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Distributed denial-of-service (DDoS) has caused major damage to cloud computing, and the false- and missing-alarm rates of
existing DDoS attack-detection methods are relatively high in cloud environment. In this paper, we propose a DDoS attack-
detection method with enhanced random forest (RF) optimized by genetic algorithm based on flow correlation degree (FCD)
feature. We define the FCD feature according to the asymmetric and semidirectivity interaction characteristics and use the two-
tuples FCD feature consisting of packet-statistical degree (PSD) and semidirectivity interaction abnormality (SDIA) to describe the
features of attack flow and normal flow. Then we use a genetic algorithm based on the FCD feature sequences to optimize two key
parameters of the decision tree in the RF: the maximum number of decision trees and the maximum depth of every single decision
tree. We apply the trained RF model with optimized parameters to generate the classifier to be used for DDoS attack-detection.The
experiment shows that the proposed method can effectively detect DDoS attacks in cloud environment with a higher accuracy rate
and lower false- and missing-alarm rates compared to existing DDoS attack-detectionmethods.

1. Introduction

Cloud computing is a powerful technology to perform
massive-scale and complex computing in which a huge
amount of storage, data, and services is available over the
Internet. Cloud services are distributed in nature so they
can be sharable by millions of users, so that the cloud
environment has to face numerous security challenges; in
particular, distributed denial-of-service (DDoS) is one of the
most prominent security attack in cloud computing. In recent
years, DDoS attacks are on rise in frequency and severity
in cloud computing and have become a growing problem
because automated tools have been continuously improved
and botnets of computers can be easily rented and organized
to launch attacks by less sophisticated attackers [1, 2].

A DDoS trend and analysis report [3] shows that the
average global enterprise encounters 237 DDoS attacks each
month, which is equivalent to eight attacks per day.Themain

purpose of attackers is to force enterprise system servers
unavailable or steal sensitive data. At the same time, the
average number of DDoS incidents that global companies
have experienced every month (Q3 2017) has increased by
35%. The scale and harm of DDoS attacks are increasing by
leaps and bounds. Various forms of flooding and vulnerability
attacks still affect and destroy networks and services. What
is more, the Internet of things (IoT), industry 4.0, smart
cities, and novel artificial-intelligence (AI) applications that
require devices to be connected to cloud platforms provide
an increasing wide range of potential botnet zombies, and
the issue of controlling these botnets to launch DDoS attacks
has become increasingly severe and important in cloud
computing environment. Research in this area is important
and significant.

Through the above analysis, we can understand the
necessity of a DDoS attack-detection method. This paper
seeks a better feature for attack-detection and a relatively
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accurate and stable random forest (RF) attack-detection
model by experiments and analysis. The organization of
this paper is as follows. Section 2 introduces related work.
In Section 3, we analyze attack characteristics and flow
correlation degree (FCD) features. Section 4 introduces a
random forest detection model based on genetic algorithm
optimization. Section 5 introduces our experiments and their
results. We provide our conclusions and ideas for future work
in Section 6.

2. Related Research

Much research has been dedicated to DDoS attack-detection
technology. Soft computing or artificial-intelligence methods
are widely used in attack-detection [4]. Depending on the
analysis method, DDoS detection methods can be classified
into the three types of misuse, anomaly-based, and hybrid
detection.(1) Feature-based detection is also known as misuse,
pattern, knowledge-based, and rule-based detection. This
approach captures the required behavior from available
datasets (such as protocol provisions and network-traffic
events) and collects information about various attacks and
system risks. This type of method uses the signature or
mode of an attack, and such information as the index of
the source IP address, destination IP address, and key of
the port and packet payload in the IP packet. It matches
incoming traffic to a stored pattern to identify an attack
instance. IDES and INBOUNDS [5] are both signature-based
detection methods. In recent years, new research has been
conducted. Zhou et al. [6] proposed a DDoS attack-detection
method which distinguished the constant attacks and the
pulsing attacks from normal traffic by using the expectation
of packet size. However, this method relies excessively on
packet size and cannot adapt to multiple attack scenarios.
Dodig et al. [7] proposed a new data structure based on
a novel Dual Counting Bloom Filter to reduce detection
errors for matching packages and theoretically analyzed the
detection probability of determining the error rate and the
requirement of increasing memory.(2) Detection methods based on anomalies (also known
as outliers and performance-based) can detect new types of
attacks and unknown or emerging (undefined) attacks. When
the difference between observed and expected behavior
exceeds a predefined threshold, the detection system will
generate an alarm. This method uses statistical methods,
data mining, artificial intelligence, information theory, K-
nearest neighbor, and other methods to identify anomalies
in network traffic. Bhuyan et al. [8] proposed a scheme
for DDoS flooding attack-detection and IP traceback by
measuring the metric difference between the lightweight
extended entropy of normal flow and attack flow. Latif et al.
[9] proposed an enhanced decision tree algorithm based on a
lightweight iterative pruning technique to detect DDoS attack
and evaluated the performance of the proposed algorithm
from classification accuracy, time, and space complexity, but
the algorithmdisplays some defects in robustness due to flaws
in decision tree classifier.

(3) Hybrid-based DDoS attack-detection combines two
or more of the above strategies. A hybrid model can analyze
common system behavior and inappropriate attacker behav-
ior to improve the monitoring capabilities of the detection
system. If hybrid system has both detection technology based
on anomalies and features, the hybrid system can handle
familiar and anonymous attacks and has characteristics of
two detection methods, such as a high detection rate and
low false-alarm rate [10]. Feature-based systemsuse anomaly-
based techniques to detect attackers who try to change the
attack patterns in the stored signature database. In recent
years, some researchers have conducted extensive research
on hybrid detection techniques. Gu et al. [11] presented a
semisupervised clustering detection method using multiple
features to solve the problems of large amount of unlabeled
data in supervised learning, low detection accuracy and
slow convergence speed of unsupervised learning. Liu et al.
[12] proposed a DDoS attack-detection method based on
conditional random fields, in which two sets of traffic feature
conditional entropy (TFCE) and behavior profile deviate
degree (BPDD) were depicted the characteristics of DDoS
attacks. However, the training convergence speed of this
method is slow. Bojović et al. [13] proposed a DDoS attack-
detection method based on an exponential moving average
algorithm. However, this method cannot detect attacks well
when the packet forwarding rate of attack traffic is small.

Recent DDoS attack-detection methods have tended to
be hybrid methods using a combination of multimode and
multipart detection in the expectation of better performance.
At the same time, the advent of the cloud computing era
has seen increased security analysis and strategic research
in these related realms. For example, research on providing
reliable, stable, efficient, and secure services as well as data
to the users of cloud computing [14–21], research on security
strategies and privacy protection on the IoT [22–29], research
on efficient cryptography to improve system security [30–
32], and research on data processing, feature extraction,
and information protection by machine learning method
[33, 34] are all continuously deepened. There is also more
research related to machine learning and integrated learning,
combining attack features or optimization algorithms with
time-series, ensemble learning, and deep-learning methods
for network security analysis and traffic analysis. Intrusion-
detection and attack-detection can improve detection results
and speed. Cheng et al. [35] proposed a prediction approach
based on abnormal network flow feature sequence to solve
the problems of long response time and large comput-
ing resources of a DDoS attack detector in the big-data
environment. However, this method requires relatively high
stability for time-series data. Jia et al. [36] proposed a hybrid
heterogeneous multiclassifier ensemble learning method to
detect DDoS attacks, and constructed a heuristic detection
system based on singular value decomposition, but the
computational efficiency of this system may be low.

In general, the false- and missing-alarm rates of existing
DDoS attack-detection methods are still relatively high in a
cloud computing environment. In response to the problem,
this paper analyzes network traffic, proposes a flow correla-
tion degree feature, applies a random forest detection model,
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optimizes its parameters to accurately and effectively detect
DDoS attacks, and conducts research on attack characteristics
and algorithm detection-performance optimization.

3. DDoS Attack Feature Extraction

3.1. DDoSAttack Feature Analysis. DDoS attack features have
an important impact on attack-detection results. A feature
that can effectively and steadily reflect DDoS attacks has a
significant improvement in detection.Generally, DDoS attack
features are extracted by describing the current network state
through certain parameters or by observing changes in net-
work parameter values, such as IP addresses, ports, payloads,
and sizes of IP packets. The following two points are drawn
from the consideration of cloud computing environments, as
well as a great deal of research on feature extraction of DDoS
attacks [37–39].(1) The net source address and destination address,
source address and destination port, and destination port
and destination address all have a “many to one” relationship
resulting in attacks that present the characteristics of flow
asymmetry. Currently, many flooding attacks rely on botnets
to attack target hosts or networks, forming a many to one
attack mode to expand the scope of attacks and increase
the harm of attacks, which can restrict or even paralyze
them. At the same time, attacks can be more targeted,
resulting in a certain service in the target network that
cannot be used normally. Furthermore, system resources are
attacked on multiple ports, so that multiple services cannot
be used normally. Attacks can present a large amount of flow
asymmetry.(2) The network flows in direct or reflected DDoS
attacks have higher semidirectivity interaction. In addition
to flooding attacks, for an open shared-resource platform
that lacks source IP address authentication or authentication
capability of the packet source, the attacker uses packet
source IP spoofing to attack. Using existing tools, numerous
fake IP data packets are sent to the target network or host,
causing abnormal or degraded network service. Most of
the normal traffic at the monitoring point will respond
to the destination and destination-to-source addresses. A
large number of attacks will seriously affect the interaction.
Therefore, the source IP address cannot receive a valid reply
from the destination IP address. That is, the attack will
greatly increase semidirectivity interaction of the network.
Therefore, based on flow asymmetry and semidirectivity
interaction characteristics, we propose the following feature
extraction process.

3.2. Feature Extraction Rules. Assume that, within a unit
time T, the net flow F is < (𝑡1, 𝑠1, 𝑑1, 𝑑𝑝1), . . . , (𝑡𝑖, 𝑠𝑖, 𝑑𝑖, 𝑑𝑝𝑖),. . . , (𝑡𝑛, 𝑠𝑛, 𝑑𝑛, 𝑑𝑝𝑛) >. Among them, 𝑖 = 1, 2, . . . , 𝑛, 𝑡𝑖, 𝑠𝑖, 𝑑𝑖,𝑑𝑝
𝑖
, represent the time of the 𝑖-th packet, source IP address,

destination IP address, and destination port number. To
classify these n packets, we use the following rules:(1) Packets with the same source and destination IP
addresses are grouped in the same category. All data with the
source IP address 𝐴𝑚 and the destination IP address 𝐴𝑛 are

marked.The packet formation class is 𝑆𝐷𝐼𝑃(𝐴𝑚, 𝐴𝑛). For the
above formed classes, execute the following deletion rule.

If there are different destination IP addresses𝐴𝑛 and 𝐴𝑘,
ensure that the classes 𝑆𝐷𝐼𝑃 (𝐴𝑚, 𝐴𝑛) and 𝑆𝐷𝐼𝑃 (𝐴𝑚, 𝐴𝑘)
are not empty, and delete all the classes whose source IP
address is 𝐴𝑚.

Assume that the last remaining classes are 𝑅𝑆𝐷1, . . . ,𝑅𝑆𝐷𝑚, which define the packet-statistical degree (PSD) of the
network flow F as

𝑃𝑆𝐷𝐹 = 𝑚∑
𝑖=1

𝑊(𝑅𝑆𝐷𝑖) . (1)

where𝑊(𝑅𝑆𝐷𝑖) = 𝛼𝑃𝑜𝑟𝑡(𝑅𝑆𝐷𝑖) + (1 − 𝛼)𝑃𝑎𝑐𝑘𝑒𝑡(𝑅𝑆𝐷𝑖),(0 < 𝜃 < 1), 𝑃𝑜𝑟𝑡(𝑅𝑆𝐷𝑖) is the number of different port
numbers of class 𝑅𝑆𝐷𝑖, 𝑃𝑎𝑐𝑘𝑒𝑡(𝑅𝑆𝐷𝑖) is the number of pack-
ets in the class of𝑅𝑆𝐷𝑖, and𝛼 is theweighted value. In general,𝛼 = 0.5.(2) Classifying the n packets, separate data packets from
the same source and destination IP addresses in the same
class. 𝑆𝐼𝑃𝐶 (𝐴𝑚) represents the class of data packets with
source IP address𝐴𝑚. 𝐷𝐼𝑃𝐶 (𝐴𝑛) represents the class of data
packets with destination IP address 𝐴𝑛.

If the source IP address 𝐴𝑚 of class 𝑆𝐼𝑃𝐶 (𝐴𝑚) causes𝐷𝐼𝑃𝐶 (𝐴𝑚) to be NULL, we define all of the data packets
as source semidirectivity interaction flow and mark them as𝑆𝑂𝐻(𝐴𝑚). This respects the property of source semidirectiv-
ity interaction, and we mark the different port numbers as𝑃𝑜𝑟𝑡(𝑆𝑂𝐻(𝐴𝑚)).

According to the above definition of source semidirec-
tivity interaction, we obtain all the source semidirectivity
interaction flow SOHs, expressed as 𝑆𝑂𝐻1, . . . , 𝑆𝑂𝐻𝑠.

Classifying the flow of SOH, we place the SOHs with
the same destination IP in the same class marked as𝑆𝐷𝐻 (𝑀𝑡𝑜𝑛𝑚, 𝐴𝑚), 𝑚 = 1, 2, . . . , 𝑙, 𝑙 represents the amount
of the destination IP address in SOH flow. The number of
SOH flows with different source IP addresses and the same
destination IP address is marked as𝑀𝑡𝑜𝑛𝑚.

Suppose𝑀𝑡𝑜𝑛𝑚 ≥ 𝑀(𝑀 ≥ 2, where a greater value of M
signifies a better effect of removing normal flow interference.
To improve the coverage of attack-detection, we define𝑀 =2. If we have SDH class as𝑆𝐷𝐻1, 𝑆𝐷𝐻2,. . ., 𝑆𝐷𝐻𝑘, the
number of destination port numbers in a class is expressed
as 𝑃𝑜𝑟𝑡(𝑆𝐷𝐻𝑖), 𝑖 = 1, 2, . . . , 𝑘.

Semidirectivity interaction abnormality (SDIA) of the
network flow F is defined as

𝑆𝐷𝐼𝐴𝐹
= 1𝑓 (𝑘) (

𝑘∑
𝑖=1

(𝑀𝑡𝑜𝑛𝑖 + 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑃𝑜𝑟𝑡 (𝑆𝐷𝐻𝑖))) − 𝑘) . (2)

Here, 𝑓(𝑥) = {𝑥, 𝑥 > 1; 1, 𝑥 ≤ 1}, 𝑤𝑒𝑖𝑔ℎ𝑡(𝑥) = {𝑥, 𝑥/Δ𝑡 >𝜃1; 0, 𝑥/Δ𝑡 ≤ 𝜃1}, Δ𝑡 is the sampling-time period, 𝜃1 is
weighted thresholds for the number of different destination
ports, and 𝜃1 = max(𝑃𝑜𝑟𝑡(𝑆𝐷𝐻𝑖)) /Δ𝑡, 𝑖 = 1, 2, . . . , 𝑘. One
can also specify a threshold based on experience.(3)Combined with the feature extraction rule of (1) and(2), in a unit time T, two features of PSD and SDIA are
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calculated and extracted, respectively, and a two-tuple feature
is structured from these two features of PSD and SDIA to
generate the network flow correlation degree (FCD) feature
of the network flow F; we compute

𝐹𝐶𝐷𝐹 = (𝑃𝑆𝐷𝐹, 𝑆𝐷𝐼𝐴𝐹) . (3)

Normal network flow and DDoS attack flow in large
data environment have the characteristics of high capacity,
diversity, and burst, but FCD feature can still reflect the
essential difference between normal flow and attack flow.
First, the two parts in FCD feature are both extracted based
on the asymmetry of DDoS attacks, and the FCD eigenvalues
in attack cases are significantly larger than those in normal
cases and last longer. Second, PSD features extraction is the
weighted statistical features of the source IP address and
port of the network flows of the “many to one” and “one
to one” session mode, which eliminates the interference the
network flows of “one-to-multi” session mode and reflects
the correlation between attack flow and normal flow in
the network more clearly. However, what the SDIA feature
extracts is the weighted statistical information of the one-way
flows of the “many to one” session mode in the network flow,
which can more accurately describe the dramatic increase
of the one-way flow when the network is attacked by DDoS
attack. The combination of these two pieces of statistical
information can accurately describe the phenomenon that
attack flows converge at the injured end and directly affect
the change of normal traffic and that a partially converged
attack flow is mixed with a large amount of normal flow.
This feature can present the higher source address distribu-
tion, destination address concentration, source destination
IP address asymmetry, and high-traffic bursts for DDoS
attacks in cloud computing environment, which provides
more accurate, timely, and complete information about the
network before and after the attack.

4. Implementation of DDoS Attack-Detection
Method Based on Random Forest and FCD

4.1. FCD Feature Sequence Extraction. According to the rule
described above in Section 3.2, the data of net flow are
sampled by time interval, and the values of PSD and SDIA
in each sampling-time are calculated and integrated into a
two-element combination. After N samples, FCD time-series
sample M is obtained, 𝑀(𝑁,Δ𝑡) = {𝐹𝐶𝐷𝑖, 𝑖 = 1, 2, . . . , 𝑁},
where N is the sequence length. With the accumulation
of sampling-time Δ𝑡, the sequence is a time-characteristic
sequence with a time length of N. Based on the FCD feature
sequence extracted above, we can construct a RF classifier to
detect DDoS attacks.

4.2. Random Forest. Random forest is a classification method
of integrated learning. In the training process, it can use
a resampling technique (bootstrap method) in which each
sample returned from the original training data is randomly
selected from the same number of samples, consisting of
a new training dataset, and multiple decision trees are
independently generated. In each decision tree, according to

some evaluation criteria like the information entropy and
Gini coefficient, the selection of the best test from the new
training dataset is used as the decision point to carry on
the split test, and then the result of the single decision tree
is produced; the final decision is formed by calculating the
mode of classification results of all decision trees. A formal
description is given below.

Suppose the whole RF classifier is 𝑅(𝑥); decision tree 𝑖
is denoted as 𝑡(𝑥), 𝑅(𝑥) = {𝑡𝑖(𝑥), 𝑖 ∈ [0, 𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠]},
where 𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 represents the number of decision trees
in the RF, 𝑥 is the input training sample to be classified, and
sign(𝑥) ∈ 𝑆 is the tag value of 𝑥, in which 𝑆 is the set of labeled
categories, the output of the 𝑡𝑖(𝑥) is a certain value in 𝑆, and
the output of the 𝑅(𝑥) is the mode of the estimated value of{𝑡𝑖(𝑥), 𝑖 ∈ [0, 𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠]}. In the use of RF for testing, 𝑥 is
the value of the new training dataset randomly generated by
resampling technology in the FCD feature training set; there
are only two kinds of labels in DDoS attack-detection, which
represent abnormal and normal. Therefore, 𝑆 = {−1, 1}, and
sign(𝑥) can only take the value -1 or 1 to represent the attack
sample labels and normal sample labels, respectively.

𝐺𝑖𝑛𝑖 (𝐷) = 1 − 𝑘∑
𝑖=1

𝑝2
𝑖
. (4)

In this paper, the Gini coefficient is selected as the
quantitative evaluation criterion of the single-decision tree
division, as specified in formula (4). In this equation, 𝐷
represents the sample space of 𝑛 samples and 𝑘 categories,
and 𝑝𝑖 represents the proportion of the 𝑖 samples of the entire
sample. When used in a specific experiment, 𝐷 is a sample
space constructed for the set of feature datasets for training,
where 𝑘 = 2, and 𝑛 is the size of the training sample.
The Gini coefficient represents the impurity of the training
model. The smaller the value, the lower the purity and the
better the characteristics. In addition, the main reason for
the use of Gini coefficients as splitting indices of decision
trees in the RF is that the coefficient cannot only reflect the
proportion of all categories of samples and different types of
sample proportion changes but can also make their values
meet between (0, 1), to facilitate the processing analysis.

According to the information above, the RF-detection
model is constructed based on the FCD feature sequence. In
the construction process, a genetic algorithm is selected to
optimize and determine the number of decision trees and the
maximum depth of the single decision tree in the RF. The
process is introduced in Section 4.3.

4.3. Genetic Algorithm Optimization of Random Forest. The
genetic algorithm is based on Darwin’s biological theory of
evolution. We search for the optimal solution by simulating
the process of natural evolution in a certain range of solution
sets. The solution set most in accordance with the “survival
of the fittest” principle as in generational evolution is the
approximate optimal solution. As a global optimization
probability algorithm, a genetic algorithm can guarantee
effectiveness in a large dataset using a heuristic method, and
it can search the optimal solutions of all problems in any
sense of form and function in a global sense. Therefore, the
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range of key parameters in RF can be determined based on
empirical values and mathematical derivation. In a relatively
simple way, a genetic algorithm is used to select more reliable
detection parameters.

In the process of constructing RFs, the parameters in a
forest, such as the number of producing subdecision trees,
the number of random attributes, and the maximum depth
of trees, will affect the final classification results. Whether
the number of subdecision trees selected is appropriate for
the training results of a RF has a critical impact. Too small
a number will lead to inadequate training, which cannot
produce good results, while too large a number will lead to
a long construction time and overly complex RF. A single-
decision-tree depth also has a great impact on the training
results and training time. The appropriate depth can guar-
antee the subtree of the leaf node to have a more reasonable
classification, and it also reduces the training time.Therefore,
we choose two key parameters, the number of estimators
(𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) and themaximum depth (𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ ) of the
subtree as the parameters to be optimized. The process is as
followed.(1) Choose the parameter-selection strategy and fitness
function. Parameter selection includes the determination
of the population size, the number of iterations, selection,
crossover, and mutation probability. Fitness function is the
basis of genetic variation of individuals and population evo-
lution in genetic algorithm. Here, considering the impact of
constructing RF and finding optimal parameters on the time
of constructing classification model, the following parameter
values and the ranges of parameters to be optimized are deter-
mined. Set that the initial population size is 10, the number
of iterations is 30, the range of 𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 in RF is (2, 30),
the range of 𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ of the subdecision tree is (2, 8), and
the mutation rate and cross rate are default. Considering the
generality and reliability of the fitness function value, the
average value of the area (area under curve, AUC) under the
ROC curve in the cross validation of the training sample is
selected as the fitness function value. The greater the value,
the more conducive to the inheritance and evolution of the
individual.(2) Encode and initialize the population. The binary
encoding method is used for coding. From a given set of
two positive integer parameter ranges, the parameter combi-
nation (𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠,𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ) is randomly selected and
encoded as chromosome X = {𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, 𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ}.
The initial population G is randomly initialized by multiple
individuals resulting from the crossover and mutation of the
chromosome X. Binary coding of chromosomes can increase
the likelihood of mutation and crossover, thus providing
more diverse solutions.(3) Evaluate the fitness value. According to the fitness
function value mentioned above in (1), the fitness value
of each individual population can be calculated, as shown
in formula (5), in which K represents the fold number
of cross validation, AUC is the area under the calculated
ROC curve when the training sample is tested as a test
sample in cross validation, and when this value is greater,
the fitness value is better. Then the fitness values of each
individual are calculated. By comparing the fitness values

of individuals, those with the best fitness value are selected
to generate the initial individuals of the next generation of
the population, so as to carry out subsequent crossover and
mutation operations.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 1𝐾
𝐾∑
𝑖=1

𝐴𝑈𝐶𝑖. (5)

(4) Judge terminating conditions. In the process of con-
tinuous iteration, it is judged whether the fitness meets the
established standard. If it is not satisfied, then step 3 is repeat-
edly performed until the termination condition is reached. At
this time, we select the individual with the largest fitness value
in the population and extract the corresponding decimal
values of binary-coded chromosome X in the individual as
the optimal parameters of RF for training.(5) Apply the optimal parameters. The optimal𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 and 𝑚𝑎𝑥 𝑑𝑒𝑝𝑡ℎ values are selected as the
parameters of the RF for training, the RF classifier is trained
based on the training set of FCD feature sequence and this
two optimal parameters, and the DDoS attack-detection
model based on genetic algorithm optimization and RF is
constructed.

By optimizing the parameters above and constructing RF
model, we can obtain an RF-detection model optimized by
the genetic algorithm, which is more accurate than the gen-
eral RF-detectionmodel. Considering the heuristic searching
ability of genetic algorithm, the combination of genetic
algorithm and RF can effectively improve the classification
ability of RF, so as to detect DDoS attacks more accurately
and effectively.

4.4. Random Forest Detection Based on Genetic Algo-
rithm Optimization. According to the above description in
Section 4, we optimized the parameters based on the FCD
feature, trained the RF classifier and obtained the genetic
algorithm-optimized random forest (GAORF) based on the
FCD feature sequence. In this paper, the DDoS attack-
detection method with the model generated by FCD feature
sequence and GAORF algorithm is referred to as FGRF
attack-detectionmethod.Theprocess of the application of the
method in this paper is shown in Figure 1.

An attack can be identified according to the model of the
FGRF detection method trained to characterize the network
state. The model actually solves the problem of binary
classification in machine learning. The detection task can
only identify an attack or not. Assuming that the detection
model detects that net flow does not have feature anomalies
during a certain period of time under normal conditions,
we set the detection model output flag to 1. Under attack
conditions, the FCD feature value will rise obviously with
the time change, which is gradually higher than the normal
value, and then we set the output flag of the detection model
to another value, and we set it to -1 in this paper. These two
settings can characterize whether the network is attacked or
not. As the FGRF detection method is used to detect the real
DDoS attack, after the FCD value of the net flow is entered
into the model, the output flag returned by the model can
reflect whether the network is attacked.
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Code Selection and Coding
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Obtaining parameters of RF
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Figure 1: The process of FGRF DDoS attack-detectionmethod.

The analysis in Section 3.2 of this paper shows that
FCD feature sequence can better reflect the different state
characteristics of normal flow and DDoS attack flow in
cloud computing environment. Multiple decision trees are
integrated in the RF, the bootstrap method is used to reduce
the size of the single-decision-tree training sample set, and
a more reasonable classification result is selected using the
voting mechanism. The combination of these mechanisms
in RF can improve the accuracy of detecting high-capacity
traffic information in DDoS attacks under cloud comput-
ing environment. Moreover, the method based on genetic
algorithm to optimize RF parameters effectively improves
the classification ability of RF. Therefore, the FGRF attack-
detection method proposed in this paper can effectively
detect DDoS attacks under cloud computing environment.

5. Experiment

5.1. Data Set and Evaluation Criteria. Theexperimental hard-
ware had 8G memory and an i7 processor. The experiment
was carried out on a Windows 10 64-bit system running
Python 3.5.2 |Anaconda 4.2.0 (64 bits).

The experiment was based on the dataset of the CAIDA
DDoS attack in 2007 [40]. It contained data on an anonymous
DDoS attack that lasted for about an hour on August 4, 2007.
This type of attack attempts to prevent access to target servers
by consuming computing resources on servers and all the
bandwidth of connecting servers to Internet networks. The
total size of the dataset was 21 GB, accounting for about an
hour (20:50:08 UTC -21:56:16 UTC). The attack started at
about 21:13 and caused the rapid growth of the network load
(in a fewminutes) from about 200,000 bits/sec to 80 MB/sec.
The attack traffic was divided into five-minute files and stored
in PCAP format.

To judge the validity of attack-detection, some evaluation
criteria were used to fully illustrate the performance of the
test, including the accuracy rate, missing-alarm rate (MR),
and false-alarm rate (FR). Suppose TP is the number of
normal samples marked correctly, TN is the number of attack
samples that are correctly marked, FN is the number of attack
samples marked in error, and FP is the number of normal
samples marked in error.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃. (6)
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𝐹𝑅 = 𝐹𝑃𝑇𝑃 + 𝐹𝑃 . (7)

𝑀𝑅 = 𝐹𝑁𝑇𝑁 + 𝐹𝑁. (8)

The accuracy rate is the proportion of the correctly
identified samples in all samples; the false-alarm rate is the
proportion of samples judged to be attacked in the normal
sample, and the missing-alarm rate is the proportion of the
sample that is not successfully identified. Then TN/TN + FN
is the detection rate. Through the environment, datasets, and
evaluation criteria described above, experiments are carried
out according to the process described in Section 4. FCD
feature sequences are extracted from the data sets described
in Section 5.1, and all normal samples are labeled as 1 and
all attack samples are labeled as -1 according to Section 4.4.
Training and test sets are selected from the FCD feature
sequences. The parameters of RF are optimized by genetic
algorithm based on training set, and the model of the FGRF
attack-detection method is established, and the performance
of classification model is verified by test set. SVM algorithm
is more classic and has better classification results because
of its use of the mechanism of hyperplane classification. In
order to better illustrate the good performance of the FGRF
attack-detection method proposed in this paper, the model
is compared with several detection models generated by a
variety of SVMs which is trained based on the FCD feature
sequences. The scikit-learn [41] toolkit was used to complete
the implementation of RF and GAORF. The LIBSVM [42]
toolkit was used to complete the contrast test in SVMs.
The experimental process and its results are introduced in
Section 5.2.

5.2. Experimental Data Analysis. We obtained a normal
data sample from ddostrace.20070804 134936.pcap and an
attack data sample from ddostrace.20070804 141436.pcap in
the DDoS Attack 2007 dataset. According to the feature
extraction rules in Section 3.2 and the feature sequence
extraction method in Section 4.1, FCD feature sequence was
extracted from normal and attack samples. For convenience
of calculation and processing, we set Δ𝑡 = 1s as the sampling
interval. The parameters of PSD and SDIA in FCD feature
were set according to Section 3 and the FCD value time-series
sample M as shown in Figures 2 and 3.

As shown in Figure 2, in the normal flow, the sequence
of the PSD eigenvalues shows a stronger volatility, and the
highest feature value can reach about 500, while the sequence
of the SDIA eigenvalues is relatively stable and their values are
floating within the range of 150.The PSD feature statistics are
the characteristic information of the network flows of “one
to one” and “many to one” session mode, and because of
network congestion, similar network flows aremore common
in normal flow, so the values of PSD features will fluctuate in a
certain range, which can better reflect the abnormal changes
of normal flow state caused by attack flow than SDIA features.
The SDIA feature statistics are the characteristic information
of the one-way flows of the “multi to one” session mode. In
the normal network, the one-way flows are relatively less than
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Figure 2: Comparison of PSD and SDIA features in normal flow.
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Figure 3: Comparison of PSD and SDIA features in attack flow.

the bidirectional flows, so the sequence of SDIA eigenvalues
is more stable.

As shown in Figure 3, both PSD eigenvalues and SDIA
eigenvalues increase with the increase of DDoS attack flow,
but SDIA eigenvalues are relatively higher than PSD eigen-
values at the same time, The SDIA eigenvalue reaches a peak
value of about 25000, while the PSD eigenvalue reaches a
peak value of about 8000. Obviously, the change of the SDIA
feature between them is more obvious. The one-way flows of
the “many to one” session mode in the network will increase
rapidly caused by DDoS attacks; both PSD and SDIA feature
have weighted the information of the one-way flows of the
“many to one” session mode, so their values will increase and
can reflect the attack state to a certain extent. In addition,
the two eigenvalues in Figure 3 show a sudden decrease and
then continue to increase, which is caused by the decrease
of the one-way flows of the “many to one” session mode in
the network caused by such factors as the delay of attack
at that time. The SDIA feature, which is different from PSD
feature in the weighted calculation method, more centrally
describes the related information about the one-way flows of
the “many to one” session mode, so it can describe attack
flow more accurately than PSD feature. It can well reflect the
semidirectivity interaction of large-area network flow caused
by DDoS attacks.
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The combination of PSD feature and SDIA feature is the
FCD feature proposed in this paper.This feature can integrate
the advantages of the two features, not only can describe the
attack flow well, but also can reflect the abnormal changes of
the normal flow state caused by the attack flow, so it can better
identify the attack.

In the process of experiment, training and testing samples
were selected first. To facilitate integration, calculation, and
processing, 200 FCD features were selected as test datasets,
which include 100 normal flow features and 100 attack flow
features, respectively. In the rest of the features of FCD, 100
normal flow features and 120 attack flow features are selected
as training samples. To study the negative sample, which is
the attack sample, we made an appropriate increase under
the restriction of the existing characteristic dataset, so as to
obtain better training.

After selecting the training set and test set from the
whole feature set, the data samples are normalized, and the
genetic algorithm is used to optimize the RF model trained
by the training set. Due to the small number of samples, it
is still necessary to ensure reasonable and effective testing.
Therefore, 𝐾 = 2 in formula (5) are used when evaluating
the fitness value in Section 4.3.

In the experiment of optimizing the parameters, the num-
ber of training samples is small, and the initial population size
is large. Considering the good classification performance of
the RF algorithm itself, a good parameter-solution set will be
found quickly within the specified number of iterations. In
addition, the properties of the genetic algorithm in random
search of the optimal parameter-solution set in the prescribed
range also increase the possibility of producing better results.
Therefore, the combination of genetic algorithm and RF
algorithm can find the approximate optimal solution of these
parameters to a large extent in the global scope.

In the end, after the 30 iterations we set in Section 4.3,
a relatively high-quality parameter-solution set was deter-
mined based on the training sample set, that is, the value
of the two optimal parameters of the number of subtrees
and the maximum depth of subtree. These two parameter
values were brought into the RF model for training, and
a classification model was generated for detection. Finally,
the results described in Section 5.1 were used to judge the
test results. To make the results more effective and reliable,
we conducted comparative experiments. The experimental
results are introduced in Section 5.3.

5.3. Experiments and Results. To verify the detection capa-
bilities of our proposed FCD feature combined with the
detection model constructed by the RF algorithm and the
genetic algorithm, we performed comparison experiments,
and the specific steps and the results of the comparison
experiment are as follows:(1) In accordance with the description in Section 5.2, the
training data set and test data set are selected. Here, the test
data set is kept unchanged, and the following two change
operations were performed on the normal sample and the
attack sample in the training set to perform comparison
experiments: the number of fixed attack training samples
was 120, and the number of normal training samples was
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Figure 4: Accuracy comparison results of three statistical features
with changing numbers of normal training samples (%).

increased to 100 on the basis of 10 normal training samples,
in order to simulate the change of normal flow in network
caused by the delay of DDoS attack and other factors; the
number of fixed normal training samples was 100, and the
number of attack training samples was increased to 120 on
the basis of 10 attack training samples to simulate the situation
that the normal network is gradually starting to be attacked
by DDoS attacks, resulting in a gradual increase in the attack
flow.Thedifferent training samples were applied to train each
model to detect the same test set, and the final test resultswere
obtained.(2) In order to further verify the good performance of
the FCD feature proposed in this paper for DDoS detection,
the feature FCD was compared and analyzed with the PSD
and SDIA features during the experimental operation (1) in
Section 5.3. The PSD, SDIA, and FCD features are extracted
from the same training samples, and three classifiers are
generated based on three features training RF model respec-
tively, and then the same test set is used to test the three
classifiers in order to compare the ability of the three features
to distinguish between normal flow and attack flow. With
the number of fixed attack training samples, Figure 4 shows
the accuracy rates obtained by changing the number of
normal training samples, and Figure 5 shows the false- and
missing-alarm rates obtained by changing the number of
normal training samples. With the number of fixed normal
training samples, Figure 6 shows the accuracy rates obtained
by changing the number of attack training samples, and
Figure 7 shows the false- and missing-alarm rates obtained
by changing the number of attack training samples. Among
them, FCD MR, PSD MR, and SDIA MR are missing-alarm
rates based on FCD feature, PSD feature, and SDIA feature,
respectively. FCD FR, PSD FR, and SDIA FR are false-alarm
rates based on FCD feature, PSD feature, and SDIA feature,
respectively.

As shown in Figures 4 and 5, all three features can
better identify attack, among which the FCD feature is the
best. Seen from the aspect of accuracy, with the increase of
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Figure 6: Accuracy comparison results of three statistical features
with changing numbers of attack training samples (%).

normal samples, the accuracy rate based on FCD feature is
the highest, which keeps above 98%, and increases to nearly
100%. The accuracy of PSD feature is also increased, but it
is about 1% lower than that of FCD feature. As for the SDIA
feature, the accuracy is kept below 97%. From the aspect of
false- and missing-alarm rates, as the number of normal flow
increases, FCD MR, PSD MR, and SDIA MR are all zero.
FCD FR also tends to zero, althoughPSD FR is down steadily
to about 3%, and SDIA FR decreases to 2% in fluctuation;
theywere still higher relative to the combined feature. Among
them,when the number of normal samples is 60, the accuracy
rate of SDIA feature decreased to about 93% and SDIA FR
increased to 13%. The accuracy rate of PSD features is about
5% higher than that of SDIA features, while the accuracy rate
of FCD remains above 99%, and PSD FR is about 10% lower
than that of SDIA FR, and FCD FR is less than 2%.The PSD
feature is the statistics of the network flows of the “many to
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Figure 7: False-alarm rate and missing-alarm rate comparison
results of three kinds of statistical feature with changing numbers
of attack training samples (%).

one” and “one to one” session mode, including normal flow,
its value will change with the increase of normal flow, that
is, the PSD feature can better reflect the abnormal changes
of normal flow state caused by attack flow, so PSD features
maintain higher accuracy rate and lower false-alarm rate than
the SDIA feature.The SDIA feature is the statistics of the one-
way flows of the “many to one” session mode. It can describe
attack characteristics more centrally, but cannot describe
subtle changes of normal flow state better. Therefore, when
the number of normal training samples is 60, the false-alarm
rate of the detection suddenly increases, thus reducing the
accuracy. FCD features contain two statistical information
provided by PSD and SDIA features, so the accuracy rate
of FCD features is higher, and the missing- and false-alarm
rate are lower. Compared with FCD and SDIA features, FCD
features can better identify DDoS attacks.

Figures 6 and 7 show that the FCD-based RF-detection
method can maintain higher accuracy rate with low false-
and missing-alarm rates compared to that based on PSD and
SDIA features. When the attack flow increases, the detection
based on FCD features has a high accuracy of up to 99% and
low false- and missing-alarm rates below 2%. PSD FR and
SDIA FR both fluctuate over 1%, resulting in low accuracy.
FCD MR, PSD MR, and SDIA MR, are all zero. When the
number of attack samples increases to 90, the false-alarm
rate of PSD features suddenly increases to more than 5%,
which is about 1% higher than that of SDIA features, and its
accuracy rate decreases to less than that of SDIA features.
In this case, the accuracy rate of FCD feature still maintains
accuracy above 99% and false-alarm rate about 1%. Among
the above data analysis results, the detection results of the
three characteristics are mainly reflected in the trend of false-
alarm rate. The PSD feature can well reflect the abnormal
changes of normal flow state caused by attack flow, so when
the proportion of normal flow in the network is still large
and attack flow changes little, PSD FR is generally lower
than SDIA FR. However, the PSD and SDIA eigenvalues are
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generally small in normal flow, the early attack traffic is
generally small and the impact on normal flow is also small,
so the PSD and SDIA eigenvalues change little in the early
attack and are more likely to cause false- and missing-alarm
rates. The SDIA feature is the statistics of the one-way flows
of the “many to one” session mode, which can describe attack
characteristics more centrally, Therefore, SDIA FR will be
significantly reduced when the early attack traffic is small or
the attack is delayed, which results in a situation similar to
that when the number of attack samples is 90. As for the FCD
feature, it contains the information provided by the above two
features, so the feature has better detection results and can
better identify DDoS attacks.(3) In order to further verify the validity of the genetic
algorithm in optimizing the RF classification model, a com-
parison experiment was made between the RF classifier
with parameter optimization by genetic algorithm and the
RF classifier without parameter optimization based on the
FCD feature sequences during the experimental operation(1) in Section 5.3. Two classifiers are generated based on
FCD feature sequence training RFmodel and GAORFmodel
respectively, and then the same test set is used to test the two
classifiers in order to compare the classification ability of RF
model and GAORF model.

Figure 8 shows the accuracy rates from the number of
fixed attack training samples and the number of varied nor-
mal training samples. Figure 9 shows the false- and missing-
alarm rate from the number of fixed attack training samples
and the number of varied normal training samples. Figure 10
shows a comparison of accuracy rates from changing the
number of attack training samples and fixing the number of
normal training samples. Figure 11 shows a comparison of the
false- and missing-alarm rates from changing the number
of attack training samples and fixing the number of normal
training samples. Here, GAORF MR and RF MR are the
missing-alarm rate of GAORF detection and RF detection,
respectively. GAORF FR and RF FR are the false-alarm rate
of GAORF detection and RF detection, respectively.
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Figure 9: Comparison of false-alarm rate and missing-alarm rate
between optimization and common model detection with changing
numbers of normal training samples (%).

100.0

99.8

99.6

99.4

99.2

99.0

ac
cu

ra
cy

 (%
)

20 40 60 80 100 120

sample numbers

GAORF
RF

Figure 10: Comparison of accuracy rate between optimization and
commonmodel detection with changing numbers of attack training
samples (%).

Combined with Figures 8 and 9, it can be seen that the
accuracy rates of RF-detection model and GAORF detection
model based on FCD feature sequences increases to a certain
extent, and the false-alarm rates decrease gradually when the
attack training sample is invariable and the normal training
sample is increasing. The accuracy rate of GAORF detection
model is about 2% higher and the false-alarm rate is about 2%
lower. Because the heuristic parameter searching method of
genetic algorithm can find better training parameters for RF
classifier based on the correlation between normal flow and
DDoS attack flow, which is shown by PSD features contained
in FCD features, the classification performance of GAORF
detection model is improved. It is worth considering that
the parameter optimization process will also be constrained
by the number of normal training samples, but the genetic
algorithm can still find better training parameters for RF-
detection model, so that can maintain the original better
detection results.
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Table 1: Comparison results of four algorithm detection evaluation criteria with changing numbers of normal training samples.

Sample numbers
30 50 70 90

GAORF
(%)

accuracy 98.57 99.52 100 100
MR 0 0 0 0
FR 2.72 0.91 0.0 0.0

nu-SVM
(%)

accuracy 93.33 85.24 99.05 100
MR 0 0 0 0
FR 12.72 28.18 1.81 0

C-SVM
(%)

accuracy 91.90 100 100 100
MR 0 0 0 0
FR 15.45 0 0 0

one-class-SVM
(%)

accuracy 37.62 38.10 40.95 45.71
MR 21.00 21.00 21.00 21.00
FR 100 99.09 93.64 84.55
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Figure 11: Comparison of false-alarm rate and missing-alarm rate
between optimization and common model detection with changing
numbers of attack training samples (%).

As shown in Figures 10 and 11, when the normal training
samples remain unchanged and the attack training samples
increase, the GAORF detection model has no missing-alarm
and the false-alarm rate is about 1% lower than the RF-
detection model; thus the overall accuracy rate is about 1%.
Because the genetic algorithm can optimize the GAORF
detection model based on the asymmetry and semidirectivity
interaction characteristics of the attack flow described by the
SDIA feature included in the FCD feature, the classification
performance of the RF-detection model can be improved.
Because the attack traffic in the early stage of DDoS attack
has little influence on normal flow, the value of PSD and SDIA
features in the FCD features in the early stage of DDoS attack
is lower, thus affecting the detection results of the model.
Genetic algorithm can still find better training parameters for
the RF-detection model, so as to maintain better detection
results. To sum up, using genetic algorithm to optimize the
parameters of RF-detection model can effectively improve

accuracy rate and reduce the false-alarm rate of DDoS attack
detection.(4) To further verify the good performance of the FGRF
attack-detection method proposed in this paper, the GAORF
classification model was compared with nu-SVM, C-SVM,
and one-class-SVM classification models based on the FCD
feature sequence during the experimental operation (1) in
Section 5.3. Considering that SVM is a supervised learning
algorithm with good classification performance and is widely
used in previous research for DDoS attack detection, further-
more, nu-SVM, C-SVM, and one-class-SVM among SVM
algorithms show stronger mode identification and classifica-
tion ability; thus we chose these three SVM algorithms as
the comparison algorithms. The FCD feature sequence was
trained in the GAORF and three classical SVM classification
methods, respectively, and then the same test set is used to test
the four classifiers. We fixed the number of training samples
in the attack flow and changed the number of training
samples in the normal flow. The results are shown in Table 1.
We fixed the number of training samples in the normal flow
and changed the number of training samples in the attack
flow. The results are shown in Table 2.

From Table 1, we can see that FCD combined with the
GAORF detection method has higher accuracy and lower
false-alarm and missing-alarm rates compared with three
traditional SVM detection methods, especially when the
number of normal training samples is relatively small. When
the attack training samples remain unchanged, with the
increase of normal training samples, the accuracy of GAORF
detection model remains above 98% and the false-alarm rate
remains below 3%. On the one hand, RF has a good and
stable classification performance, which can be used to mine
and utilize FCD features to represent the abnormal changes
of normal flow state caused by attack. On the other hand,
genetic algorithm optimizes RF parameters and improves RF
classification ability by learning normal training sample set,
so the classification effect of GAORF classification model is
the best. The false-alarm rate of nu-SVM detection model
fluctuates greatly, and the accuracy ranges from 85% to 100%.
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Table 2: Comparison results of four algorithm detection evaluation criteria with changing numbers of attack training samples.

Sample numbers
30 60 90 120

GAORF
(%)

accuracy 100 100 100 100
MR 0 0 0 0
FR 0 0 0 0

nu-SVM
(%)

accuracy 90.0 98.1 99.05 100
MR 0 0 0 0
FR 19.09 3.63 1.82 0

C-SVM
(%)

accuracy 97.14 100 100 100
MR 6.0 0 0 0
FR 0 0 0 0

one-class-SVM
(%)

accuracy 65.0 65.0 65.0 65.0
MR 0 0 0 0
FR 70.0 70.0 70.0 70.0

The training set contains some data with lower attack eigen-
values in the early stage of the attack, and these eigenvalues
are similar to the normal flow eigenvalues; it is difficult to
distinguish normal samples in the classificationhyperplane of
nu-SVM model, thus affecting the detection results. We can
see that C-SVM detection model has no classification error
when the number of normal training samples is more than
50, while the false-alarm rate is about 15% when the number
of normal samples is 30. As the penalty coefficient of C-SVM
does not change due to the excessive increase of normal train-
ing samples, the model shows good stability. However, when
the number of normal samples is small, the model is difficult
to obtain the optimal classification hyperplane, resulting in a
sudden increase in false-alarm rate. For the one-class-SVM
detection model, the detection of this model keeps the accu-
racy rate under 50%, the higher false-alarm rate and the false-
alarm rate. The reason is that one-class-SVM can only train
normal training samples to generate classification model,
which makes it more difficult to recognize attacks. Therefore,
it is difficult to achieve a more ideal classification effect.

As shown inTable 2, when the number of normal training
samples is constant and the number of attack training samples
increases, the GAORF detection method does not have a
classification error, showing a better performance compared
with the SVM detection methods. On the one hand, RF
itself has good and stable classification performance and
can better mine and utilize FCD features to characterize
the characteristics of attack flow; on the other hand, genetic
algorithm optimizes RF parameters by learning attack train-
ing sample set and improves the classification ability of RF
so the classification effect of GAORF classification model
in the four classification models is still best. The nu-SVM
detection model has a better detection effect when the
attack training samples increase, but its detection result is
much worse than that of GAORF model when the attack
training samples are few. In the early stage of attack, the
attack eigenvalues are small, which can easily affect the
location of the optimal hyperplane of SVM classification
model, affect the recognition of normal flow, and increase the

false-alarm rate. As for the C-SVM detection model, when
the attack training sample is 30, the accuracy rate is 97.14%
and the missing-alarm rate is 6%. With the increase of attack
training samples, the classification performance becomes
better. This is still the result of different fitting degree of
the attack training samples, but the overall performance is
still worse than GAORF. In addition, the one-class SVM
detection model can only train normal training samples, thus
increasing the number of attack samples, and it does not
change the classification results.However, the accuracy rate of
one-class-SVM attack-detection model based on FCD itself
remains below 50% and missing-rate and false-alarm rate are
higher, and its performance is much worse than that of the
FGRF attack-detection method.

The comprehensive Tables 1 and 2 show that the GAORF
classification model has stronger learning classification abil-
ity and robustness than the various classic SVM classification
models for the constant change of normal samples and attack
samples. Especially in the cloud computing environment,
the sample feature dimension and the scale of datasets are
increasing. Compared with the SVM classification model, RF
can better adapt to the requirements of cloud computing. At
the same time, facing the difficulty of finding the effective
parameters for the detection model in cloud computing,
the genetic algorithm provides a simple and effective search
method, which can find the relative ideal parameters for
the attack detection in a larger data range and the higher-
dimension data sets. According to the characteristics of the
FCD features, the characteristics of the two algorithms of
GA and RF, and the experimental results, it is known that
the FGRF detection method can detect attacks effectively,
reduce the false- and missing-alarm rates and have good
robustness. This detection method has better adaptability to
DDoS attack-detection in a cloud computing environment.

6. Conclusion

In this paper, we proposed a DDoS attack-detection method
based on FCD-RF, which can enhance the accuracy of
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DDoS attack-detection in a cloud computing environment.
We designed a feature-tuple with the statistical features of
PSD and SDIA, which can describe the features of attack
flow and normal flow, i.e., the FCD feature. This feature
can reflect the asymmetric and semidirectivity interaction
characteristics of the attack flow.The classification model was
trained by the FCD feature sequence using the optimized RF
based on a genetic algorithm. It could increase the accuracy
rate of DDoS attack-detection and reduce the false- and
missing-alarm rates. The experiment demonstrates that the
detectionmodel based on FCD and optimized RF can achieve
higher accuracy and lower false- and missing-alarm rates
with relatively good adaptability and robustness in a cloud
computing environment.

A possible goal for our future research would be to
consider multilayer mitigation and defense using profound
resources in cloud computing.

Data Availability

The CAIDA UCSD “DDoS Attack 2007” Dataset used to
support the findings of this study were supplied by the
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.caida.org/data/passive/ddos-20070804 dataset.xml.
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