑝𝑎𝑠𝑠1 | 𝜔)Pr (𝜔) .
(8)

If the single-bit challenge is in the known fraction then the
adversary can always pass (i.e., Pr(𝑝𝑎𝑠𝑠1 | 𝜔) = 1). However,
the adversary cannot response correctly if the single-bit
challenge is in the unknown fraction. In this case, the best
way of successful pass is to guess the response, i.e., Pr(𝑝𝑎𝑠𝑠1 |𝜔) = 0.5 + 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒. Let Pr(𝑝𝑎𝑠𝑠1 | 𝜔) ≤ 𝑔. Then, we have

Pr (𝑝𝑎𝑠𝑠1 | 𝜔) 𝑃 (𝜔) + Pr (𝑝𝑎𝑠𝑠1 | 𝜔) 𝑃 (𝜔)
≤ 1 ⋅ 𝑙 + 𝑔 ⋅ (1 − 𝑙) . (9)

Finally, we can compute the probability Pr(𝑝𝑎𝑠𝑠) that the
adversary successfully passes a 𝑑 bits challenge by

Pr (𝑝𝑎𝑠𝑠) = {Pr (𝑝𝑎𝑠𝑠1)}𝑑 ≤ {𝑙 + 𝑔 ⋅ (1 − 𝑙)}𝑑 . (10)

We desire a probability Pr(𝑝𝑎𝑠𝑠) ≤ 2−𝜇(𝜆). To achieve
client uncheatability, the size of the challenge𝑑 can be derived
as follows:

{𝑙 + 𝑔 ⋅ (1 − 𝑙)}𝑑 ≤ 2−𝜇.
∴ 𝑑 ≥ 𝜇 ⋅ ln 2

1 − (𝑙 + 𝑔 (1 − 𝑙)) ,
(11)

where 𝜇 = 𝜇(𝜆). Thus, if the size of challenge 𝑑 = ⌈(𝜇 ⋅
ln 2)/(1 − (𝑙 + 𝑔(1 − 𝑙)))⌉, we can have

Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] ≤ 1
2𝜇 . (12)

Then, we can show that Sec-DPoS holds client uncheatability
as follows:

Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 = 1] ≤ 1
2𝜇 + 𝑞𝐻2𝛿 + 1

2𝛾 . (13)
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Additionally, as a realistic scenario, the adversary may know
part of the plaintext. Thus, we also have to consider the
scenario whereby the adversary who has a fraction of plain-
text attempts to convince the challenger. Let 𝜔 be an event
that the adversary owns 𝛽 fraction of plaintext and 𝑝𝑎𝑠𝑠1 be
an event that the adversary successfully passes a single-bit
challenge in the ownership check protocol (i.e., 𝑑 = 1). The
probability Pr(𝑝𝑎𝑠𝑠1) can then be computed as follows:

Pr (𝑝𝑎𝑠𝑠1) = Pr (𝑝𝑎𝑠𝑠1 ∧ (𝜔 ∨ 𝜔))
= Pr (𝑝𝑎𝑠𝑠1 ∧ 𝜔) ∨ Pr (𝑝𝑎𝑠𝑠1 ∧ 𝜔)
= Pr (𝑝𝑎𝑠𝑠1 | 𝜔) 𝑃 (𝜔)

+ Pr (𝑝𝑎𝑠𝑠1 | 𝜔) Pr (𝜔) .

(14)

Under the assumption that Theorem 3 holds, unlike
𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆, the adversary has to guess the response
regardless of the challenged position (i.e., Pr(𝑝𝑎𝑠𝑠1 | 𝜔) =
Pr(𝑝𝑎𝑠𝑠1 | 𝜔) = 0.5 + 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒). Thus, Let Pr(𝑝𝑎𝑠𝑠1| 𝜔) = Pr(𝑝𝑎𝑠𝑠1 | 𝜔) ≤ 𝑔, then

Pr (𝑝𝑎𝑠𝑠1 | 𝜔) 𝑃 (𝜔) + Pr (𝑝𝑎𝑠𝑠1 | 𝜔)Pr (𝜔)
≤ 𝑔 ⋅ 𝛽 + 𝑔 ⋅ (1 − 𝛽) = 𝑔. (15)

Finally, we can compute probability Pr(𝑝𝑎𝑠𝑠) that the adver-
sary successfully passes a 𝑑 bit challenge by

Pr (𝑝𝑎𝑠𝑠) = {Pr (𝑝𝑎𝑠𝑠1)}𝑑 ≤ 𝑔𝑑. (16)

We desire a probability Pr(𝑝𝑎𝑠𝑠) ≤ 2−𝜇(𝜆). To achieve
client uncheatability in this scenario, the size of the challenge𝑑 can be derived as follows:

𝑔𝑑 ≤ 2−𝜇.
∴ 𝑑 = ⌈𝜇 ⋅ ln 21 − 𝑔 ⌉ , (17)

where 𝜇 = 𝜇(𝜆).Thus, we can take the size of the challenge as𝑑 = max(⌈(𝜇 ⋅ ln 2)/(1 − (𝑙 + 𝑔(1 − 𝑙)))⌉, ⌈(𝜇 ⋅ ln 2)/(1 − 𝑔)⌉).
However, since ⌈(𝜇⋅ln 2)/(1−𝑔)⌉ < ⌈(𝜇⋅ln 2)/(1−(𝑙+𝑔(1−𝑙)))⌉,
we have 𝑑 = ⌈(𝜇 ⋅ ln 2)/(1 − (𝑙 + 𝑔(1 − 𝑙)))⌉.

Next, we can directly have the following theorem for
server unforgeability.

�eorem 5. Let 𝜆 be a security parameter. Let𝐻 be a random
oracle with output length 𝛿(𝜆). Assume that the pseudorandom
function 𝑓 and the pseudorandom permutation 𝜋 are secure
with key length 𝛾(𝜆). If𝐴𝐸 is an ideal authenticated encryption
function with key length 𝜌(𝜆) and authentication code length𝜑(𝜆), Sec-DPoS holds server unforgeability for any PPT adver-
sary who can make 𝑞𝐻(𝜆) queries to 𝐻 and 𝑞𝑂(𝜆) queries to
an oracle that returns a corresponding bit from ciphertext to
queried index.

Proof. To show that Theorem 5 holds, we consider the
experiment 𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 in Definition 2. In our experiment
𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆, the adversary can get 𝑟 ⋅ 𝑞𝑂 bits of the data𝐷 via the oracle and can get 𝑡 expected responses by the
authenticated encryption form, where 𝑞𝑂 = 𝑞𝑂(𝜆). The
challenger then runs the integrity auditing protocol with
the adversary. The advantage that the adversary wins the
unforgeability game is

Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] . (18)

The second experiment 𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,2𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 is identical to
𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 except that the adversary attempts to cheat the
authenticated encryption function. In this case, the adversary
attempts to break encryption or forge the authentication
code. In the Sec-DPoS, since we assume that 𝐴𝐸 is an ideal
authenticated encryption function, we have

Pr [the adversary cheats authenticated encryption]
≤ 1
2𝜌 + 𝑡

2𝜑 ,
(19)

where 𝜌 = 𝜌(𝜆) and 𝜑 = 𝜑(𝜆). Then, we have

Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1]
≤ Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,2𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] + 1

2𝜌 + 𝑡
2𝜑 .

(20)

The third experiment 𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 is identical to
𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,2𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 except that the adversary encounters a hash
collision. Since𝐻 is a random oracle, we have

Pr [the adversary encounters the hash collision]
≤ 𝑞𝐻2𝛿 ,

(21)

where 𝑞𝐻 = 𝑞𝐻(𝜆) and 𝛿 = 𝛿(𝜆). Then, we can have

Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1]
≤ Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] + 𝑞𝐻2𝛿 + 1

2𝜌 +
𝑡
2𝜑 .

(22)

The forth experiment 𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,4𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 is identical to
𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 except that the adversary predicts the random
seed key 𝑘 and nonce 𝑐 that are to be challenged. Since we
assume that pseudorandom function 𝑓 is secure, we have

Pr [the adversary predict 𝑘 and 𝑐] ≤ 1
2𝛾 , (23)

where 𝛾 = 𝛾(𝜆). Then, we can have

Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1]
≤ Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,4𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] + 𝑞𝐻2𝛿 + 1

2𝛾 +
1
2𝜌

+ 𝑡
2𝜑 .

(24)
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Figure 2: Number of challenging bits for 80-bit security in the
ownership check protocol.

The advantage of the forth experiment can be determined as
follows.

Suppose that the adversary can obtain atmost a𝑝 fraction
of𝐷 (i.e., 𝑝 = (𝑟 ⋅ 𝑞𝑂)/|𝐷|). Now, we compute the probability
that an adversary who can get a 𝑝 fraction of 𝐷 can pass the
integrity auditing protocol.

In the integrity auditing protocol of our proposed scheme,
the cloud server has to extract 𝑟 bits from the target data 𝐷
corresponding to 𝑟 random indices. The rest is similar to the
proof in 𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡,3𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆. Thus, if the size of challenge 𝑟 = ⌈(𝜇 ⋅
ln 2)/(1 − (𝑝 + 𝑔(1 − 𝑝)))⌉, we can have

Pr [𝐸𝑥𝑝𝑢𝑛𝑓𝑜𝑟𝑔𝑒,4𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 (1𝜆) = 1] ≤ 1
2𝜇 , (25)

where𝜇 = 𝜇(𝜆).We can then show that Sec-DPoS holds client
unforgeability as follows:

Pr [𝐸𝑥𝑝𝑢𝑛𝑐ℎ𝑒𝑎𝑡𝐴,𝑆𝑒𝑐−𝐷𝑃𝑜𝑆 = 1] ≤ 1
2𝜇 + 𝑞𝐻2𝛿 + 1

2𝛾 +
1
2𝜌 +

𝑡
2𝜑 . (26)

5.3. Analysis of Detection Probability. Unlike other schemes
in [1, 2, 9–12], we apply a bit-level challenge to Sec-DPoS.
Thus, we should analyze the detection probability when an
attacker who has only a fraction of data attempts to convince
that it owns the whole data or the data is stored intactly in the
ownership check protocol or integrity auditing protocol. In
the integrity auditing and ownership check protocol, the size
of the challenge is 𝑑 and 𝑟, respectively, and we can choose
these by setting the desired security parameter 𝑘. As proved
above, 𝑑 = ⌈(𝜇 ⋅ ln 2)/|(1 − (𝑙+ 𝑔(1 − 𝑙)))|⌉, 𝑟 = ⌈(𝜇 ⋅ ln 2)/|(1 −(𝑝 + 𝑔(1 − 𝑝)))|⌉, where 𝑔 denotes the guessing probability
of single-bit challenge for an unknown fraction and 𝑡 and 𝑝
denote that adversary knows 𝑡 and 𝑝 fractions of the target
data (we assume that adversary can get a portion of encrypted
data by querying to an oracle) in the ownership check and
integrity auditing protocol, respectively.
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Figure 3: Number of challenging bits for fixed confidence in the
integrity auditing protocol.

Firstly, we analyze the detection probability in the owner-
ship check protocol. Let 𝑙 = (1 − 𝑙).Then we can have

𝑑 = ⌈ 𝜇 ⋅ ln 2𝑙 (1 − 𝑔)⌉ , (27)

where 𝑙 denotes the unknown fraction of the target data that
the client does not know. As shown in Figure 2, we present
the size of the challenge 𝑑 by setting 𝑙 to different values for
various security parameters.

Next, we analyze the detection probability in the integrity
auditing protocol. Let 𝑝 = (1 − 𝑝).Then we can have

𝑟 = ⌈ 𝜇 ⋅ ln 2𝑝 (1 − 𝑔)⌉ , (28)

where 𝑝 denotes the unknown fraction of the target data
that the cloud server does not know. Note that the unknown
fraction in this case is the same as the corrupted fraction.This
means that the cloud server cannot determine the damaged
fraction when the data is corrupt from unintentional errors.
As shown in Figure 3, we present the size of challenge 𝑟 by
setting 𝑝 differently for 99% and 95% confidence.

6. Implementation

In this section, we present the implementation results, evalu-
ate our Sec-DPoS scheme, and compare with other schemes.
In order to evaluate the efficiency of Sec-DPoS, we compared
with other schemes, namely, SecCloud [1], Message-locked
PoOR [11], andDeyPoS [12], and all schemes are implemented
and evaluated over Intel Core i7-4790CPU @ 3.60GHz. All
implementation results represent the median value of 100
trials.

6.1. Implementation ofOwnershipCheck Protocol. Theowner-
ship check process in Sec-DPoS simply challenges 𝑑 random
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Figure 4: Computation costs for various file sizes for the ownership
checkprotocol, when the number of challenged bits is 2219, 1110, and
740, respectively.

indices for an encrypted file. As analyzed in Section 5, the
size of the challenge can be set by setting 𝑙, which denotes
the unknown fraction of the target data. Note that the
ownership check protocol in Sec-DPoS ensures (1 − 2−𝜇)
confidence. In our implementation, we take 𝜇 = 80 and 𝑙 ∈{0.05, 0.10, 0.15}. We assume that the selected 𝑙 is sufficiently
reasonable as the adversary has to know 95%, 90% and 85%
for encrypted data, not plaintext. As shown in Figure 2, we set
the size of the challenge as 𝑑 ∈ {2219, 1110, 740} for 𝜇 = 80
and 𝑙 ∈ {0.05, 0.10, 0.15}. We present the implementation
results for various 𝑑 and various sizes of data (see Figure 4).
As shown in Figure 4, the time cost of the ownership check
protocol in Sec-DPoS does not depend on the size of the data.

In order to evaluate the efficiency of Sec-DPoS for
the ownership checking protocol, we also measured the
challenge phase, the response phase, and the verification
phase, respectively. As shown in Figure 5, we present our
implementation results compared to other schemes for a
64MB file. In particular, Sec-DPoS was measured when the
size of the challenge is 2219 for 80-bit security. For the case of
SecCloud, the same scheme was used as with PoWs [4]. For
Message-locked PoOR, since the scheme is based on HMAC,
the target file needs to be accessed in the ownership check
process (other schemes do not access the target file). For the
implementation of Message-locked PoOR, we set the size of
the block as 4KB, the same setting used in [11]. For DeyPoS,
since the scheme is based on a homomorphic authenticated
tree, there is a large variation in efficiency, depending on
block size (if the size of the block is small, the height of
the tree increases and vice versa). For the implementation
of DeyPoS, we set the size of the block as 64 KB and the
computation cost was measured more efficiently compared
with SecCloud and Message-locked PoOR ([12] set the size
of block as 4KB, 16 KB, 64 KB, with the latter having the
highest efficiency in our experiment). For the case of Sec-
DPoS, the computation cost was measured as 0.1ms, 10ms
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Figure 5: Comparison of the computation cost with other schemes
for the ownership check protocol, when the file size is 64MB.

and 0.001ms in the challenge, response, and verification
phase, respectively. Hence, we can evaluate that our Sec-DPoS
scheme has the highest efficiency for the ownership check
protocol. Note that since SecCloud and DeyPoS are based
on the tree structure in the ownership check, if the size of
the file increases, time cost increases while the time costs of
Message-locked PoOR and Sec-DPoS are constant. In terms
of the network latency, Sec-DPoS and Message-locked PoOR
have𝑂(1) communication cost and the others need𝑂(𝑏 log 𝑛)
communication cost.

6.2. Implementation of Integrity Auditing Protocol. The
integrity auditing process in Sec-DPoS simply challenges𝑟 random indices for an encrypted file. As analyzed in
Section 5, the size of the challenge can be determined by
setting 𝑝 to denote the corrupt fraction of the target data.
In our implementation, we implement the integrity auditing
protocol of Sec-DPoS for 99% and 95% confidence. We stress
that 99% and 95% confidence are the same conditions as those
of other schemes. As shown in Figure 3, we set the size of
the challenge as 𝑟 = 930 for 99% confidence and 𝑟 = 610
for 95% confidence when the corrupted fraction of the target
data is 0.01 (i.e.,𝑝 = 1%).We present implementation results
for 𝑟 = 930, 610 and various sizes of data (see Figure 6).
As shown in Figure 6, the time cost of the integrity auditing
protocol in Sec-DPoS does not depend on the size of the
file.

In order to evaluate the efficiency of Sec-DPoS for the
integrity auditing protocol, we also measured the challenge
phase, response phase, and verification phase, respectively.
As shown in Figure 7, we present our implementation results
compared with other schemes for a 64MB file. All schemes
were measured for 99% confidence. In the case of SecCloud,
since the scheme is based on public key cryptography, the
computation cost was measured to be greater than 300ms.
ForMessage-locked PoOR, we set the size of the block as 4 KB
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Figure 7: Comparison of computation costs with other schemes for
the integrity auditing protocol, when the file size is 64MB.

(the same setting as with [11]) and the computation cost was
also measured to be greater than 300ms. For case of DeyPoS,
we set the size of the block as 64KB and the computation
cost was measured more efficiently ([12] set the size of the
block as 4KB, 16KB, 64KB,with the latter having the greatest
efficiency in our experiment). However, since DeyPoS is
based on a tree structure for the integrity auditing, if the
size of the file increases, time cost also increases. Moreover,
since the size of the block is set as 64KB and the number
of challenge is 480, the entire file has to be accessed with
less than 30720KB, which is impractical. Similarly, Message-
locked PoOR also needs access to the entire file for less
than 1920KB. For the case of Sec-DPoS, the computation
cost was measured 0.1ms, 2ms and 0.03ms in the challenge,
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Figure 8: Computation costs for various file sizes in the initial-
ization process for the ownership check, when the number of
challenged bits is 2219, 1110, and 740, respectively.

response, and verification phase, respectively. Hence, we can
evaluate that Sec-DPoS has the greatest efficiency for the
integrity auditing protocol. In terms of the network latency,
Sec-DPoS and Message-locked PoOR have 𝑂(1) communi-
cation cost and the others need 𝑂(𝑏 log 𝑛) communication
cost.

6.3. Implementation of the Initialization Phase. When the
client uploads fresh data, the client and cloud server have
to invoke a precomputation process. In the precomputation
process, the client generates 𝑡 expected responses for integrity
auditing and the cloud server generates 𝑠 expected responses
for the ownership check. In addition, the size of challenge
is 𝑟 in the integrity auditing and 𝑑 in the ownership check.
Therefore, we measured the time cost of the initialization
process by varying each variable for the integrity auditing
and ownership check, respectively. In this experiment, we
implemented over Intel Core i7-4790CPU @ 3.60GHz.

For the ownership check protocol, wemeasured time cost
for various file sizes for 𝑑 ∈ {2219, 1110, 740} and 𝑠 = 1000.
As shown in Figure 8, the precomputation process for the
ownership check does not depend on the file size and time
cost was measured as constant. When 𝑑 = 2219, 1110 and 740,
the time cost was measured to be approximately 2.2ms, 1.1ms
and 0.7ms, respectively. For the integrity auditing protocol,
we also measured the time cost for various file size when we
take 𝑟 ∈ {930, 610} and 𝑡 = 5000. We assume that the integ-
rity auditing protocol is executed more frequently than the
ownership check protocol. Hence, we set 𝑡 to be larger than𝑠. As shown in Figure 9, the precomputation process for
integrity auditing also does not depend on the file size and the
time cost was measured as constant. When 𝑟 = 930 and 610,
the time cost was measured to be approximately 4.7ms and
3.1ms, respectively. Note that if the number of precomputed
responses (i.e., 𝑠 or 𝑡) increases, the time cost also increases
linearly.



Security and Communication Networks 15

0

1

2

3

4

5

6

7

8

9

10

16KB 64KB 256KB 1024KB 4096KB 16384KB 65536KB

co
m

pu
ta

tio
n 

co
st 

(m
s)

size of file (KB)

r=930
r=610

Figure 9: Computation costs for various file sizes in the initial-
ization process for the integrity auditing, when the number of
challenged bits is 930 and 610, respectively.

7. Conclusion

In order to comply with the three important requirements
of cloud storage environments: data confidentiality, integrity,
and storage efficiency, we proposed a secure and highly effi-
cient Sec-DPoS scheme based on symmetric key cryptogra-
phy. In our proposal, the scheme ensures data confidentiality
with dictionary attack resilience and can efficiently audit
integrity of outsourced data while the cloud server saves
resources. By applying a bit-level challenge, we designed
Sec-DPoS to perform efficiently, even for small data types.
Moreover, we proved the security of Sec-DPoS in the random
oracle model with the information theory, and experimental
results show that Sec-DPoS has the highest efficiency com-
pared with other schemes.
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