
Research Article
LSTM-Based Hierarchical Denoising Network for Android
Malware Detection

Jinpei Yan , Yong Qi , and Qifan Rao

Department of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Correspondence should be addressed to Yong Qi; qiy@xjtu.edu.cn

Received 27 August 2017; Accepted 16 November 2017; Published 9 January 2018

Academic Editor: Tom Chen

Copyright © 2018 Jinpei Yan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobile security is an important issue on Android platform. Most malware detection methods based on machine learning models
heavily rely on expert knowledge for manual feature engineering, which are still difficult to fully describe malwares. In this paper,
we present LSTM-based hierarchical denoise network (HDN), a novel static Android malware detection method which uses LSTM
to directly learn from the raw opcode sequences extracted from decompiled Android files. However, most opcode sequences are too
long for LSTM to train due to the gradient vanishing problem. Hence, HDN uses a hierarchical structure, whose first-level LSTM
parallelly computes on opcode subsequences (we called them method blocks) to learn the dense representations; then the second-
level LSTM can learn and detect malware through method block sequences. Considering that malicious behavior only appears
in partial sequence segments, HDN uses method block denoise module (MBDM) for data denoising by adaptive gradient scaling
strategy based on loss cache. We evaluate and compare HDN with the latest mainstream researches on three datasets. The results
show that HDN outperforms these Android malware detection methods,and it is able to capture longer sequence features and has
better detection efficiency than𝑁-gram-based malware detection which is similar to our method.

1. Introduction

Recently the rapid development of Android mobile system
creates serious security problems. The quickly increasing
number of mobile users promotes the emergence of a huge
number of newAndroid applications, bringing users not only
more application services but also potential malicious appli-
cation threats. Manually detecting these malwares is imprac-
tical; the traditional malware detection method is based on
signature, which generates a unique signature identifier for a
malware.This signature is generated based onmany attributes
of malware such as file name, file content, or some manually
extracted features. For an unknown program, the detection
can be done by searching for a matching signature in a
malware database.However, signatures only consist of a series
of simple features; there is a high probability of escaping
signature-based detection if malware is simply disguised
by packing or obfuscating. And it also requires a large
malware database continually updating to cope with new
malwares emergence. So in recent years, malware detection

based on machine learning is widely studied as a better
alternative method.

At present, the existing malware detection methods are
mainly divided into dynamic and static analysis. Dynamic
analysis [1–3] can effectively resist packing and obfuscating
operations, but requires to run real-time monitor applica-
tions, which are inefficient for taking up a lot of computation
resources. Static analysis can be much faster and can be
more suitable for detecting a large number of applications. It
includes permission-based approaches [4–6],𝑁-gram-based
statistical approach by mining byte or opcode sequences [7],
high-level program analysis such as API call analysis, abstract
syntax trees and control flowgraphs analysis [8–10], and other
well-designed malware analysis methods [11, 12]. However,
these methods often heavily rely on expert knowledge to
manually design features which are still commonly coarse-
grained. The reason is that deep-level features are difficult to
be discovered and designed, such as all kinds of suspicious
opcode sequence patterns.

Hindawi
Security and Communication Networks
Volume 2018, Article ID 5249190, 18 pages
https://doi.org/10.1155/2018/5249190

http://orcid.org/0000-0002-2959-6165
http://orcid.org/0000-0003-2386-4154
https://doi.org/10.1155/2018/5249190

2 Security and Communication Networks

In this paper, we propose LSTM-based hierarchical
denoise network (HDN) which directly learns from raw
opcode sequences for malware detection. Since opcode
sequences are often very long, HDN uses hierarchical struc-
ture to achieve effective modeling for very long sequences
with LSTM, preventing the gradient vanishing problem.Con-
cretely, HDN treats one opcode sequence as a composition of
some subsequences which we call method blocks (the source
code for Android application is made up of Java methods).
Opcode encoder, as the first-level of HDN’s hierarchical
structure, learns a method block embedding by encoding it
with LSTM, then method encoder as the second-level can
learn and detect malware through method block sequence
with another LSTM.

For a malware program all method blocks are regarded
as malicious by default, but actually in some cases malicious
code is implanted into a host application, in which the
rest opcodes or what is called Java method blocks do not
have malicious behaviors which should be regarded as noise
during LSTM learning. To this end, we proposemethod block
denoise module (MBDM) for HDN, using loss cache and
adaptive gradient adjustment methods to denoise the input
data when HDN is training. It reduces the defect of noisy
method blocks on LSTM weight updating and filters out part
of the noisy method blocks to achieve denoising. Overall,
HDN can automatically learn features and patterns from raw
opcode sequences to minimize the heavy requirement for
expert knowledge. While compared with the similar work
using 𝑁-gram-based malware detection, HDN can capture
longer malicious opcode sequence patterns.

In the training process, we use a GPU to train HDN,
where opcode encoder can run parallelly to compensate the
low efficiency due to the serial computing limitation on
LSTM. These greatly speed up the training of HDN. And
once the training is completed, HDN can efficiently scan and
detect anAndroid application through raw opcode sequences
by a single forward propagation calculation, saving time
on manual feature engineering. Hence, it is more effective
compared with𝑁-gram-basedmalware detection. Moreover,
HDN can continually update network weights to adapt to
the changing malware environment through incremental
learning.

We evaluate HDN on three different datasets, which
include two widely used malware datasets. In the first two
benchmark datasets, HDN outperforms other related works
on detection accuracy. In addition, we also make malware
family classification experiment. Finally, in order to better
simulate the real environment, the third dataset we use is
a large “in the wild” dataset which contains plenty of latest
Android samples. The results show that HDN is superior to𝑁-gram-basedmalware detection both in detection accuracy
and efficiency. In summary, we make the following contribu-
tions:

(i) We use LSTM, a deep neural network learning from
raw opcode sequences to achieve malware detection,
minimizing the heavy workload for artificial feature
engineering.

(ii) We propose LSTM-based hierarchical denoise net-
work using hierarchical structure to solve very long
opcode sequence learning and gradient vanishing
problems. Also, we propose MBDM for HDN to
denoise opcode subsequences (method blocks) by
loss cache and adaptive gradient adjustment, which
helps HDN get better malware detection result.

(iii) We evaluateHDNwith experiments on three different
datasets. The result shows that HDN outperforms
other related malware detection works. It greatly
enhances the computation efficiency and detection
accuracy comparing with the method based on 𝑁-
grams.

The rest of the paper is organized as follows: Section 2
discusses the related work. Section 3 introduces our method-
ology and Section 4 presents the experiment and result
analysis. Works are concluded in Section 5.

2. Related Work

The detection and analysis of malware have always been a
research area of concern. In this section, we will review the
current malware detection technologies and then introduce
relevant detailed works for very long sequences learning
(since our model needs to deal with very long opcode
sequence data).

2.1. AndroidMalware Detection. Malware detectionmethods
can generally be divided into dynamic analysis and static
analysis, and most of current static analysis methods are
based on machine learning technology [5, 6, 8, 9, 13–16]
which is gradually replacing the traditional signature-based
methods. Concretely, Barrera et al. [5] first proposed to use
a permission-based approach for malware detection. Peng
et al. [6] proposed an improvement approach by applying
probabilistic generationmodel to permissions. Aafer et al. [9]
proposed a method called DriodAPIMiner, which uses kNN
classifier to analyse features extracted from API level. Arp
et al. [13] added some interpretation of the detection result
as an improvement; they proposed a light-weight malware
detection method called Drebin, which uses static features
such as application permission, API calls, and network
address combined with SVM to detect malwares. Similarly,
Cen et al. [15] extracted import information (API calls, class
information, and other features) and used the probability dis-
crimination model to achieve malware detection. Recently,
there is an idea using ensemble learning to blend API calls
and user intentions, permissions, and code commands for
malware detection [16].

Chen et al. [8] came up with a novel work which
compared theUI commonpoints to findmalware repackaged
from the original and then associated different Android views
and control flow graph features through user interaction
codes to find the differences and which one is malicious.
Rastogi et al. [17] tried to explore the effects of packing
and obfuscating transformation attacks and suggested that
malware detection should rely on semantic analysis rather
than statistics on API call or code strings since the former

Security and Communication Networks 3

is not susceptible to transformation. They also disagreed
with analysing a high-level source because it can be easily
obfuscated. There are other well-designed malware analysis
works, like Du et al. [18] who used D-S evidence theory
with feature extraction (permissions, APIs, and control flow
graph) to do malware detection. Xu et al. [12] discovered
that some malware programs do not apply for their sensitive
permissions directly, but used intercomponent communi-
cation (ICC) to call other components to achieve sensitive
operations.

Instead of the above use of the advanced manual-
designed features, we extract the sequence features from the
raw opcode sequence of a program, which is inspired by
related works [19, 20] on Windows OS platform. The most
similar work to what we do is using an 𝑁-gram model on
opcode sequences for Android malware detection [7, 21].
Here 𝑁-gram is used to obtain the statistical characteristics
from the opcode sequence. Jerome et al. [7] and Canfora et
al. [21] show that just with 1-gram features, which are only
the frequencies of each opcode, they can achieve a promising
malware detection result. Also, the selection of parameter𝑁 for 𝑁-gram and the number of features extracted from
raw 𝑁-gram features can greatly affect the accuracy of the
malware classifier. However, just adding one for parameter𝑁 will result in a significant increase in computational
consumption, which is the bottleneck for 𝑁-gram-based
malware detection method. Besides, 𝑁-gram model usually
requires extra feature selection to reduce the length of feature
vector for computational efficiency.

In this work, we propose a method based on hierarchical
LSTM network to automatically learn from raw opcode
sequences for malware detection. It does not require manual
feature engineering, while it is able to capture very long-range
opcode sequence patterns and features.

2.2. Very Long Sequence Learning. LSTM has been proved to
be an effective model learning feature from time series data.
But in some time series data learning problem, the sequence
length for a data sample is likely to be very long, far exceeding
the length around 120 that LSTM is capable to learn, and
we name it “very long sequence.” In our scenario, the length
of opcode sequence extracted from Android program is
often very long. In particular, the average opcode sequence
length reaches 36,000 in our dataset. Long sequences are
difficult to be learned by LSTM. Although LSTM uses gate
mechanism which allows the gradient backpropagated to the
earlier time node to capture long-term timing dependencies
and correlations compared with recurrent neural network.
However, usually LSTM can only handle the length of the
sequence within 200; otherwise, LSTM will consume a lot
of time on error backpropagation calculation. While the
calculation is inefficient due to the gradient vanishing or
exploding problem, early time node can hardly get effective
weight update.

There are several researches on processing very long
sequences with LSTM. Pascanu et al. [22] used a simple
method called “truncating and padding” to deal with very
long sequence. It sets a fixed length 𝑁 and truncates and
discards the part of sequence exceeding 𝑁. And for the

sequence of length less than𝑁, it uses a predefined identifier
to pad at end of the sequence to 𝑁. Here we can choose
a unique element as the predefined identifier, and LSTM
can automatically learn their “padding meaning” from data
samples. However, an existing problem with this “truncating
and padding” strategy is that if the fixed length𝑁 is too small,
it will discard a large number of sequence information while
if 𝑁 is too large, it still cannot solve the gradient vanishing
problem on LSTM.

Sak et al. [23] used truncated backpropagation through
time (truncated BPTT) to train LSTM on very long
sequences, where truncated BPTT [24] is a gradient calcu-
lation algorithm. It is similar to full BPTT which calculates
gradient using BPTT algorithm over the entire sequence. Full
BPTT is commonly used, but is ineffective if the sequence is
too long. Considering BPTT algorithm cannot pass gradient
to very early time point due to gradient vanishing, truncated
BPTT uses a time window to limit the backpropagation
distance. So BPTT gradient calculation is performed only
inside the window, and the nodes outside the window do not
get weight updating. Hence, this approach can achieve more
efficiency by sacrificing a small part of accuracy.

In addition, truncated BPTT is also suitable for online
learning where datasets are updating overtime. The most
important thing for online learning is to quickly adapt to
the newly generated data in time. If LSTM learns from input
stream data which is constantly updated, then truncated
BPTT will facilitate the processing of such data, which can be
effectively updated as the input stream changes. Essentially,
dynamically updated input streams can also be treated as a
very long sequence.

Similarly, Doetsch et al. [25] proposed chunk BPTT by
dividing long sequence into multiple chunks. Each chunk
has the same length 𝑁, and the last chunk is padded to 𝑁.
Then a number of chunks compose a minibatch for BPTT
calculation. As a number of chunks can be calculated in
parallel, it can achieve about 3 times computing acceleration
for training very long sequences. Chen et al. [26, 27] proposed
CSC-BPTT for improving chunk BPTT. Considering that
the length of chunk is too short, the association between
chunks cannot be learned and will affect the accuracy of
LSTMmodel.Therefore, each chunk CSC-BPTT attaches the
context of its adjacent two chunks to the beginning and the
end, which eases the problem to a certain extent.

Li et al. [28] used an LSTM seq2seq autoencoder frame-
work to form the representation of the document. The
result indicates that the representation can preserve the
semantic information of the document. It uses a hierarchical
model first to obtain the representation of each sentence
by an autoencoder then encodes the sequence of sentences
to obtain the representation of the document. They use
BLEU and other indicators to evaluate the reconstruction
error between the reconstructed document and the source
document. Yang et al. [29] then used a hierarchical model to
classify documents by creating embedding for the word level
and the sentence level, respectively.

In this paper, we propose a hierarchical structure to deal
with long opcode sequences using LSTM, which is inspired
by the work of Yang et al. [29]. In our scenario, we also

4 Security and Communication Networks

make two specific and important improvements. The first
is modifying the error backpropagation calculation in our
hierarchical structure. The original backpropagation error is
transmitted only from the highest level down; in addition
to that we calculate classification loss in the middle level of
the hierarchical structure at the same time and then calculate
gradient with BPTT. It accumulates the loss for the purpose of
LSTM’s weight updatingmore quickly, while avoiding the fact
that some of the underlying weights cannot update effectively
since the propagation distance is too far for the loss from top-
level. Besides, hierarchical models are facing serious noise
data interference when learning from raw opcode sequences,
so we propose “method block denoise module” integrated
in our hierarchy model during the training process to filter
out noisy opcode subsequences, thereby improving both the
detection accuracy and training efficiency.

3. Malware Detection Methodology

In this section, we introduce the overview of our malware
detection method, explain how to get the opcode sequence
from the Android application source file, and then describe
how an LSTM-based HDN hierarchical model is designed
and learned from raw opcode sequence to complete malware
detection.

3.1. Overview. We now introduce the whole process of our
Android malware detection method. First, we decompile the
Android application source file (.apk file) by Baksmali to gen-
erate a .smali file. Then we extract raw opcodes from .smali
file to form an opcode sequence; after that we transform the
opcode sequence into vectors (we try two different methods
to get vector representation, one is one-hot encodingmethod
and the other is learning opcode embedding through data)
and put these opcodes embedding into LSTM-based HDN
to train a classifier for distinguishing malicious from benign
samples. It should be noted that HDN has an important
component called MBDM, which helps denoising the noise
segments in the opcode sequence since not all opcode
subsequences of a malware contain malicious behavior. We
use MBDM to filter out the parts of opcode segments from
a malware which do not contain malicious behavior for
data cleaning. In particular, MBDM’s denoising phase and
HDN’s training phase are designed to perform in parallel
for efficiency. Finally, we get a classification result inferring
an Android application as either malware or benignware by
LSTM-based HDN. The overview of our detection process is
depicted in Figure 1 and the rest of this section discusses each
of these steps in detail.

3.2. Android Application Decompilation and Opcode Sequence
Extraction. Android application is an apk package which
contains classes.dex, AndroidManifest.xml, and other files.
Here classes.dex file is executed on theDalvik virtual machine
(VM). Android app runs on specifically designed Dalvik VM
by Google instead of the standard Java VM. The difference
between the two is that Java VM uses Java bytecode while
Dalvik VM uses Dalvik bytecode which is converted from
Java bytecode and packaged into a Dalvik executable (DEX)

Opcode
embedding

Opcode encoder

Method block
denoise module

Method encoder

Malware

J2r8f0k4384j557

J2r8f0k4384j557
.apk

.apk
decompilation

Opcode sequence
extraction

HDN

Classification

.smali

Opcode sequence

Benignware

Figure 1: The overview of our malware detection process.

file. Android applications are compiled into .dex file, which
can be created automatically by translating the compiled
applications written in Java. So the classes.dex file contains
Android source code information.

At present, the mainstream DEX disassemblers are
Dedexer and Baksmali; here we use Baksmali to deal with
classes.dex which generates .smali file as the decompiled
result. The content of .smali file shows in Algorithm 1. Then
we extract the opcodes to form an opcode sequence, col-
lecting over 200 kinds of common opcodes, like mul-
double&2addr, add-int, rsub-int, and so on.During this stage,
we found that there are many consecutive repeating opcode
subsequences in the raw opcode sequence. In order to reduce
the length of the opcode sequence and increase the signal-to-
noise ratio, we filter these repeating opcode subsequences to
remove its redundant information (see in Figure 2).

3.3. Long-Short Term Memory (LSTM). Long-short term
memory (LSTM) [30] is a powerful deep neural network
for temporal data mining and learning, which is a variant
of recurrent neural network (RNN). RNN uses recurrent
connections within the hidden layer to create an internal
state representing the previous input values, which allows
RNN to capture temporal context. However, as the time
interval expands, the updated gradient from BPTT would
decay or explode exponentially, which makes RNN difficult
to learn long-term features and dependencies. LSTM makes
an improvementwhich takes a specialmodule called constant
error carousel (CEC) to propagate constant error signal
through time, using a well-designed “gate” structure to

Security and Communication Networks 5

34 iget-object v0, v0, Lcom/admogo/AdMogoLayout;->custom:Lcom/admogo/obj/Custom;
35 move-object/from16 v34, v0
36 move-object/from16 v0, v34
37 iget-object v0, v0, Lcom/admogo/obj/Custom;->image:Landroid/graphics/drawable/Drawable;
38 move-object/from16 v34, v0
39 if-nez v34, :cond 53
40 invoke-virtual {v7}, Lcom/admogo/AdMogoLayout;->rotateThreadedNow()V
41 goto:goto f
42 :cond 53
43 new-instance v9, Landroid/widget/ImageView;
44 invoke-direct {v9, v5}, Landroid/widget/ImageView;-><init>(Landroid/content/Context;)V
45 move-object v0, v7
46 iget-object v0, v0, Lcom/admogo/AdMogoLayout;->custom:Lcom/admogo/obj/Custom;
47 move-object/from16 v34, v0
48 move-object/from16 v0, v34
49 iget-object v0, v0, Lcom/admogo/obj/Custom;->image:Landroid/graphics/drawable/Drawable;
50 move-object/from16 v34, v0
51 move-object v0, v9
52 move-object/from16 v1, v34
53 invoke-virtual {v0, v1}, Landroid/widget/ImageView;->setImageDrawable(Landroid/graphics/drawable/Drawable;)V
54 new-instance v11, Landroid/widget/RelativeLayout$LayoutParams;

Algorithm 1: The content of the decompiled .smali file generated by Baksmali.

432

433

434

435

436

437

438

439

440

sget-object aget-object iget-boolean
sget-object aget-object iget-object return-object
sget-object aget-object iget
const/4 if-ltz sget-object aget-object iget div-int/lit8 add-int/2addr sget-object aget-object iget goto
sget-object aget-object iget
sget-object aget-object iget
sget-object aget-object iget

sget-object aget-object iget

sget-object aget-object iget-object return-object
sget-object aget-object iget-object aget

Figure 2: Consecutive repeating opcode subsequences in a raw opcode sequence.

prevent backpropagated errors from vanishing or exploding.
The “gate” structure decides internal value of CEC according
to current input values and previous context as it switches
to control the information flow and memory. A standard
gate contains a pointwise multiplication operation and a
nonlinear transformation, so errors can flow backwards
through a longer time range. There are three gates, named
input gate, output gate, and forget gate, respectively.

Given an input sequence 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑇}, where
input gate, forget gate, and output gate in LSTM structure,
respectively, are notated as 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 and the weights
attached to them are 𝑊𝑖, 𝑊𝑓, 𝑊𝑜, 𝑏𝑖, 𝑏𝑓, 𝑏𝑜. For each time
step, LSTM updates two states, hidden state ℎ𝑡 and cell state𝑐𝑡, and 𝜎 denotes the sigmoid function.The above parameters
are presented as follows:

𝑓𝑡 = 𝜎 (𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) ,
𝑖𝑡 = 𝜎 (𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) ,
𝐶𝑡 = tanh (𝑊𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) ,

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡,
𝑜𝑡 = 𝜎 (𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ,
ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) .

(1)
For a typical LSTM for classification, LSTM takes the nor-

malized sequence data as input, and LSTM hidden layers are
fully connected to the input layers. And there are recurrent
connections for each LSTMhidden neuron.The size of LSTM
output layer is equal to the number of categories to classify.
But for a binary-class classification, a logistic regression is
used for output layer to give a prediction between 0 and 1
at each time step and these predictions can be regarded as
posterior probabilities of the input sequence belonging to the
positive category at current time step.

3.4. Standard LSTM Architecture. We first build a stan-
dard LSTM as a base model, which learns from raw
opcode sequences through a bidirectional LSTM. Bidirec-
tional LSTM is almost the same as the LSTM structure

6 Security and Communication Networks

mentioned above, apart from the fact that it can take both
past and future context into account, which is achieved by two
separate hidden layers (forward and backward layer) dealing
with past and future context, respectively, by propagating
along sequence in opposite direction. And the output layer
is connected to both hidden layers in order to combine past
and future contexts. As mentioned above, for each Android
application, we first decompile it by Baksmali and extract
opcode sequences 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑇}; these opcode 𝑥𝑡 first
need to be digitized as the input of LSTM. Here we use one-
hot encoding to transform 𝑥𝑡 into a sparse vector V𝑡 (one-
hot encoding simply uses a mapping transformation to get
a sparse vector like [0, 0, 0, 1, 0, . . . , 0] which only contains
one nonzero element) and use a bidirectional LSTM taking{V1, V2, . . . , V𝑇} as input. For ease of understanding, here we
define LSTM (𝑥𝑡, ℎ𝑡−1) as the LSTM cell operation on the last
hidden state ℎ𝑡−1 and the current input 𝑥𝑡

𝑥𝑡 One-hot→ V𝑡,
→ℎ𝑡 = →LSTM (V𝑡, →ℎ𝑡−1) ,
←ℎ𝑡 = ←LSTM (V𝑡,←ℎ𝑡−1) .

(2)

For a malware detection task, it is a binary-class classifi-
cation. We assume that the positive class label (malware) is
1 and the negative class label (benignware) is 0. The output
of LSTM is 𝑦, 𝑦 ∈ (0, 1), on behalf of LSTM determining
the probability that current sample is positive.We use logistic
regression to calculate the probabilities (see (4)), where𝑊LR is
logistic regression weight matrix, ℎ is hidden state of LSTM
for logistic regression, and 𝑏LR is logistic bias. Since we use
bidirectional LSTM, ℎ contains the first and last two hidden
states:

ℎ = [←ℎ1, →ℎ𝑇] , (3)

𝑃 (𝑦 = 1 | 𝑋) = 𝑝 (𝑦 | 𝑥1, 𝑥2, . . . , 𝑥𝑇)
= 11 + exp (−𝑊LRℎ − 𝑏LR) .

(4)

For multiclass classification tasks like malware family
classification, the output of LSTM is 𝑦, 𝑦 ∈ R1∗𝐾, where𝐾 is
the number of class. We use a softmax function to calculate
the probabilities (see (5)); each class has its own parameter𝑊𝑘, which is part of softmax weight matrix.

𝑃 (𝑦𝑘 | 𝑋) = 𝑝 (𝑦𝑘 | 𝑥1, 𝑥2, . . . , 𝑥𝑇)
= exp (𝑊𝑘ℎ + 𝑏𝑘)∑𝐾𝑘=1 exp (𝑊𝑘ℎ + 𝑏𝑘) ,

(5)

where 𝑏𝑘 is softmax bias.
During the training phase, each iteration calculates the

log-likelihood loss for each sample according to the object
function, and uses BPTT algorithm to update weights of
standard LSTM,which is an extension of the backpropagation

algorithm for temporal data. By adding a time dimension, the
gradient can be passed through the timeline.

Since a very long sequence is difficult to be effectively
process by LSTM, here we use “truncating and padding”
strategy [22] to deal with the opcode sequence. First, it selects
the fixed length of𝑁 and truncates the part exceeding length𝑁, and then it uses a predefined identifier padding to length𝑁 if the opcode sequence length is less than𝑁. This strategy
ensures that the length of each opcode sequence that the
LSTM needs to process remains consistent and not too long,
while the drawback is that truncating operation causes a
plenty of sequence information unused. The whole standard
LSTM architecture is shown in Figure 3.

3.5. Hierarchical Denoise Network Architecture. As the core
idea of detection process, we propose LSTM-based hierar-
chical denoise network to learn from raw opcode sequence.
HDN consists of four parts: opcode embedding lookup layer,
opcode encoder, method encoder, and MBDM. Actually,
HDN acts as a binary classifier to solve malware detection
problem. We mark malware samples with positive labels (+1)
and benign samples with negative labels (0). The overall
architecture is shown in Figure 4.

We first explain the notational conventions in this paper,𝑃 is defined as a program which may be malware or benign-
ware. Since Android application is written in Java, whose
source code can be seen as a composition of methods of
different Java classes, we regard program 𝑃𝑖 as a composition
of a sequence of method blocks, 𝑃𝑖 = {𝑀1,𝑀2, . . . ,𝑀𝐿}.
Each method block 𝑀𝑙 contains a sequence of methods,𝑀𝑙 = {𝑚1, 𝑚2, . . . , 𝑚𝑠}, each method 𝑚𝑠 is comprised of
a sequence of opcodes, where 𝑚𝑠 = {𝑜1, 𝑜2, . . .}, so 𝑀𝑙
also can be represented as a sequence of opcodes, 𝑀𝑙 ={𝑜1, 𝑜2, . . . , 𝑜𝑇}. We assume that each opcode 𝑜𝑡 can be rep-
resented as a 𝑉-dimensional embedding vector 𝑒𝑜𝑡 . Similarly,
each method block 𝑀𝑙 and program 𝑃𝑖 can be represented
as embedding vector 𝑒mb

𝑙 and 𝑒𝑝𝑖 through opcode encoder
and method encoder, respectively. In particular, opcode
encoder encodes a method block 𝑀𝑙 with its embedding{𝑒𝑜1, 𝑒𝑜2, . . . , 𝑒𝑜𝑇} by LSTM to get method block embedding 𝑒mb

𝑙 ,
then method encoder deals with method block sequence{𝑀1,𝑀2, . . . ,𝑀𝐿}, encoding its embedding {𝑒mb

1 , 𝑒mb
2 , . . . ,𝑒mb

𝐿 } with LSTM to get program embedding 𝑒𝑝𝑖 .
3.5.1. Opcode Embedding Lookup Layer. We try to use two
methods to get opcode embedding, one is simply using one-
hot encoding and the other is learning opcode embedding
through training data. For the latter, an important thing is to
set opcode vector’s size. Since we have a total of 218 opcodes,
the number of opcodes is not much comparing to the word
embedding in natural language processing (NLP) task. So we
choose embedding vector length 𝑉 of 30 (refer to NLP task
training word2vec word embedding, choosing embedding
vector length of 300 for vocabulary with 20,000 words) and
initialize an embedding lookup matrix𝑊𝑒,𝑊𝑒 ∈ R[218,𝑉=30].
Before training, we use the uniform distribution of [0, 1) to
randomly initialize the embeddingmatrix and update it when
the training loss propagates backward by BPTT to learn the

Security and Communication Networks 7

Truncating:

Padding

move
move
move

One-hot encoding One-hot encoding One-hot encoding

LSTM LSTM LSTM

sub-int return
sub-int return

LogisticLast hidden state regression

Malware Benignware

add-int
add-int
add-int

Minibatch

div-double&2addr

Figure 3: The whole standard LSTM architecture.

Method encoder

←
ℎOEb
1

←
ℎOEb
2

←
ℎOEb
t

←
ℎOEb
T

←
ℎMEb
1

←
ℎMEb
2

←
ℎMEb
L

eo1 eo2 eot eoT

emb
1

embeddingembedding embeddingemb
2 b emb

L

Opcode encoder

Opcode embedding
lookup layer

move

Data flow
Gradient from method encoder

Gradient from opcode encoder
Denoise

Logistic

Logistic
regression

regressionregression regression
LogisticLogistic

Method block Method blockMethod block

Method block
denoise module

sub-int

Program

Malware detection
result

Opcode encoder Opcode encoder

Opcode embedding
lookup layer

Opcode embedding
lookup layer

sub-long

Embedding Embedding Embedding Embedding

add-int return move if-eqaget

representation e
p
i

→
ℎ－％＠
L

→
ℎ－％＠
2

→
ℎ－％＠
1

→
ℎ／％＠
T

→
ℎ／％＠
1

→
ℎ／％＠
2

→
ℎ／％＠
t

Figure 4: The overall architecture of HDN. Note that method block denoise module is used for all method blocks represented by blue line.

representation of the opcode from the data. For each opcode𝑜𝑡, we get opcode embedding by looking it up andmapping it
through𝑊𝑒 to digitize: 𝑜𝑡 𝑊𝑒→ 𝑒𝑜𝑡 .
3.5.2. LSTM-Based Opcode Encoder. As previously stated, we
first decompile Android app to extract opcode sequence,
because Baksmali tool will identify the scope of each Java
method, using “.methods” and “.end methods” to identify
during the decompiling process. We can recognize the
opcode sequence boundary for a method, so the method is

used as a basic unit for identifying opcode subsequence. In
practice, as the lengths of Java methods are quite different,
we define a method block 𝑀𝑙 which may contain a long
Java method or multiple short Java methods. So each of
the method block has a similar opcode sequence length,
which helps LSTM efficient training. Then we use opcode
embedding sequences to represent method block 𝑀𝑙 ={𝑒𝑜1, 𝑒𝑜2, . . . , 𝑒𝑜𝑇}.

Although we use method block to ease the varying
opcode sequence length of different Javamethods to a certain
extent, method blocks still have different lengths. So we put

8 Security and Communication Networks

method blocks with similar lengths into a minibatch and
pad them to the same length. It enhances the computational
efficiency during LSTM training process, since the method
block sequences only need to be padded to the longest
sequence in the currentminibatch rather than the longest one
of the whole sequences.

We first digitize opcode with embeddingmatrix, then use
opcode encoder’s LSTM cell to encode opcode sequence of a
method block like this:

𝑜𝑡 𝑊𝑒→ 𝑒𝑜𝑡 ,
ℎ→OEf𝑡 = →LSTMOE (𝑒𝑜𝑡 , ℎ→OEf𝑡−1) ,
ℎ←OEb
𝑡 = ←LSTMOE (𝑒𝑜𝑡 , ℎ←OEb

𝑡−1) ,
(6)

where →LSTMOE represents LSTM cell in opcode encoder.
ℎ→OEf𝑡 and ℎ←OEb

𝑡 represent the opcode encoder’s forward and
backward hidden states, and 𝑡 refers to the time step. Here we
collect the first and the last hidden states to form the method
block embedding 𝑒mb

𝑙 = [ℎ←OEb
1 , ℎ→OEf𝑇].

Unlike other related work [29], here we also calculate a
logistic loss for opcode encoder. The intuition behind it is
that if the logistic loss is calculated only from the highest
level of the program, which needs to be passed from the
method encoder through opcode encoder, and then to the
opcode lookup layer, it maymake the underlying weight hard
to be effectively updated due to the too long distance, so
we calculate logistic loss for both the opcode encoder and
method encoder, where the loss of the method encoder is the
“program classification loss”. Similarly, wemark eachmethod
block with the same label as the program sample it belongs to.
So the output of opcode encoder can also be classified so to
get “method block classification loss,” as shown as follows:

𝑃 (𝑦𝑙 = 1 | 𝑀𝑙) = 𝑝 (𝑦𝑙 = 1 | 𝑜1, 𝑜2, . . . , 𝑜𝑇)
= 1
exp (−𝑊mb

LR 𝑒mb
𝑙

− 𝑏mb
LR) ,

𝐿mb = −[𝐿∑
𝑙=1

𝑦𝑙 log (𝑝 (𝑦𝑙 = 1 | 𝑀𝑙))

+ (1 − 𝑦𝑙) log (1 − 𝑝 (𝑦𝑙 = 1 | 𝑀𝑙))] ,

(7)

where 𝑦𝑙 is the method block’s true label, 𝑦𝑙 ∈ {0, 1}.𝑊mb
LR is

logistic weights matrix for method block. 𝑏mb
LR is logistic bias

for method block.

3.5.3. LSTM-Based Method Encoder. From above, we get
each method block𝑀𝑙’s embedding 𝑒mb

𝑙 through the opcode
encoder. An Android program is composed of a series of
method blocks, so we use method encoder as the second-
level encoder, and encode method block sequence 𝑃𝑖 = {𝑀1,𝑀2, . . . ,𝑀𝐿} = {𝑒mb

1 , 𝑒mb
2 , . . . , 𝑒mb

𝐿 } to get the program embed-
ding 𝑒𝑝𝑖 . 𝑒𝑝𝑖 as a high-level representation of the program, then

it is used as features for the subsequent malware detection.
The prediction result is generated by logistic regression layer,
andHDN’sweights are updated byBPTT algorithm, as shown
below:

ℎ→MEf
𝑙 = →LSTMME (𝑒mb

𝑙 , ℎ→MEf
𝑙−1) ,

ℎ←MEb
𝑙 = ←LSTMME (𝑒mb

𝑙 , ℎ←MEb
𝑙−1) ,

𝑒𝑝𝑖 = [ℎ←MEb
1 , ℎ→MEf

𝐿] ,
𝑃 (𝑦𝑖 = 1 | 𝑃𝑖) = 𝑝 (𝑦𝑖 = 1 | 𝑀1,𝑀2, . . . ,𝑀𝐿)

= 1
exp (−𝑊𝑝LR𝑒𝑝𝑖 − 𝑏𝑝LR) ,

𝐿𝑝 = −[𝐼∑
𝑖=1

𝑦𝑖 log (𝑝 (𝑦𝑖 = 1 | 𝑃𝑖))

+ (1 − 𝑦𝑖) log (1 − 𝑝 (𝑦𝑖 = 1 | 𝑃𝑖))] ,

(8)

where →LSTMME represents LSTM cell on method encoder.
ℎ→MEf
𝑡 and ℎ→MEb

𝑡 represent the method encoder’s bidirection
hidden states.𝑊𝑝LR is logistic regression weights matrix, and𝑏𝑝LR is logistic regression bias. Similarly, we collect the first and
the last hidden states to form the program embedding 𝑒𝑝𝑖 .

In summary, HDN mainly uses opcode encoder and
method encoder to form a two-level hierarchical model.
Respectively, they get method block embedding 𝑒mb

𝑙 and
program embedding 𝑒𝑝𝑖 and calculate “program classification
loss” 𝐿mb and “method block classification loss” 𝐿𝑝 for HDN
network learning and weight updating.

3.5.4. Method Block Denoise Module. Android malware is
often deposited on a host application, so only part of
the opcode sequence contains malicious characteristics or
behaviors. However, HDN considers all opcode segments of
a malicious sample malicious by default. In this situation,
the benign (or not malicious) segments of a malware bring
in the noise which reduces the quality of malware data
samples, thus, requiring a denoising method. Otherwise, it
will interfere with HDN’s learning process to a certain extent.
Here, we use MBDM to denoise during HDN training phase
(see in Figure 5).

Our method is inspired by a work which uses reconstruc-
tion errors to detect anomaly sequences with LSTM Autoen-
coder. In our scenario, we use logistic loss as a reference
to denoise subsequence (method blocks). For each opcode
sequence, LSTM typically iterates it over the minibatch many
times for training.MBDMsets a loss cache 𝜖𝑗 for eachmethod
block and accumulates logistic loss of method encoder for
current method block, each iteration as followed:

𝜖𝑗 = 𝜖𝑗−1 + 𝛼𝑗 ∗ 𝐿mb
𝑗 , (9)

Security and Communication Networks 9

Remove Yesmethod block

Method block

Method block

Overflow?

No
Gradient

Loss cache Gradient

Logistic
regression

sub-int

adjustment factor
denoise module

move

EmbeddingEmbeddingEmbeddingEmbedding

returnadd-int

eo1 eo2 eot eoT

embedding emb
l

←
ℎOEb
1

←
ℎOEb
2

←
ℎOEb
t

←
ℎOEb
T

→
ℎ／％＠
1

→
ℎ／％＠
2

→
ℎ／％＠
t

→
ℎ／％＠
T

Figure 5: The flowchart of MBDM.

where 𝑗 represents the current iterations round for current
method block. 𝐿mb

𝑗 represents “method block classification
loss” in this iteration. 𝛼𝑗 is the weight of current logistic loss.

During the initial stage of training, since the weights on
method encoder are randomly initialized and HDN has not
learned enough features fromdata, all method blocks’ logistic
loss are large so it is difficult to judge whether the method
block is noisy. Hence, we adjust 𝛼𝑗 to reduce the accumulative
error at the beginning like this:

𝛼𝑗 =
{{{{{{{
𝛼0 + log

𝑗𝛽 , 𝐿mb
𝑗 > 𝐿mb

𝑗−1,
0, otherwise,

(10)

where 𝛼0 and 𝛽 are hyperparameters to be chose.
Then MBDM adaptively adjusts the gradient for back-

propagation according to loss cache 𝜖𝑡. In particular, the loss
cache is mapped to for changing the amplitude of gradient as
follows:

𝑊𝑗 = 𝑊𝑗−1 − 𝜂 ∗ { 11 + 𝜖𝑗∇𝐸 (𝑊𝑗−1)} . (11)

Intuitively, the noise subsequence is difficult to classify
by LSTM due to the lack of effective information. Therefore,
the logistic loss and the loss cache are relatively larger. We
clip the gradient of these subsequences to avoid the noise
subsequences giving the wrong weight updates to method
encoder. Furthermore, if the loss cache exceeds the preset
upper bound 𝛿, this method block will be removed from the
current program sample to avoid invalid gradient calcula-
tion.

3.5.5. Data Augmentation for HDN. In practice, the number
of each class from the dataset is often very uneven. For
example, the number of benignware is much more than that
of malware and is easy to obtain. While the distribution
of different Android malware families (a malware family
refers to a malware variants group with homogeneous attack
behaviors) is very uneven, malware families which are widely
spread have a bigger influence on training model. Directly
using these datasets which contain obvious class imbalance
will seriously decrease the model’s training performance. A
common solution is to use data augmentation strategy to
rebalance the distribution. One typical example is to do a
certainmapping transformation to expand the image samples
in computer vision tasks.

For time series data, we propose a novel data augmen-
tation method for HDN (see in Figure 6). The HDN’s first
level is opcode encoder dealing with method blocks, and
each method block 𝑀𝑙 contains one or some methods, here
we introduce some randomness when allocating methods
to method blocks. Let each method block 𝑀𝑙 contain 1 −𝑁 random methods 𝑚𝑠, and method block windows allow
intersection. Given a program’s opcode sequence, there are
a number of method block allocation ways. So HDN can use
all these different allocations as expanded new samples.

4. Experiments and Evaluations

After presenting HDN in detail, we now evaluate its perfor-
mance. In particular, we conduct the following experiments.
First, we describe the experiment environment and imple-
mentation process of HDN. Second, we evaluate and analyse
the detection performance of HDN. Finally, we present the
visualization for opcode embedding learned by HDN.

10 Security and Communication Networks

m1 m2 m3 m4 m5 m6 m7 m8

m1 m2 m3 m4 m5 m6 m7 m8

M1 M2 M3 M4 M5

Input OutputMethod
encoder

Program
representation e

p
i

Figure 6: The data augmentation method for HDN.

Table 1: The datasets used in our work.

Datasets Malware Benignware
Source samples Malware families Source Samples

Benchmark dataset 1 (BD1) Genome 1,260 49 China Android markets 1,250
Benchmark dataset 2 (BD2) Drebin 5,560 179 China Android markets 5,600
In the wild dataset (ITW) Androzoo 20,000 208 Androzoo 20,000

4.1. Implementation

4.1.1. Datasets. We use three malware datasets for our exper-
iment, namely, Genome [31], Drebin [13], and Androzoo
[32]. The first two datasets provide malicious Android
app samples, which are being kind of out-of-date by now.
However, they are widely used as benchmark datasets for
many related works, so here we use these two datasets as
a benchmark to compare our method with others. At the
same time, we collect the latest Android malware and benign
samples from Androzoo, which is a growing dataset for
Android applications collected from several sources, like the
official Google Play app market, and each of them has been
analysed by tens of different antivirus products to detect
and check which one is a malware. Our collected samples
include most recently 20,000 benign samples and 20,000
malware samples, respectively. The malware samples contain
208 malware families, with an average of 100 samples per
malware family.

In addition,we crawl onmainstreamChinaAndroidmar-
kets (Wandoujia, Androidmarkets, AnZhi, JiFeng, etc.) to get
a number of the benign datasets. All these benign samples
are validated by VirusTotal [33] to prevent wrong labeling.
Overall, we finally build three complete datasets (containing
both malware and benignware) which are described in
Table 1.

In Table 1, each sample carries with the .apk a source app
file in all datasets.The firstmalware dataset is Genome (called
the Android Malware Genome project), and these samples
are collected in 2012. In our work, we use Genome to build
the malware part of our first benchmark dataset BD1. The
second malware dataset is Drebin, which is the largest public
dataset available before 2014. This dataset provider also came
up with a good malware detection method and evaluated
it on their dataset in comparison. We use Drebin to build
the malware part of our second benchmark dataset BD2.
The third malware dataset source is Androzoo. It is a large,

constantly updated Android malware database compared
with the previous two datasets, containing many samples
collected after 2015. To ensure the balance of the number of
malware family samples, here the number of samples from
each malware family we collect is around 100, and we call it
“in the wild dataset” ITW.

The goal of our malware detection experiment is to
determine whether data samples belong to malware, which
can be regarded as a binary classification problem. To ensure
the reliability of results and make full use of data samples, we
use 8-fold cross validation for evaluation and do an average
as the final result. Certainly, to ensure that training samples
and test samples have similar malicious/benign proportions,
the data samples are required to shuffle at first.

Moreover, to quantify and evaluate classification results,
we measure six indexes: accuracy, true positive rate (TPR),
false positive rate (FPR), equal error rate (EER), receiver
operating characteristic (ROC), and training/detecting time
consumption, where TPR indicates the rate that a malware
sample is correctly identified and FPR indicates the rate that
a benignware sample is wrongly identified as a malware. In
addition, since some papers use precision, recall, and 𝐹-score
indicators for evaluation, we also calculate these indexes to
facilitate the comparison.

4.1.2. Model. In our scenario, we use NVIDIA GTX980
GPU, which provides a high-performance CUDA universal
parallel computing platform to support GPU computing
and introduce GPU-accelerated deep neural network library
cuDNN based on CUDA. According to the corresponding
version of GTX980, the experiment platform mainly uses
CUDA 7.5, cuDNN V4, Python 2.7.6, Numpy 1.8.2, Scipy
0.13.3, and Tensorflow 0.9.0. In particular, Tensorflow is an
open source library mainly for deep learning tasks developed
by Google. It helps researchers and engineers build and train
flexible and customizable deep neural networks.

Security and Communication Networks 11

First, we introduce the specific settings of model and the
related parameters for HDN. Our model uses bidirectional
LSTM unit with dropout strategy (dropout probability is
chosen to 0.5) to reduce overfitting problem, and dropout
only takes effect on LSTM hidden layers. We use orthogonal
initialization strategy to increase convergence of LSTM. The
initial weight range for the network is [−0.04, 0.04]. The
number of hidden layers is one and the number of hidden
nodes is 650 for both opcode encoder and method encoder,
with 𝑡𝑎𝑛ℎ as the activation function.

HDN uses Adam optimization algorithm for training,
which is an optimization algorithm able to adaptively adjust
learning rate during training phase, only requiring to set
the initial learning rate which we set to 2𝑒 − 3. HDN uses
minibatch training with stochastic gradient descent (SGD),
where the batch size is selected as 30. Each method block
length is between 80 and 160. For some method length more
than 160, they will be divided intomultiplemethod blocks for
training.Themaximumnumber of iterations is 160,000. Since
using early stop strategy to prevent overfitting, each training
sample iterates around 7 times on average.

We try two opcode embedding methods, one simple way
is using one-hot encoding for representation and the other is
using HDN learning opcode condense embedding from the
data to build an embedding matrix. It should be noted that
the learning rate for the embedding matrix should be much
less than HDN network’s learning rate, otherwise, it will lead
to serious overfitting. Here the learning rate we set for the
embedding matrix is 1/10 of the HDN network.

4.2. Results and Analysis

4.2.1. HDN-Related Experiment Results. Here, wemake some
experiments to explore the performance of HDN compared
with standard LSTM model, we also evaluate the effect of
MBDMand twoopcode encodingmethods to better optimize
HDNmodel.

First, we try to prove that HDN is better to deal with
long sequences than standard LSTM due to its hierarchical
structure. Here standard LSTM uses truncation and padding
strategy to handle long raw opcode sequences, which requires
to set a fixed length 𝑁 as a hyperparameter. It will truncate
the part of sequence exceeding length 𝑁 or padding to 𝑁 if
opcode sequence length is less than𝑁. Since the selection of𝑁 greatly influences the results of standard LSTM, we try a
set of different 𝑁 for experiment. The results are shown in
Figure 7.

It can be seen that HDN’s detection AUC is 0.99848,
which is a significant improvement compared with standard
LSTM. One main reason is that standard LSTM truncates
the opcode sequence for the sake of computational effi-
ciency, which makes the information of the truncated part
unutilized, leading to a great negative impact on standard
LSTM’s learning process. In contrast, HDN copes with the
vast majority of long sequences very well, and its hierarchical
structure allowsHDN to handle amuch longer sequence than
standard LSTM for the sequence length that each layer LSTM
in HDN needs to process is in a reasonable range. HDN uses
a strategy similar to divide and conquer algorithm, which

ROC curve of different methods for malware detection

Standard LSTM(N = 60) (；Ｏ＝ = 0.96471)
N = 80) (；Ｏ＝ = 0.97738)

Standard LSTM(N = 120) (；Ｏ＝ = 0.99097)
Standard LSTM(N = 150) (；Ｏ＝ = 0.98807)
HDN (；Ｏ＝ = 0.99848)

0.02 0.04 0.06 0.08 0.100.00

False positive rate

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ue

 p
os

iti
ve

 ra
te

0.9

1.0

Standard LSTM(

Figure 7: The performance comparison for different malware
detection methods.

breaks opcode sequence into subsequences, then it deals with
opcode subsequence segments (method blocks) by opcode
encoder, getting higher and denser abstract representation,
and then it unifies them for global processing by method
encoder.

Moreover, we compare HDN with or without MBDM
to verify whether MBDM can effectively remove the noise
in sequence and enhance overall detection performance.
Since MBDM involves some hyperparameters, we do not
specifically optimize these hyperparameters in this phase.
Here we simply choose a set of hyperparameters based on
experience. The experiment results are shown in Table 2.

As can be seen from the results, MBDM brings a con-
siderable improvement on detection rate for HDN proving
that using MBDM to denoise opcode sequences is effective.
Moreover, from the experiment we observe that MBDM
can speed up the training process of HDN, because MBDM
filters some noise subsequence segments so that it reduces
the number of segments that HDN required to process. In
general, it enhances the efficiency of learning and reduces
time consumption of training.

We also compare two opcode encoding methods. One
simply uses one-hot encoding. Since the number of Android
opcode is not very large, the sparseness of one-hot encod-
ing does not cause too much negative impact on com-
putational efficiency. Another method is learning opcode
embedding from data samples. First, we set the size of
embedding vector with hyperparameter emb size, randomly
initialize the embedding lookupmatrix with size of [emb size,
num opcode], and then update the weight of the embedding
lookup matrix to learn the dense vector representation of
opcode during training phase. It’s just like updating the
weight of HDN network through BPTT. The idea first comes
up inNLP tasks for word vector learning, such as well-known
word2vec. Many previous works show that word2vec has an
obvious good effect on NLP tasks, for example machine
translation and machine reading comprehension. It should

12 Security and Communication Networks

Table 2: The malware detection results of different methods.

Methods Accuracy (%) AUC TPR (FPR = 1%) EER (%)
Standard LSTM (𝑁 = 60) 93.65 0.968 54.31 5.78
Standard LSTM (𝑁 = 80) 94.13 0.977 55.02 4.92
Standard LSTM (𝑁 = 120) 96.85 0.991 92.91 4.11
Standard LSTM (𝑁 = 160) 96.69 0.991 90.91 4.27
HDN (no MBDM) 98.86 0.997 96.69 1.39
HDN + one-hot encoding 99.13 0.998 97.73 0.98
HDN + opcode embedding 99.42 0.999 98.88 0.73

be noted that the learning rate for embedding lookup matrix
should be much smaller. Here we scale to 1/10, otherwise, it
will cause serious overfitting problem.

As summarized in Table 2, using opcode embedding
achieves the better detection results, since opcode embedding
captures the opcode semantic information compared to one-
hot encoding, which helps HDN learn semantic informa-
tion of opcode sequences and automatically mine malicious
behaviors. In the last evaluation section, we will visualize
the opcode embedding to show how semantic knowledge is
learned and represented.

Besides, in order to bring deeper intuition about how
opcode sequence length impacts the detection performance
for the methods mentioned above, we experiment with
several malware detection tasks using opcode sequence data
with different lengths. Since the size of Android .apk samples
vary a lot in our datasets, we collect the samples of similar
opcode sequence lengths to generate one subdataset, which
constructs a total of 9 subdatasets with an opcode sequence
length ranging from 40 to 2,048, respectively. For each
subdataset, we use three methods (standard LSTM, HDN,
and HDN (no MBDM)) to experiment on all the subdatasets
separately. The results are shown in Figure 8.

As we can see from Figure 8, all three methods’ per-
formance is basically the same in the first four subdatasets
(which opcode sequence length is in the range of 40–120).
But when opcode sequence length is greater than 120, the
performance of standard LSTM dropped drastically due to
the fact that standard LSTM is unable to effectively deal with
long time series data. In contrast, HDN uses a hierarchical
structure so even when the opcode sequence length exceeds
1,000, it is still possible to efficiently capture sequence fea-
tures. And the use ofMBDMbrings an obvious improvement
when opcode sequence length is greater than 1,000. Because
the large Android malware is often generated by injecting
malicious fragments to a benign application which contains
a large number of nonmalicious noise, using MBDM can
obtain a better detection performancewhendealingwith very
long sequence due to the effectiveness of noise filtering.

From the above experiments we know that MBDM helps
HDN get a better detection result through subsequence
denoising, we intend to further explore and optimize the
hyperparameters for MBDM. The goal of MBDM is to filter
out the “noise subsequence” with low signal-to-noise ratio
so that more quality input data is received by HDN. In our
scenario, noise subsequences indicate noise method blocks,

Methods comparison on different opcode
sequence lengths

Methods
Standard LSTM
HDN(no MBDM)
HDN

20481280180 64040 120 3208060

Opcode sequence length

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Figure 8: The methods comparison on different opcode sequence
lengths.

so we will filter out the current method block once its
loss cache overflows the upper limit. Here this requires a
reasonable value for the upper limit of the loss cache, and
since this upper limit is too abstract, we transform it into
another hyperparameter called filtering ratio 𝜎 whose value
refers to the proportion of training subsequences filtered out
by MBDM in the training process. The choice for 𝜎 is related
to the degree of tolerance for noise in opcode sequences, and
in fact it reflects the trade-off between HDN generalization
performance and data quality.

In this paper, we evaluate five different filtering ratio
ratios 𝜎 (= 0%, 1%, 2.5%, 5%, 10%), where 𝜎 = 0%means that
MBDM is not enabled. The results are shown in Figure 9. It
can be seen that the result of 𝜎 = 10% corresponds to the
lowestAUCvalue, and the rest of the filtering ratio𝜎 get better
results than the one without MBDM. From the experiment
result the optimal filtering ratio 𝜎 is chosen to be 2.5%.

In order to explore the reason why the accuracy is
declining when 𝜎 > 5%, a potential factor is that LSTM

Security and Communication Networks 13

0.005 0.010 0.015 0.020 0.025 0.0300.000

False positive rate

ROC curve of HDN with MBDM on different filtering ratios

Filter 10% training samples(AUC = 0.99736)
Filter 0% training samples(AUC = 0.99848)
Filter 1% training samples(AUC = 0.99891)
Filter 5% training samples(AUC = 0.99933)
Filter 2.5% training samples(AUC = 0.99957)

0.70

0.75

0.80

0.85

0.90

Tr
ue

 P
os

iti
ve

 R
at

e

0.95

1.00

Figure 9:The comparison for different filtering ratios 𝜎 forMBDM.

network has strong generalization ability, that is, the input
data with certain level noise does not affect LSTM to do
classification much. LSTM can learn to ignore the noise from
the data after several iterations. In the field of computer
vision, in order to enhance the generalization performance of
deep neural networks, researchers even introduce additional
noise into the input image, such asmasking parts of the image
deliberately. As mentioned above, choosing the filtering
ratio for MBDM requires a trade-off between data quality
and model generalization performance. Although filtering
more data samples can eliminate more data noise, the data
information that HDN can learn is also relatively less. As we
can see when 𝜎 = 10%, HDN cannot learn a good weighted
network since the valid data is not enough after MBDM
filters.

4.2.2. Comparison with Other Related Works. We compare
HDN with other mainstream methods on BD1 and BD2
benchmark datasets. Since different statistical indicators used
in different papers vary a lot, we calculate all the various indi-
cators to facilitate the comparison.The experiment results are
shown in Table 3.

Comparatively, it can be seen that HDN has obtained a
better detection result on both datasets. On the BD1 dataset,
the contrast method includes using API dependency graph
[34], feature extraction for raw opcode [7, 35], permissions-
based method [36], API call frequency statistics [13, 37], and
CFG-basedmethod [38]. Although these related work results
are considerable, they heavily require artificially features
design on additional information and expert knowledge,
such as permission request in Androidmanifest.xml or API
calls information. In contrast, we only use raw opcode
sequences to achieve malware detection, avoiding artificial
feature extraction. The closest approach to HDN is Jerome
et al. [7], who used 𝑁-gram model to extract features
for raw opcode. The best result shown in their paper was
achieved with nearly 200,000 5-gram features. It takes huge
computation resources, as the computational complexity of

𝑁-gram increases exponentiallywith𝑁. In the case of 5-gram(𝑁 = 5), a simple malware/benign pair extracts 1,305,511
different features, and they had to select 200,000 features
with the most information gain through the feature selection
method to reduce the computational cost.

The current computational efficiency requirements
hardly satisfy the 6-gram and above, which actually limits
the length of the extracted opcode sequence features, since
the length of sequence dependencies beyond 5 will not
be available captured by 𝑁-gram. However, due to the
use of LSTM for sequence processing and hierarchical
structure, HDN can capture more long-term sequence
features compared with 𝑁-gram. It is obvious that HDN
enhances the detection result compared with𝑁-grammodel.

On the BD2 dataset, we also compare with a novel
method based on ICC features called ICCDetector [12]. Due
to the fine-grained analysis on raw opcode sequence, HDN
outperforms methods based on artificial features extraction
(e.g., ICC, APIs, permissions). We can see that the closest
detection result to HDN is ICCDetector. They found that
some malware programs do not directly apply for sensitive
permissions, but using ICC to call other components to
achieve sensitive operations, so they extracted some of ICC-
based features to achieve malware detection. However, this
is not a common feature for all malware programs, so it
has to combine with permission-based features when facing
malware directly applying for sensitive permissions. These
feature combinations require experience and a lot of attempts.
From another point of view, ICC-related method is one
specific opcode sequence call in assembly perspective, so
HDN may even automatically mine ICC-call related opcode
segment features from massive raw opcode sequences.

In addition, we do experiments in a large, real-world
dataset called ITW dataset.This dataset is collected by us and
no related work has done benchmark test for comparison.
Here we reproduce the 𝑁-gram-based method according to
related work. Considering calculation efficiency we conduct
two 2-gram and 3-gram groups of experiments. Since 4
grams and above is difficult to meet the real-time calculation
requirements on large training dataset, they are not taken
into account. We first extract raw 3,132 2-gram features
and 724,959 3-gram features, filter out a large number of
low frequency features from raw 3-gram features followed
by feature selection using random forest. The final features
for each sample are constructed as a 12,834-dimensional
feature vector. Also, since the choice of classifiers makes little
effect on the results according to relevant research works,
we use SVM as a classifier and do data preprocessing first
to normalize the feature vector. The SVM classifier is built
with LibSVM-3.2 tool developed by Professor Lin [41], which
supports SVM both for binary or for multiple classification
scenarios and provides automated scripts for hyperparameter
tuning. The optimized hyperparameters in the experiment
are chosen as 𝑐 = 1024 and 𝑔 = 0.0097656.

HDN’s detection result on ITW large datasets is better
than the previous two benchmark datasets, which is obviously
better than 𝑁-gram results. Essentially, HDN is a deep
learning method, which especially requires massive data
for feature self-learning and modeling. Therefore, HDN can

14 Security and Communication Networks

Ta
bl
e
3:
C
om

pa
rin

g
H
D
N
w
ith

re
la
te
d
w
or
ks
.

M
et
ho

ds
Fe
at
ur
es

D
at
as
et

Be
ni
gn
w
ar
e

M
al
w
ar
e

Ac
cu
ra
cy

(%
)

Pr
ec
isi
on

Re
ca
ll

𝐹1-s
co
re

TP
R
(%

)
FP

R
(%

)
D
ro
id
SI
FT

[3
4]

A
PI

de
pe
nd

en
cy

gr
ap
h

BD
1(
G
en
om

e)
13
,5
00

1,2
60

-
-

-
-

98
5.
15

CN
N
[3
5]

op
co
de

pa
tte

rn
s

BD
1(
G
en
om

e)
86
3

1,2
60

98
0.
99

0.
95

0.
97

-
-

D
ro
id
D
et
ec
tiv

e[
36
]

pe
rm

iss
io
n-
co
m
bi
na
tio

n
BD

1(
G
en
om

e)
74
1

1,2
60

96
0.
89

0.
96

0.
92

-
-

Ye
rim

ae
ta
l.
[3
7]

A
PI

ca
lls
,p
er
m
iss

io
ns
,c
m
nd

s
BD

1(
G
en
om

e)
1,0

00
1,0

00
91

0.
94

0.
91

0.
92

-
-

Je
ro
m
ee

ta
l.
[7
]

op
co
de
𝑛-gr

am
s

BD
1(
G
en
om

e)
1,2

60
1,2

46
-

-
-

0.
98

-
-

CS
BD

[3
8]

CF
G

BD
1(
G
en
om

e)
1,2

47
1,2

47
-

0.
93

0.
90
5

0.
91

-
-

H
D
N

op
co
de

pa
tte

rn
s

BD
1(
G
en
om

e)
1,2

60
1,2

60
99
.2

0.
99
3

0.
98
5

0.
98
9

97
.8
7

0.
5

O
pc
od

en
gr
am

s[
21
]

op
co
de
𝑛-gr

am
s

BD
2
(D

re
bi
n)

5,
56
0

5,
56
0

96
.8
8

0.
95
7

0.
98
1

0.
96
3

-
-

IC
CD

et
ec
to
r[
12
]

IC
C-

re
lat
ed

fe
at
ur
e

BD
2
(D

re
bi
n)

12
,0
26

5,
26
4

97
.4

-
-

-
93
.1

0.
67

RC
P
[3
9]

pe
rm

iss
io
ns

BD
2
(D

re
bi
n)

12
3,
45
3

5,
56
0

-
-

-
-

17
1

KI
RI
N
[4
0]

pe
rm

iss
io
ns

BD
2
(D

re
bi
n)

12
3,
45
3

5,
56
0

-
-

-
-

39
5

Pe
ng

et
al
.[
6]

pe
rm

iss
io
ns

BD
2
(D

re
bi
n)

12
3,
45
3

5,
56
0

88
.2

-
-

-
45

1
D
re
bi
n
[1
3]

A
PI

ca
lls
,i
nt
en
ts,

pe
rm

iss
io
ns
,c
m
nd

s
BD

2
(D

re
bi
n)

12
3,
45
3

5,
56
0

-
-

-
-

93
.9

1
H
D
N

op
co
de

pa
tte

rn
s

BD
2
(D

re
bi
n)

5,
60

0
5,
56
0

98
.8
2

0.
99
1

0.
97
7

0.
98
4

97
.4
4

0.
5

2-
gr
am

SV
M

op
co
de
𝑛-gr

am
s

IT
W

(A
nd

ro
zo
o)

20
,0
00

20
,0
00

95
.17

-
-

-
88
.6
7

0.
5

3-
gr
am

SV
M

op
co
de
𝑛-gr

am
s

IT
W

(A
nd

ro
zo
o)

20
,0
00

20
,0
00

96
.14

-
-

-
90
.0
2

0.
5

H
D
N

op
co
de

pa
tte

rn
s

IT
W

(A
nd

ro
zo
o)

20
,0
00

20
,0
00

99
.4
2

-
-

-
98
.18

0.
5

No
te
.-

m
ea
ns

th
at
th
ea

ut
ho

rs
di
d
no

te
va
lu
at
et
hi
si
nd

ex
or

di
d
no

tm
en
tio

n
it
in

th
ep

ap
er
.

Security and Communication Networks 15

learn richer features and achieve better results in a large
dataset. However,𝑁-gram method is limited by the range of𝑁 and is not able to capture a higher dimension of sequence
features, so it does not obviously benefit from the massive
data.

4.2.3. Malware Family Classification. In addition to malware
detection, we also complete the malware family classification
experiment throughHDN.The currentmainstream antivirus
tool used for software sample analysis not only determines
whether it is malicious or not, but also shows which malware
family it belongs to if meeting a malware. A malware family
refers to malware variants group with homogeneous attack
behaviors, and the classification ofmalware family helps build
a high quality virus database and further analysis of malware
attack mode.

The related work of malware family classification is
relatively rare, but there are published results on BD1 and
BD2’s two datasets for malware family classification. So we
use these datasets as performance comparison. The number
of malware family samples in the BD1 and BD2 datasets
is very uneven, and some malware family samples are too
few to use the machine learning method to train. So we
first make data preprocessing and count the number of
all malware families for the BD1 dataset. The result shows
training sample is unevenly distributed on malware families
and the number is not sufficient (the largest number of
malware families contains 300+ samples while the minimum
only has 5 samples), the datasets are expanded with the
data augmentation method based on the method blocks
mentioned above.The effect of data augmentation is shown in
Figure 10, where eachmalware family is augmented to around
800 samples, we adjust the augmentation ratio to maintain
the approximate uniform distribution of different malware
families to solve the uneven distribution of samples. Besides,
we need to change the structure of HDN for multiclass
malware family classification. The original output layer of
HDN uses logistic regression for malware and benignware
binary classification (malware detection), here the output
layer is changed to softmax regression, with the rest of the
structure and parameters staying the same.

Notice that TPR, FPR, and ROC curves are commonly
used to evaluate binary classification results. To apply them
on amulticlass classification problem, we usemicroaveraging
method which regards all samples in each class as a two-class
classification problem, that is, the sample of the target class is
considered as positive and the sample of the other classes is
considered as negative, averaging TPR and FPR values of all
single class, then. The evaluation result is shown in Table 4.

HDN achieves a significant upgrade of classification
accuracy compared with DroidSIFT on malware family clas-
sification task. DroidSIFT is based on the API dependency
graph. The disadvantage of this approach is that decom-
pilation is difficult to obtain API call information, since
it belongs to high-level information and is susceptible to
obfuscation operation, and modern malware uses more and
more obfuscation and encryption technology to prevent from
antivirus software tracking. In contrast, HDN learns from
raw opcode sequences which are relatively low-level with

Raw
Augmentation

Fa
ke

In
st

al
le

r
D

ro
id

Ku
ng

Fu
Pl

an
kt

on
O

pf
ak

e
G

in
ge

rM
as

te
r

Ba
se

Br
id

ge
Ic

on
os

ys
Km

in
Fa

ke
D

oc
G

ei
ni

m
i

Ad
rd

D
rio

dD
re

am
Li

nu
xL

ot
oo

r
G

ol
dD

re
am

M
ob

ile
Tx

Fa
ke

Ru
n

Se
nd

Pa
y

G
ap

pu
sin

Im
Io

g
SM

Sr
eg

Malware families

0

200

400

600

800

1000

1200

N
um

be
r

Figure 10: The results of data augmentation for malware family.

raw data information, not easy to be obfuscated. Similar idea
comes from DroidChameleon [17] that suggests semantics
analysis formalware detection should relymore on bytecodes
rather than source codes which are easy to be obfuscated or
encrypted.

Moreover, HDN obtains TPR of 97.08% (FPR = 0.5%)
on BD2 dataset for malware family classification, which is
better both in TPR and FPR compared with Drebin [13]. The
main reason is that Drebin uses manual-extracted statistical
characteristics from permissions, single API calls frequency
statistics, and network address information. It does not have
a complete analysis for the malware program content. How-
ever, a malware program often initiates a malicious behavior
call at the code level which contains rich information. In
essence, HDN mining malicious behavior through opcode
sequence is to capture such information.

4.2.4. Computation Efficiency. From the point of view of
computational efficiency, we calculate the time consumption
of different models in the training phase and the detecting
phase, respectively (see in Table 5). It should be noted
that the time consumption includes data preprocessing time
such as feature extraction, but it does not include the time
on decompiling the program due to its similarity for all
models. We can see that HDN is superior to 3-gram SVM for
computation efficiency in both training and detecting phases
because the computational complexity of 𝑁-gram feature
extraction increases exponentially with the size of 𝑁. When𝑁 ⩾ 3, the feature extraction takes a lot of time even if the
training time of SVM is less than LSTM. And this feature
extraction bottleneck is even more serious in the detecting
phase.

On the contrary, deep neural network benefits from
directly processing source samples and achieves considerable
detection efficiency, which is even faster than 2-gram SVM
by combining with GPU computing acceleration. Though 2-
gram SVM’s training time is shorter than HDN’s, this time
consumption is not perceived in the real system since the
training process is offline. So detection efficiency is actually
the key to reflect the efficiency of the methods.

16 Security and Communication Networks

Table 4: The malware family classification results.

Methods Features Malware dataset Malware Accuracy (%) Precision Recall 𝐹1-score TPR (%) FPR (%)
DroidSIFT [34] API dependency graph BD1 1,260 93 - - - - -
HDN Opcode patterns BD1 1,260 99.04 0.991 0.989 0.99 97.79 0.5

Drebin [13] API calls, intents, permissions,
cmnds BD2 5,560 - - - - 93 1

HDN Opcode patterns BD2 5,560 98.32 0.986 0.981 0.984 97.08 0.5

Table 5: The computation efficiency on different methods.

Methods Training time (h) Detection time per program (ms)
2-gram SVM 0.34 23.62
3-gram SVM 4.18 315.97
Standard LSTM 0.85 7.74
HDN (no MBDM) 1.51 14.66
HDN 1.43 14.69

On the other hand, HDN’s computing efficiency is rela-
tively lower compared with standard LSTM, since standard
LSTM uses truncating and padding strategy, which throws
away a large part of sequences, though it increases the
computation efficiency, but also leads to a large amount of
information loss. By contrast, HDNdivides the long sequence
into short sequences and processes through the hierarchical
structure parallelly, only with a little more time consumption
but achieving a much better detection result compared with
standard LSTM.

4.3. Visualization Performance for Opcode Embedding. As
mentioned in the previous section, HDN can learn opcode
semantic information from the dataset through opcode
embedding learning, which helps with malware detection
task. Here we visualize the trained opcode embedding to
explore how the semantic information is saved and rep-
resented. We first make dimensionality reduction for the
trained opcode embedding by principal component analysis
(PCA). It retains a two-dimensional principal component
andwe use it for visualization in a two-dimensional plane (see
in Figure 11).

As we can see, HDN has gained quite a lot of the opcode
semantic knowledge through the dataset, and instructions
with similar meaning are clustered together. For example,
shr-long/2addr&ushr-long/2addr are clustered together at
the lower right corner which representing shifting right
operation. And const-string&const-class of the upper left cor-
ner are clustered together meaning constant values. Besides,
long-to-float&float-to-double as a type conversion operation,
moniter-enter&moniter-exit which fetches or releases the
lock for a specific object, and mul-long&ushr-long as a
binary operation performing on two source registers are
clustered together. It indicates that HDN learns the semantic
relevance of these instructions from data samples. Notably,
these instructions are randomly mapped to a vector of length
30 during the initialization training phase, so HDN does not

−6

−4

−2

0

2

4

6

0 50 100−50−100

Figure 11: The visual representation of opcode embedding.

know its text, hence, it cannot capture the similarity through
text. Hence, these similarities are mining purely from the
opcode sequence context by HDN.

5. Conclusion

In this paper, we present a novel malware detection method
that uses LSTM-based HDN to learn raw opcode sequence
extracted from Android application files which get over the
LSTM gradient vanishing problem. For the noisy segments
in opcode sequences, HDN uses MBDM for denoising
processing. The results show that HDN outperforms other
related works on detection accuracy. Also, in comparison
with 𝑁-gram-based malware detection, HDN can achieve
long-range temporal features/patternsmining, greatly reduce

Security and Communication Networks 17

the cost of artificial feature engineering, and still get the better
results both on the detection rate and computation efficiency.

However, LSTM-based HDN has some limitation since
it does not fully use all related information on Android
application, such as permission request and API calls. It is
considerable to introduce additional statistical characteristics
for HDN to further improve performance. To take advantage
of these additional statistical characteristics, one approach
is to combine all statistical characteristics into one feature
vector as an input to the last logistic regression layer in HDN,
along with the features extracted from a hidden layer. Since
we mainly focus on designing for HDN methodology rather
than implementing an optimal malware detection system,
this experiment is not performed.

In the future work, we will mainly carry out the following
two aspects of exploration. First, we try to build a flexible
and changeable hierarchical network structure, since the
current HDN is fixed as a two-level structure which is
still difficult to deal with extremely long sequence. So a
changeable hierarchical structurewill facilitate the processing
for different sequence lengths. Second, although LSTM is
easy to implement incremental learning, but the reality may
encounter a class incremental learning need (such as the
appearance of newmalware family for malware family detec-
tion). It is important to find a way to solve class incremental
learning to adapt to the changing malware environment.

Conflicts of Interest

The authors declare that there are no conflicts of interest to
this work.

Acknowledgments

This work is partially supported by the National Natural
Science Foundation of China under Grants nos. 61672421 and
61402358.

References

[1] W. Enck, P. Gilbert, B. gon Chun et al., “An information-flow
tracking system for realtime privacy monitoring on smart-
phones,” in USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pp. 393–407, 2010.

[2] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of
my market: Detecting malicious apps in official and alternative
android markets,” in Network and Distributed System Security
Symposium (NDSS), 2012.

[3] L. K. Yan and H. Yin, “Droidscope: seamlessly reconstructing
os and dalvik semantic views for dynamic android malware
analysis,” in USENIX Security Symposium (USENIX Security),
2012.

[4] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” inACMConference on Computer and
Communications Security (CCS), pp. 627–638, ACM, Chicago,
Ill, USA, October 2011.

[5] D. Barrera, H. G. Kayacik, P. C. Van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based

security models and its application to android,” in ACM Con-
ference on Computer and Communications Security (CCS), pp.
73–84, USA, October 2010.

[6] H. Peng, C. Gates, B. Sarma et al., “Using probabilistic gen-
erative models for ranking risks of android apps,” in ACM
Conference on Computer and Communications Security (CCS),
pp. 241–252, ACM, Raleigh, NC, USA, October 2012.

[7] Q. Jerome, K. Allix, R. State, and T. Engel, “Using opcode-
sequences to detect malicious android applications,” in Proceed-
ings of the IEEE International Conference on Communications
(ICC ’14), pp. 914–919, IEEE, Sydney, Australia, June 2014.

[8] K. Chen, P. Wang, Y. Lee et al., “Finding unknown malice in 10
seconds: mass vetting for new threats at the Google-Play scale,”
in USENIX Security Symposium (USENIX Security), 2015.

[9] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: mining API-
level features for robust malware detection in android,” in Inter-
national Conference on Security and Privacy in Communication
Networks (SecureComm), pp. 86–103, Springer, 2013.

[10] J. Yu, Q. Huang, and C. Yian, “DroidScreening: a practical
framework for real-world Android malware analysis,” Security
andCommunicationNetworks, vol. 9, no. 11, pp. 1435–1449, 2016.

[11] M. Grace, Y. Zhou, Q. Zhang, S. Zou, andX. Jiang, “RiskRanker:
scalable and accurate zero-day android malware detection,”
in Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services (MobiSys ’12), pp. 281–294,
June 2012.

[12] K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-based mal-
ware detection on android,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 6, pp. 1252–1264, 2016.

[13] D.Arp,M. Spreitzenbarth,M.Hübner,H.Gascon, andK. Rieck,
“Drebin: effective and explainable detection of androidmalware
in your pocket,” in Proceedings of the NDSS Symposium 2014,
February 2014.

[14] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J.
Hoffmann, “Looking Deeper into Android Applications,” in
International Symposium on Applied Computing (SAC), pp.
1808–1815, Association for Computing Machinery, March 2013.

[15] L. Cen, C. S. Gates, L. Si, and N. Li, “A probabilistic discrimi-
native model for android malware detection with decompiled
source code,” IEEE Transactions on Dependable and Secure
Computing, vol. 12, no. 4, pp. 400–412, 2015.

[16] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android
malware detection using ensemble learning,” IET Information
Security, vol. 9, no. 6, pp. 313–320, 2015.

[17] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating
Android anti-malware against transformation attacks,” in Pro-
ceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, ASIA CCS 2013, pp.
329–334, China, May 2013.

[18] Y. Du, X. Wang, and J. Wang, “A static android malicious code
detection method based on multi-source fusion,” Security and
Communication Networks, vol. 8, no. 17, pp. 3238–3246, 2015.

[19] I. Santos, F. Brezo, J. Nieves et al., “Opcode-sequence-based
malware detection,” The Institute of Electrical and Electronics
Engineers, vol. 5965, pp. 35–43, 2010.

[20] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas,
“Opcode sequences as representation of executables for data-
mining-based unknown malware detection,” Information Sci-
ences, vol. 231, pp. 64–82, 2013.

[21] G. Canfora, A. De Lorenzo, E. Medvet et al., “Effectiveness of
opcode ngrams for detection of multi family android malware,”

18 Security and Communication Networks

in International Conference on Availability, Reliability and Secu-
rity (ARES), pp. 333–340, France, August 2015.

[22] R. Pascanu, J. W. Stokes, H. Sanossian et al., “Malware classifi-
cation with recurrent networks,” in International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1916–1920,
Australia, April 2014.

[23] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” in Fifteenth Annual Conference of the International
Speech Communication Association (ISCA), 2014.

[24] R. J. Williams and J. Peng, “An efficient gradient-based algo-
rithm for on-line training of recurrent network trajectories,”
Neural Computation, vol. 2, no. 4, pp. 490–501, 1990.

[25] P. Doetsch, M. Kozielski, and H. Ney, “Fast and robust training
of recurrent neural networks for offline handwriting recogni-
tion,” in International Conference on Frontiers in Handwriting
Recognition (ICFHR), pp. 279–284, Greece, September 2014.

[26] K. Chen, Z.-J. Yan, and Q. Huo, “A context-sensitive-chunk
BPTT approach to training deep LSTM/BLSTM recurrent neu-
ral networks for offline handwriting recognition,” inProceedings
of the 13th International Conference on Document Analysis and
Recognition, ICDAR 2015, pp. 411–415, France, August 2015.

[27] K. Chen and Q. Huo, “Training Deep Bidirectional LSTM
acoustic model for LVCSR by a context-sensitive-chunk BPTT
approach,” IEEE/ACM Transactions on Audio, Speech and Lan-
guage Processing, vol. 24, no. 7, pp. 1185–1193, 2016.

[28] J. Li, M.-T. Luong, and D. Jurafsky, “A hierarchical neural
autoencoder for paragraphs and documents,” in The 53rd
Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language
Processing (ACL), pp. 1106–1115, 2015.

[29] Z. Yang, D. Yang, C. Dyer et al., “Hierarchical attention net-
works for document classification,” inThe 54th Annual Meeting
of the Association for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), pp. 1480–1489, San Diego,
Calif, USA, June 2016.

[30] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[31] Y. Zhou and X. Jiang, “Dissecting android malware: characteri-
zation and evolution,” inThe 33rd IEEE Symposium on Security
and Privacy (S & P), 2012.

[32] Androzoo., https://androzoo.uni.lu/.
[33] Virustotal, https://www.virustotal.com/.
[34] M. Zhang, Y. Duan, H. Yin et al., “Semantics-aware Android

malware classification using weighted contextual API depen-
dency graphs,” in The ACM SIGSAC Conference on Computer
and Communications Security (ASIA CCS), pp. 1105–1116, ACM,
Scottsdale, Ariz, USA, November 2014.

[35] N. McLaughlin, A. Doupé, J. M. Del Rincon, B. J. Kang et
al., “Deep android malware detection,” in The Seventh ACM
on Conference on Data and Application Security and Privacy
(CODASPY), pp. 301–308, Scottsdale, Arizona, USA, March
2017.

[36] S. Liang andX.Du, “Permission-combination-based scheme for
androidmobilemalware detection,” inProceedings of the 2014 1st
IEEE International Conference on Communications, ICC 2014,
pp. 2301–2306, Australia, June 2014.

[37] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “New
android malware detection approach using Bayesian classifica-
tion,” in Proceedings of the 27th IEEE International Conference
on Advanced Information Networking and Applications, AINA
2013, pp. 121–128, Spain, March 2013.

[38] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L.
Traon, “Empirical assessment of machine learning-based mal-
ware detectors for Android: Measuring the gap between in-the-
lab and in-the-wild validation scenarios,” Empirical Software
Engineering, vol. 21, no. 1, pp. 183–211, 2016.

[39] B. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and I.
Molloy, “Android permissions: a perspective combining risks
and benefits,” in Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies, pp. 13–22, ACM, June
2012.

[40] W. Enck,M.Ongtang, and P.McDaniel, “On lightweightmobile
phone application certification,” in Proceedings of 16th ACM
Conference on Computer and Communications Security, pp.
235–245, ACM, November 2009.

[41] Libsvm., http://www.csie.ntu.edu.tw/cjlin/libsvm/.

https://androzoo.uni.lu/
https://www.virustotal.com/
http://www.csie.ntu.edu.tw/cjlin/libsvm/

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

