13 Appendix

Appendix A Passive and Active Scanning Tools Table

Table 3: A summary of the existing active and passive network scanning tools.

Tool

Summary

NMap + ZMap

Open Source, Active

Uses a combination of ping sweeping, SYN scanning and TCP connecting
to determine which hosts reside on a network and which services they
are operating.

Version detection or full TCP connection could cause legacy systems to
misbehave.

NMap Scripting Engine has allowed for bespoke modules to be created
for SCADA protocols such as Modbus.

Could potentially threaten the operation of a ICS/SCADA system.

ZMap has an almost identical capability but can scan Large Area Net-
works

Nessus

Commercial, Active

Working on a “policy” framework, Nessus allows users to conduct host
discovery and vulnerability analysis in a similar way to NMap, again
using ICMP, TCP and ARP scanning.

Unlike NMap, Nessus has the capability actively probe each service to
report on potential vulnerabilities, which could cause accidental DoS on
SCADA systems.

Passive Vulnerability Scanner

Commercial, Passive

Uses interface packet sniffing to dissect and analyse the data being sent
over the network in order to gain information about the assets and ser-
vices being deployed.

Although it does not require any form of direct probing with nodes, PVS
must be continuously ran in order to gain a better understanding of the
network it is monitoring.

It is not intrusive, but the time it takes to analyse traffic is significantly
higher than the active alternatives.

Shodan

Open Source/Membership Based, Active

Uses similar techniques to NMap, ZMap and Nessus to find the services
that are running on internet-facing devices.

All results are then stored in a database for users of the Shodan search
engine to query against.

As this tool uses the same technology as other active scanners, it too
poses the risk of affecting ICS/SCADA systems, especially as it has the
capability to scan globally, meaning any CNI running legacy software
could be at a significant risk.

Shodan has the potential to bring unwanted malicious attention to IC-
S/SCADA networks through the storing and reporting of information
about ICS infrastructures.

52

Appendix B SCADA Network Diagram

Figure 1: A network diagram showing the link between corporate and SCADA networks.

Private IP
Network

Industrial
Control

53

Appendix C SCADA Network and Protocols Report

This document discusses the different types of protocols used on both SCADA and IP networks and provides
a breakdown of each of the relevant technologies to evaluate how network scanners may behave when executed

against the different types of network.

C.1 Introduction

Understanding the fundamental differences between non-IP and IP protocols is essential when analysing the
application of network scanners on SCADA systems. Dissecting a range of non-IP protocols will give an insight
into not only how SCADA devices communicate with each other, it will also help develop an understanding as
to how the devices interpret the data once it has received each message, and how this could lead to potential
issues when faced with unfamiliar packets supplied by scanners. Drawing internal comparisons between non-IP
protocols as well as IP protocols will assist in identifying which communications systems are more unstable
when being sniffed or scanned. This will also help identify possible weak points in common SCADA networks

and what measures should be taken in order to not disrupt the devices communicating with that specific protocol.

As there are a large number of devices that could be used by a SCADA or ICS system, the most commonly
used protocols will be identified and dissected, as to give a broad representation of the common attributes of
non-IP communications mechanisms. Using the information provided throughout the Literature Review, the

following protocols seem to be the most prevalent within ICS/SCADA environments:
e Ethernet
e Modbus
e Distributed Network Protocol version 3 (DNP3)

Each of these protocols is used by a range of PLC’s and RTU’s, the most significant devices in question, in ICS
and SCADA systems around the globe. Once a breakdown and review of each of these protocols has been given,
their structure and function will then be compared against each other to identify the differences between them,

and how this may be impacted by network scanning tools.

C.2 Ethernet

It is essential to identify the two significant methods of data transfer between devices on SCADA systems:
Ethernet and Serial connections. These two connection types reside on the Data Link Layer of the OSI Model.
The Data Link Layer is an interface between the Physical and Network layers, segmenting the data provided
by the upper layers into frames which can then be handled by the communications hardware of the lower layer.
Frames have several purposes, including providing synchronisation, parity and data bits which indicates to the
receiver the beginning and end of packets, as well as parity-checking and sequencing. An example of an Ethernet

frame is as follows:

54

Preamble + SFD | Dest MAC | Src MAC | Eth Type | Data CRC
8 Bytes 6 Bytes 6 Bytes 2 Bytes 46 - 1500 Bytes 4 Bytes

Table 4: A table showing the distinct frames of a single Ethernet packet.

C.2.1 Preamble + Start Frame Delimiter

The preamble and delimiter frame consists of 8 bytes at the beginning of each Ethernet packet. The preamble
always precedes the start frame delimiter as it is used as both a “ready-up” notification to alert the interface
that data is arriving, it also acts as a clock-synchronisation device (Mackenzie, n.d.). A valid preamble message
is 7 bytes in length, containing alternating binary values. This allows for the receiver’s clock to match the pace
of the data being transmitted. The choice to alternate the binary values across 7 bytes was to give adequate
time for the receiving device to set its clock and synchronise. An example of the binary data within a preamble

is as follows:

10101010 10101010 10101010 10101010 10101010 10101010 10101010

Here, the interchanging 1’s and 0’s are easy to detect, especially if the receiver’s clock is old or slow. An

alternate preamble value such as 17711111 or 111101110 could be misinterpreted (IEEE Std 802.3, 2012).

The start frame delimiter is a single byte of data which acts as a flag to symbolise where the synchronisation
section ends and where the Ethernet header begins and thus the beginning of the Ethernet frame itself. The
pattern of bits is used to break the pattern present within the preamble, this is often represented as the decimal
value 171 (0101011). This then completes the 8-byte frame at the beginning of each packet (IEEE Std 802.3,
2012).

C.2.2 Destination MAC Address

The destination MAC address (Media Access Control address) makes up one half of the Ethernet header. A
MAC address is a unique identifier given to the physical Network Interface Card (NIC) present within each
device on a network. The addresses are often associated with IEEE 802 technologies, Ethernet and Wi-Fi. Each
MAC address is 6 bytes in length, on which the address is split into 3 byte segments which give small amounts
of detail about the NIC itself:

3 Bytes 3 Bytes

Identifier of the Adapter’s Manufacturer: Unique Network Interface Card Identifier

Organisationally Unique Identifier (OUT)

Table 5: A table explaining the data present within the MAC address fields.

The first 3 bytes represent the Manufacturer ID, or the Vendor ID, who created the adapter/interface card. For
example, hex value 0x3C-D9-2B represents NETGEAR devices. 0xCC-46-D6 represents Cisco Systems devices.

The latter 3 bytes are a unique ID given to that specific device. This completes the physical address format

55

used within the Data Link Layer (Ethernet (IEEE 802.3), n.d.).

The destination MAC address specifies the address of the receiver’s NIC which the data is to be sent to. As
these physical addresses cannot be used to communicate with networks outside of a LAN setup, these ad-
dresses work alongside the IP system to create the Address Resolution Protocol (ARP). This protocol allows
for the physical MAC addresses to be associated to an IP address which is then used as an addressing system

which can span across the internet. This protocol is the fundamental difference between IP and non-IP networks.

C.2.3 Source MAC Address

With the identical specifications of the destination MAC address, the source MAC completes the Ethernet
header. Sending the source address allows for the recipient of the data to update their ARP cache, a list of
MAC addresses with their resolved IP addresses, so that each machine can remember which IP is associated

with each MAC address without having to resolve it each time a packet is received (Ethernet (IEEE 802.3), n.d.).

C.2.4 EtherType

The EtherType field serves two purposes. The first is a single byte value which defines which protocol is being
encapsulated within the “data” frame of the packet. For example, 0x0800 is the value of IPv4, 0x8903 represents
Cisco’s Data Circuit-Terminating Equipment. It can also be used to represent the size of the “data” frame in
bytes (Mackenzie, n.d.). This difference is dictated by whether the Ethernet type being used is Ethernet II or
802.3.

C.2.5 Data

This represents the user’s data which is being carried by the Ethernet packet and what is being transmitted
across the network. This data normally consists of protocol information from the OSI layer above. This could
consist of a IP and TCP packet. The data section can be a minimum of 46 bytes and maximum of 1500 bytes,
which will be dictated by the protocols and data being used by the higher layers of the OSI model (IEEE Std
802.3, 2012).

C.2.6 Cyclic Redundancy Check

A cyclic redundancy check is used in an Ethernet packet as an error-detection mechanism to ensure that no
changes have been made to the raw data whilst in-transit. Ethernet uses a CRC-32 polynomial algorithm which
calculates a hexadecimal value based on a polynomial division of all the bits within the data frame (Mackenzie,
n.d.). The remainder from the division algorithm is then used to represent a checksum of the data. If the

checksum changes between the sender and the receiver, an error has occurred within the data whilst in transit.

56

C.2.7 Conclusion

It can be recognised that with the use of MAC addressing to support ARP and the non-persistent size of the
data frame, Ethernet communications suit the technologies which communicate over a vast number of networks.
With the EtherType frame detailing information about embedded protocols, the focus seems to be on addressing,

ensuring point to point communication is achieved correctly and efficiently.

C.3 Serial

Serial communication is a method of transmitting data between a computing device and a peripheral device
in a master/slave command and response setup. Data is sent one byte at a time in a chronological sequence
using a singular communication line to a receiver. As opposed to parallel communications, which use multiple
wires to send and receive 8 bytes at a time, serial only requires one wire for data transmission. This could seem
inefficient or slow when comparing serial to the parallel alternative (Serial Communication, n.d.). However, the
choice to use serial communication is to facilitate ease of configuration and supports data transfer over a longer

physical distance (something that is essential when implementing field devices on a SCADA system).

Y

Figure 2: A figure showing 8 bits being transmitted with every pulse of a system clock.

Here is an example of a serial interface where 1 bit is sent with every pulse of the system clock, allowing the
receiving device to begin parsing and using each bite of data as it come through. Serial communications can
be sent via two different methods: Synchronous or Asynchronous. The methods discussed below focus on syn-

chronous communication.

C.3.1 Synchronous

A synchronous communication channel relies on both the sending and receiving devices having their internal
clocks synchronised so that the signal being transmitted can be sent and received as a long stream of data (Serial
Communication, n.d.). There are no gaps between each segment of data, so the recipient processes each byte
being sent in real-time. This type of communication is often used within master/slave network configurations.
As there are no gaps between the bits being sent, the rate of transfer is often faster as no additional data is

needed for sequencing or framing. This type of network model both reliable and efficient when sending large

57

sums of data (Serial Communication, n.d.). As the traffic is sent as a continuous stream, the only two physical
mediums needed for this type of connection are a wire for the data and a separate wire for the clock signals,

meaning more resources are needed compared to the asynchronous alternatives.

C.3.2 Asynchronous

The main difference between asynchronous and synchronous communication is the use of framing and the
dependency of a clock signal across the network (Embedded Systems Course- Module7: SERIAL COMMUNIC-
ATION, 2016). In order to send data from one machine to another, the two devices must agree on a transfer
speed before any official payloads are sent. Once a transfer speed has been negotiated, the data is grouped
into 1 byte frames which are encased within two extra bits, a start bit and a start bit. These act as delimiters
and parity bits which tell the receiver how to interpret the data, and clearly signifies where one section of data
begins and ends (Serial Communication, n.d.). As it does not require a synchronised clock, there only needs to
be a single line of communication. Having additional bits and using breaks in transmission to indicate breaks
in data, this method is slower than synchronous communications in some cases, however this means that asyn-
chronous is cheaper and easier to implement. All protocols discussed in this document (Modbus and DNP3) are
all examples of asynchronous transmission methods. This section aims to break-down each of the different serial
protocols used on non-IP networks in order to gain an understanding how the different technologies compliment

and oppose each other, and to highlight the main significance of using Serial as opposed to Ethernet.

C.4 Modbus

Modbus, specifically Modbus RTU, is an 8-bit asynchronous serial communication protocol which supports the
transmission of data through either buses or a network using a master/slave model. The most significant differ-
ence between the Modbus RTU protocol and more modern Internet-based protocols is the use of an Ethernet
frame on the physical layer of the OSI network model (Simply Modbus, 2015). Modbus is a Layer 7 protocol as
it sends the raw data straight to the recipient to then be processed as soon as it is received. Although Modbus
does not used framing to help dictate the control and flow of data, it uses delimiters to specify the beginning of a
new message. The RTU variant of Modbus uses time gaps of silence between communications in order to group
data (Modicon Modbus Protocol Reference Guide, 1996). Each time a gap is detected by the receiving device,

the receive buffer is cleared in order to prepare for the new message. The stack of a Modbus message is as follows:

Start Address | Function Data CRC End
3.5 char time gap 8 Bits 8 Bits N * 8 Bits | 16 Bits | 3.5 char time gap

Table 6: A table showing a breakdown of a single Modbus packet.

C.4.1 Start 4+ End 3.5 Char Time Gap

As mentioned earlier, the Modbus RTU protocol uses a break in time in order to delimit each individual packet
of data. The 3.5t directly relates to the baud rate (transmission speed) that has been agreed between the send-
ing and receiving devices. 3.5t is the time it takes to receive 3.5 characters from across the network (Modicon
Modbus Protocol Reference Guide, 1996). This means that if there is a message which has a time break longer

or shorter than 3.5 chars, the message should be dropped or ignored by the receiver. The main reason for using

58

this is to encapsulate each packet so that it has an easily identifiable start and end point (MODBUS over Serial
Line, 2006).

C.4.2 Addresses

The address field is an 8-bit value which must consist of hexadecimal values 0-9, A-F (Simply Modbus, 2015).
If a machine on the network receives a packet, it will look at the address field in order to distinguish whether
the message for that particular machine. If the addresses match, the machine continues to decode the rest of
the message, if not, the message is dropped. When the receiver/slave device responds to a message, it places
its own address in this field to let the sender/master know which slave is responding. Address 0 is reserved for

the broadcast address, which all slave devices recognise (Modicon Modbus Protocol Reference Guide, 1996).

C.4.3 Function

This field is used in order to tell the slave/receiving device what type of action it needs to perform. Function
codes can span from 1-255, although some addresses have been reserved for future use or adaptation of the

protocol. The following table shows all the possible function codes which can be sent:

Code Function
01 Read Coil Status

02 Read Digital Input Status
03 Read Holding Registers

04 Read Input Registers
05 Force Single Coil
06 Preset Single Register
08 Reset Slave

15 Force Multiple Coils

16 Preset Multiple Registers
17 Report Slave ID

Table 7: A table showing the Modbus function codes and their corresponding function.

If the slave machine receives a valid message containing a correct function code, it will send a response message
to the master device (Modicon Modbus Protocol Reference Guide, 1996). The slave uses the function code seg-
ment of the response message to tell the master device whether an error has occurred or whether the command

has been accepted with no issues. The typical return value for an error is 0x83.

C.4.4 Data

This message field holds additional information which supports the function sent in the previous frame. This

data provides more information in regards to the action the master requires the slave to fulfil. When using

59

RTU, the data field contains multiple 2-digit hex numbers which form such values as register addresses, count
values and quantity of items to be handled. Some messages may have a data field of size zero as some functions
do not require data. The slave follows the same error checking/reporting process used in the function code
segment (Simply Modbus, Exception Codes, 2015). If no errors occur the response data is sent back to the
master, if not, an exception code is sent within the data field, some of these exceptions are detailed below. The

byte-count of a Modbus frame allows for a maximum of 252 bytes.

60

Code Name Explanation

01 Illegal Function The function code sent to the
slave in the previous message
is not allowable/cannot be ex-

ecuted by the slave device.

02 Illegal Data Address The data address received by the
slave is not accepted by the slave
device.

03 Illegal Data Value A value which is present within

the data field of the message is
not compatible with the slave

device.

04 Slave Device Failure An error occurred when the
slaved tried to execute the action
requested by the master device

and could not be resolved.

05 Slave Acknowledge The slave has accepted the re-
quest, but the time it will take
to process the request will take a
significant amount of time. (Sent

to prevent timeouts).

06 Slave Device Busy The slave is processing a

resource-intensive command.

07 Slave Negative Acknowledge | The slave failed to perform the
process requested by the master
machine. A diagnosis error will

be sent back to the master.

08 Parity Error The slave machine found an error
in the parity when trying to read

memory.

0A Gateway Path Unavailable The gateway on the network
could not establish a connection.
The gateway could possibly be

misconfigured or overloaded.

0B Gateway Device Unresponsive | The target device cannot be

found on the network/is not

present.

Table 8: A table showing the possible exceptions codes which can be sent from a Slave to a Master.

Data within the table supported by (Simply Modbus, Exception Codes, 2015).

61

C.4.5 Cyclic Redundancy Check

A Cyclic Redundancy Check (CRC) is Modbus RTU’s way of error checking each message in order to ensure
that no data has been lost during its transit over the network. The CRC is calculated using the entire contents
of the message and is sent with each packet of data (Modbus TCP/IP Unplugged An introduction to Modbus
TCP/IP, n.d.). The CRC is then calculated by the slaves on receiving. If the CRC matches the once received,
processing continues as normal. If the two values do not match an exception error is sent back within the data

field (MODBUS over Serial Line, 2006).

C.4.6 Conclusion

Modbus has been optimised for sending data in a single stream. The use of timing pauses to act as delimiters
and the simplicity of the address format and data frames means that it is easy to apply to master/slave systems.
The most significant aspect of Modbus is that it is a Layer 7 (application layer) protocol, meaning that this
method of communication is not concerned with complex routing, encryption or packet sequencing; The goal is
to allow data to be sent to a slave, processed and then a responded to in a reliable manor. This is where the
most evident differences between traditional IP protocols are shown. The peer-to-peer nature of Modbus means

that there is a significant lack of data compared to the IP alternatives.

C.5 DNP3

Like Modbus, DNP3 is a communications protocol which functions using the master/slave methodology. The
master device sends a read request to the slave devices which then respond if, and only if, the data being
requested is available. The master sends a request, the slave responds with an acknowledgement and then the
data being requested. This is then followed by another acknowledgement from the master to signify it has
received the data. The following tables show the data contained within DNP3 packets, and the process behind

gaining information from remote devices:

Header | Data
10 Bytes | 0 - 282 Bytes

Table 9: The two main sections of a DNP3 packet.

Start/Sync | Length | Control | Dest Address | Src Address | CRC

2 Bytes 1 Byte 1 Byte 2 Bytes 2 Bytes 2 Bytes

Table 10: A table showing a breakdown of the DNP3 header.

C.5.1 Start/Sync

This section of the data packet acts a starting delimiter which specifies that a new message is being transmitted
to the slave device. The delimiter value for DNP3 conversations is 0x564. This opposes Modbus as it uses
data to symbolise the breaks between individual messages being sent across the network (DNP 3.0 Remote

Communication Protocol for REC 523, 2001).

62

C.5.2 Length

The length field specifies the number of bytes not only in the user/data frame, but also the combined size of

source address, destination address and control byte.

C.5.3 Control

This frame defines the direction of the traffic, the type of frame being sent and the function code which tells
the remote device what actions to perform (DNP 3.0 Remote Communication Protocol for REC 523, 2001),
(DNP3 Quick Reference, 2002). Each of the 8 bits within the control frame has a specific purpose:

FCB FCV
DIR PRM Function Code
RES DFC
7 6 5 4 3 2 1 0 Bit

Figure 3: This figure shows the parameters which reside within the control section of the DNP3 frame.

DIR (Direction): This represents the physical direction of the transmission, 1 = Master — Slave, 0 =

Slave — Master.

PRM (Primary Message): This bit defines whether the message has been sent from the initiating machine

or the responding machine. 1 = Frame from initiating, 0 = frame from responding machine (primary/secondary).

FCB (Frame Count Bit): This bit is used in order to check that there has been no losses of data or duplicate
packets. The bit is toggled each time a SEND-CONFIRM service is successful.

FCV (Frame Count Bit Valid): This frame validates the FCB function. If the bit is set to 0, the FCB can

be ignored.

RES (Reserved): This frame is reserved for future use. It is always set to 0.

DFC (Data Flow Control Bit): This prevents buffer-overflows from occurring on the receiving (secondary)
machine. The secondary machine will return a 1 if the SEND message has caused the data link buffers to

overflow.

Function Code: This code identifies the type of data/actions being sent from the master (primary). The

following values are valid DNP3 function codes:

63

Code (Hex) | Function

Reset Link States

Test Link States

Confirmed User Data

Unconfirmed User Data

O | = W | O

Request Link Status

Table 11: DNP3 function codes when PRM = 1

Code (Hex) | Function

Acknowledge

Negative Acknowledge

Link Status

H |l |~ | o

Not Supported

Table 12: DNP3 function codes when PRM = 0

C.5.4 Destination Address

The address of the slave device on which the message is being sent to. Similar to Modbus, the address is
represented as a hex value, however, the hex string within the DNP3 protocol is twice the length of the Modbus

addressing system, meaning that a larger number of secondary devices can reside on the same network.

C.5.5 Source Address

The address of the master device on which the message is being sent from. This is one of the most significant
differences between Modbus and DNP3, the acknowledgement of the unique ID of the Master device. This
means that DNP3 configured networks can host communications with multiple Master devices. This makes
DNP3 a more versatile protocol when trying to remotely control or monitor field devices from multiple sites or

vast networks.

C.5.6 Cyclic Redundancy Check

The CRC appended to the end of the header is calculated using all the previous frames discussed so far. Unlike
the addressing system used by Modbus, DNP3 has multiple parameters such as the DIR, PRM and function
code which must be valid in order for the DNP3 devices to interpret the data. This CRC specifically focusses
with irregularities or data loss within the header. This means that the receiving device does not have to receive

the whole message before determining whether data has been changed/lost on transit.

C.5.7 Data Field

This frame contains the user data which dictates the action a slave device must carry out. If the master device

has requested data from the slave, the data frame of the response packet will contain this information (DNP 3.0

64

Remote Communication Protocol for REC 523, 2001). Unlike Modbus, the data of a DNP3 packet is separated
into data blocks, which can range between 1 and 16 bytes depending on the type of packet being transmitted,
demonstrating a method of fragmentation. After each 16-byte segment, a data CRC is then calculated and
appended to the end of each block. This is how DNP3 calculates whether any data has been lost or duplicated

during its transit across the network.

C.5.8 Conclusion

DNP3 has a very similar mode of operation as Modbus, as it is another asynchronous serial protocol which sends
a continuous stream of data to slave devices in order to achieve remote control and monitoring. Like Ethernet,
DNP3 is classified as a Data Link Layer protocol as it incorporates addressing services, data fragmentation
and block-based error checking. It also provides an Application Layer interface which can be used by SCADA
devices such as Remote Terminal Units. Again where this protocol draws the most significant parallels from the
other protocols is the networks it has been designed to run on. Although DNP3 uses a more advanced form of
addressing allowing multiple master devices to query against the slave devices present on the network, it does
not support any form of encapsulation, suggesting that, like Modbus, DNP3 has been designed to only span

across one network without routing capabilities.

C.6 Overall Conclusion

When comparing each technology against one another, it is apparent that because of the significant differences
between how Ethernet and the two serial protocols first synchronise the data, delimit the data and frame the
data, that trying to transmit a foreign protocol through any of these mediums could have negative consequences.
For example, as Ethernet uses a large 8-byte preamble in order to synchronise the sending and receiving clocks,
if this same data was transmitted and received on a serial network supporting Modbus, the incoming data
would be too large for the recipient device to process. This in turn could cause the CPU of the recipient
device to hang as it attempts to process the Ethernet data. This would therefore limit the amount of CPU

resources being allocated to the other functions of the device, causing a halt in operation or change in behaviour.

The second notable outcome from this research is that if a network scanning tool uses Ethernet frames to send
out packets, and the SCADA/ICS network is running a serial protocol such as DNP3, the data being trans-
mitted by the scanning tool may not be able to travel through that particular medium (the example in this
case is serial RS232 rather than CAT5 Ethernet cable). Although this may not have an impact on the devices
themselves, the scan will return with no results. If used incorrectly, executing IP scanners on these networks

could either cause a denial of service, connection disruption or false negative scan results.

The information gathered from this research and analysis will help aid the understanding of how IP and SCADA

networks behave when subject to a network scan.

65

Appendix D Testing of Network Scanners Against IP Devices

This document outlines the experiments conducted against a virtual IP network in order to observe and analyse
how passive and active network scanners function. This then provides a platform for discussion about the

feasibility of using the same tools against a SCADA network.

D.1 Objectives

In order to assess how active and passive network scanners perform on traditional IP-based networks, a virtual
IP environment has been constructed which will allow for the examination and analysis of the packets generated
by each scanner. The aims of these experiments are to simulate the activity of a small physical network and
to record the status of the network once a scan has been initiated. Once all the necessary scans have been

conducted, the captured data will be pulled from the virtual network to be analysed in detail.

D.2 Hypotheses

The following hypotheses will be repeatedly tested throughout all the experiments referenced within this docu-

ment.

Operational Hypothesis: H;
The use of current active or passive IP network probers and sniffers will have no effect on the normal behaviour

of a non-IP network.

Null Hypothesis: Hy
The use of current active or passive IP network probers and sniffers will have a negative effect on the normal

behaviour of a non-IP network.

D.3 Variables

Independent Variable: The execution of a network scanner /sniffer on a network.

Dependent Variable: The behaviour of the IP scanners/sniffers.

D.4 Requirements

This section outlines the tools and resources needed in order to successfully conduct each experiment.

D.4.1 Ubuntu 16.04 LTS Virtual Machine

The first stage of constructing the virtual network was choosing the host operating system (OS). In order to
facilitate the running requirements of Netkit, the operating system had to have a Linux kernel. As a wide
variety of the network scanning tools being tested are fully compatible with Linux operating systems, Ubuntu
16.04 satisfied the requirements of this experiment. The choice to run version 16.04 LTS was simply because
of the stability of the OS and the long-term support provided by Ubuntu. The most recent version may have

replaced some of the key features which Netkit requires in order to run. Running LTS instead of the latest

66

version also ensured that no updates which may be required during the course of the experimentation would

have any unprecedented effects on the experiment itself.

In order to ensure that each experiment could be easily repeated without having to reconfigure the virtual
network or operating system each time a test has been ran, the most effective solution was to use the VMware
Fusion hypervisor to run a copy of Ubuntu 16.04 LTS as a virtual machine. Choosing this method ensures the

following capabilities:

o [t allows for “snapshots” to be taken before any experiment takes place. Once a snapshot has been taken,
the virtual machine can revert back to state which was captured within that snapshot. This in turn will
ensure that each experiment will be executed with exactly the same conditions, meaning that there should

be no external influence on any of the variables.

e Running a virtual machine allows for the internal operating system to be completely isolated from not
only the machine it is running on, but also the Local Area Network (LAN) which the host machine resides
on. Again this will ensure that no unexpected or external influences affect the results yielded from any of

the experiments.

e The final benefit of using a virtual machine is the ability to share the test environment with other machines
if desired. The ability to clone an image which contains the configuration of the test environment will be

highly beneficial to anyone who wishes to repeat the experiments conducted throughout this project.

Using a virtual machine provides practicality, integrity and reliability when conducting tests or experiments.

As the OS is Linux based, it provides the ideal environment for the Netkit setup.

D.4.2 Netkit 2.8

Netkit is a lightweight solution to network simulation, allowing users to create a multitude of vertical machines
which can emulate the functionality of routers, switches, servers and computers. Each virtual machine is based
off the User-Mode Linux kernel (UML), an open-source project which provides a Linux kernel which is ran as
a process within the user space of a system. This means that the functionality of a lightweight Linux system
can be ran completely as a process, providing some isolation and minimal interaction with the host system.
Each UML virtual machine has virtual resources such as network interface cards and disk storage, however,
the configuration and mounting point for each machine is contained within a singular file on the host machine,

making it easy to eliminate and create new machines as and when they are needed.

The files required in order to setup Netkit on the host machine can be obtained from http://wiki.netkit.

org/index.php/Download_Official. The version being ran within this project is Netkit 2.8.

D.4.2.1 Installation Following the installation guide provided at http://wiki.netkit.org/download/
netkit/INSTALL, the Netkit kernel and configuration files were unpacked into a Netkit directory on the Ubuntu
host OS. Once installed and unpacked the “./check_configuration.sh” script was ran in order to ensure that all

the correct dependencies had been met. On successful configuration, Netkit was ready to host a virtual network.

67

http://wiki.netkit.org/index.php/Download_Official
http://wiki.netkit.org/index.php/Download_Official
http://wiki.netkit.org/download/netkit/INSTALL
http://wiki.netkit.org/download/netkit/INSTALL

D.5 Design and Setup

The design of the Netkit environment aimed to satisfy two criteria: To offer similar services found on a common
modern IP network and to provide a platform which will allow network sniffers and scanners to be executed,
captured and analyses in order to fully understand how they function. To do this, a network diagram had to
be created in order to plot the different subnets of the network and where different machines were going to
reside. The following diagram shows the design of the virtual network coupled with an explanation behind the

placement of machines and the services being ran.

Subnet C
ethl = 192.166.1.1 ethl = 182.168.1.2 athl = 192 168.0.4 ath = dhclient athl = dhclent ath0 = dhelient
http_server ftp_server dhep_server client_1 client_2 client_3
ethl = 192.168.1.3 athl = 1892 168.0.5
rouber_2 rouber_1
ath1 =123.123.1.2 ath1 =123.123.1.1
ethl = 12312313
router_3
(Tap)
Subnet B ethlD =172.16.8.10

ethl = 172.16.9.128

host_machine

External Network

Figure 4: A network topology of the virtual IP environment

D.5.1 Clients

Each client has been setup to mimic a typical user machine on the network. On start-up, each client requests
an IP address from the DHCP server present within the same subnet. During the course of the experiments,
the clients will be used to not only request IP addresses, but also to fetch webpages from the HTTP server
and to transfer files to and from the FTP server. The clients have been given dynamic IP addresses to show
the functionality of DHCP being emulated during the experiments as they do not require a permanent static
address. A packet capture will be initiated on machine “client_1” in order to represent how network scanners

gain information about client machines.

D.5.2 DHCP Server

The Dynamic Host Control Protocol Server simulates the dynamic allocation of IP addresses to the client
machines on the virtual network. The original design of the network had the DHCP server located on a

separate subnet to the client machines. After running several tests throughout the configuration phase of the

68

virtual network, it was both impractical and unnecessarily complex to try and facilitate that design, therefore
the server was relocated onto the same subnet as the client machines. A packet capture will be initiated on this

machine in order to show how a network scan interacts with this type of network device.

D.5.3 HTTP Server

The main purpose of this machine is to distribute simple HTML webpages to a client machine when it sends a
HTTP “GET” request on port 80. The webpage does not have to be complex in structure, as long as the process
of requesting and distributing web services is adequately emulated. Each client will make a request to the server
using a text-based web browser named Links, which comes pre-installed on all the Netkit virtual machines. This
machine resides on a different subnet to the clients and DHCP server. This was done intentionally in order to
clearly distinguish the configuration of the server machines and also the traffic being sent from this machine,
which will become useful within the packet analysis phase. This machine will also perform a packet capture.

This is so that the interaction between network scanners and web servers can be monitored and analysed.

D.5.4 FTP Server

The File Transfer Protocol server will be used to demonstrate the transfer of files between the client machines
and the FTP server. On conducting the experimentation, each client will login to the FTP server, send a basic
.txt file to the server, pull that same file from the server and then issue a “delete” command before terminating
the session. The FTP server will be located on the same subnet as the HI'TP server for the same reasons as

stated before in this document. Similar to the previous server, this machine will also perform a packet capture.

D.5.5 Routers

Two routers will be configured to act as both a gateway for each subnet as well as a routing device. The two
routers located between subnet A/B and C/B will also be used to perform the packet captures necessary for
the experiments. The reason for this is so that firstly, the packets being captured from the machines themselves
can be cross-examined with the packets sent across the routers, and secondly, so the packets being sent and

received across the entirety of each subnet can be analysed once it has been interrogated by a network scanner.

D.5.6 Tap Machine

The Tap machine allows for the virtual machines to access and be accessed by devices which are not present on
the same virtual network. Configuring a Tap will allow for the host machine (Ubuntu 16.04 virtual machine)
to execute network scanning tools against the virtual network and will allow for the instrumentation and
acquisition of the subsequent network data. This machine will not perform any form of packet capture as it
does not provide a realistic emulation of a device present on a traditional IP network. It could be argued that
the tap machine could be configured to serve the same purpose as a Network Address Translation device or
Firewall. Although this is achievable, it would be an unnecessary requirement and would not deliver any more

benefit to the experiments.

69

D.5.7 Host Machine

This machine represents the Ubuntu virtual machine which the Netkit environment will be hosted on. Using the
Tap machine as a gateway between the Host and the virtual network, each of the network scanning tools will
be downloaded and executed from the host machine. On execution of each tool, the host will be disconnected
from any other external network that may be present, meaning that the only addresses being targeted by each
scan are those held within the virtual network. Having this external machine host and deploy the scanning tools
ensures that the tools are executed and configured with the correct dependencies, as well as not causing the
status or configuration of the Netkit machines to change during each experiment. Lastly, the choice to perform
the scans using an external machine was to ensure that a range of tools could be tested against the virtual

network, without the concerns of non-compatibility with Netkit’s UML virtual machines.

The host machine required some altering in order for it to detect and communicate with the virtual network.
This was achieved by setting the tap machine to route traffic to and from the virtual network. The Tapped
address was set to the address of the Ubuntu virtual machine, and the guest address (the address given to
the tap machine on the external network) was set to a new address which falls under the same subnet as the
host machine. To do this, a routing command was used to alter the IP routing table on the host machine.
shows a bash script which, when executed, adds the following elements to the host’s IP routing
tables:

1. The machine 172.16.9.10 is reachable through interface nk_tap_kyle
2. Added a route to 192.168.0.0/24 through gateway 172.16.9.10
3. Added a route to 192.168.1.0/24 through gateway 172.16.9.10

The first element signifies that the external facing NIC of the tap machine can be accessed through the interface
nk_tap_kyle (the interface which automatically appears on the host machine when a tap is created). The second
section makes reference to the subnet 192.168.0.0 within the virtual network, and that it can be reached through
the tap machine. The third command serves the same purpose as the second except with the 192.168.0.1 subnet.
Each time the virtual network is launched, the bash script must be executed in order to ensure the host machine

can reach each of the virtual machines.

D.6 Obtaining the Results

To enable the Ubuntu virtual machine to be reverted to the controlled state before any scans took place, a
snapshot was taken of the virtual machine. Once the snapshot had been taken, it was then loaded in order to
test the snapshot had been saved successfully. On loading the snapshot, the virtual network was started using
the “Istart” command. As specified the DHCP server loaded before any of the client machines, and the tap
machine requested a password to be entered. Once all the machines had started-up correctly, each terminal
(used to interact with each virtual machine) was rearranged so that it resembled the network diagram provided
earlier in this document . In order to capture the packets being sent by Nmap to a variety of the
different machines, the following table shows the virtual machines which performed a “Tcpdump” network

capture in order to monitor the packets travelling across the network:

70

Machine Address Address Type
Client_1 192.168.0.10 Dynamic
DHCP_ Server | 192.168.0.4 Static
Router_1 192.168.0.5 Static
Router_2 192.168.1.3 Static
HTTP Server | 192.168.1.2 Static
FTP _Server 192.168.1.1 Static

Table 13: A table showing the virtual machines and their IP addresses

Each Tcpdump capture was configured to listen on all interfaces, and saved its output as a .pcap file within the
/hosthome/pcaps directory. This is a directory which allows each virtual machine to access the host machine’s

file system.

D.7 Expected Outcomes

Given the configuration of the Netkit environment and the passive and active tools being used, the following

assumptions can be made about the possible results being yielded from these experiments:

e Firstly, as both passive and active network scanners will be used within this experiment, it can be anti-
cipated that, when executed on the virtual network, the passive tools will lack the capability to provide

details about the specific services running on each machine without having to analyse the packet captures.

e The active tools used within these experiments will attempt to gain information from each host by re-
peatedly sending packets at every port of every virtual machine until it finds a port which is open and
will establish a connection. Once an open port has been identified, data will be sent to this port in order

to gain information about the services being sent through it.

e The active tools will be deployed from the host machine which communicates with the virtual network
via a tap/gateway. This suggests that the functionality of all the virtual machines within the Netkit
environment will remain persistent throughout the duration of all the experiments. Furthermore, as the
virtual network emulates an Ethernet/IP network, the tools being executed on the virtual network should

have no effect on the configuration or overall behaviour of each endpoint/node.

e As the active scanners use protocols found within layers 3-7 of the OSI network model, the types of
information being received by each machine on the network will not be suitable when applied to SCADA

devices which run using non-IP protocols, such as ICMP and TCP.

e Using passive network sniffers will not use intrusive techniques in order to gain intelligence about the
status of a network and the machines present within it. Instead, the passive tools will capture traffic and

output the data into a form which can then be later analysed.

The expected results will be taken into consideration when discussing the results of these experiments.

71

D.8 Execution of Experiments: Active Scanners

D.8.1 Experiment 1: Nmap 2.8

Nmap has been chosen as a result of the information presented by both researching the relevant literature and
a review of the tool’s capabilities and features. Nmap is widely renowned in the fields of penetration testing
and network administration, and has the ability to conduct a range of different network scans, spanning from
ping-sweeps to TCP FIN and fragmentation scanning. The popularity and versatility of this tool were significant
factors which lead to the utilisation of some of its capabilities within this experiment. Being open source and
cross-platform, it met all the criteria needed in order to run on the host machine. Nmap provides scanning
techniques which are not only used within modern corporations, but also can replicate the type of scans used
by black-hat hackers, state organisations and activists in order to conduct scans on a wide range of networks

around the globe.

D.8.1.1 Nmap Ping Sweep The first scan executed against the virtual network aimed to address the
issues with using the ICMP echo request utility “Ping” in order to discover devices at a particular address or a
range of devices on a particular network. The first set of commands executed against the virtual network where

as follows:
"nmap -sP -r 192.168.0.0-15 -e nk_tap_kyle > nmapl.txt”
nmap -sP -r 192.168.1.0-6 -e nk_tap_kyle > nmap2.txt”

The “-sP” method of scanning sends ICMP echo requests (“pings”)to the range of IP addresses specified within
the command. In this case, all the machines on the 192.168.0.0/24 subnet will be scanned. The “r” flag
instructs Nmap to scan the ports consecutively. The “-e” flag dictates which interface on the host device should
be used to send each packet through. In this case, the nk_tap_kyle interface represents the tap machine which
acts as the gateway between the host machine and the virtual network. Lastly, the “>” operator sends all the

output of the Nmap scan into a text file, the name of which represents each unique scan.

On executing this scan there were no failures either with the scans themselves of the machines being interrogated.
Both “nmapl.txt” and “nmap2.txt” successfully captured the output of each of the ping scans over the two
subnets. On further inspection of these files, the Nmap scan was able to identify that 5 machines resided on
the 192.168.0.0/24 subnet, and that 3 devices resided on the 192.168.1.0/24 subnet. The following figure shows

the successful detection of each of the virtual machines:

Starting Nmap 7.81 (https://nmap.org) at 20817-81-26 18:48 GMT

Nmap scan report for 192.168.8.4

Host is up (@.815s latency).

Nmap, scan report for 192.168.8.5 ;

Host is up (8.8819s latency). Starting Nmap, 7.81 (https://nmap.org) at 2017-81-26 18:58 GMT

Nmap, scan report for 192.168.8.10 Nmap, scan report for 192,168.1.1

Host is up (8.@19s latency). Host is up (@.913s latency).

Nmap, scan report for 192.168.8.11 Nmap, scan report for 192,168.1.2

Host is up (8.813s latency). Host is up (@.813s latency).

Nmap, scan report for 192.168.8.12 u’n':{’ Sganpr?goéhzo[a%zﬁél?s-1-3

Host is up (@.814s latency). il : ¥l)

Nmap, done: 16 IP addresses (5 hosts up) scanned in 14.41 seconds hmap. done: 7 IP addresses (3 hosts up) scanned in 14.21 seconds
(a) Data obtained from “nmapl.txt” (b) Data obtained from “nmapl.txt”

Figure 5: The Nmap output from the ping sweep

72

These output files show that Nmap was able to detect each of the virtual machines which had been configured
to run on the virtual network. Once it had been confirmed that the correct machines had been identified, some
HTTP and FTP requests were sent across the virtual network to ensure that none of the services had been
effected by the previous scan. The servers and clients were able to connect and communicate successfully. No

data was provided to prove that the ping scan had caused any damage to the virtual machines.

In order to dissect and analyse how the ping scan achieves its results, the first pcaps taken on the devices
specified within were opened using Wireshark. The following figures show the results associated with

each virtual machine:
e Client_1
e Router_1
e HTTP Server

Client_1

On inspection of the Tcpdump taken from the client_1 machine, the pcap file does not show any ICMP packets
being sent or received by the target machine. Using a display filter in Wireshark to isolate the ICMP packets
yielded no results. This does not support the data held within the output file “nmapl.txt”, as Nmap was able
to find all the hosts which were active on both the 192.168.0.0/24 and 192.168.1.0/24 subnets. This suggests

“

that the ping scan “-sP” does not use ICMP echo messages in order to detect active machines. After consulting
the Nmap documentation as well as reviewing the client_1 pcap again, it appears that Nmap uses a form of
“T'CP ping”, which sends either a TCP SYN or TCP ACK to a port on the target machine. In the capture file

below, Nmap seems to use port 80 and port 443.

a i) [T = W —F—
4 m @ RE Qe ZEF I 55 QA QqaE
[l [tcp.port == 80 || udp.port == 80 || tcp.port == 443 && ip.addr == 172.16.9.128]
No. A Time Source Destination Protocol Length Info
25 65.694576 172.16.9.128 192.168.0.10 TCP 74 56990 - 8@ [SYN] Seq=0 Win=29200 Len=@ MSS5=1460 SACK_PERM=1 TSval=407151 TSecr=8 WS=128

192.168.90.18 -16.9. 80 - 56990 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
65.788912 172.16.9.128

65.789289 172.16.9.128
16.9.128

2 -8. 9. 7]
56 66.790639 16.9.128 54 443 - 48226 [RST, ACK] Seg=1 Ack=1 Win:

Figure 6: A pcap segment taken from the Client_1 machine

Here, in this section of the pcap taken from the “client_1” machine, it can be observed that the host machine
(address 172.16.9.128) is sending TCP SYN packets to both ports 80 (HTTP) and 443 (SSL/TLS) in order to
prompt either a SYN/ACK or RST/ACK response. If the target machine responds with either of these packets,
Nmap can determine that there is a service behind those ports, and thus a host is active. This scan does not
establish the full 3-way-handshake so therefore no data is transferred between both the host and the target
machines. The above pcap shows 4 of the 5 addresses present on the 192.168.0.0/24 subnet. The machine which
seems to be missing is the address of ethO on router_1. Analysing the pcaps taken from the DHCP server as
well as the gateway router shows no reference to TCP Pings being sent to the router machine, or any response

being sent back to the host machine.

73

Router_1

@ RE QAIe=s=EF IS

| W [tcp.port == 80 || udp.port == BO || tcp.port == 443 && ip.addr == 172.16.9.128
No. A Time Source Desﬂnat_iun Pratocol Length Info
25 65.694705 172.16.9.128 192,168.0.10 TcP 74 56990 - B@ [SYN] Seq=8 Win=29200 Len=@ MSS=1460 SACK_PERM=1 TSval=407151 TSecr=@ WS=128

788858
.789029

443 ~ 39292 [RST, ACK] Seg=1 Ack=1 Win=0 Len=0

80 - 49052 [RST, ACK] Seq=1 Ack=1 Win=0 Len:

Figure 7: A pcap segment taken from the Router_1 machine

This figure shows the traffic captured from the router machine. This pcap still does not provide any data to
show how Nmap was able to find this machine on the network. It does however confirm that Nmap is using

TCP packets in order to detect remote hosts, rather than ICMP echo requests.

HTTP Server
The same Nmap command was executed against the 192.168.1.0/24 subnet. The figure below shows that the
same TCP Ping method being used in order to identify the HTTP server and FTP server on the subnet. Again,

the two main nodes can be seen in the captured traffic, but there is no data to show how Nmap detected the

router.
& ~ K, = @ = &=l
A w g S RE R e==F 35
(W [tcp.port == 80 || udp.port == 80 || tcp.port == 443 && ip.addr == 172.16.9.128]
No. A Time Source Destination Pratocol Length Info
B1 18@8.459252 172.16.9.128 192.168.1.1 TCP 74 36324 - 443 [syn] Seq=0 Win=29200 Len=0 MS55=146@ SACK_PERM=1 TSval=448511 TSecr=0 W5=128

B2 180.459754 192.168.1.1 . 1 54 443 - 36324 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

B84 100.460149 . -1. 172.16.9.128 54 443 - 48372 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

Figure 8: A pcap segment taken from the HTTP _Server machine

D.8.1.2 Nmap Service Detection Scan The purpose of the next set of scans was to replicate the act
of detecting which services are being offered by each machine on the different subnets. The Nmap commands

entered are as follows:
nmap -sV -r 192.168.0.0-15 -e nk_tap_kyle > nmap3.txct”
"nmap -sV -r 192.168.1.0-6 -e nk_tap_kyle > nmap/.txt”

The purpose of these scans is to replicate the act of detecting which services are being offered by each ma-
chine on the different subnets. The first flag, “-sV” enables Nmap’s version detection system. This should
supply information about which ports are open on each machine, what services are running over that port
and what version of that service is running. When used on networks spanning across the internet, this feature
provides vital intelligence about the services being distributed across the target network, and whether there
are any vulnerabilities associated with that particular service. As per the previous Nmap scan, “-r” is used to
instruct Nmap to scan each port on the target machines consecutively, and “-e” directs the packets through
the nk_tap_kyle interface. The output will also be stored within two text files which are associated with each

unique command.

74

In order to analyse the traffic being produced by the Nmap scans, the same machines defined in the first exper-
iment will run Tcpdump packet captures and write all the results to pcap files and saved on the host machine.

Once the Tepdump processes had started the scans were deployed.

Both commands executed without any fault, each successfully writing the output data into the text files defined
in the commands. Once each scan had finished, the first element to be checked was the output files, this will
confirm whether the scans have been successful in finding the correct machines and also the correct information
is extracted. The following figures show that both of the commands were successful when executed against the

two subnets:

Starting Nmap, 7.81 [httpsi//nmep.org | at 2017-91-26 18:53 GMT
Npag, scan report for 192.168.8.4
Host is up (9,80585 latency).
Not shawn: 999 closed ports
PORT STATE SERVICE VERSION
111/tcp open rpghind 2 (RFC #100908)
Npag, scan report for 192.168.8.5
Host is up (9.80285 latency).
Mot shawn: 999 closed ports Starting Nmap 7.81 (https://nmap.org) at 2017-B1-26 18:56 GMT
FORT STATE SERVICE VERSION Mnap, scan repart for 192.168.1.1
111/tcp open rpchind 2 (RPC #108008) Host is up (8.8831s latencyl.
Mot shown: 588 closed ports
Mmap, scan report Tor 192.168.8.18 PORT STATE SERWICE VERSION
Host 15 up (8, BO27s latency), BA/tcp opem http Apache hyttpd 2.2.9 ((Debian))
Not shown: 992 closed ports 111/tcp open rRebing 2 (RPC #1308a0)
PORT STATE SERVICE VERSION
111/tcp open rpchind 2 (RFC #108008) Mnap, scan repart for 192.168.1.2
Host 15 up (B.0B345 latencyl.
Npag, scan report for 192.168.8.11 Mot shown: 998 closed ports
Host 15 up (9.80485 latency). PORT STATE SERWICE VERSION
Not shawn: 998 closed ports 21/tcp open fip PrOFTFD 1.3,
FORT STATE SERVICE VERSION 111/tep open rpebind 2 (APC #180899)
111/tcp open rpchind 2 (RFC #108008) Service Info: 05: Unix
Nmap scan report Tor 192.168.8.12 Mnmap, scan repart for 192,160.1.3
Host 15 up (8, BO38s latency), Host is up (8.0824s latencyl.
Not shown: 992 closed ports Mot shown: 999 closed ports
PORT STATE SERVICE VERSION PORT STATE SERWICE VERSION
111tcp open rpchind Z (RFC #10808) 111/tcp oper [pcbing 2 (APC #180888)
Service detection perforned. Please repart any Lncorrect results at hEtps://rmap.orgssubmits . Service detection performed. Plesse report any incorrect results st https://nmap.org/submits .
NRap. dane: 16 IF addresses (5 hosts up) scanned in 24,82 seconds Moap, cone: 7 IP addresses (3 hosts up) scanned in 21.98 seconds
: « B : « ”»
(a) The data obtained from “nmap3.txt (b) The data obtained from “nmap4.txt

Figure 9: The results of the Nmap service detection scan

The two files show that, similar to the Ping scan, Nmap was able to detect each one of the machines connected
to each subnet. As well as the host discovery, the service detection was able to identify the services which had
been configured to run on certain machines. Both the FTP and the HTTP servers were both identified by the
service detection system. However, looking through the output files, there is no data to suggest that the machine
residing at address 192.168.0.4 is a DHCP server. As DHCP requires a client to broadcast a DISCOVER, packet
addressed to 255.255.255.255, the “-sV” flag is not equipped to detect whether a DHCP server exists on the
network. As DHCP is not integral when comparing the results with SCADA networks, a lack of data regarding
the DHCP server is not impacting on the results. After all the scans had been conducted, the client machines
were used in order to perform some standard FTP and HTTP requests to check that the state of the network

had not changed as a result of the scanning. The network continued to function as configured.

Once the output files had been checked, the pcap files captured from the virtual network were analysed in order

to determine how Nmap extracts the version data from each machine.

7

A mae mCRE Q&= EF &5

[W]Aoply a display filter ... <38/>
No. A Time Source Destination Protocol Length Info

98 o A B 8 &

Figure 10: A pcap segment taken from the Client_2 machine

This pcap shows the host machine (172.16.9.128) sending a continuous stream of TCP SYN packets to all the
devices present on the 192.168.0.0/24 subnet. This method of scan iterates sequentially through each of the
ports on the virtual machines. The figure above demonstrates Nmap scanning each port in ascending order,
using a TCP SYN packet to try and establish a connection with each one. The red TCP RST/ACK packages
show that there is no service being hosted behind that port. This pcap represents a client machine, so there

are no obvious services expected to be running on this machine.

Qaai

Al i® m RE] &= F

[ACK] Seq=1 Ack=1 Win=20312 Len=B TSval=403721 TSecr=38616

Figure 11: Successful TCP connections on subnet A

On further analysis of the pcap generated from the client machine, it appears that some of the TCP SYN packets
sent from the host machine managed to establish a full TCP connection with ports 111 on all machines on this
subnet (highlighted above). Port 111 is reserved for the Remote Procedure Call protocol (RPC), a method of
communication which allows a program to access a service located on another computer. When cross-examined
with the output file “nmap3.txt”, this shows that Nmap was able to identify that there was a service behind this
port. The Portmap protocol is what provides Nmap with the information that determines the service behind

port 111. The following figure shows an RPC Portmap call to 192.168.0.12:

76

Remote Procedure Call, Type:Call XID:@x0440b106
v Fragment header: Last fragment, 40 bytes
luse coss wows wuss suss suss sass sews = LASt Fragment: Yes
.000 0000 ©DPO 00DD 900D POOO VP10 1000 = Fragment Length: 40
XID: @x0448b106 (71348486)
Message Type: Call (@)
RPC Version: 2
Program; Portmap (100000)
Programj Version: 118559741
Procedufe: proc-0 (@)
[The reply to this request is in frame 8103]
[Packet syze limited during capture: RPC truncated]

Figure 12: The RPC version shown within the RPC data frame

This RPC call specifies that the client machine (the host) wishes to use RPC version 2 (highlighted) which is
then accepted by the server machine (client_2). This is what provides Nmap with its output. This is replicated
over all the machines on subnet 192.168.0.0/24.

ure Call, Type:Reply XID:8x84408b1@6
eader: Last fragment, 32 bytes

Remote Proc

v Fragment
= Last Fragment: Yes

Fragment Length: 32

Laowe odos wunse sune seae sasw snas cows

.090 0@00 0DOO POGD 00GP Q00D 2010 Q00O
XID: @x0440b106 (71348486)
Message Type: Reply (1)
[Program: |Portmap (100000)]
[Program Yersion: 118559741]
[Proceduré: proc-0 (@)]
Reply State: accepted (@)
[This is a reply to a request in frame 8181]
[Time from request: ©.000044000 seconds]
v Verifier
Flavor: AUTH_NULL (@)
Length: @
Accept State: remote can't support version # (2)
[Packet size limited during capture: RPC truncated]

Figure 13: The RPC version being acknowledged between client and server

The same scan was ran on the 192.168.1.0/24 subnet, and the output file “nmap4.txt” shows that Nmap was
able to identify the proFTPD running on the FTP server and the Apache httpd service running on the HT'TP

server. The following figures shows the data proving this:

7

AN ® m(R QeasEFi g aaaf

[W]Apply a display filter ... <38/>

| No. A Time Saurce Destination Protocol Length Info
172 117.548734 192.168.1.2 172.16.9.1. 54 20 -+ 36766 [RST, ACK] Seg=1 Ack=1 Win=0 Len=9

174 117.549138 192.168.1.1 172.16.9.1. 54 20 - 57902 [RST, ACK] Seg= ck=1 Win=0 Len=0

177 117.549728 172.16.9.1. 192.168.1.2 66 43892 - 21 [ACK] Seq=1 Ack=1 Win=29312 Len=B TSval=526863 TSecr=53895

Figure 14: A successful FTP connection

Here, the TCP SYN packet is shown establishing a TCP connection on port 21 of the FTP server. The next
packet is the response which follows a successful connection. The FTP server sends an FTP response which

details the type of service being offered.

4066 118.254434 192.168.1.2 172.16.9.1.. FTP 122 Response: 228 ProFTPD 1.3.1 Server (Debi

Figure 15: The data sent from the FTP server to the scanning machine

D.8.1.3 Nmap Banner Grab Scan The final stage of the Nmap experiment aimed at replicating the
functionality of a wide range of network scanners which effect SCADA devices as well as traditional IP machines,
banner grabbing. Banner grabbing is a technique used by a range of active scanners, including SHODAN); in
order to gain information about the machines residing on a network. In order to conduct this scan, the pcaps
from the previous Nmap experiments were extracted from the host machine and new Tcpdump sessions were
activated on the same machines as the previous experiments. Once all the necessary machines began running

Tcpdump, the following commands were executed against the two subnets:
"nmap —script=./banner.nse 192.168.0.0-15 -e nk_tap_kyle > nmap5.txt”
"nmap —script=./banner.nse 192.168.1.0-6 -e nk_tap_kyle > nmap6.txt”

These scans differ from the previous as they incorporate the usage of the Nmap Scripting Engine (NSE).
The NSE allows for developers to write modules which can then be used by Nmap to extend it’s capability.
These modules are represented as “.nse” scripts which can be ingested into any Nmap command using the
“—script=./” flag. The script chosen for this scan is the “banner.nse”, a discovery module available at https:
//svn.nmap.org/nmap/scripts/banner.nse. This script is used to connect to any open port found by Nmap
during a scan. If Nmap successfully connects to an open TCP port, the banner.nse script will capture any
response that machine sends over that port within a 5 second window. These responses, or “barriers”, provide
information about the operating systems or services running on a target device, similar to the FTP response
witnessed within the previous Nmap experiment.

On executing the commands stated above no errors occurred and the network remained stable throughout the
duration of the scan. Output files were generated for each subnet, both containing information which confirms

the scan completed successfully. The output for both subnets is as follows:

78

https://svn.nmap.org/nmap/scripts/banner.nse
https://svn.nmap.org/nmap/scripts/banner.nse

Host is up (@.8@43s latency).
Mot shown: 999 closed ports
PORT STATE SERVICE
111/tcp open rpcbind

Host is up (B8.8828s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
111/tcp open rpchbind

Host is up (@8.8859s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
111/tcp open rpchind

Host is up (@.8836s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
111/tcp open rpchind

Host is up (@.@8846s latency).
Mot shown: 999 closed ports
PORT STATE SERVICE
111/tcp open rpchind

Starting Nmap 7.81 (https://nmap.org) at 2017-81-26 19:04 GMT
6B.1.1

Host is up (0.0826s latency).

Mot shown: 998 closed ports

PORT STATE SERVICE

BB/tcp open http

111/tep open rpebind

Nmap scan report for 192.168.1.2

Host is up (@.0829s latency).

Mot shown: 998 closed ports

PORT STATE SERVICE

21/tcp open fip

|_banner: 228 ProFTPD 1.3.1 Server (Debian) [::ffff:192.168.1.2]
111/tecp open rpchind

Nmap scan report for 192.168.1.3
Host is up (9.0821s latency).
Mot shown: 999 closed ports
PORT STATE SERVICE

111/tcp open rpcbind

Mmap, done: 7 IP addresses (3 hosts up) scanned in 25,86 seconds

(a) The data containe withinh “nmap5.txt” (b) The data containe withinh “nmap6.txt”

Figure 16: The results of the Nmap banner grab scan

The data highlighted above shows that the banner.nse file was able to extract information about the FTP server
located at 192.168.1.2. The output is similar to the version detection scan executed in the last experiment. This
scan differed to the previous as it was not able to pull the banner from the HTTP server at 192.168.1.1, despite
being able to identify that port 80 was open. Reviewing the code contained within the banner.nse script revealed
that port 80 had not been declared in the list of ports to be interrogated by the script. The following pcap was

taken from the FTP server in order to evaluated how the banner script obtains its data.

i@ m[RE R &€= % F &5 @ e, e B
cp.port == 21 && ip.addr == 192.168.1.2

Source Protocol Length

66338 ~ 21 [ACK] Seq=1 Ack=1 Win=29312 Len=0 T: 647489 TSecr=102142
60330 -+ 21 [RST, ACK] Seq=1 Ack=1 Win=29312 Lei 7490 TSecr=1

230 64.334890 172.16.9.128
233 64.338165 172.16.9.128 192. al. TCP

1 [ACK] Seq=1 Ack=1 n:2'3312 Len=0 TSval=647649 Seclﬁ12142
4091 64.981372 192.168.1.2 172.16.9.128 FTP 122 Response: 228 ProFTPD 1.3.1 Server (Debi

4087 64.969217 172.16.9.128 192 TCP

Figure 17: A pcap segment taken from the HTTP _Server

Here, the Nmap scan uses the exact same TCP SYN scan as the previous experiment. The FTP session suc-
cessfully connects to the host machine before issuing a TCP RST/ACK packet. The reason for the RST/ACK
packet is unknown at this point. The most likely explanation is that the port used by the host machine in order
to contact the FTP server closed immediately after the TCP connection was established. Because of this, a
second TCP connection was sent using a different port on the client side. This TCP connection successfully
connects and gains a response from the FTP server behind port 21. It appears that the method of obtaining
information about services using the banner script is the same as using a typical TCP SYN scan, the only
difference is that the banner script targets specific ports and elaborates on the information provided by the re-
sponses gained from a successful TCP connection. The banner script did not provide any additional information
over the service detection scan. Further experiments on different ports with a wider range of services would be

needed in order to assess the full potential of the banner.nse script and how it differs from TCP scans.

Once these scans had been completed and all the packet captures had been terminated, the Netkit virtual

machines were shut down using the “lcrash” command. After all the virtual machines had successfully powered-

79

off, the host machine was then restored to the snapshot taken before the experiment was conducted. The host

machine had been returned to its normal state, as is ready to perform the next set of experiments.

D.8.2 Experiment 2: Zmap 2.1.0

A large issue facing both IP and SCADA based networks is the use of internet-wide scanners in order to gain
information about potentially vulnerable systems running on networks across the globe. Zmap is a tool which
has been specifically designed to perform Wide Area Network (WAN) scans at a quicker rate than other existing
network mappers. To do so, Zmap uses random permutation of the IPv4 address space. This coupled with
the fact that Zmap utilises raw sockets by default to send its scan packets means that there is no caching
of conversations or any form of data exchange between the host performing the scan and the machines being
targeted. This allows for the packets being sent by Zmap to reach the target network interface cards (NIC) as
quickly as possible, reducing the potential saturation of either the host or the target networks. The focus on not
establishing connections with the target devices and terminating sessions as soon as they are established is the
main difference between this tool and Nmap, and is the main reason as to why Zmap is so refined to be used on
a larger scale. The aims of this set of experiments is to try and replicate the host detection, service detection
and connection capabilities offered by Nmap, but instead applying them using an internet-wide scanner. This
will give an insight as to how potential threats to SCADA devices such as Shodan interact with devices within

the IP space, and how this would differ on a SCADA-based network

In order to perform these Zmap scans, the virtual network used in the previous experiment was restored to its
original state before any experiments had taken place through the use of a virtual machine snapshot. Once the
host virtual machine has been restored to its previous state, the virtual network is loaded using the “Istart”
command. Each virtual machine loads with the configuration supplied at the beginning of this document. A
script is then ran in order to allow the host machine to interact with the virtual network via tap/gateway device.

Once this routing information has been set, the environment is ready to conduct the Zmap experiments.

D.8.2.1 Zmap Ping Sweep The first scan, similar to the Nmap experiment, aims to use the ICMP pro-
tocol in order to detect which addresses are active on the network, without having to establish a connection
with each host it finds. The addresses being scanned are the same as before and are defined in table
In order to analyse the packets being sent to each of the hosts on the virtual network, Tcpdump has been

deployed and will save the data in the form of a pcap file on the host system.

The first set of scans launched using Zmap aimed at performing host discovery using the ICMP echo request as

discussed earlier in this document. The commands entered into the host machine are shown below:

7sudo zmap -M icmp_echoscan 192.168.0.0/24 -0 zmapl.csv”
7sudo zmap -M icmp_echoscan 192.168.1.0/24 -0 zmap2.csv”
The “-M” flag is used to select the type of probe that Zmap will run against the selected targets. In this case the

“icmp_echoscan” has been selected, which sends ICMP echo request packets to each host and logs the addresses

80

of the devices which respond. Unlike Nmap, the TP addresses are specified as a subnet, rather than range of
addresses. Here, the subnets configured have a /24 mask, meaning that Zmap will scan 254 addresses from
192.168.0.0 - 192.168.0.254 and the same on the 192.168.1.0/24 subnet. The “-0” flag utilises Zmap’s in-built
output system in order to save the information it obtains into a .csv file, which corresponds to each unique
scan and is saved on the host machine. On execution of each Zmap command, there were no errors during the
scanning process and each .csv file was successfully populated with data. After these initial scans had completed
and the Tcpdump captures had been terminated, FTP and HTTP requests were sent from the client machines
to the server subnet in order to ensure that the network was still responsive after the scans had taken place.
The network was still responsive and correctly configured after the Zmap scans had finished. The following

figures show the addresses that Zmap was able to obtain using its ICMP echo scan:

192.168.0.5

192.168.0.11 192 168.1.3

192.168.0.12
192.168.0.10 192.168.1.2

192.168.0.4 192.168.1.1

(a) The addresses returned from subnet A (b) The addresses returned from subnet C

Figure 18: The results of the Zmap ping sweep

Here, Zmap has been able to identify each host configured on both the 192.168.0.0/24 subnet as well as the
192.168.1.0/24 subnet. As the scan consisted of ICMP echo packets, there is no more data to be expected in
the output, so only displaying the addresses of the active hosts is sufficient for this type of scan. The pcap

extracted from the client_1 machine shows how Zmap used ICMP in order to assess the active hosts on each

network:
.

Client_1

4 W (R RE Q@@= 8 |2|EF Q4 Q & &=

| A [iemp

No. Time Source Destination Protocol Length Info

e 9 12.292131 172.16.9.128 192.168.08.11 P 54 Echo (ping) reguest id=@xbcdd, segq=0/@, ttl=253 (reply in 1@)

— 10 12.294706 192.168.8.11 172.16.9.128 e 54 Echo (ping} reply id=@xbc4d, seq=0/@, ttl=64 (request in 9)
137 12.384260 172.16.9.128 192.168.0.10 P 54 Echo (ping) request id=0x4274, seq=0/@, ttl=253 (reply in 141)
138 12.385045 172.16.9.128 192.168.9.12 Imp 54 Echo (ping) request id=@xcl2c, seq=08/0, ttl=253 (reply in 139)
139 12.385428 192.168.0.12 172.16.9.128 P 54 Echo (ping) reply id=excl2c, seq=0/@, ttl=64 (request in 138)
148 12.387443 172.16.9.128 192.168.0.4 P 54 Echo (ping) request id=@xle2b, seq=08/0, ttl=253 (reply in 142)
141 12.3880602 192.168.8.108 172.16.9.128 IMP 54 Echo (ping) reply id=0x4274, seq=0/8, ttl=64 (request inm 137)
142 12.388450@ 192.168.8.4 172.16.9.128 ItMP 54 Echo (ping) reply id=8xle2b, seg=08/8, ttl=64 (request in 148)

Figure 19: A segment of a pcap taken from the Client_1 machine

Here, a display filter was used in order to extract only the ICMP requests and replies from the previous scan.

This was done in order to better analyse the packets, rather than having to filter through a large amount of

81

ARP and DHCP packets which were relevant to this tool. It can be shown from this packet capture that Zmap
is simply sending an ICMP packets to each host on the network and the addresses which form a reply are logged
in the output .csv file. Similar to the results from the Nmap experiment, the pcaps captured on the client and
server machines are unable to detect the presence of each gateway device, although their ethQ NIC is configured
to sit on the same network, and the output files acknowledge their existence. An explanation for this may be
that the observation points for these experiments may not be place correctly in order to detect the conversations

between the host machine and each gateway device.

FTP _Server
= s P N = B =l =l]

Am 3 ® RE ARew=EF IS E aaaEr

[licmp

'No Time Source Destination Protocol Length Infa
1 9.000000 172.16.9.128 request id=0x55db, seq=0/8, ttl=253 (reply in 2)

— 2 0.800015 192.168.1.2 172.16.9.128 ICMP 54 Echo (ping) reply id=8x55db, seq=@/8, tt1=64 (request in 1)
3 9.206494 172.16.9.128 192.168.1.1 ICMP 54 Echo (ping) request id=0x8041, seq=0/0, ttl=253 (reply in 6)
6 P.819147 192.168.1.1 172.16.9.128 IMP 54 Echo (ping) reply id=0x8041, seq=0/8, ttl=64 (request in 3)

Figure 20: A segment of a pcap taken from the FTP_Server

Here, the pcap taken from the FTP server shows that Zmap follows the exact same procedure on the other
subnet. Again, the traffic from each server can be seen, but the gateway device is still not present within this
pcap. Once these pcaps had been obtained and analysed, the virtual network was ready for the second phase

of Zmap testing.

D.8.2.2 Zmap TCP Scan The second experiment aimed to showcase how Zmap uses TCP packets in
order to connect to hosts and retrieve information about the target devices. At the time of these experiments,
Zmap does not support the ability to query multiple TCP ports using a singular TCP scan. For this reason,
the port chosen for this experiment is one of the most commonly used services, and should provide some data

when ran against the virtual network. The commands executed are displayed and explained below:
7sudo zmap -p 80 -M tcp_synscan 192.168.0.0/24 -0 zmap3.csv”
7sudo zmap -p 80 -M tcp_synscan 192.168.1.0/24 -0 zmapi.csv”

Similar to the commands executed in the previous experiment, “-M” is used again in order to specify the type
of probe to be sent out to the target network, in this case a TCP SYN scan. The choice to use a SYN scan
was to see if there are any underlying differences between Zmap and Nmap, are there any differences in the use
of TCP SYN packets, and is there a difference between the data extracted using Zmap to that gained through
Nmap? As referenced above, unlike Nmap, Zmap does not support the probing of multiple ports during a single

¢

session, this is the reason for the use of the “-p” flag. This specifies the single port that Zmap should scan
against in order to detect whether that port is open on the target device, and whether there is a service running
behind it. In order to capture the traffic generated by Zmap, Tcpdump was initiated at the same observation

points as in the previous Nmap and Zmap experiments.

82

Executing these commands on each of the subnets within the virtual network yielded different results to all
previous experiments. Launching this scan against the 192.168.0.0/24 subnet failed to disclose details of any of
the hosts that resided within it. Despite the ICMP scan confirming that the virtual machines could be reached
by the host machine, the TCP scan failed to supply any information about the same devices identified in the
previous experiment. In order to determine why this had happened, the pcaps taken from the client_1 machine
and DHCP _server were opened and analysed. The traffic can be shown in the following figures:

Client_1

RE Q&= &EF

Q aQ a F

[[Apply a display filter ... <3/>

Mo, Time Source Destination Protocol Length Info
; 1 9.000000 192.168.0.12 192.168.0.4 BOOTP 342 Boot Request from 6a:d6:22:57:29:dc (6a:d6:22:5T::
2 @.000030 192.168.9.4 192.168.0.12 BOOTP 342 Boot Reply[Packet size limited during capturel
3 1.551253 172.16.9.128 192.168.9.4 TCP. 54 52876 - 8@ [SYN] Seq=0 Win=65535 Len=@
4 1.553457 192.168.0.4 172.16.9.128 B@ - 52876 ACK] Seg=1 Ack=1 Win=0 Len=@
5 1.558745 172.16.9.128 192.168.8.11 TCP 54 34461 -+ 8@ [SYN] Seq=0 Win=65535 Len=@
6 1.559023 192.168.0.11 172.16.9.128 80 - 34461 ACK] Seg=1 Ack=1 Win=0 Len=@
7 1.561039 172.16.9.128 192.168.0.12 TEP 54 55424 - B@ [SYN] Seq=@ Win=65535 Len=@
8 1.561194 192.168.0.12 172.16.9.128 8@ - 55424 ACK] Seg=1 Ack=1 Win=0 Len=@
9 1.57@832 172.16.9.128 192.168.0.10 TCP 54 55486 - 8@ [SYN] Seq=0 Win=65535 Len=@

1.571815 192.168.0.10 172.16.9.128 80 - 55486 ACK] Seg=1 Ack=1 Win=0 Len=0

Figure 21: A pcap segment showing TCP packets being received by Client_1

FTP _Server
[R] Apply a display filter ... <3/>
| No. Time Source Destination Protocol Length Info

1 0.000000 192.168.0.12 192.168.0.4 Boot Request from 6a:d6:22:5f:29:dc (6a:d6:22:5f:29:d
i i 2 0.000016 192.168.8.4 192.168.0.12 BOOTP 342 Boot Reply[Packet size limited during capture]
| 3 1.588019 172.16.9.128 192.168.0.4 TCP 54 52876 - B@ [SYN] Seq=@ Win=65535 Len=0

4 1.588044 192.168.0.4 172.16.9.128 80 -+ 52876 ACK] Segq=1 Ack=1 Win=0 Len=@
| 5 1.594316 172.16.9.128 192.168.0.11 TCP 54 34461 - 8@ [SYN] Seq=@ Win=65535 Len=0

6 1.594453 192.168.0.11 172.16.9.128 80 - 34461 ACK] Seg=1 Ack=1 Win=0 Len=0
i 7 1.596854 172.16.9.128 192.168.0.12 TCP 54 55424 - 8@ [SYN] Seq=@ Win=65535 Len=0

B 1.602366 192.168.0.12 172.16.9.128 80 - 55424 ACK] Seq=1 Ack=1 Win=9 Len=@

9 1.607@25 172.16.9.128 192.168.0.10 TCP 54 55486 -+ 8@ [SYN] Seq=@ Win=65535 Len=0

1.607412 192.168.0.10 172.16.9.128 86 -+ 55486 ACK] Seg=1 Ack=1 Win=0 Len=0

Figure 22: A pcap segment showing TCP packets being received by FTP _Server

The pcap taken from the client_1 machine and DHCP _server shows that Zmap is using a similar technique to
the service detection scan performed using Nmap. However, unlike Nmap, the Zmap command is only targeting
port 80 as specified within the command shown earlier in this document. It appears that Zmap does not use
TCP SYN packets in order to detect whether a host is on a network or to provide details about the services
running on each port. Instead, if a port has been specified by the user, Zmap will only give the addresses of
machines which have that particular port open. This assumption is then supported by both the output file
“zmap4.csv” and the pcap taken from the HTTP server on the 192.168.1.0/24 subnet.

83

192.168.1.1

Figure 23: The single address returned from subnet C

HTTP _Server

e s P = —
A W g @ RE Re=2EF 255 Q4 Q & E
[W]Apply a display filter ... <38/>
No. 4 Time Source Destination Protocol Length Info
248 117.562983 172.16.9.128 192.168.1.1 TCP 74 55558 - 88 [SYN] Seq=0 Win=2920@ Len=@ MSS=1468 SACK PERM=1 TSval=526872 TSecr=@ WS=128
241 117.562994 192.168.1.1 172.16.9.1.. TCP 74 8@ - 55558 [SYN, ACK] Seq=@ Ack=1 Win=5792 Len=@ MSS=146@ SACK_PERM=1 TSval=54037 TSecr=526872 WS=2
242 117.563143 172.16.9.128 192.168.1.1 TCP 66 55558 « 8@ [ACK] Seq=1 Ack=1 Win=29312 Lei TSval=526872 TSec
ik 243 117.5633@Q 172.16A.0.128 102.16R.1.2 TCP 74 3A514 - A2 [S¥YN] Sen=A Win=20708 |en=A MSS=146A SACK PFAM=1 TSval=S26872

Figure 24: A successful HTTP TCP handshake

Here, as the TCP SYN packet was sent to the web server sitting behind port 80 on the HTTP Server, a 3-way
handshake was able to complete its cycle and thus Zmap logged the address of that machine and terminated
the connection using a TCP RST packet. This shows that even though Zmap was able to establish a connection
with machine 192.168.1.1 on port 80, there was no further translation of data. There was no GET or POST
requests to the server, and the server did not send a response message back to the host machine, the TCP stream
was simply reset and dropped. This suggests that the Zmap tool is a lot more targeted than Nmap, and that
the main focus of the tool is identifying active IP addresses, rather than gathering unique information from each
of the machines which have been identified. This supports the statement earlier in this document, confirming
that Zmap’s functionality has been refined for scanning LAN over WAN or corporate intranets. Once these
pcaps had been transferred from the host machine, and all scans and packet captures has been terminated, the

network was then ready for the final set of Zmap experiments.

D.8.2.3 Zmap Network Time Protocol Scan The final Zmap tests aim at scanning hosts using the
Network Time Protocol (NTP). This protocol is used in order to synchronise the internal clocks of devices over
unreliable or variable-latency networks. This protocol relies on the User Datagram Protocol to send timestamps
between two machines. Previous scans have not utilised UDP and have not targeted the protocols which control
the timing and synchronizing of the physical machines and their NICs. The commands to facilitate these scans

are detailed as follows:
?sudo zmap -p 80 -M ntp 192.168.0.0/24 -0 zmap5.csv”

”sudo zmap -p 80 -M nitp 192.168.1.0/24 -0 zmap6.csv”

84

The syntax for this command is the same as the previous TCP SYN scan, the difference being that the probing
module has been set to “ntp”. The subnets have remained the same, the port number is still aimed at the http

port 80, and each of the commands have been instructed to output their data into two individual .csv files.

On execution of these two Zmap commands no errors occurred during the scanning process and the virtual
network remained fully usable after the scans had been performed. However, on inspection of the output files,
Zmap did not provide any data for either of the two subnets. On opening pcaps from both subnets, the following

data was obtained:

Router_1

Ami© RE Q &=

| Apply a display filter ... <3 />

QQQF

Mo, Time Source Destination Protocol Length Info
1 @.000000 192.168.0.10 192.168.0.4 BOOTP 342 Boot Request from @a:49:5c:11:35:d3 (@a:49:5c::
2 0.001064 192.168.0.4 192.168.0.180 BOOTP 342 Boot Reply[Packet size limited during capturel]
3 3.483819 172.16.9.128 192.168.0.12 QUIC 99 Payload (Encrypted), Seq: @
4 3.483872 .168.0.12 .16.9.128 Destination unreachable (Port unreachable)
5 3.494256 172.16.9.128 192.168.0.11 QUIC 99 Payload (Encrypted), Seq: @
6 3.494680 .168.0.11 .16.9.128 Destination unreachable (Port unreachable)
7 3.498433 172.16.9.128 192.168.0.180 QUIC 99 Payload (Encrypted), Seq: @
8 3.498746 .168.0.10 .16.9.128 Destination unreachable (Port unreachable)
9 3.509781 172.16.9.128 192.168.0.4 QUIC 99 Payload (Encrypted), Seq: @
18 3.514675 2e:dl:f3:1d:7.. Broadcast ARP 42 Who has 192.168.8.57 Tell 192.168.0.4
11 3.515106 4a:46:05:ab:a.. 2e:dl:f3:1d:7c:95 ARP 42 192.168.0.5 is at 4a:46:05:ab:af:86
3.515332 192.168.0.4 172.16.9.128 Destination unreachable (Port unreachable)

Figure 25: A segment of a pcap taken from the Router_1 machine

» Frame 9: 90 bytes on wire (720 bits), 90 bytes captured (728 bits)
» Ethernet II, Src: 4a:46:05:ab:af:86 (4a:46:05:ab:af:86), Dst: 2e:dl:f3:1d:7c:95 (2e:d1:f3:1d:7c:95)
» Internet Protocol Version 4, Src: 172.16.9.128, Dst: 192.168.0.4
v User Datagram Protocol, Src Port: 57875 (57875), Dst Port: 8@ (8@)

Source Port: 57875

Destination Port: B@

Length: 56

» Checksum: 8x00008 (none)

[Stream index: 4]

v QUIC (Quick UDP Internet Connections)

v Public Flags: @xe3

«evs waal = Version: Yes
A Reset: Yes
«i:. 00.. = CID Length: @ Byte (0x00)
..1@ = Sequence Length: 4 Bytes (0x02)
11.. = Reserved: @x03

Version:

Sequence: @

Payload: ©000. ..

Figure 26: A figure showing the contents of a QUIC UDP packet

Here, through analysing both the sequence of packets being sent /received and the data held in the packets sent
using Zmap, it appears that the “Quick UDP Internet Connections (QUIC)” protocol cannot be correctly applied
to the port 80. The payload of this type of scan contains all zeros after the UDP frame, something that will not
warrant any type of response regardless of the service behind that port or the machine it is running on. This is
followed by an ICMP type 3 message from the target machines to the host machine to signify that the destination
port is unreachable. The results obtained from the final Zmap scans were reflected on the 192.168.1.0/24 subnet.

85

With the pcaps from the final Zmap experiment extracted from host machine the virtual network was shut
down using the “lcrash” command. Once all virtual machines had successfully powered-off, the host machine
was restored back to its pre-experiment state by loading a previously saved snapshot. Once this snapshot had
loaded, the virtual network was launched using the “Istart” command. The testing environment was then ready

to begin conducting the passive sniffer experimentation.

D.9 Execution of Experiments: Passive Sniffers

D.9.1 Experiment 3: Tshark 2.0.5

D.9.1.1 Tshark ICMP Capture Tshark is a Command Line Interface for the passive network sniffer
Wireshark. Tshark uses the libpcap Linux library in order to capture network traffic directly from the NIC of
the chosen machines. These packets are then put into Tshark’s capture engine called dumpcap which allows
the intercepted traffic, along with basic metadata such as timestamps, to files such as .pcap and .pcapng. The
dumpcap capture engine also allows for filters to be applied to the captured packets, in order to constrict the
types of data being pulled from the NIC and written to the disk. It is a promiscuous-based sniffer, meaning
that the NIC running a Tshark capture will be able to receive all network being sent across a network or subnet,
as long as the network devices are connected via a hub and not a switch. It is a commonly used tool in both
network forensic investigations as well traffic analysis and network administration. For these reasons, Tshark

was chosen as one of the tools to asses against IP and non-IP based networks.

In order to conduct experiments with Tshark, the virtual network had to be adapted in order to ensure the
best results were obtained. Firstly, the observation points for the passive tests have been moved and replaced
with Tshark captures. Tcpdump is no longer needed as it is another form of passive scanner, who’s results
have already been demonstrated through the capturing of the active scanner traffic in the previous experiments.
Secondly, in order to enable the observation points to capture network traffic, each router machine had to be
configured with more memory than originally allocated. In order to do this, the following lines were inserted

into the “lab.conf” file on the host machine:
7router_3[mem]=512"
7router_2[mem]=512"
7router_1[mem]=512"

This configuration specifies that each machine acting as an observation point will have 512MB of emulated
memory (RAM) which is required by Tshark in order to capture and save network traffic. Once these changes
had been made, the virtual network was then restarted. Once the virtual network had restarted, the following

commands were executed in the observation machines:
?”Tshark -ni any -w /hosthome/pcaps/tshark/routeri_1.pcap”
?Tshark -ni any -w /hosthome/pcaps/tshark/router2_1.pcap”

?”Tshark -ni any -w /hosthome/pcaps/tshark/router3_1.pcap”

36

These commands instruct Tshark to capture traffic on any of the NICs configured on that particular device,
this specified using the “-ni” flag with the argument “any”. All the traffic captured from these interfaces is then

written “

-w” to a .pcap file saved on the host machine, with a naming convention which references the machine
it was captured from and the number of the experiment. On executing these commands Tshark signified that it
was running correctly on each machine and that it was capturing traffic on all interfaces. In order to generate
traffic for the observation points to capture, an ICMP ping request was sent from the host machine to each one

of the addresses residing on the virtual network.

The following pcaps show the flow of each ICMP echo request through the observation point at Router_1.

Router_1
Am @ RE Q&= aaafE
[|.I Apply a display filter .. <38/
Mo, Time Source Destination Pratocal Length Infa
11 18.987812 172.16.9,128 192.168.0.4 ICMP 108 Echo (ping} reguest id=6x9eal, seq=1/256, ttl=63 (no response found!)
12 18.998156 4a:46:05:ab:a. ARP 44 Who has 192.168.8.47 Tell 192.168.0.5
13 14.999844 2e:d1:f3:1d: 7. ARP 44 192.168.0.4 is at 2e:dl:f3:1d:7c:95
14 1&.999854 172.16.9.128 192.168.0.4 IMP 18@ Eche (ping} reguest id=@x9ead, seq=1/256, ttl=62 (reply in 15)
15 1@.999298 192.166.0.4 172.16.9.128 IMP 18@ Eche (ping) reply id=8x9ea9, seg=1/256, ttl=64 (request in 14}
16 1@.999386 192.16B8.0.4 172.16.9.128 IMP 18@ Eche (ping) reply id=8x9ead, seq=1/256, ttl=63
17 11.974247 172.16.9.128 192.168.0.4 Imp 108 Echo (ping) reguest id=Bx9eald, seg=2/512, ttl=63 (no response found!)
18 11.974265 172.16.9.128 192.168.0.4 IMP 108 Eche (ping} reguest id=8x9ead, seg=2/512, ttl=62 (reply in 19}
19 11.9745@6 192.168.0.4 172.16.9.128 IMP 108 Eche (ping} reply id=8x9ead, seg=2/512, ttl=64 (request in 18}
20 11.974517 192.168.0.4 172.16.9.128 IMP 108 Eche (ping) reply id=8x%9ead, seq=2/512, ttl=63
21 12.973149 172.16.9,128 192.168.0.4 ICMP 108 Echo (ping} request id=6x9ea%, seq=3/768, ttl=63 (no response found!)
22 12.973165 172.16.9,128 192,168.0.4 IcMP 108 Echo (pingl request id=6x9ea9, seq=3/768, ttl=62 (reply in 23)
23 12.973625 192.1668.0.4 172.16.9.128 ICMP 18@ Eche (ping} reply id=8x9eal, seq=3/768, ttl=64 (request in 22}
24 12.973633 192.166.08.4 172.16.9.128 IMP 18@ Eche (ping} reply id=#x9eald, seg=3/768, ttl=63
25 15.9B96@1 2e:dl:f3:1d: 7. ARP 44 Who has 192.168.8.57 Tell 192.168.0.4
26 15.9B9625 43:46:85:ab:a. ARP 44 192.168.8.5 is at 4a3:46:85:ab:af:B6
27 15.997471 1a:28:ee:32:1.. ARP 44 Who has 123.123.1.37 Tell 123.123.1.1
28 15.997843 b2:41:b5:97: 7. ARP 44 123,123.1.3 is at b2:41:b5:97:71:2b
29 23.622049 172.16.9.128 192,168.0.11 IMP 108 Eche (ping} reqguest id=8x9ead, seg=1/256, ttl=63 (ne response found!)
30 23.622067 172.16.9.128 192,168.0.11 ItMP 108 Eche (ping} reqguest id=6x9ead, seg=1/256, ttl=62 (reply in 33)
31 23.623057 Ga:d6:22:5F: 2. ARP 44 Who has 192.168.8.57 Tell 192.168.0.11
32 23.623068 4a:46:05:aba. ARP 44 192,.168.8.5 is at da:46:85:ab:af:B6
33 23.623226 192.1668.08.11 172.16.9.128 ICMP 188 Eche (ping} reply id=8x9ead, seq=1/256, ttl=64 (request in 38}
34 23.623235 192.1668.0.11 172.16.9.128 IMP 18@ Eche (ping} reply id=#x%9ead, seg=1/256, ttl=63
35 24.823651 172.16.9.128 192.168.0.11 ImMp 108 Echo (ping) reguest id=8x9ead, seg=2/512, ttl=63 (no respanse found!)
36 24.623681 172.16.9.128 192.168.0.11 IMP 108 Eche (ping)} reguest id=8x9ead, seg=2/512, ttl=62 (reply in 37}
37 24.624146 192.168.0.11 172.16.9.128 IMP 188 Eche (ping) reply id=Bx9ead, seg=2/512, ttl=64 (request in 36}
38 24.624158 192.168.0.11 172.16.9.128 ItMP 188 Eche (ping) reply id=8x9ead, seq=2/512, ttl=63
39 25.624846 172.16.9.128 192,168.0.11 ItMP 108 Eche (ping} reguest id=8x9ead, seg=3/768, ttl=63 (no response found!)
48 25.624880 172.16.9.128 192,168.0.11 ItMP 108 Echo (ping} reguest id=6x9ead, seg=3/768, ttl=62 (reply in 41)
41 25,625330 192.168.0.11 172.16.9,128 ICMP 108 Echo (ping)} reply id=6x%9ead, seq=3/768, ttl=64 (request in 48}
42 25.625342 192.168.0.11 172.16.9.128 ICMP 108 Echo (ping) reply id=ex9ead, seq=3/768, ttl=63
43 29.622083 4a:46:085:ab:a. ARP 44 Who has 192.168.8.117 Tell 192.16B.8.5
44 29.623456 Ga:d6:22:5F: 2. ARP 44 192.168.0.11 is at Ga:d6:22:5F:29:dc
45 33.838172 192.168.0.11 192.166.0.4 DHCP 344 DHCP Request - Transaction ID 8xBfa3956a
46 33.838173 192.168.0.4 192.168.0.11 DHCP 344 DHCP ACK — Transaction ID @xBfa3956a

Figure 27: The packets obtained from Tshark on the Router_1 machine

Here, the data captured from router 1 shows the ICMP requests and responses being sent to each address on the
192.168.0.0/24 subnet. Not only does it show that there are active hosts at these addresses, the packet capture
also shows DHCP communications traveling between 192.168.0.11 and 192.168.0.4. It can then be deduced that
as 192.168.0.4 is sending a DHCP acknowledge (ACK) packet to the recipient address, this machine must be a
DHCP server distributing addresses to that subnet. This packet capture supports and displays all the correct

configurations of the virtual network.
In regards to the 192.168.1.0/24 subnet, the packet capture shows which addresses are active hosts, however, as

there are no actual services being ran over the network, no further information is given about the active hosts,

their purpose or the services they offer.

87

As Tshark is a passive tool no additional tests need to be performed in order to check the integrity and
configuration of the virtual network after the captures have taken place, as it is evident from the pcaps that
the network functioned correctly throughout the duration of each capture. Once the pcaps had been saved and

extracted from the host machine, the next experiment could be performed.

D.9.1.2 Tshark Baseline Network Capture The next experiment aims to evaluate the success of Tshark
when capturing the normal traffic of the virtual network, rather than ICMP echo requests. The syntax for each
Tshark capture remains exactly the same as the previous experiment and the observation points also remain in
the same position on the network. The only changes made are the names of the pcap files being created so that

they represent each individual experiment. The commands are detailed below:
?”Tshark -ni any -w /hosthome/pcaps/tshark/router1_2.pcap”
?”Tshark -ni any -w /hosthome/pcaps/tshark/router2_2.pcap”
?”Tshark -ni any -w /hosthome/pcaps/tshark/router3_2.pcap”

On executing these commands Tshark signified that it was running correctly on each machine and that it was
capturing traffic on all interfaces. The traffic being generated aimed to simulate a simple client-server interac-
tion, with each host making an individual request to both the HTTP server and FTP server on the other subnet,
as well as any other autonomous traffic produced by other machines on the network. The HTTP interaction will
be a simple GET request which will cause the HTTP server to send a HTML webpage to each client .
In regards to the FTP session, each host will logon to the server using the username and password “test”, which
will then be followed by a series of commands which will send, retrieve and delete a file on the server before
logging-off. The following pcap was taken from the router_3 machine and shows the traffic being sent between

each subnet:

Router_3

a4 m @ RE Qea2EF IEIEF QR QA QE

|| http

N Time Source Destination Protocol Length Info

I 6 0.002665 192.168.0.11 192.168.1.1 HTTP 662 GET / HTTP/1.1

+ 8 0.029077 192.168.1.1 192.168.0.11 HTTP 482 HTTP/1.1 20@ OK (text/html)
15 14.875066 192.168.0.10 192.168.1.1 HTTP 662 GET / HTTP/1.1
17 14.088988 192.168.1.1 192.168.0.10 HTTP 482 HTTP/1.1 20@ OK (text/html)
26 25.375019 192.168.0.12 192.168.1.1 HTTP 662 GET / HTTP/1.1
28 25.379786 192.168.1.1 192.168.0.12 HTTP 482 HTTP/1.1 20@ OK (text/html)

Figure 28: A pcap segment showing a HTTP conversation between the server and Client_1

88

A m 1 ® RE Q@essEF IEIEFH @ aQaFE
[A]ftp
Mo, Time Source Destination Protocol Length Info
68 182.677836 192.168.1,2 192.168.8.11 FTP 124 Response: 228 ProFTPD 1.3.1 Server (Debian) [::ffff:192.168.1.2]
70 184.414920 192.168.0.11 192.168.1.2 FTP 79 Request: USER test
72 184.416979 192.168.1.2 192.168.8.11 FTP 188 Response: 331 Password required for test
76 187.961872 192.168.8.11 192.168.1.2 FTP 79 Reguest: PASS test
77 187.969810 192.168.1.2 192.168.8.11 FTP 93 Response: 238 User test logged in
79 187.970766 192.168.8.11 192.168.1.2 FTP 74 Reqguest: SYST
8@ 187.973295 192.168.1.2 192.168.8.11 FTP 87 Response: 215 UNIX Type: L8
82 112.153851 192.168.0.11 192.168.1.2 FTP 76 Reguest: TYPE I
83 112.158515 192.168.1.2 192, 168.8.11 FTP 87 Response: 288 Type set to I
85 112.159518 192.168.8.11 192.168.1.2 FTP 94 Request: PORT 192,168,0,11,229,30
86 112.161477 192.168.1.2 192.16E.8.11 FTP 97 Response: 288 PORT command successful
87 112.161478 192.168.8.11 192.168.1.2 FTP 84 Request: STOR testl.txt
91 112.166283 192.168.1.2 192.16E.8.11 FTP 123 Respense: 158 Opening BINARY mode data connection for testl.txt
96 112.193838 192.168.1.2 192,168.8.11 FTF 91 Response: 226 Transfer complete
188 113.647768 192.168.8.11 192.168.1.2 FTP 76 Request: TYPE A
161 113.647769 192,168.1.2 192,168.8.11 FTF 87 Response: 208 Type set to A
183 113.648598 192.168.8.11 192.168.1.2 FTP 95 Request: PORT 192,168,8,11,158,224
164 113.649132 192.168.1.2 192,168.8.11 FTF 97 Response: 26@ PORT command successful
185 113.649612 192.168.8.11 192.168.1.2 FTP 74 Request: LIST
169 113.650890 192.168.1.2 192,168.8.11 FTF 122 Response: 158 Opening ASCII mode data connection for file list
116 113.693261 1592.168.1.2 192.166.8.11 FTP 91 Response: 226 Transfer complete
118 118.393122 192.168.8.11 192.168.1.2 FTP 76 Request: TYPE I
119 118.393123 192.168.1.2 192.168.8.11 FTP B7 Response: 288 Type set to I
121 118.396871 192.168.8.11 192.168.1.2 FTP 95 Request: PORT 192,168,0,11,194,143
122 118.397371 192.168.1.2 192.166.8.11 FTP 97 Response: 28@ PORT command successful
123 118.398087 192.168.8.11 192.168.1.2 FTP 84 Request: RETR testl.txt
127 118.481651 192.168.1.2 192.168.8.11 FTP 123 Respense: 158 Opening BINARY mode data connection for testl.txt
132 118.423287 192.168.1.2 192,168.8.11 FTP 91 Response: 226 Transfer complete
134 119.513499 192.168.8.11 192.168.1.2 FTP 76 Request: TYPE A
135 119.514869 192.168.1.2 192.168.8.11 FTP 87 Response: 200 Type set to A
137 119.514628 192.168.8.11 192.168.1.2 FTP 95 Request: PORT 192,168,8,11,215,124
138 119.515388 192.168.1.2 192,168.8.11 FTP 97 Response: 208 PORT command successful
139 119.515856 192.168.8.11 192.168.1.2 FTP 74 Request: LIST
143 119.518381 192.168.1.2 192,168.8.11 FTP 122 Response: 158 Opening ASCII mode data connection for file list
158 119.563423 192.168.1.2 192.168.8.11 FTP 91 Response: 226 Transfer complete
152 124.438576 192.168.8.11 192.168.1.2 FTP 84 Request: DELE testl.txt
153 124.448596 192.168.1.2 192.168.8.11 FTP 97 Response: 258 DELE command successful
155 125.527683 192.168.8.11 192.168.1.2 FTP 94 Request: PORT 192,168,0,11,197,64
156 125.528238 192.168.1.2 192.168.8.11 FTP 97 Response: 208 PORT command successful
158 125.528543 192.168.8.11 192.168.1.2 FTR 74 Request: LIST
162 125.529925 192.168.1.2 192.168.8.11 FTP 122 Response: 15@ Opening ASCII mode data connection for file list
167 125.573458 192.168.1.2 192,168.8.11 FTR 91 Response: 226 Transfer complete
169 127.888584 192.168.8.11 192.168.1.2 FTP 74 Request: QUIT
178 127.890414 192.168.1.2 192.168.8.11 FTP 82 Response: 221 Goodbye.
178 133.718986 192.168.1.2 192.168.8. 18 FTP 124 Response: 228 ProFTPD 1.3.1 Server (Debian) [::ffff:192.168.1.2]
180 138.002069 192.168.08.18 192.168.1.2 FTR 79 Request: USER test
182 138.888847 192.168.1.2 192.168.8.18 FTF 188 Response: 331 Password required for test
184 139.671648 192.168.08.18 192.168.1.2 FTR 79 Request: PASS test
185 139.686865 192.168.1.2 192.168.8.18 FTF 93 Response: 238 User test logged in

Figure 29: The full list of FTP conversations originating from subnet A

The first pcap has been filtered to show only the HT'TP traffic passing through the router_3 observation point.
Here it is shown that all of the hosts from subnet A have managed to establish a connection with the HT'TP
server at 192.168.1.1 and then sending using GET requests to the machine. The server then responds with a

200 OK response for each individual host and contains the website referenced in in each payload.

Within the second pcap segment, also taken from router_3, the traffic has been filtered to only show the FTP
traffic which passed by the observation point. The areas highlighted in black show two separate hosts logging-on
to the FTP server with the username and password referenced earlier in this document. The area highlighted
in red shows the STORE, LIST, RETREVE and DELETE commands used on the file “test1.txt”. The data in
this pcap shows that through analysis of the traffic intercepted at 3 different points on the network, the purpose
and state of each machine can be identified through the use of passive scanners such as Tshark. However, this
experiment has failed to address/identify the machines within acting as gateway devices, placed between subnet
B and the other subnets. There has been no traffic aside from ARP broadcasts to prove that these gateway
devices exist. Furthermore, an analysts cannot deduce the function of these devices through ARP requests, so
there is an issue when trying to identify the potential services these devices hold. A reason for this may have

been the placement of the observation points during this experiment, as the active scanners were able to detect

89

the machines, but the traffic being sent to them from each experiment could not be seen.

Once each Tshark capture had finished, the virtual network was shut down in preparation for the last set of

passive experiments.

D.9.2 Experiment 4: Ettercap 0.8.2

D.9.2.1 Ettercap ICMP Interception Ettercap is an open source network tool which allows users to
perform man-in-the-middle (MITM) attacks on LANs which can be used for protocol analysis and network
auditing. Ettercap uses ARP poisoning in order to send spoofed ARP messages across the LAN in order to
imitate an already existing device on the network. By spoofing associating the MITM MAC address with the
IP address of another device, any traffic being sent to the existing device gets sent to and intercepted by the
MITM machine. In order to create a man-in-the-middle environment, two more machines needed to be added to
the virtual network. These two machines will be used in order to spoof the MAC address of a specified machine
on each subnet, meaning any packets destined for the victim machine will be sent to the MITM machine.
To do this, two more machines were added to the lab.conf file, as well as creating mitm_1/2 directories and

mitm_1/2.startup files. These changed are shown in the figure below:

elhd = 152 168.1.98 athl = 192.1E6.0.20
mitm_2 mitm_1
™
PN RIS
’ . 14 Mo
, LY «!
Subnet C, . . ~
’ . ¢ >
wihl = 152.168.1.: athD = 492 168.1 E ethl = 192 168.0.4 e_thg=gh£ﬁ_m - e_thfl=§h£ie_m - ethl = dhclert
i b ;
dhep_server | cllent_1 : | client_2 : cllent_3
] 1 | 1
L___|___ L___|___
ethd = 192 168.1.3 ethD = 192.165.0.5
router_2 router_1
eth1=12312312 ethl =123.123.1.1

elhl =123122.1.3

router_3
(Tap)

Subnet B eth) = 172.16.9.10

ath0=172.16.8.128

host_maching

External Network

Figure 30: A redesigned topology showing two additional MITM machines and the target machines

The figure above shows the two new machines added to each subnet. The red lines indicate the machines to be

spoofed within the Ettercap experiments.

90

The first Ettercap poisoning was used to spoof the MAC addresses of the client_1 and the http_server machines.
When traffic is sent and received by each of these machines, the MITM device will read intercept them before
relaying the packets to their true destination. In order to achieve this, the following commands were executed

on the MITM devices:
?Ettercap -T -w /hosthome/pcaps/Ettercap/mitm11.pcap -M ARP /192.168.0.10/ // output:”
?Ettercap -T -w /hosthome/pcaps/Ettercap/mitm21.pcap -M ARP /192.168.1.1/ // output:”

Ettercap is executed as a CLI program using the “-T” flag. In order to capture the traffic passing through the
MITM machine, the “-w” flag is used in order to write all the traffic to a pcap file on the host machine, similar
to all the previous experiments. The “-M ARP” flag and argument tells Ettercap to load its ARP poisoning
module, the targets are then enclosed between the two slashes “//”. The next two slashes are used to define a
particular port to intercept, however leaving this field blank allows for all ports to be intercepted and captured.

The final option “output:” shows the data being written to the pcap file onto the screen.

Once each Ettercap command was executed, packets began to show on each one of the MITM machines, meaning
that the ARP spoofing had started successfully. Once both MITM machines were running, some ICMP ping
packets were sent from the host machine to each of the addresses being spoofed. The following pcaps show the

traffic from both the client_1 machine and the mitm_1 machine:

91

Frame 114: 98 bytes on wire (784 bits), 98 bytes captured (784 bits)
Ethernet II, Src: 4a:46:@5:ab:af:86 (4a:46:05:ab:af:86), Dst: 1e:16:b4:23:95:59 (le:16:b4:23:95:59)
» Destination: 1e:16:b4:23:95:59 (le:16:b4:23:95:59)
» Source: 4a:46:05:ab:af:86 (4a:46:05:ab:af:86)
Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 172.16.9.128, Dst: 192.168.0.10

v Internet Control Message Protocol

Type: 8 (Echo (ping) request)
Code: @
Checksum: @xlebb [correct]
Identifier (BE): 52686 (®xcdce)
Identifier (LE): 52941 (@xcecd)
Sequence number (BE): 2 (8x2002)
Sequence number (LE): 512 (@x@200)
» [No response seen]

Frame 115: 98 bytes on wire (784 bits), 98 bytes |captured (784 bits)

v Ethernet II, Src: 1le:16:b4:23:95:59 (1le:16:b4:23495:59), Dst: 6a:d6:22:57:29:dc (6a:d6:22:57:29:dc)

» Destination: 6a:d6:22:5f:29:dc (6a:d6:22:57:29}dc)
» Source: le:16:b4:23:95:59 (le:16:b4:23:95:59)

Type: IPv4 (0x0808)
Internet Protocol Version 4, Src: 172.16.9.128, Dst: 192.168.0.10
Internet Control Message Protocol

Type: 8 (Echo (ping) request)

Code: @

Checksum: @xlebb [correct]

Identifier (BE): 52686 (@xcdce)

Identifier (LE): 52941 (@xcecd)

Sequence number (BE): 2 (@x0002)

Sequence number (LE): 512 (@x020@)

R frame: 1

Frame 116: 98 bytes on wire (784 bits), 98 bytes daptured (784 bits)
Ethernet II, Src: 6a:d6:22:5f:29:dc (6a:d6:22:5f:39:dc), Dst: 1le:16:b4:23:95:59 (le:16:b4:23:95:59)
» Destination: 1e:16:b4:23:95:59 (le:16:b4:23:95%9)
» Source: 6a:d6:22:5f:29:dc (6a:d6:22:57:29:dc)

Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 192.168.0.10, Dst: 172.16.9.128
Internet Control Message Protocol

Type: @ (Echo (ping) reply)

Code: @

Checksum: @x26bb [correct]

Identifier (BE): 52686 (@xcdce)

Identifier (LE): 52941 (@xcecd)

Sequence number (BE): 2 (@x0002)

Sequence number (LE): 512 (@x@2@0)

[Reguest frame: 115]

Frame 117: 98 bytes on wire (784 bits), 98 bytes kaptured (784 bits)

v Ethernet II, Src: 1le:16:b4:23:95:59 (le:16:b4:23:p5:59), Dst: 4a:46:05:ab:af:86 (4a:46:05:ab:af:86)

» Destination: 4a:46:@5:ab:af:86 (4a:46:05:ab:af?86)
» Source: 1e:16:b4:23:95:59 (le:16:b4:23:95:59)

Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 192.168.0.1@0, Dst: 172.16.9.128
Internet Control Message Protocol

Type: @ (Echo (ping) reply)

Code: @

Checksum; @x26bb [correct]

Identifier (BE): 52686 (@xcdce)

Identifier (LE): 52941 (@xcecd)

Sequence number (BE): 2 (@x2082)

Sequence number (LE): 512 (@x@200)

Figure 31: A dissection of three pcaps showing the MITM machine relaying packets to its target

92

When analysing these ICMP packets, it is important to understand the following:
e 4a:46:05:ab:af:86 = Host Machine
e 6a:d6:22:5f:29:dc = Client_1
e 1e:16:b4:23:95:59 = Mitm_1
The pcap above shows the following process:
1. The host machine sends a ping request packet to the MITM spoofed machine.
2. The spoofed machine then sends a ping request to the original client_1 machine.
3. Client_1 responds to the ping sent from the MITM machine and sends an echo reply.
4. The MITM machine then sends a ping echo reply back to the host machine.

This process of intercepting then forwarding packets between the true source and destination machines allows
for every packet to be inspected without having to run a promiscuous sniffing tool on an existing piece of
hardware already on the network. The ping packets sent to the spoofed machine on subnet B follows the exact

same intercept and forward process as shown in the pcaps above.

To stop the MITM machines spoofing the target machines, the ARP poisoning process was terminated using
CRTL+C. Once all spoofing had stopped and the pcaps had been extracted from the host machine the next

parts of the experiment could be conducted.

D.9.2.2 Ettercap Baseline Traffic Interception The next Ettercap experiment involved simulating reg-
ular internet traffic as opposed to ICMP echo packets. The same MITM machines were used and the commands

had the same syntax as in the previous experiment.
?Ettercap -T -w /hosthome/pcaps/Ettercap/mitm12.pcap -M ARP /192.168.0.10/ // output:”
?Ettercap -T -w /hosthome/pcaps/Ettercap/mitm22.pcap -M ARP /192.168.1.1/ // output:”

The only changes made to the commands was the name of the pcap being saved on the host machine, in order
to represent each unique experiment. Each command was executed in the MITM machines and output began
to appear on each, confirming that the ARP poisoning had been successful once again. In order to generate
traffic, a request to both the FTP and HTTP server was made from the original client_1 machine. This means
that Ettercap’s ability to forward packets correctly and mimic the services of the servers being poisoned would

be tested. The following pcaps show the traffic being intercepted from the mitm_2 machine:

93

| He. Tif Sorarcz Dagliration Protocal Lengih Infa
34 24208470 102,168.08.18 2,188.1,1 TCP 74 3GEER

88 [SYN] Seq=@ Win=5848 Lon=0 MS55=1460 SACK_PERM=1 T

=RE881 Thecr=d
er] 3 I

24,3085760

24.307808

39.210884

Figure 32: A pcap segment showing how Ettercap relaying HTTP packets to its target

Here, the data from the pcaps shows that the MITM machine is using the same intercept and forwarding
system with a TCP stream. Each green packet represents data being received by the MITM machine. Each
black packet represents data being sent from the MITM machine. The pattern above shows that every time
the MITM machine receives data, the next packet always shows the MITM machine sending or “relaying” that
same data it just received to another recipient, be this the client machine who made the original HTTP request
or the HTTP server itself. From analysing the data provided by the MITM capture, not only can the services
and active machines be identified, but the MITM machine is exposed to all the data flowing between the client
and the server (in this scenario). As the NIC of the MITM machine has been set to promiscuous mode, it is
also able to detect other traffic from the same subnet. It appears that Ettercap is also unable to identify the

gateway devices and the possible services they provide.

Once this pcap had been analysed the virtual network was then shut-down along with the host virtual machine.

This concludes the experiments on the IP network.

94

Appendix E Testing of Network Scanners Against SCADA Devices

E.1 Objectives

To analyse the effects of using IP network scanners on SCADA devices such as Programmable Logic Controllers
(PLCs), a test environment containing a Human Interface Machine (HMI) and a PLC needs to be created in
order launch the network scanning tools against the SCADA devices. The aim of this setup is to provide an
insight into the possibility of gaining information about SCADA devices through the use of network scanners
and sniffers. A host machine will be responsible for performing the scans against two separate types of PLC.
This will ensure that all the available communication methods for SCADA devices will be tested against.
The interactions between these two devices will be captured using a promiscuous network scanner and will be

analysed in detail.

E.2 Hypotheses

The following hypotheses will be repeatedly tested throughout all the experiments referenced within this docu-

ment.

Operational Hypothesis: H;
The use of current active or passive IP network probers and sniffers will have a negative effect on the normal

behaviour of non-IP specific devices.

Null Hypothesis: Hg
The use of current active or passive IP network probers and sniffers will have no effect on the normal behaviour

of non-IP specific devices.

E.3 Variables

Independent Variable: The execution of a network scanner/sniffer on a network.

Dependent Variable: The behaviour of the non-IP devices.

E.4 Requirements

This section outlines the tools and resources needed in order to successfully conduct each experiment.

E.4.1 Siemens SIMATIC S7-1200 PLC

The Siemens S7-1200 is a compact PLC which allows for extendable functionality through the use of additional
I/O components. The S7-1200 comes standard with a PROFINET /Ethernet interface, but additional input
types can be added to the PLC through the use of external modules. Such modules include serial ports for
analogue communications or additional microprocessors or 1/O pins. These devices also support access to a
HTTP web server using an IP address which can reached by external machines and configured within the TTA
Portal. This device will be responsible for the operation of the field devices connected to this small SCADA

system.

95

E.4.2 Human Machine Interface: Siemens SIMATIC KTP400 Basic HMI

The KTP400 is a 4-inch touch screen panel which can be connected to the output pins of the S7-1200 PLC.
This small HMI simply allows for basic operator control of other field devices on the SCADA system as well
as performing monitoring tasks. It can perform tasks independent of the main control centre and can be

reconfigured using the TTA Portal

E.4.3 ASEA Brown Boveri (ABB) PM564 PLC

The ABB PM564 is a compact programmable logic controller which allows for the control and processing a
multiple types of field devices through its AC500-eCo CPU. Similar to the Siemens S7-1200 PLC, the PM564
has a modular structure, on which more I/0, storage and processing devices can be attached in order to expand
its capability. The PLC comes equip with two network interface cards, an Ethernet port and a serial COM1
port which can support such protocols as Modbus, CAN and PROFIBUS. This shall be used as another type
of SCADA device to be scanned against.

E.4.4 Field Device: On-board Modular Motor

The motor being used is a bidirectional motor which is acting as a basic field device for these experiments. The
power to the motor is supplied by the 24V power supply connected to the main printed circuit board (PCB).
The speed of the motor can be set via a knob located on the PCB. In order to function, the motor must be

connected to the PLC with a complete electrical circuit.

E.4.5 Compact Flexible Process Line

This field device consists of several moving components which control a small conveyor-belt system as well as a
rotating tool used to mimic an industrial process. This device also comes equip with sensors so that the progress
of items travelling across the process line can be monitored. The whole system is connected to the PLC as an

external module via ribbon-cable located above the on-board motor referenced above.

E.4.6 1IKH Didactic Systems PLC Trainer 1200

These large PCBs allow for external devices to be connected to and controlled by both the Siemens S7-1200
and ABB PM564 PLCs which can be mounted to the metal bar which spans across the right side of the board.

This will act as the connection between the PLC and the field devices being used within each experiment.

E.4.7 Windows 7 64bit with Siemens Totally Integrated Automation (TIA)

The initial stages of configuring this environment involved specifying the operating system which would conduct
each of the scans. The first option would be to use a Linux-based system which replicated the virtual machines
used within the IP experiments. This however would not be suitable as the software suite used to push the
S7 logic code onto the Siemens devices (TTA Portal) and the ABB devices (ABB Control Builder Plus) is not
supported on that particular OS. As this was not a viable option, there was a Windows 7 machine available
which already had the relevant software installed and configured. The choice to use Windows is broken down

as follows:

96

e The TTA Portal is a framework developed by Siemens in order to provide a versatile platform on which users
can perform control programming, network configuration, device configuration and system diagnostics all
from the same utility. The TTA Portal allows users to switch SCADA components between online and
offline states, allowing for new code to be commissioned and downloaded to any particular device present
on that network. This software suite will host the logical code which will dictated the activity of the
field devices within these experiments, as well as acting as an interface between the host machine and the
SCADA hardware. As this software is exclusive to Windows machines, a Windows machine will be setup

and configured to perform each test.

e One of the PLCs available for testing is part of Siemens’ SIMATIC S7 range, meaning that the code being
executed on these devices is programmed by Step7 software. This emphasizes the need for the TIA Portal

and the Windows host.

e Windows is an operating system which supports a number of the tools used within the IP experiments
conducted on the Netkit network. However, Windows does not yet support the use of Zmap, the WAN
scanner used in the previous IP experiments. Although this means that the WAN scanning capability is
not able to be tested against the SCADA devices, during the execution of the IP tests, it was noted that
both Zmap and Nmap function in very similar ways, despite the use of ICMP to detect hosts on a network
differs, meaning that the choice to exclude Zmap from testing will not drastically impact the results of
this experiment. Windows also supports Tshark, which will be the tool used to capture the traffic between

the host machine and the PLCs.

E.4.8 Windows 7 64bit with ABB Control Builder Plus & CoDeSys 2.2.0

In order to execute the control code of the ABB PLC, the ABB Control Builder needed to be present on the
host machine. The control builder allows users to develop logic ladders and control code which can then be
compiled, error checked and then downloaded onto a series of ABB automation products. As one of the test PL.C
being used within these experiments is an ABB PM564 PLC, this software suite will ensure that compatible
and stable code can be executed on that particular device. The choice to use a Windows 7 operating system
follows on from the requirements set by the Siemens PLC. At the time these experiments were conducted, there

only operating system capable of running the Control Builder Plus tool was Windows.

E.4.9 Laptop Running a Linux-Based Operating System (Ubuntu 16.04 LTS)

A Linux laptop is needed for these experiments in order to conduct the Zmap scanning experiments. At the

time of these experiments there was no stable version of Zmap available for Windows 7 machines.

E.5 Design and Setup

This section provides details about the design of the SCADA experiments and configuration of the hardware

and software.

97

E.5.1 Siemens S7-1200

The S7-1200 allows for a SIMATIC KTP HMI touch-screen panel to be integrated into the SCADA system.
This can be used for basic operator control and monitoring tasks. Both of these Siemens devices are fully
configurable through the use of the TTA Portal and can be connected together or setup independently via TIA.
The HMI can be used to represent a field device as it can be directly connected to the output pins on the micro

PLC (S7-1200). The following figure shows the S7-1200 PLC as well as the board housing the PLC and field

devices:

(a) The Siemens S7-1200 PLC with the motor and HMI (b) The S7 PLC and HMI screen
connection outlined

Figure 33: The Siemens S7-1200 PLC and HMI setup

Here, the S7-1200 has been connected to a large PCB which provides a connection to multiple field devices. The
highlighted areas show the field devices which will be monitored throughout these experiments. This includes
the bidirectional motor and the connection to the KTP HMI. These figures also show the HMI attached to the
PLC via the PCB shown above. The HMI is displaying a system monitoring UI which has been pushed to the
device via TIA Portal.

With the PLC attached to the PCB, there needs to be a connection between the PLC and the Windows machine
running both the TIA suite as well as the network scanning and sniffing tools. As referenced earlier, the S7-1200
comes with a PROFINET /Ethernet interface as standard, without the need for any expansion or additional
modules. With an Ethernet cable connecting the PLC and the host Windows machine, the following figure
shows the entirety of the SCADA setup:

98

SCADA Network 1

Siemens KTP400 Basic HMI

Windows Host Machine

Siemens S7-1200 PLC

\\
Peg>~
8 ~_

CAT 5 Ethernet Connection

On-Board Motor

S

Figure 34: A topology showing the Siemens S7-1200 PLC network setup

On execution of each scan the motor will be running at a medium speed, whilst the HMI is also connected to the
PLC, in order to detect any changes to the display or possible loss of connection. The choice to connect both a
motor and a HMI device to the PLC was made so that a realistic setup could be tested against. Having both a
HMI and a physical moving device gives a true representation of the different types of output devices which may
be present on an operational SCADA network. Due to the resources available at the time of the experimentation,

the experiment does not facilitate the testing of sensors which may exist within modern SCADA systems.

E.5.2 Running the Step7 Code

In order to ensure that the PLC had operational code running during the course of each scan, a program needed
to be created and downloaded to the PLC before any experiments commenced. Firstly, a new Step7 project
was created using the TTIA Portal. On opening the TIA Portal, the S7-1200 PLC was connected to the host
machine using a CAT 5 Ethernet cable. From there, the PLC could be detected using the Portals hardware
detection service. In order to gain all the relevant information about the PLC used within these experiments,
the interface used to detect the PLC was set to “eth0”. Once the discovery interface had been defined, the host
machine began to search for any PLCs or HMIs sitting on the local network. Once the S7-1200 had been found,
a graphical interface allowed for the configuration of not only the logic behind the physical I/O pins, but also
the details about the devices network address and any associated modules. This graphical interface allowed for
a block of control code to be written and assigned to the addresses of the physical pins located on the PLC.
The figure below shows the graphical representation of the S7-1200 PLC and the logic assigned to several of the
I/0O pins:

99

B ot S
Bk tthe: "Mkt Pogam Seep (k) A

Commarn

i
¢

i
H
£8
sf

Figure 35: A figure showing a section of the S7 control code on the TIA Portal

The logic shown in the figure above provides the necessary code which will allow the small field device (motor)
to be turned on and off via the PLC. Here, the input pin at address “%I0.0” has been assigned to control the
state of the device behind pin “%Q0.3” as well as the device behind “%Q0.1”. The combination of having both
“%Q0.3” and “%Q0.1” in an ON state in turn causes the motor to spin. This code will be pushed onto the
PLC before every scan is executed.

The following figure shows the same pins on the physical device:

K4

©

+
v
o
1
0
4
2
3
A

A A NG Aa
M99

Figure 36: The I/O ports on the Siemens PLC being used to control the motor field device

Once this logic had been created, it was then pushed onto the device. In order to do this, the host machine

100

established a connection with the PLC using TCP port 102. Once this connection has been made, the logic
is then downloaded locally to the PLC. This means that the functionality of the PLC should not alter until
changes are pushed to, and then downloaded to the device. In order to test that the logic code has successfully
uploaded, switch zero was activated, which in turn caused the motor to power-up. This accompanied by several
green LEDs above each pin confirmed that a signal was being passed through the PLC to the field device

(motor).

E.5.3 ABB PM564 PLC

The ABB PM564 has been mounted onto a PCB which allows for different field devices to be connected to the
PLC’s logical processor. Unlike the Siemens S7 setup, this SCADA system does not have an integrated motor
which can act as a field device. However, this device has been configured so that the host machine can act as
a fully-functional HMI, allowing the user to control the actions of the PLC, and thus the field devices, through
the use of an interface (see [Figure 37)). The original code was used to control a remote, bidirectional fan. As the
fan is not available, the actions of the field devices can be shown by a series of LEDs on the PCB. These will
be monitored in order to deduce whether the behaviour of the field devices is being altered during the process

of a network scan. The figures below show the physical setup of the ABB PLC system:

Wed 08 har 2017 123604
RLIN

AUTOMATT MODE ON
RIGHT

il b ik .“
(a) The ABB PM564 PLC with an Ethernet connection (b) The HMI interface configured to run on the host ma-
chine

Figure 37: The ABB PLC and HMI setup

The ABB PLC has been connected to the host Windows 7 machine via a CAT5 Ethernet connection, the same
method used on the S7 device. This connection allowed for the HMI software to interact with the PLC once
the logic code had been downloaded and executed. As seen in the two figures above, the active LED on the
PCB corresponds with the “Right” directional button located on the HMI interface. A full representation of

this network is shown within the following topology:

101

SCADA Network 2

Windows Host Machine/Human-
Machine Interface
ABB PM564 PLC

CAT 5 Ethernet Connection

DS

Figure 38: A topology showing the ABB PLC network setup

When each network scan is executed, the HMI will be switched to run in its “automatic mode”. Once set,
the PLC will alternate the direction of the field devices which will be represented by LEDs “D00” and “D01”
(see [Figure 37). Due to the resources available at the time of this experiment, no further field devices will be

connected to the ABB and therefore will not be exposed to any form of network scanning.

E.5.4 Running the ABB Control Code

The logic code which will be ran on the ABB PLC during each experiment was written in ABB’s “CoDeSys”

format and compiled within ABB Control Builder Plus. The code (subsubsection E.5.4]) allows for the user

to control a remote bidirectional fan connection to the PLC via a HMI front-end present on the host machine
(Figure 37)). The code is pushed to the PLC through the use of a TCP connection established by a host machine
running the ABB Control Builder Plus software. Similar to the Siemens S7 setup, the ABB software compiles
the code, creates a connection with one or multiple SCADA devices and then pushes the code onto the PLCs
CPU. Once downloaded, the logic can then be ran either via the switches located on the PCB or through the

HMI screen on the host device.

102

Variable Mapping | Channel Address Type Unit | Description
=-[_J Digital + analog inputs

= @ Inputs 0-7 %%1E4000 BYTE Digital inputs 0-7
& 100_RUN " Input 0 % D¥4000.0 BOOL Input 0
@ I01 LEFT 4 Input 1 95, Dé4000.1 BOOL Input 1
@ I02_RIGHT @ Input 2 % I¥4000.2 BOOL Input 2
@ 103 2 Input 3 % IN4000.3 BOOL Input 3
@ 104 @ Input 4 % I¥4000.4 BOOL Input 4
@ 105 2 Input 5 % I¥4000.5 BOOL Input 5
npu o , igital inpu
] Input AIO Y I¥4000.6 BOOL Digital i t AID
npu o , igital inpu
@ Input AT1 %% I¥4000.7 BOOL Digital i t AT1
nterrup o nterrup
R Int: t % I1B4001 BYTE Int: t
nalog inpu o nalog inpu
A Analogi t0 %eIN2001 INT Analogi t0
nalog inpu o nalog inpu
R Analogi t1 YeIW2002 INT Analogi t1
=-[d Digital + analog outputs
ETA | Qutputs 0-5 %L B4000 BYTE Digital outputs 0-5
nalog outpu o nalog outpu
K@ Anal tput 0 e QW2001 INT Anal tput 0
=3 PWM
R State byte PWM 2 % I1B4040 BYTE PWM 2 - State byte
A State byte PWM 3 % IB4041 BYTE PWM 3 - State byte
i Control byte PWM 2 %L B4040 BYTE PWM 2 - Control byte
, frequency J cycle time o - Frequency [Cycle time
) PWM 2, f [cycle ti %L QW2021 WORD PWM 2 - F [Cycle ti
, duty cycle f duty time o - Duty cycle / Duty time
i PWM 2, duty cycle / duty ti %L OW2022 WORD PWM 2 - Duty cycle / Duty ti
i Control byte PWM 3 %L E4046 BYTE PWM 3 - Cantrol byte
; frequency / cycle time o - Freguency [Cycle time
i PWM 3, F [cycleti %L OW2024 WORD PWM 3 - F | Cycleti
, duty cycle f duty time o - Duty cycle f Duty time
) PWM 3, duty cycle [duty ti % QW2025 WORD PWM 3 - Duty cycle / Duty ti
=-[_4 Fast counter
A Actual value 1 %I101015 DWORD Actual value 1
A Actual value 2 %%ID1016 DWORD Actual value 2
4 State byte 1 % IB4068 BYTE State byte 1
State byte 2 %, 154063 BYTE State byte 2
i Start value 1 %%0Q01015 DWORD Start value 1
i End value 1 %%QD1016 DWORD End value 1
i Start value 2 %LQD1017 DWORD Start value 2
i End value 2 %%Q0D1018 DWORD End value 2
i Control byte 1 %L B4076 BYTE Control byte 1
i Control byte 2 %LQE4077 BYTE Control byte 2

Figure 39: A section of the ABB control code shown in ABB Control Builder Plus

When power is sent through output pin “D00” the field device spins anticlockwise and the left LED turns on.
When power is sent through the “D01” pin, the field device spins clockwise and is accompanied by the right
LED. The status of these LEDs will be used to monitor the behaviour of the possible field devices when each

scan is being executed.

E.6 Obtaining the Results

Before each experiment is conducted, a connection between the TTA Portal/Control Builder Plus and the PLC
will be established and the logic code referenced above will be downloaded to the device. The device will also
be powered on and off before each experiment. Following these two prerequisites ensured that the code being
executed during each scan would be the same throughout each experiment. Restarting the machine reverts any
of the changes made by the execution of a network scanner. Once the PLC has been restarted and the logic
downloaded, the field devices will be activated and the HMI will be connected to the PCB. Any changes made
to either the PLC or any of the connected devices signifies the effects of the network scanners/sniffers. As well
as observing the behaviour of the SCADA system, the passive packet capture tool Tshark will also be ran on
the host machine in order to capture the traffic being sent from the host to the PLC. This has been done in

order to provide technical explanations to any of the results yielded from the experiments.

103

E.7 Expected Outcomes

Using the information obtained from both the network technologies research as well as the results yielded from

the IP scanning experiments, the following assumptions can be made about the results of the SCADA tests:

e As the scanners previously tested are aimed at gathering information about devices using IP protocols,
executing these tools against PL.Cs which communicate using Ethernet should present similar data as the
machines present on the virtual IP network. Enabling a web server on the S7-1200 or the ABB PM564

should return similar results to the HT'TP server configured in the previous set of IP experiments.

e If the Ethernet connected devices do not communicate through the use of the TCP or UDP protocols,
the packets being transmitted by the host machine will not be supported by the ports open on the target
devices. This could result in either the attempted parsing of this traffic, which could alter the CPU
usage of the PLC, meaning that the CPU may allocate more resources towards processing the data being
received through the network over the existing control code being ran. The other possible outcome is that
the PLC does not recognise the incoming TCP/IP data as a valid input, therefore the packets could be
dropped by the target devices.

e The devices communicating on a serial network will be using a different set of layer 1 (physical layer)
protocols such as Modbus, S7Tcomm or DNP3. This means that the low-level network framing used by the
scanners to send data will not be recognised through a serial/analogue connection. This could cause the

same results as previously discussed: overloading the CPU or dropping the IP packets.

e Passive network sniffers do not require data to be sent to the target devices. Because of this, as long as
the host machine and the target PLC are on the same local network, communicating via a peer-to-peer

connection or a hub, all packets travelling across the network should be captured.

e Dependent on the passive sniffer being used, there may not be a capture engine or packet dissector which

supports either a serial interface or the ability to capture the data travelling across it.

These assumptions will be taken into consideration when discussing the results drawn from all of the SCADA

experiments.

E.8 Execution of Experiments: Siemens S7-1200

This section details the experiments conducted against the Siemens S7-1200 PLC.

E.8.1 Experiment 1: Nmap 2.8

Nmap was chosen for these experiments due to its reoccurring presence within multiple sources referenced within
the literature review section of this project, as well as having a large set of capabilities for scanning different
types of networks. The results obtained from the previous IP experiments provided an insight into how Nmap
used TCP packets in order to gain information about the machines it targeted, and how these may not be

suitable for use against a SCADA network.

104

E.8.1.1 Nmap Ping Sweep The first scan conducted against the SCADA system was a SYN scan, which
aimed to identify active hosts on the local network. The same scan was conducted on the virtual IP network

used in the previous set of experiments, on which it successfully identified the active IP addresses of each subnet.

In order to execute this scan, the logic code to control the field devices needed pushing onto the PLC. To do
this, the TTA Portal needed to establish a connection with the PLC, otherwise known as the “online state”. To
do this, the PLC was selected from the device list within the TTA Portal. Once the device had been selected,
the “go online” button located within the menu-bar became visible. Once pressed, the host machine connects
to the remote device through the use of a TCP connection on remote port 102. Once the TCP connection has
been established, the code can then be directly downloaded to the PLC and then ran once all the code has been
received. The CPU within the PLC is then put into run mode and the code will begin to function. In order to
test that the code had been successfully downloaded onto the PLC, the switch at address “%I0.0” was put into

the on position. The motor began to spin, signifying the code was working.

Once the field device was active, the first Nmap scan was ran against the PLC. The syntax of the Nmap

command was as follows:
"nmap -sP -r 192.168.0.* -e ethO > nmapl.txt”

The “-sP” method of scanning sends TCP SYN packets to the range of IP addresses specified within the com-
mand. In this case, all the machines on the 192.168.0.0/24 subnet will be scanned. The “r” flag instructs
Nmap to scan the ports consecutively. The “-e” flag dictates which interface on the host device should be used
to send each packet through. In this case, the ethO interface represents the Ethernet interface connecting the
host machine and the PLC by a single Ethernet cable. Lastly, the “>” operator sends all the output of the

Nmap scan into a text file, the name of which represents each unique scan.

On execution of this scan, both the motor and the HMI remained stable. In addition to this, Nmap was able
to complete its scan without any interruption or errors, providing a text file which contained the IP address of

the PLC. The contents of this file are shown below:

Host is up (0.00s latency).
MAC Address: ©0:1C:06:10:A8:5E (Siemens Numerical Control, Nanjing)

Figure 40: The data contained within “nmapl.txt”

Here, the output file shows that Nmap was able to locate the PLC at address 192.168.0.54, which matches the
configuration of the Ethernet interface which can be viewed on the TTA Portal. As well as supplying the IP
address, Nmap is also able to identify the vendor of the device (Siemens Numerical Control, Nanjing, which is
a Siemens factory) alongside the MAC address. Despite supplying this information, there is no overt method of
deducing that the device is a PLC without external research or prior knowledge. The most significant element

of this output file is the fact that Nmap was able to successfully scan the device without effecting the normal

105

operation of either the PLC or the field devices connected to it. To understand how Nmap was able to scan
the PLC without altering its operation, the pcap from the host machine was opened in Wireshark in order to

analyse the traffic being sent to the target device.

A = RE Q&= EF e

N | Apply a display filter ... <38/>

Mo, Time Source Destination Protocaol Length ' Info
333 40.599446 Micro-5t_f2:f@:af Broadcast ARP 42 Who has 192.168.8.547 Tell 192.168.0.207
334 40.600197 SiemensN_1@:a8:5e Micro-St_f2:f@:af ARP 60 192.168.0.54 is at 0@:1c:06:10:a8:5e
335 40.600271 Micro-S5t_f2:f@:af Broadcast ARP 42 who has 192.168.8.567 Tell 192.168.0.2087
336 40.601064 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.8.57? Tell 192.168.9.207
337 40.610993 Micro-5t_f2:f@:af Broadcast ARP 42 Who has 192,168.8.697 Tell 192.168.0.207
338 4e.611e7@ Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.8.707 Tell 192.168.0.2087
339 40.611868 Micro-S5t_f2:f@:af Broadcast ARP 42 who has 192.168.8.717 Tell 192.168.9.207
340 40.612661 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.8.72? Tell 192.168.0.207
341 40.613467 Micro-5t_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.74? Tell 192.168.0.207
342 40.614271 Micro-S5t_f2:f@:af Broadcast ARP 42 Who has 192.168.8.757 Tell 192.168.0.207
343 40.615076 Micro-S5t_f2:f@:af Broadcast ARP 42 Who has 192.168.8.857 Tell 192.168.0.207
344 40.615882 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.0.86? Tell 192.168.9.207
345 40.616682 Micro-5t_f2:f@:af Broadcast ARP 42 who has 192.168.0.87? Tell 192.168.0.207
346 40.617486 Micro-5t_f2:f@:af Broadcast ARP 42 Who has 192.168.8.887 Tell 192.168.0.2087
347 40.618289 Micro-5t_f2:f@:af Broadcast ARP 42 who has 192.168.8.897 Tell 192.168.0.207
348 40.619099 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.0.90? Tell 192.168.0.207
349 40.619902 Micro-5t_f2:f@:af Broadcast ARP 42 who has 192.168.0.92? Tell 192.168.0.207
358 40.628700 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.0.93? Tell 192.168.0.287
351 40.621506 Micro-5t_f2:f@:af Broadcast ARP 42 who has 192.168.8.1837 Tell 192.168.0.207
352 40.622309 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.8.1847 Tell 192.168.8.287
353 40.623112 Micro-5t_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.1057 Tell 192.168.0.207
354 40.623915 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.0.1067 Tell 192.168.0.207
355 40.624719 Micro-5t_f2:f@:af Broadcast ARP 42 Who has 192.168.8.1077 Tell 192.168.0.207
356 40.625519 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.8.1887 Tell 192.168.8.207
357 40.626503 Micro-5t_f2:f@:af Broadcast ARP 42 who has 192.168.0.1187 Tell 192.168.0.207
358 40.627075 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.0.1117 Tell 192.168.0.207
359 40.627880 Micro-S5t_f2:f@:af Broadcast ARP 42 who has 192.168.8.1217 Tell 192.168.0.207

2EA_An_cnos0a ML cmn Ok ENEanE Bemndesnk Ao

an
» Frame 334: 60 bytes on wire (48@ bits), 6@ bytes captured (48@ bits) on interface @
v Ethernet II, Src: SiemensN_10:a8:5e (@@:1c:06:1@:a8:5e), Dst: Micro-St_f2:f@:af (d4:3d:7e:T2:f@:af)
v Destination: Micro-St_f2:fe:af (d4:3d:7e:f2:7f@:af)
Address: Micro-St_f2:f@:af (d4:3d:7e:f2:f@:af)
wevs 2sBy wues wuss wsss sess = LG bit: Globally unigue address (factory default)
wees ane® siws wues suwes sae. = IG bit: Individual address (unicast)
¥ Source: SiemensW_1@:aB8:5e (00:1c:06:18: 5e)
Address: SiemensN_1@:a8:5e (@@:1c:06:18:a8:5e)
wevs 2sBi wuas wues wsss ssess = LG bit: Globally unique address (factory default)
wees ane® siis wues wwes sae. = IG bit: Individual address (unicast)
Type: ARP (8x9806)
Padding:
v Address Resolution Protocol (reply)
Hardware type: Ethernet (1)
Protocol type: IPv4 (@x080@)
Hardware size: &
Protocol size: 4
Opcode: reply (2)
Sender MAC address: SiemensN_1@:aB:5e (@0:1c:06:10:a8:5e)
Sender IP address: 192.168.8.54
Target MAC address: Micro-St_f2:f@:af (d4:3d:7e:f2:f@:af)
Target IP address: 192.168.8.207

Bha bhas A0S A0 A 4992 Tell a00 160 A 00

Figure 41: A pcap segment showing Nmap utilising the ARP protocol

Unlike the -sP scan performed on the virtual IP network in the previous experiment, Nmap utilised Address
Resolution Protocol (ARP) broadcasting in order to detect hosts on the network. The ARP protocol runs on the
top of Ethernet frames using the MAC addresses to associate IP addresses with each individual machine on the
network. In this scan, the host machine sent multiple ARP broadcasts, where each packet would make a request
for each unique IP address in the 192.168.0.0/24 network. The figure above shows the host machine requesting
the MAC address associated with every possible IP address on that network. Once a request has been sent for
192.168.0.54, the PLC then responds with its own MAC address. Using this response, Nmap then uses a set of
dissectors in order to distinguish the manufacturer of the device behind 192.168.0.54. This information is then

presented within the output .txt file. From both the physical observation of the SCADA equipment as well as

106

the data presented by the Nmap output, there was no evidence to suggest that the scanning had a negative or

damaging effect on the SCADA system.

As no changes had been made to either the network or the field devices, the logic code did not need re-

downloading onto the PLC before the next set of experiments.

E.8.1.2 Nmap Service Detection Scan The next Nmap experiment aimed to detect the different services
running on the PLC. On an IP network, this method of scanning sweeps all of the ports available on the target
machine and tries to establish a TCP connection with as many as possible. Once a TCP connection has been
established, the target machine often responds with a banner or data packet in order to share the configuration
information with the host machine. This involves a greater amount of interaction with the target devices than
the previous scan, meaning the PLC will need to receive and supply a larger amount of data. The Nmap

command executed was as follows:
"nmap -sV -r 192.168.0.* -e eth0 > nmap?2.txt”

This scan was conducted in order to gain as much information about the services being offered by the PLC.
However, as the PLC only offers a single IP-based service, a HT'TP server, the scan should not recognise any
other services. This also suggests that any other ports found using Nmap will not be correctly configured to
interpret or parse the incoming packets. The “-sV” flag instructs Nmap to begin probing any open ports in
order to gain information about the services they are running. The “-r” flag instructs Nmap to scan each port
on the target device consecutively. The address space being targeted within this experiment covers every device
within a 182.168.0.0/24 subnet. The -e flag has been used to specify the interface on which the scanning traffic
will be sent down, in this case the Ethernet interface “eth0” has been used. Finally, the “>” operator has been

used to capture all of Nmap’s output into a text file.

On execution of the scan, neither of the field devices being monitored changed their behaviour and continued
normal operation. Nmap was able to complete the service detection scan without any issues or errors, this was
confirmed by the creation of an output file which contained data relating to the SCADA network. This again
shows that despite not having a wide range of TCP services, Nmap is still able to detect the presence of the
PLC. The output file was then opened in order to analyse the information obtained from the scan, the content

of the file was as follows:

Host is up (0.88s latency).

All 1080 scanned ports on 192.168.08.54 are filtered
MAC Address: 00:1C:@6:10:AB:5E (Siemens Numerical Control, Nanjing)

Service detection performed. Please report any incorrect results at https://nmap.org/
submit/ .

........

Figure 42: The data contained within “nmap2.txt” with filtered ports highlighted

107

The contents of this file show that although Nmap was able to detect that the PLC was present on the network,
the scan was unable to disclose any information about any open ports or the services that they may run.
Although a lack of information was expected when running a service detection scan, Nmap failed to discover
a TCP port which is known to be present on the PLC, port 102 used to transport control code from the TTA
Portal onto the PLC. No changes had been made to either the PLC or the host machine which would make
this port unavailable, therefore Nmap’s inability to detect that port was unexpected. Another notable aspect
of these results is the output data highlighted in the figure above. Nmap declared that there were 1000 possible
ports available on the PLC, however, all these ports have been filtered. To gain a better insight as to why these
ports were filtered, the pcap taken from the host machine was opened in Wireshark. The figure below shows

the packet exchange between the host and the PLC:

BT WG Mae 102 100 0 2IlT TolL 100, 100 0. 207
42 who has 192.168.8.2127 Tell 192.168.0.207
42 Who has 192.168.0.2137 Tell 192.168.0.207
Who has 192.168.8.2157 Tell 192.168.0.207
42 Who has 192.168.0.2167 Tell 192.168.0.207
77 WRo has 192.108.0.2367 Tell 192.168.0.207
42 whe has 192.168.8.2377 Tell 192.168.0.207

. - AaL 1
12.892517 Micro-S5t_f2:f@:af Broadcast
517 12.893319 Micro-5t_f2:f@:af Broadcast
518 12.894122 Micro-St_f2:f@:af Broadcast
519 12.894923 Micro-5t_f2:f@:af Broadcast
. BT T2:70 87 Droagcast
521 12.896532 Micro-St_f2:f@:af Broadcast

CEHREEEY
]

Frame 524: 58 bytes on wire (464 bits), 58 bytes captured (464 bits) on interface @
Ethernet II, Src: Micro-St_f2:f@:af (d4:3d:7e:f2:f@:af), Dst: SiemensN_10:aB:5e (P9:1c:86:10:a8:5¢e)
Internet Protocol Version 4, Src: 192.168.8.207, Dst: 192.168.0.54

Source Port: 59788

Destination Port: 1

[Stream index: @]

[TCP Segment Len: @]

Sequence number: @ (relative sequence number)
Aek 1ad I--a

t

Header Length: 24 bytes

Figure 43: A segment of a pcap showing host detection and then a TCP-SYN scan

This figure shows that like the previous host-discovery scan, Nmap continued to use ARP in order to detect
which IP addresses were active on the network. Using this method, Nmap was able to detect that the PLC
at address 192.168.0.54 was an active device. This then allowed Nmap to start sending a TCP SYN packet
to all the ports it deemed present on that device. Although Nmap was instructed to scan each port on the
target device consecutively, some port numbers were not probed, including port 102. The reason for skipping
these ports is unknown, but this could have been a significant factor when discussing the inability to detect
any services on the PLC. The entirety of the pcap file contained TCP SYN packets sent from the host to the
PLC without any form of response, which in-turn does not provide any data to explain how and why the ports
on the PLC were filtered. Again this method of network scanning failed to disrupt any of the equipment from

observation and the network continued to operate correctly once the scan had completed.

108

Again, similar to the previous experiment, as none of the equipment or data had been changed through the

duration of this testing, the logic code did not need to be re-downloaded to the PLC.

E.8.1.3 Nmap UDP Scan As the previous two experiments relied on using TCP packets in order to gather
information about the target devices, the next experiment utilized the User Datagram Protocol (UDP). Unlike
TCP, UDP is a connectionless method of communication, meaning that data is sent to a port without having to
perform a 3-way handshake to establish a connection. A UDP packet is simpler than a TCP packet, containing
less data within the header and does not use sequencing in when sending and receiving data. A UDP packet

can be represented as shown:

Source Port | Destination Port | Length | Checksum | Data
2 Bytes 2 Bytes 2 Bytes 2 Bytes 65,535 Bytes

Table 14: A breakdown of a UDP packet

This means that unlike a TCP connection, UDP will send data to the specified port regardless of the service
running behind it, as there is no flow control or connection verification. The destination machine will be unable
to slow down the amount of data being received if a UDP port is left open. As there are a large number of
supposedly filtered ports available on the target PLC (as discovered from the previous experiment), sending
UDP packets at a fast rate could cause the CPU within the PLC to allocate more time to processing the
incoming UDP traffic rather than carrying-out the downloaded control code. In order to get Nmap to facilitate

a UDP scan, the following command was executed:
"nmap -sU -sC 192.168.0.%* -e ethO > nmap_udp.txt”

The “-sU” flag instructs Nmap to use UDP in order to detect any open ports on the target devices. The “-sC”
flag activates Nmap’s script scan feature, on which Nmap will use a suite of Nmap Scripting Engine (NSE) scripts
in order to extend the capability of Nmap and gain more information about the target devices. The default
“-sC” flag used in this command executes a series of scripts which have been marked with the “default” tag. A
list of the default scripts can be found at: https://nmap.org/nsedoc/categories/default.html. The reason
for choosing this method of scanning was to add another element of intrusiveness to the scan, meaning more
data about a large set of foreign protocols (to the PLC) would possibly be parsed by the device. The address

“

range covers every device that could be configured on a 192.168.0.0/24 subnet and the “-e” flag directs the scan

traffic through the “eth0” Ethernet interface. The output as always is piped to a text file using the “>” operator.

The scan was able to execute successfully and all of the arguments were valid. Unlike the previous SCADA and
IP experiments, the UDP scan took a longer amount of time to complete. Throughout the extended duration
of the UDP scan, none of the field devices changed in behaviour from an observational point of view. The scan
was able to complete successfully without any errors and provided a populated output file. The figure below

shows the result of the UDP scan and possible data to support why the PLC continued to operate normally.

109

https://nmap.org/nsedoc/categories/default.html

.....

Nmap. scan report for 192.168.0.54

Host is up (0.8@0s latency).

Not shown: 999 open|filtered ports

PORT STATE SERVICE

161/udp open snmp

| snmp-sysdescr: Siemens, SIMATIC S7, CPU-1200, 6ES7 214-1AG31-0XB@, Hw: 1, FW: V.3.0.2,
SZVCDYHeR27696

|_ System uptime: 3h29m46.80s (1258680 timeticks)

MAC Address: @0:1C:06:10:A8:5E (Siemens Numerical Control, Nanjing)

ymgp_done: 256 IP addresses (1 host up) scanned in 76.14 seconds

Figure 44: The data contained within “nmap_udp.txt”

The information shown within this output file appears to be more informative than the information provided
by both of the TCP scans used in the previous experiments. Not only did the UDP scan give detail such as
the MAC Address and the name of the device’s vendor, the UDP scan also revealed the make and model of the
PLC, as well as the type of processor within the device and the current firmware it was running at the time of
execution. This data was obtained through the probing of UDP port 161 which facilitates the Simple Network
Message Protocol. This protocol is used to provide information about devices on an IP network, their current
state as well communications channel on which a network administrator can send data to modify or assign a
new value to the recipient device. In order to analyse how this method of data acquisition is executed, the
pcap taken from the host machine was opened and analysed. In order to find the specific conversation, a filter
was applied in Wireshark which only showed conversations using port 61 and port 161 (the ports that support
SNMP). The filter entered is shown below:

?udp.port == 161 —— udp.port == 61”

This filter displayed the following packets:

110

L | udp.port == 161 || udp.port == 61

No. A Time Source Destination Protocol Length Info
2047 40.898012 192.168.08.207 192.168.8.54 SNMP 84 get-next-request 1.3.6.1.2.1.25.4.2
2048 40.898037 192.168.0,207 192.168,8,54 SHMP 85 get-next-request 1.3.6.1.4.1.77.1.2.27
2049 40.898058 192.168,0.287 192.168.8.54 SHMP 85 get-next-request 1.3.6.1.2.1.6.13.1.1
2050 48.898084 192.168.8.207 192.168.0.54 SHMP 85 get-next-request 1.3.6.1.2.1.25.6.3.1
2851 48.898189 192.168.0.207 192.168.08.54 SHMP 83 get-request 1.3.6.1.2.1.1.1.9
2052 49.898134 192.168.0.207 192.168.0.54 SNMP 84 get-next-request 1.3.6.1.2.1.2.2.1
2853 4@.898157 192.168.8.207 192.168.0.54 SNMP 89 get-next-request 1.3.6.1.4.1.2011.18.2.12.1.1.1
2055 48.898205 192.168.0,207 192,168.0.54 SHMP 85 get-next-request 1.3.6.1.4.1.77.1.2.25
2856 41,113356 192.168.8.54 192.168.0.207 SHMP 87 get-response 1.3,6.1.4.1.77.1.2.3.1.1
2057 41.114653 192.168.98.54 192.168.8.207 SHMP 84 get-response 1.3.6.1.2.1.25.4.2
2858 41.116668 192.168.0.54 192.168.0.207 SNMP 85 get-response 1.3.6.1.4.1.77.1.2.27
2859 41.118629 192.168.0.54 192.168.0.287 SNMP 91 get-response 1.3.6.1.2.1.6.13.1.1.0.0.9.8.102
2060 41.119947 192.168.8.54 192.168.8.287 SHMP 85 get-response 1,3.6.1.2.1.25.6.3.1
1. . 8. . .8, get-response ! 6.1.2.1
2062 41.123539 192.168.8.54 192.168.0.207 SHMP 87 get-response 1.3.6.1.2.1.2.2.1.1.1
2063 41.124779 192.168.0.54 192.168.08.207 SHMP 89 get-response 1.3.6.1.4.1,2011.18,2.12.1.1.1
2064 41.126784 192.168.8.54 192.168.8.207 SHMP 85 get-response 1.3.6.1.4.1.77.1.2.25
2066 41.330376 192.168.0.207 192.168.0.54 SNMP 85 get-next-request 1.3.6.1.2.1.7.5.1.1

Frame 2061: 169 bytes on wire (1352 bits), 169 bytes captured (1352 bits) on interface @
Ethernet II, Src: SiemensN_18:aB8:5e (0@:1c:@6:1@:a8:5e), Dst: Micro-St_f2:f@:af (d4:3d:7e:f2:f0:af)
Internet Protocol Version 4, Src: 192,168.8.54, Dst: 192.168.8.287
User Datagram Protocel, Src Port: 161 (161), Dst Port: 49972 (49972)
Simple Network Management Protocol
version: version-1 (@)
community: public
v data: get-response (2)
v get-response
request-id: 28428
error-status: noError (@)
error-index: @
v variable-bindings: 1 item
» 1.3.6.1.2.1.1.1.8: 5369656d656e732c2053494d415440432053372c20435@55. ..

4YvYTY UV

Figure 45: A segment of a pcap showing only SNMP packets

000h d4 3d 7e f2 f@ af 00 1c 06 10 a8 5e 08 00 45 00 .=~..... ..."..E.
0010 ©0 Sb 00 0a 00 00 1e 11 19 f3 c@ aB 0@ 36 cO® @Bvues sauaabes
0P20 00 cf 00 al c3 34 00 87 f4 44 30 7d 02 01 00 044.. .DO}....
0Wh30 @6 70 75 62 6C 69 63 a2 7@ 02 @2 6f Oc 02 @1 @0 .public. p..0....
0040 92 01 00 30 64 30 62 @6 08 2b 06 01 02 01 01 @1 ...0dOb. .+......
0050 00 04 56 53 69 65 6d 65 6e 73 2c 20 53 49 4d 41 ..VSieme ns, SIMA
0060 54 49 43 20 53 37 2c 20 43 50 55 2d 31 32 30 30 TIC S7, CPU-1200
0e70 2c 20 36 45 53 37 20 32 31 34 2d 31 41 47 33 31 , 6ES7 2 14-1AG31
0080 2d 30 58 42 30 2c 20 48 57 3a 20 31 2c 20 46 57 -0XBO, H W: 1, FW
0090 3a 20 56 2e 33 2e 30 2e 32 2c 20 53 5a 56 43 44 : V.3.0. 2, SZVCD
0ba® 59 48 30 30 32 37 36 39 36 YH002769 6

Figure 46: The raw data shown within a SNMP packet

Here, the most notable traffic can be seen frame numbers 2051 and 2061. Here, the host machine makes an
SNMP request to the PLC (2051) to which the PLC then replies with a string of data represented in hexadecimal
form (2061). The line of hex can be seen above, under the “variable-bindings” data field. The figure below
shows that if this hex string is converted into ASCII values, you are able to view the information sent from the

PLC.

shows the in-built hex viewer displaying the ASCII decoded values of the data sent from the PLC to

the host machine. The data supplied here cross-references with the information supplied in the output file.
The choice to change the scan from TCP to UDP was unsuccessful in effecting the operation of the SCADA

setup. Although a larger amount of data was sent to the PLC, the field devices connected did not alter their

behaviour. This suggests that it is not the data being sent to the PC which could cause the issue, but instead,

111

the CPU of the PLC is not being overloaded with the both the network activity and the code being repeatedly
executed. As PLCs run their control code within a real-time environment, any form of disruption to this code

has real-time effects.

E.8.1.4 Nmap Conveyer-Belt Scanning As a result of the UDP scan proving to be ineffective at disturb-
ing the operation of the SCADA network, a new hypothesis was formed (see below). Does the increase in field
devices coupled with the execution of a network scanner impact the behaviour of the SCADA equipment? This
hypothesis was formed due to the absence of data which suggested that network scanners have the capability
to harm SCADA devices or whole SCADA networks. The current SCADA setup consists of a basic ladder-logic
program which simply controls the state of a single motor. This type of program requires very little CPU usage,
whilst the time-critical nature of this type of field device (small motor) is not as significant as other possible field

devices such as sensors, actuators or centrifuges. In order to test this hypothesis, a new, more complex SCADA

system must be setup and scanned. In order to elaborate on the existing setup, the following components were

added to the PCB:

o OEew, L

(a) The conveyer belt component (b) The ribbon cable responsible for connecting the con-
veyer system

Figure 47: The conveyer-belt field device

This setup aims to investigate a new hypothesis: Does adding more devices to the PLC and thus
executing more complex code have a significant impact in the systems behaviour when being

targeted by a network scanner?

This setup includes a larger amount of field devices which depend on time-critical code execution. The conveyor-
belt system shown above provides an additional motor system responsible for placing boxes onto the conveyor,
two sensors which monitor the progress of the boxes across the whole system, as well as a mock-drilling motor
which spins for a set amount of time. Having all of these additional field devices, as well as the existing motor
and HMI, requires more complex control code. This will result in the CPU having to allocate a greater amount
of resources to processes the field device logic, rather than responding to network traffic. This conveyor-belt
system was connected to the PCB via the bus located above the existing motor. Once attached, the pre-written
logic for this setup was pushed to the PLC using the same method as the previous code, through the of the
TTA Portal. Once this code had been downloaded and executed onto the PLC, all the motors began to run and

the HMI displayed a monitoring screen. This represented the normal operation of the network and would be

112

observed during the course of each scan.

The first scan executed against the newly configured system was identical to the Nmap ping-sweep scan per-

formed on the first SCADA setup. The command executed was as follows:
"nmap -sP -r 192.168.0.* -e eth0 > nmap_convyr_1.txt”

On execution of this Nmap scan, there were no changes to the operation of the new SCADA system. The scan
was able to complete successfully without any errors and both a network capture and output file were created.
On examining both the packet capture and output file, Nmap used the same TCP SYN scanning method as
before, as well as supplying identical information to the previous ping-sweep experiment. This can be seen

within the figure below:

47 4.216666 Micro-5t_f2:f@:af Broadcast ARP 42 Who has 192.168.0.67 Tell 192.168.0.207
48 4.217467 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.77 Tell 192.168.0.207
49 4,218267 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.8?7 Tell 192.168.0.207
50 4.219074 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.97 Tell 192.168.0.207
51 4.,219877 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.0.187 Tell 192.168.0.207
52 4.220679 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.9.117 Tell 192.168.0.207
53 4.221483 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.0.127 Tell 192.168.8.207
54 4.402887 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.17 Tell 192.168.0.207
55 4.418549 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.0.47 Tell 192,168.0.207
56 4.418642 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192,168.0.57 Tell 192.168.0.207
57 4.419476 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.67 Tell 192.168.0.207
58 4.420279 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.0.77 Tell 192.168.0.2087
59 4.421083 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.8?7 Tell 192.168.0.207
60 4.421889 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.97 Tell 192.168.0.207
61 4.422694 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.9.107 Tell 192.168.0.207
62 4.423499 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.9.117 Tell 192.168.0.207
63 4.424307 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.0.127 Tell 192.168.8.207

Figure 48: A segment of a pcap showing Nmap using the ARP protocol for asset detection

No further analysis was conducted as a result of this. As no changes had been made to the PLC, HMI or field
devices, the code did not need to be re-downloaded onto the PLC.

The second scan executed against the conveyor-belt system replicated the service detection scan conducted
within subsubection C.8.1.2. With a more complex set of logic being executed within the PLC and having
attached more field devices, this scan aimed to investigate whether scanning a SCADA device controlling a
larger amount of field devices causes the devices to become unresponsive or behave unexpectedly. The Nmap

command executed was as follows:

"nmap -sV -r 192.168.0.* -e eth0 > nmap_convyr_2.txt”

3

As also specified within subsubsection C.8.1.2 of this document, the “-sV” flag instructs Nmap to perform a

service detection scan using TCP packets to extract data from each of the ports present on any device located

“

on the network. The “r” flag ensures that each port on the target device is scanned consecutively, rather than

«

randomly. Again the interface being used is the Ethernet card at ethO, which is specified using the “-e” flag.

Finally, all output from this scan is written to a text file “nmap_convyr_2.txt”.

On execution of this Nmap command, the scan completed successfully without any errors or malfunctions. From
observation, the conveyor-belt system remained responsive throughout the full duration of the scan and neither

the PLC or field devices appeared to be effected by the scan. On opening the output file, the data obtained

113

from this scan was identical to the data obtained from the previous service detection experiment. This can be
shown within the following segment of the captured network traffic, as well as the text file generated from the

above command:

Starting Nmap, 7.4@ (https://nmap.org) at 2017-03-07 10:1@ GMT Standard Time
Nmap, scan report for 192.168.0.54

Host is up (@.00s latency).

A1l 1000 scanned ports on 192.168.0.54 are filtered

MAC Address: ©0:1C:06:10:A8:5E (Siemens Numerical Control, Nanjing)

Service detection performed. Please report any incorrect results at https://nmap.org/
submit/ .
Nmap, done: 256 IP addresses (1 host up) scanned in 34.04 seconds

Figure 49: The data contained within “nmap_convyr_2.txt”

Am e m(RE Qes=EF S5 EHaaaE
[I [Apply a di.splay filter ... <38/>
Mo, Time Ulce) Desfination o I Leng’t‘h Inf

Figure 50: A pcap showing a TCP-SYN scan

The output file shows that Nmap was able to identify the Siemens S7 PLC at address 198.162.0.54 but, similar
to the previous Nmap experiments, was unable to detect any services running on the network. The pcap file
shows the same method of TCP scanning used within the previous experiments. Conducting a scan on a larger

SCADA system did not show any changes in behaviour or alterations from normal operation.

The final Nmap experiment conducted against the conveyor-belt system focussed on scanning all the UDP ports
present on the PLC. Similar to previous experiments, this scan should test whether sending streams of UDP
data to each port on the target device could have negative effects on a SCADA system. The UDP scan command

is shown below:
"nmap -sU -sC 192.168.0.* -e eth0 > nmap_convyr_3.txt”

As stated within subsubsection C.8.1.3 of this document, in order to initialise the UDP scanning functionality,
the “-sU” flag has been set. Following this, in order to utilise a more intrusive form of scan, the “-sC” flag
was used. This flag executes the default set of Nmap nse scripts found within the Nmap default directory. The

“

Ethernet interface ethO was selected using the “-e” flag. Finally, the output of this Nmap scan will be written

into an output file through the use of the “>” operator.

114

On entering the command, the scan was able to run to completion without any errors and an output file was
created and populated successfully. Through observation of all of the field devices and the PLC, the SCADA
network did not appear to be affected by the UDP scan as normal operation persisted through the entire
duration of the scan. The following output file shows that the Nmap UDP scan was able to identify the Siemens
PLC without disrupting the operation of the system. The following figure shows the data Nmap was able to

obtain:

Host is up (2.00s latency).
Not shown: 999 open|filtered ports
PORT STATE SERVICE

Figure 51: The data contained within “nmap_convyr_3.txt”

The results obtained from this experiment match those yielded from the previous UDP experiment shown within
subsubsection C.8.1.3. Unlike the series of TCP scans performed against the SCADA system, the UDP scan
provides more specific details about the PLC present on the network. The figure above shows that coupling the
UDP scan with the execution of Nmap’s default scripts exposes significant data such as make, model, firmware
version and CPU without causing the system to crash or act unexpectedly. Conducting a UDP scan on a larger,
more resource intensive network appears to have no impact on the operation of the SCADA system. As no
changes had been made to the network from the previous experiment, the control code did not need to be
re-downloaded onto the PLC and the field devices could remain active. The network was ready for the next set

of experiments.

E.8.2 Experiment 2: Zmap 2.1.0

Due to its IPv4 asset detection capability and its similarity with the technology behind the Internet of Things
(IoT) scanner Shodan, Zmap provides an insight into how mass-internet scanners could possibly affect the
devices which control SCADA/ICS systems. The results obtained from the previous IP experiments revealed
that unlike Nmap, Zmap utilises the ICMP protocol in order to perform its asset detection scans. As well as
this, Zmap has been configured and optimised to function on WAN IP networks, therefore these experiments

aim to address how this technology interacts on a SCADA system.

The first Zmap scan aims to test the PLC against a mass ICMP asset detection scan. These types of scans
could be used by either sys admins or possible malicious actors in order to assess which addresses represent an
active host on a larger scale than a LAN or corporate network. This method of scanning does not require the
host and target devices to establish a connection nor does it require large streams of data to be sent across the

network. The first Zmap scan executed against the SCADA setup was as follows:

7sudo zmap -M icmp_echoscan 192.168.0.0/24 -o scada_zmapl.csv”

115

In order to execute this scan, a Linux laptop had to be connected to the SCADA network as there is not cur-
rently supported version for Windows computers. Once the Linux system had been connected to the network
via a CAT5 Ethernet cable straight to the PLC, the command could then be executed. In order to run the
Zmap scan, the tool had to be ran with elevated privileges. This was achieved by prepending “sudo” to the
beginning of the command. On constructing the Zmap command, the “-M” flag specifies which probe module
Zmap should run on execution. The probe chosen for this experiment is the “icmp_echoscan”. From the data
obtained by the IP experiments (see [subsection D.8)), this method of scanning sends ICMP “echo” packets to
each one of the machines within the address-range specified within the Zmap command. Once each individual
echo packet has been sent, Zmap then listens for any ICMP echo responses. These responses represent the active

“

hosts. The address-space being scanned within this experiment is the 192.168.0.0/24 subnet. Finally, the “-0”

flag instructs Zmap to write its output the a .csv file, which has been named to correspond with each unique scan.

On execution of this command, Zmap appeared to run correctly as no errors were reported on the terminal
screen and an output file was successfully created. On inspection of the output file, Zmap had been unable to
locate the PLC residing on the small network. The pcap file captured from the host machine was then opened

and analysed in Wireshark in order to deduce why the scan had failed. The following figure shows the traffic

being sent across the network:

v UUeEE 9Z IOE U 99 9Z: IT08 U 108 5 EquE U=UXE7TU; SEUTU7Y; ESpPUNSE TOUNDT
@. 200485 192.168.8.99 192.168.0.214 (ping) request id=@xb4d9, seq=@/8, ttl=255 response found!)
@.000488 192.168.0.99 192.168.0.154 (ping) request id=0x9645, seq=8/@, ttl=255 response found!)
2.000492 192.168.0.99 192.168.8.45 (ping) request 1id=@xf522, seq=8/@, ttl=255 response found!)
8. 000496 192.168.9.99 192.168.8.74 (ping) request id=@x55e8, seq=0/8, ttl=255 response found!)
0. 000500 192.168.0.99 192.168.8.71 (ping) request id=@xcB@e, seq=@/@, ttl=255 response found!)
@.000504 192.168.0.99 192.168.8.27 (ping) request id=@x504a, seq=8/@, ttl=255 response found!)
@.000587 192.168.0.99 192.168.0.67 (ping) request id=@x@B17, seq=8/8, ttl=255 response found!)

192.168.9.99 182.168.0.54 request id=0x8Pec, seq=0/0@, response found!)

93 @.peees14 192.168.0.99 192.168. 0. 206 ICMP 62 Echo (ping) request 1id=0x@500, seq=0/@, ttl=255 (no response found!)

94 @.0ee518 192.168.8.99 192.168.0.288 ICMP 62 Echo (ping) request id=0x22a9, seq=@/@, tt1=255 (no response found!)

Figure 52: A section of the pcap file showing the transmission of ICMP packets

Here, as expected, Zmap sent ICMP packets to every possible host within the 192.168.0.0/24 subnet in order
to deduce which addresses were active. The highlighted packet shows that Zmap was able to send an ICMP
packet to the PLCs IP address successfully. However, there is no data within this pcap which shows that the
PLC responded to this ICMP request, or that any other method of communication was used in order to respond

to the scan.

E.8.3 Experiment 3: Custom UDP Scanner

The final test conducted against the Siemens PLC aimed at expanding on the use of UDP scanners, not to
gain information about the target device, but to try and disrupt or disable the PLC through a denial of service
attack against the SCADA network. To do this, a custom Python script was constructed. The aim of this script
would be to simply connect to a user-specified IP address and continuously send large UDP packets to every
possible port on the target device until instructed to stop. A copy of this script, as well as documentation as
to how it functions can be found within In order to execute this script, the following command

was entered into the host machine:
?python udp_dos.py”
This command allows python to compile and run the code contained within the “udp_dos.py” script (see

pendix C).

116

This tool was executed and ran continuously against the PLC for 5 minutes. During that time, there appeared
to be no change in behaviour of both the field devices or the PLC. In order to ensure that the UDP scanner was
functioning correctly and was able to identify the target machine, the pcap taken from the host machine was

opened and analysed within Wireshark. The following pcap shows the traffic generated from the python script:

8 5.765925 192.168.0.207 192.168.0.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=8, ID=51da) [Reassembled in #12]

9 5.765926 192.168.90.207 192.168.08.54 IPvd 1514 Fragmented IP protocol (proto=UDP 17, off=148@, ID=51da) [Reassembled in #12]
1¢ 5.765927 192.168.0.207 192.168.92.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=2968, ID=5lda) [Reassembled in #12]
11 5.765929 192.168.8.2087 192.168.98.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=4448, ID=51da) [Reassembled in #12]
12 5.765938 192.168.0.207 192.168.0.54 uoP 672 55489 - 1@ Len=6550

13 5.766938 192.168.0.2087 192.168.9.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=@, ID=51db) [Reassembled in #17]

14 5.766939 192.168.0.2087 192.168.9.54 IPva 1514 Fragmented IP protocol (proto=UDP 17, off=1488, ID=51db) [Reassembled in #17]
15 5.76694@ 192.168.9.267 192.168.9.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=296@, ID=51db) [Reassembled in #17]
16 5.766941 192.168.0.207 192.168.0.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=4440, ID=51db) [Reassembled in #17)
17 5.766942 192.168.0.207 192.168.92.54 uop 672 55489 -~ 11 Len=65590

18 5.767¢00 192.168.0.207 192.168.0.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=8, ID=51dc) [Reassembled in #22]
19 5.767e@1 192.168.8.2087 192.168.8.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=1488, ID=51dc) [Reassembled in #22]
20 5.767@82 192.168.0.207 192.168.0.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=296@, ID=51dc) [Reassembled in #22]
21 5.767e82 192.168.0.2087 192.168.9.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=4448, ID=51dc) [Reassembled in #22]
22 5.767@83 192.168.0.2087 192.168.08.54 uop 672 55489 - 12 Len=6550

23 5.767525 192.168.8.2087 192.168.98.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=8, ID=51dd) [Reassembled in #27]
24 5.767525 192.168.0.207 192.168.0.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=1480, ID=51dd) [Reassembled in #27)
25 5.767526 192.168.90.207 192.168.08.54 IPvd 1514 Fragmented IP protocol (proto=UDP 17, off=296@, ID=51dd) [Reassembled in #27]
26 5.767527 192.168.0.207 192.168.0.54 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=4449, ID=51dd) [Reassembled in #27]

Figure 53: A segment of a pcap file showing the large Python UDP packets

This figure show that the UDP packets were being sent to the correct address as well as being sent to every
port on the PLC. However, there is no data here to show that the PLC had responded to the UDP traffic or
that the UDP traffic had caused the PLC to fail or operate incorrectly.

This concludes the experiments performed on the Siemens S7-1200 PLC.

E.9 Execution of Experiments: ABB PM564

After conducting experiments on the Siemens S7-1200 PLC, the SCADA systems was then reconfigured to
operate the ABB PM564 PLC and the corresponding field devices . The aim is to replicate the exact
same network scans conducted against the previous PLC in order to determine whether the results of the last
experiment were unique to that specific device. In order to begin these experiments, the ABB PL.C was connected

to the host machine via a CAT5 Ethernet cable. Once this had been implemented, the ABB Controller Builder

Plus software was opened on the host machine. Here, the control code (see [subsubsection E.5.4]) was compiled

and downloaded onto the PLC. In order to test that the code was operating correctly, the run button on the
HMI interface was pressed (Figure 37). Once pressed, the two LEDs began to turn on and off intermittently.
This showed that the code was working as desired and that the system was ready for the experiments to take

place.

E.9.1 Experiment 1: Nmap 2.8

E.9.1.1 Nmap Ping Sweep The first experiment conducted on the ABB PLC uses Nmap in order to
facilitate a TCP SYN sweep of the SCADA network. This type of scan is used as a mechanism for discovering
active hosts within a given address space. This method of network scanning does not require the host to
establish a connection with the target devices, nor does it consist of sending large streams of data to the target

devices. The Nmap command executed against the ABB PLC was as follows:

"nmap -sP -r 192.168.0.* -e eth0 > abb_nmapl.txt”

117

The command entered here follows the same syntax as the command used within the previous Nmap experiments
on the Siemens S7 PLC. This Nmap command has been created in order to conduct asset detection on the
192.168.0.0/24 subnet and all results of this scan are to be written to the “abb_nmapl.txt” file. Once this
command had been executed, the scan was able to complete without any errors and an output file was created
successfully. On observation of both the PCB and the HMI present on the host machine, the network scan
did not appear to have any effect on the operation of the SCADA system. In order to confirm that the scan
had functioned correctly, the output file was opened and the information inside was cross-referenced with the

configuration of the SCADA system.

Host is up (@.0@0s latency).
MAC Address: @0:24:59:0A:38:45 (ABB Automation products GmbH)

Figure 54: The data contained within “abb_nmapl.txt”

The data presented within shows that Nmap was able to discover the ABB PLC on the network
without disrupting the behaviour of the PLC, the HMI or the field devices being controlled and monitored.
Like the previous scan performed on the Siemens PLC, the “-sP” scan does not provide a large amount of

information about the PLC other than the IP address, MAC address and the manufacturer associated with the

second portion of the MAC address (see [subsubsection C.2.3).

96 3.649520 MICro-5t_t2Z:T@:iar Broadcast ARF 42 Who has I9Z.168.@.17 Tell 192, 168.0.207
97 3.857748 Micro-S5t_f2:f@:af Broadcast ARP 42 who has 192.168.0.47 Tell 192.168.9.207
98 3.85780@2 Micro-S5t_f2:f@:af Broadcast ARP 42 who has 192.168.8.57 Tell 192.168.0.207
99 3.858682 Micro-St_f2:f@:af Broadcast ARP 42 wWho has 192.168.0.67 Tell 192.168.0.207
1@ 3.859486 Micro-5t_f2:f@:af Broadcast ARP 42 Who has 192.168.8.77 Tell 192.168.0.207
101 3.068289 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.8.87 Tell 192.168.0.207
102 3.061096 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.0.97 Tell 192.168.0.207
103 3.861899 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.08.187 Tell 192.168.0.287
104 3.8627@3 Micro-5t_f2:f@:af Broadcast ARP 42 Who has 192.168.0.117 Tell 192.168.0.2087

AbbAutom_@a:38:45 Micro-5t_f2:f@:af

106 3.863540 Micro-St_f2:f@:af Broadcast ARP 42 Who has 192.168.0.127 Tell 192.168.0.207
1e7 3.873376 Micro-St_f2:f@:af Broadcast ARP 42 who has 192.168.8.157 Tell 192.168.0.2087

Figure 55: A section of the pcap file showing Nmap utilising the ARP protocol

The figure above shows that Nmap is using the ARP protocol in order to discover hosts on the LAN, rather
than using unnecessary TCP/IP frames. The above figure shows that once an ARP request has been made to

192.168.0.10, the PLC then replies, supplying its MAC address and subsequently its manufacturer.

E.9.1.2 Nmap Service Detection Scan The next Nmap scan executed against the network aimed at
discovering the services being hosted on the target PLC. This type of scan is a more intrusive method of
information gathering, this means that in order to probe the target devices for data, the host machine must
establish a connection with each target in order for data to be transmitted and received. The Nmap command

used to achieve this is shown below:
"nmap -sV -r 192.168.0.* -e ethO0 > abb_nmap2.txt”

This command uses the same flags and options as the Nmap experiment in subsubsection C.8.1.2. This com-
mand instructs Netkit to perform its service detection scan on the 192.168.0.0/24 subnet. All output from this
scan should be captured within the “abb_nmap2.txt” file.

118

Once the Nmap command had been executed against the network, the scan was able to run until completion
without encountering any errors or dropped packets. An output was also generated and populated at the end
of the scan. From observing the activity of the PCB components, as well as the status of the HMI interface
on the host machine, the Nmap scan did not appear to alter the behaviour of the network. All devices and
components present on the network remained consistent through the entire duration of the scan. In order to
evaluate the success of the scan, the output file was opened and the information within it was cross-referenced

with the configuration of the ABB SCADA system.

Host is up (@.0046s latency).

Not shown: 998 closed ports

PORT STATE SERVICE VERSION
80/tcp open http 3S_WebServer
1201/tcp open nucleus-sand?

SF:S_WebServer\r\nDate:\x20Wed\x20Dec\x2031\x2020:49:33\x201969\r\nPragma:
SF:\x2@0no-cache\r\nCache-Control:\x2@0no-cache\r\nContent-Type:\x20text/htm
SF:I\r\n\r\n<html><head><title>Document\x20Error:\x20Page\x2@0not\x2@0found<
SF:d</h2>\r\n\t\t<p>Cannot\x20stat\x20page\x20for\x20URL</p></body></html>
SFEiNr\An\r\n")%r(HTTPOptions, 135, "HTTP/1\.1\x20400\x20Page\x20not\x20found\
SF:r\nServer:\x203S_WebServer\r\nDate:\x20Wed\x20Dec\x2031\x2020:49:33\x20
SF:1969\r\nPragma:\x2@no-cache\r\nCache-Control:\x2@no-cache\r\nContent-Ty
SF:pe:\x20text/html\r\n\ri\n<html><head><title>Document\x2@Error:\x2@0Page\x
SF:20not\x2@0found</title></head>\r\n\t\t<body><h2>Access\x2@0Error:\x20Page
SF:\x20not\x20found</h2>\r\n\t\t<p>Bad\x2@request\x20type</p></body></html
SF:>\r\n\r\n")%r(RTSPRequest,135,"HTTP/1\.1\x20400\x20Page\x2@not\x2@found
SF:\r\nServer:\x203S_WebServer\r\nDate:\x20Wed\x20Dec\x2031\x2020:49:33\x2
SF:01969\r\nPragma:\x2@no-cache\r\nCache-Control:\x20no-cache\r\nContent-T
SF:x20not\x20found</title></head>\r\n\t\t<body><h2>Access\x2@Error:\x20Pag
SF:e\x2@0not\x2@found</h2>\r\n\t\t<p>Bad\x20@request\x20type</p></body></htm
SF:1>\r\n\r\n")%r(X11Probe, 135, "HTTP/1\.1\x20400\x20Page\x2@not\x2@found\r
SF:\nServer:\x203S_WebServer\r\nDate:\x20Wed\x20Dec\x2031\x2020:49:33\x201
SF:969\r\nPragma:\x2@0no-cache\r\nCache-Control:\x2@no-cache\r\nContent-Typ
SF:e:\x2@text/html\r\n\r\n<html><head><title>Document\x20Error:\x20Page\x2
SF:@not\x2@0found</title></head>\r\n\t\t<body><h2>Access\x20Error:\x20Page\
SF:x2@0not\x20found</h2>\r\n\t\t<p>Bad\x2@0HTTP\x20request</p></body></html>
SF:\r\n\r\n")%r(FourOhFourRequest,13D,"HTTP/1\.1\x20400\x20Page\x2@0not\x20

SF:Page\x20not\x20found</title></head>\r\n\t\t<body><h2>Access\x20Error:\x
SF:20Page\x20not\x20@0found</h2>\r\n\t\t<p>Cannot\x20stat\x20page\x20for\x20
SF:URL</p></body></html>\r\n\r\n");

MAC Address: ©0:24:59:0A:38:45 (ABB Automation products GmbH)

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .

Figure 56: The data contained within “abb_nmap2.txt”, showing a large amount of raw data

The information drawn from the service detection scan against the ABB PLC yielded some unforeseen results.
Firstly, as shown in on running a service detection scan, Nmap was able to highlight the presence
of a HTTP 3S web-server (port 80) on the PLC which had not previously been configured or referenced. The
service detection scan was also able to detect that port 1201 was open on the PLC. Alongside the port number,
Nmap ran fingerprint diagnostics across the data it was able to obtain from that port. The Nmap database
classes port 1201 as a “nucleus-sand” (Nucleus Sand) service. Nucleus Sand is a database management system
which only runs on Windows operating systems and a variety of Linux distributions. Nmap was also able to

obtain some data from the “-sV” scan which could not be identified. With tags such as “<head>", “<title>”

119

and “URL”, the data appears to be a form of HTML. In order to understand how that data was obtained and
which service is running on port 1201, the pcap file taken from the host machine was opened and analysed in

Wireshark. The following data was obtained:

1 B.0000800 192.168.0.207 192.168.0.10 TCP 62 1893 - 1281 [PSH, ACK] Seq=1 Ack=1 Win=65464 Len=8

2 9.001920 192.168.90.10 192.168.8.207 TCP B8 1281 - 1893 [PSH, ACK] Seq=1 Ack=9 Win=5976 Len=34

3 8.156840 192.168.0.287 192.168.0.10 TCP 62 1893 - 1281 [PSH, ACK] Seq=9 Ack=35 Win=65438 Len=8

4 @.158220 192.168.9.1@ 192.168.9.287 TCP 388 1201 - 1093 [PSH, ACK] Segq=35 Ack=17 Win=5968 Len=334
5 B.158911 192.168.0.207 192.168.0.10 TCP 62 1093 - 1281 [PSH, ACK] Seq=17 Ack=369 Win=65096 Len=8
6 8.161644 192.168.9.1@ 192.168.9.287 TCP 125 1201 - 1893 [P5H, ACK] Seq=369 Ack=25 Win=596@ Len=71
7 8.202819 192.168.0.207 192.168.0.10 TCP 62 1893 - 1281 [PSH, ACK] Seq=25 Ack=448 Win=65825 Len=8
8 8.204967 192.168.98.10 192.168.0.207 TCP B8 1201 - 1@93 [PSH, ACK] Seq=44@ Ack=33 Win=5952 Len=34
9 8.358886 192.168.0.207 192.168.0.10 TCP 62 1093 - 1281 [PSH, ACK] Seq=33 Ack=474 Win=64991 Len=8
18 @.361812 192.168.0.10 192.168.9.207 TCP 388 1201 - 1893 [PSH, ACK] Seq=474 Ack=41 Win=5944 Len=334
11 @.362603 192.168.0.2087 192.168.0.1@ TCP 62 1893 - 1281 [PSH, ACK] Seq=41 Ack=808 Win=64657 Len=8
12 @.365109 192.168.9.1@ 192.168.9.267 TCP 125 1201 - 1893 [PSH, ACK] Seq=808 Ack=49 Win=5936 Len=71
13 8.485626 192.168.0.207 192.168.0.10 TCP 62 1093 - 1281 [PSH, ACK] Seq=49 Ack=879 Win=64586 Len=8
14 @.4e8010 192.168.90.10 192.168.8.2087 TCP B8 1281 - 1893 [PSH, ACK] Seq=879 Ack=57 Win=5928 Len=34
15 @.561768 192.168.0.207 192.168.0.10 TCP 62 1893 - 1281 [PSH, ACK] Seq=57 Ack=913 Win=64552 Len=8

Figure 57: A segment of a pcap showing data being sent from the host machine to the PLC via TCP

From analysing the network traffic captured from the host machine, port 1201 could represent the communication
channel between the Controller Builder Plus client and the PLC in order to allow the HMI interface to display
the activity of the field device.

00000000 bb bb 00 00 00 02 3b ff
00000000 bb bb 00 00 00 1c 00
00000010 €0 01 00 00 00 01 00
00000020 00 01

00000008 bb bb 00 00 00 02 50 @5
00000022 bb
00000032 01
00000042 do
00000052
00000062
00000072
00000082
00000092
000000A2
00000082
00e000C2
00000002
00000OE2
000000F2
00000102
00000112
00000122
00000132
00000142
00000152
00000162

00000010 bb
oeeeolve
oeeoolse
00000190

coooooil
00 cooocitoc
cd
cd
00

bb 0@ 00 00 @2 51 10
bb bb 20 00 00 41 00
00 00 90 00 cd cd cd
cd cd cd cd cd cd cd

00R0D1AD 0D 00 0O 00 00 PO 0O
0000P1B0 04 cd 00 00 00 PO 0O
00000018 bb bb 60 00 00 @2 3b ff
000001B7 bb bb 00 00 00 1c 00
000001C7 00 01 00 00 00 P21 0O
00eee1D7 00 01
00000020 bb bb 60 00 00 @2 50 @5

00
00

T
seesalas

sinanaPe

Figure 58: The hex values associated with the TCP stream on port 1201

On analysing the raw hexadecimal data being sent and received from port 1201 (see |Figure 58)), the client (host
machine) sends an 8-byte block of data to the server (PLC), on which the server responds with a larger set of
data. This pattern is repeated throughout the entire duration of the network capture. Although there seems

to be a data-transfer pattern between the host machine and the PLC on port 1201, it cannot be confirmed

120

that the TCP stream is specifically the traffic for HMI monitoring and control. However, after analysing all the

previous pcap files taken from the ABB interaction, the same communication is present in each one.

1 ©.eeeed0 .168.0.207 . - Win=64552 Len=8

2 0.882426 192.168.9.10 192.168.9.207 TCP 388 1201 - 1093 [PSH, ACK] Seg=1 Ack=9 Win=496@ Len=334

3 0.e02863 192.168.9.207 192.168.9.10 TCP 62 1093 -+ 1201 [PSH, ACK] Seg=9 Ack=335 Win=64218 Len=8

4 ©.085303 192.168.9.18 192.168.9.207 TCP 125 1201 - 1893 [PSH, ACK] Seq=335 Ack=17 Win=4952 Len=71

5 ©.846043 192.168.9.207 192.168.9.10 TCP 62 1093 -+ 1201 [PSH, ACK] Seq=17 Ack=406 Win=64147 Len=8

6 ©.849854 192.168.9.10 192.168.9.207 TCP 88 1201 - 1093 [PSH, ACK] Seg=406 Ack=25 Win=4944 Len=34

7 ©.204173 192.168.9.207 192.168.9.10 TCP 62 1893 - 1201 [PSH, ACK] Seg=25 Ack=44@ Win=64113 Len=8

8 ©.206436 192.168.9.18 192.168.9.207 TCP 388 1201 - 1893 [PSH, ACK] Seq=449 Ack=33 Win=4936 Len=334

9 ©.206955 192.168.9.287 192.168.9.10 TCP 62 1093 -+ 1201 [PSH, ACK] Seq=33 Ack=774 Win=65535 Len=8
18 @.21ee43 192.168.9.18 192.168.9.207 TCP 125 1201 - 1093 [PSH, ACK] Seq=774 Ack=41 Win=4928 Len=71
11 @.249605 192.168.9.207 192.168.90.10 TCP 62 1893 - 1201 [PSH, ACK] Seg=41 Ack=845 Win=65464 Len=8
12 @.251247 192.168.9.18 192.168.9.207 TCP 88 1201 - 1893 [PSH, ACK] Seq=845 Ack=49 Win=4920 Len=34
13 @.495743 192.168.9.287 192.168.9.10 TCP 62 1093 -+ 1201 [PSH, ACK] Seq=49 Ack=B79 Win=6543@ Len=8
14 @.4@7531 192.168.9.18 192.168.9.207 TCP 388 1201 - 1093 [PSH, ACK] Seq=879 Ack=57 Win=4912 Len=334
15 @.497969 192.168.9.2087 192.168.9.10 TCP 62 1893 - 1201 [PSH, ACK] Seg=57 Ack=1213 Win=65096 Len=8

Figure 59: Another figure showing the TCP conversation between PLC and host machine

In reference to the unidentifiable data Nmap extracted from the PLC, the pcap shown in also revealed
a successful HTTP connection. This is also supported by the presence of port 80 within the output file shown
in [Figure 56| Once this HTTP interaction was located within the pcap file, the TCP stream was then examined
using Wireshark’s “Follow TCP Stream” feature. This revealed that the unidentified block of data was failed

HTTP requests and responses sent and received between the host machine and the PLC.

|http
Mo. Time Source Destination Protocol Length Info
12.557906 192.168.0.287 192.168.0.10 GET / HTTP/1.@

¢ 2901 12.576958 192.168.0@.18@ 192.168.0.287 HTTP 6@ HTTP/1.1 48@ Page not found (text/html)
2989 12.585468 192.168.0.2087 192.168.0.10 HTTP 76 OPTIONS / HTTP/1.@
2911 12.603964 192.168.0.10 192.168.0.207 HTTP 68 HTTP/1.1 488 Page not found (text/html)
2918 12.61327% 192.168.0.2087 192.168.0.1@ HTTP 76 OPTIONS / RTSP/1.@
2928 12.633214 192.168.@.1@ 192.168.0.287 HTTP 6@ HTTP/1.1 480 Page not found (text/html)
2937 12.B6683@ 192.168.0.10 192.168.0.2087 HTTP 6@ HTTP/1.1 486 Page not found (text/html)
2944 12,870769 192,168.0.207 192.168.0.10 HTTP 187 GET /nice%20ports%2(/Tri%6Eity.txt%2ebak HTTP/1.@
2946 12.891964 192.168.0.180 192.168.0.2087 HTTP 68 HTTP/1.1 488 Page not found (text/html)
2955 12.828891 192.168.0.10 192.168.0.2087 HTTP 6@ HTTP/1.1 488 Page not found (text/html)
2975 13.147038 192.168.0.10 192.168.0.207 HTTP 6@ HTTP/1.1 480 Page not found (text/html)
2992 13.376915 192.168.0.10 192.168.8.2087 HTTP 68 HTTP/1.1 488 Page not found (text/html)
3810 13.607434 192.168.0.180 192.168.0.287 HTTP 68 HTTP/1.1 480 Page not found (text/html)
3825 13.B37058 192.168.0.10 192.168.0.287 HTTP 6@ HTTP/1.1 488 Page not found (text/html)
3041 14.067065 192.168.0.10 192.168.0.207 HTTP 6@ HTTP/1.1 480 Page not found (text/html)
3857 14.297165 192.168.0.10 192.168.0.2087 HTTP 68 HTTP/1.1 4@@ Page not found (text/html)
3873 14.527291 192.168.0.18@ 192.168.0.2087 HTTP 68 HTTP/1.1 480 Page not found (text/html)
3889 14.757295 192.168.0.10 192.168.0.287 HTTP 6@ HTTP/1.1 488 Page not found (text/html)
3189 14.987286 192.168.0.10 192.168.0.207 HTTP 6@ HTTP/1.1 4@@ Page not found (text/html)
3129 15.217347 192.168.0.10 192.168.8.2687 HTTP 6@ HTTP/1.1 48@ Page not found (text/html)
3145 15.447672 192.168.0.180 192.168.0.207 HTTP 6@ HTTP/1.1 480 Page not found (text/html)
3152 15.451448 192.168.8.2087 192.168.08.10 HTTP 277 OPTIONS sip:nm SIP/2.0@

Figure 60: A segment of a pcap showing HTTP traffic being sent between the host machine and the PLC

Nmap was able to obtain this information without disrupting the normal operation of the SCADA system.

E.9.1.3 Nmap UDP Scan The final Nmap scan conducted against the SCADA system utilised UDP
packets in order to gain information about the ABB PLC. The previous experiments have shown that UDP
scans have revealed more in-depth information about the PLC system tested in subsubsection C.8.1.3 than the
previous TCP-based scans. UDP is also a connectionless protocol, meaning that data can be sent to any UDP

port without any prior synchronisation. The Nmap command used to execute the UDP scan was as follows:
"nmap -sU -sC 192.168.0.* -e eth0 > abb_nmap3.txt”

This Nmap scan has been configured to replicate the UDP scan used within subsubsection C.8.1.3 of this

4

document. As well as conducting a UDP scan, the “-sC” flag instructs Nmap to run a series of default NSE

scripts against the target network.

121

Host is up (@.@0052s latency).
Not shown: 999 closed ports
PORT STATE SERVICE

Figure 61: The data contained within “abb_nmap3.txt”

This scan was able to run until completion without encountering any errors or connection failures. Once the
scan had finished, an output file was generated and populated with network data (see . From ob-
serving the same PCB components and the HMI interface on the host machine, no changes had been made to
the SCADA as a result of the network scanning. shows that Nmap was able to obtain data about the
PLC without disrupting the behaviour of the field devices, the HMI or the PLC itself.

This concluded the Nmap experiments conducted on the ABB PLC.

E.9.2 Experiment 2: Zmap 2.1.0

The next experiment to be conducted on the ABB PLC focussed on using ICMP packets in order to ascertain
active hosts on the network. This is different to the ARP scanning method used by Nmap in subsubsections
C.8.1.3 and C.9.1.1. Zmap is able to facilitate large scale ICMP echo sweeps against small and large networks,
which makes it the optimal tool for testing the stability of SCADA equipment when being scanned by ICMP

packets. The Zmap command used to conduct this experiment is shown below:
7sudo zmap -M icmp_echoscan 192.168.0.0/24 -0 abb_zmapl.csv”

This command has the same configuration seen within the last Zmap experiment in subsection C.8.2. For this
experiment, the Linux laptop had to be inserted into the network via a switch. This was so that the Zmap scan

could be executed at the same time both the HMI and the PLC were running their assigned code.

Similar to the results of the experiment within subsection C.8.2, on executing the Zmap command, no errors
were reported on the terminal screen and an output file was successfully created. However, on inspection of the
output file, Zmap was unable to locate the PLC residing on the network. As well as failing to obtain any results
from the scan itself, the behaviour of the SCADA system did not change at any point during the experiment.
Similar to the results yielded within subsection C.8.2, the pcap file taken from the host machine revealed that

ICMP packets had been sent to the correct subnet. However, there was no data in this pcap that showed any

of the addresses responding to the ICMP requests (see [Figure 62).

122

121 ©.900626 192.168.0.99 192.168.0.30 Icmp 62 Echo (ping) request id=@xc7f2, seq=8/@, ttl=255 (no response found!)
122 @.880630 192.168.0.99 192.168.0.111 IcMp 62 Echo (ping) request id=@xedee, seq=8/8, tt1=255 (no response found!)
123 9.908633 192,168.0.99 192.168.0.14 IMP 62 Echo (ping) request id=0x48d8, seq=0/@, tt1=255 (no response found!)
124 @.988637 192.168.8.99 192.168.0.219 ICMP 62 Echo (ping) request id=8x8ecd, seq=8/8, tt1=255 (no response found!)
125 @.988640 192.168.0.99 192.168.0.56 IMP 62 Echo (ping) request id=0xc368, seq=0/0, tt1=255 (no response found!}
126 @.8008643 192.168.0.99 192.168.0.64 ICMP 62 Echo (ping) request id=@xbBcf, seq=8/8, tt1=255 (no response found!)

Q. request id=e@xaBfc, response found!)
128 ©.888650 192.168.8.99 192.168.0.246 ICMP 62 Echo (ping) request id=8x8556, seq=8/8, tt1=255 (no response found!)

Figure 62: A segment of a pcap showing ICMP packets being transmitted across the network

As this tool was unable to yield any results from both the S7 and the ABB PLCs, this concluded the experiments

conducted with Zmap.

E.9.3 Experiment 3: Custom UDP Scanner

The final experiment conducted against the ABB PLC replicated the UDP DoS attack simulated within sub-
section C.8.3 of this document. Here, a Python script (see had been created in order to test
whether PLCs could withstand a large amount of UDP traffic being sent to every port on the device. This
scanning mechanism focussed less on obtaining information as it does not have the data parsing capabilities of
the previously used tools. Instead, this scan aimed to monitor the effects of sending large UDP packets to a
SCADA device and whether it causes the target device to crash or behave unexpectedly. In order to run this

script, the following command was entered into the host machine:
?python udp_dos.py”

This command allowed python to compile and execute the “udp_dos.py” script which can be found alongside

its documentation within

The Python script was ran against the PLC for 5 minutes and then manually terminated by the user. Once
executed, the UDP scanner began to send large amounts of data to every port present on the PLC. After 1
minute of scanning, the HMI on the host machine abruptly stopped and then last connection to the PLC.
shows the HMI interface before and after the UDP scan took place.

Sot%ha fid Wb WY WH M. %S

PRESS RUN BUTTON

Wed 08 Mar 2017 12:35904

AUTOMATIC MODE 0N
RIGHT

LEFT

= /

(a) The HMI before being scanned by the Python script (b) The HMI after being scanned by the Python script

Figure 63: Two figures showing the change in behaviour of the ABB HMI

In order to deduce why the HMI lost connection with the PLC, the pcap taken on the host machine was opened

and analysed in Wireshark.

123

243 1.328276 192.168.0.207 192.168.0.18 uop 672 56706 - 58 Len=6558

244 1.328334 192.168.8.2087 192.168.0.18 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=8, ID=4d2a) [Reassembled in #248]
245 1.328335 192.168.0.2087 192.168.9.18 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=1480, ID=4d2a) [Reassembled in #248]
246 1.328336 192.168.0.2087 192.168.0.18 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=2968, ID=4d2a) [Reassembled in #248]
247 1.328336 192.168.08.207 192.168.90.10 IPva 1514 Fragmented IP protocol (proto=UDP 17, off=4449, ID=4d2a) [Reassembled in #248]
248 1.328337 192.168.0.207 192.168.92.10 upp 672 56796 -+ 51 Len=6558

249 1.329@895 192.168.0.207 192.168.2.1@ IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=@, ID=4d2b) [Reassembled in #253]
258 1.329896 192.168.0.207 192.168.92.10 IPv4 1514 Fragmented IP protocol (proto=UDF 17, off=1480, ID=4d2b) [Reassembled in #253]
251 1.329896 192.168.0.207 192.168.2.18 IPva4 1514 Fragmented IP protocol (proto=UDP 17, off=296@, ID=4d2b) [Reassembled in #253]
252 1.329098 192.168.9.207 192.168.0.18 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=4448, ID=4d2b) [Reassembled in #2531
253 1.329099 192.168.0.207 192.168.9.10 uopP 672 56706 -+ 52 Len=6558

254 1.329921 192.168.08.207 192.168.92.10 IPv4 1514 Fragmented IP protocol (proto=UDF 17, off=@, ID=4d2c) [Reassembled in #258]
255 1.329922 192.168.08.207 192.168.2.10 IPva4 1514 Fragmented IP protocol (proto=UDP 17, off=1488, ID=4d2c) [Reassembled in #258]
256 1.329922 192.168.0.207 192.168.0.18 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=296@, ID=4d2c) [Reassembled in #2581
257 1.329924 192.168.0.207 192.168.0.18 IPvd 1514 Fragmented IP protocol (proto=UDP 17, off=444@, ID=4d2c) [Reassembled in #258]
258 1.329924 192,168.0.207 192.168.9.18 DNS 672 Unknown operation (11) @8x5858 Unknown (22616) <Unknown extended label> Unknown (22616) <
259 1.329973 192.168.9.287 192.168.0.18 IPva 1514 Fragmented IP protocol (proto=UDP 17, off=@, ID=4d2d) [Reassembled in #263]
26@ 1.329974 192.168.8.2087 192.168.0.18 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=14808, ID=4d2d) [Reassembled in #263]
261 1.329974 192.168.0.2087 192.168.9.18 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=2960, ID=4d2d) [Reassembled in #263]
262 1.329975 192.168.0.2087 192.168.9.18 IPv4 1514 Fragmented IP protocol (proto=UDP 17, off=4449, ID=4d2d) [Reassembled in #263]
263 1.329976 192.168.0.2087 192.168.0.18 uop 672 56706 - 54 Len=6558

Figure 64: A section of a pcap showing the large UDP packets sent by the Python script

1.690032 192.168. 388 1201 - 1093 [PSH, ACK] 5eq=2669 Acl

1.690433 192.168 62 1893 - 1201 [PSH, ACK] Seq=161 Ack=38@3 Win=65896 Len=8
1 1 62 R 3] ; < 1

Figure 65: A segment of a pcap showing the connection loss on port 1201

On opening the pcap (see , aside from the large amount of UDP packets being sent to and from the
PLC, there was no specific data present which indicated why the HMI lost connection to the PLC. The TCP
connection on port 1201 failed to establish a connection between packets 3500 and 6488 (see . This
delay in the TCP response could be a reason as to why the connection between the HMI and PLC was lost.
However, from the data yielded from both this experiment and the test conducted within subsection C.8.3,
there is insufficient data to suggest that port 1201 is the port responsible for the communication between the

PLC and the HMI, and it was this delay in packet response which cause the error.

Once all the data had been obtained from the host machine, the SCADA network was then powered-off and

disconnected from the network.

This concluded the experiments on the SCADA equipment.

124

	Appendix
	Appendix Passive and Active Scanning Tools Table
	Appendix SCADA Network Diagram
	Appendix SCADA Network and Protocols Report
	Appendix Testing of Network Scanners Against IP Devices
	Appendix Testing of Network Scanners Against SCADA Devices

