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Although existing malicious domains detection techniques have shown great success in many real-world applications, the problem
of learning from imbalanced data is rarely concerned with this day. But the actual DNS traffic is inherently imbalanced; thus how
to build malicious domains detection model oriented to imbalanced data is a very important issue worthy of study. This paper
proposes a novel imbalanced malicious domains detection method based on passive DNS traffic analysis, which can effectively deal
with not only the between-class imbalance problem but also the within-class imbalance problem. The experiments show that this

proposed method has favorable performance compared to the existing algorithms.

1. Introduction

With the rapid development of the Internet and information
technology, network security threats are escalating, the secu-
rity of cyberspace is becoming more and more complex and
hidden, the risk of network security is increasing, and various
network malicious attacks emerge endlessly. In these network
malicious attacks, most of them are based on DNS (Domain
Name System). The reason why DNS can provide an available
infrastructure for attackers is that it is open and ease of use.

The core of the network malicious attack based on DNS
is C&C (Command and Control) server. By means of the
C&C server, the attackers can order remote hosts to perform
malicious activities, such as spamming, phishing, DDOS
(Distributed Denial of Service), and distributing malware
which may be used to steal information, disrupt computer,
extort money, etc. Therefore, it is urgent to detect this
kind of malicious domain of C&C server and further take
corresponding countermeasure.

It is very popular to employ the classification algorithm
in machine learning to detect malicious domains in the
current research [1, 2]. However, these existing studies pay
no or little attention to the problem of imbalanced data.
In fact, the actual DNS traffic is inherently imbalanced, in
which most of the cases are benign and far fewer cases are

malicious. As a result, this tends to construct an imbalanced
training dataset in which there are many more samples
of some categories than others. When learning from an
imbalanced dataset, class information must be considered;
otherwise the classifier will be overwhelmed by the majority
classes and ignores the minority ones, and then the overall
classification performance will undoubtedly be degraded.
To address this shortfall, this paper will propose an imbal-
anced malicious domains detection method which can build
malicious domains detection model by learning imbalanced
dataset based on passive DNS traffic analysis.
In this paper we make the following contributions:

(1) We especially focus on learning from the imbalanced
data in the malicious domains detection field. And
the latest research progress of learning from the
imbalanced data in other fields is invited in the
malicious domains detection field.

(2) We construct the stronger discriminative features to
profile malicious domains based on passive DNS
traffic analysis.

(3) We propose an improved imbalanced malicious
domains detection method which is an extension of
EasyEnsemble and demonstrate its favorable perfor-
mance by the comparative experiments.
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The remainder of this paper is organized as follows. In
Section 2, we briefly review related work. Section 3 describes
how to profile malicious domains based on passive DNS
traffic analysis. We elaborate on an imbalanced malicious
domains detection method in Section 4. Section 5 presents
our comparative experiments of this new method. Finally, we
conclude the paper in Section 6.

2. Related Work

2.1. Learning from Imbalanced Data. Although rarely in net-
work security, learning from the imbalanced data has already
made considerable progress in other fields. In general, there
are three ways to tackle the imbalanced learning problem.
The first one is from the data perspective, which mainly uses
resampling approaches to modify the class distribution of
the data. The second one is from the algorithm perspective,
which mostly focuses on optimizing various algorithms, such
as SVM (Support Vector Machine), Decision Tree and Neural
Network, based on cost-sensitive learning which considers
the costs associated with misclassifying samples [3]. In addi-
tion, some researches also utilize one-class learning [4] which
is particularly useful when used on extremely imbalanced
data sets. The third one is from data feature perspective,
which can build a fair feature space attaching much weight
to the minority classes by means of some improved feature
selection methods. This third approach is applied in many
applications, including fraud/churn detection, text catego-
rization, medical diagnosis, detection of software defects, and
many others [5].

Most researches have been focused on the first approach,
resampling which is more practical than the other two
approaches. The resampling includes undersampling, over-
sampling, and the integration of undersampling and over-
sampling [6]. The key idea of undersampling is to remove the
majority class samples from the original data set, and the key
idea of oversampling is to append the minority class samples
to the original data set.

The simplest resampling technique is random. But ran-
dom undersampling can potentially rmove certain important
samples, and random oversampling can lead to overfit-
ting. Various improved undersampling algorithms, including
EasyEnsemble and BalanceCascade, have been proposed [7].
Both methods utilize ensemble learning to overcome the
deficiency of information loss introduced in the traditional
random undersampling, since ensemble learning is based on
multiple subsets which contain more information than a sin-
gle one [8]. The famous improved oversampling algorithms
are SMOTE (Synthetic Minority Oversampling Technique)
[9] and its variants, such as Borderline-SMOTE [10] and
ADASYN (Adaptive Synthetic Sampling) [11]. They devote
to create the excellent artificial minority class samples using
different strategies.

In practical application, when the samples of the minor-
ity classes are absolutely rare, oversampling is generally
employed to increase the samples of the minority classes. Or
else when the samples of the minority classes are relatively
rare, undersampling is generally employed to decrease the
samples of the majority classes.
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2.2. Malicious Domain Detection Based on Passive DNS Traffic
Analysis. 'The majority of detection methods based on DNS
traffic are data-driven, most commonly having machine
learning algorithms at their core. These methods require
accurate ground truth of both malicious and benign DNS
traffic for model training as well as for the performance
evaluation [12]. The methods of DNS data collection can be
generally divided into two subcategories: active and passive.
Active method obtains DNS data by deliberately sending DNS
queries and record the corresponding DNS responses, while
passive method is passively to backup real DNS queries and
responses.

Compare with active DNS data collection, passive DNS
data collection is more representative and more comprehen-
sive. As a result, the detection of malicious domain based on
passive DN traffic analysis has received increasing attention
from the research community over the past decade. “Passive
DNS” was invented by Weimer [13] in 2004. After that, many
researchers have an insight into the important value of passive
DNS when doing incident response investigations. And many
passive DNS systems have developed, in which the most
famous and popular one is DNSDB from Farsight Security.
Farsight collects passive DNS data from its global sensor
array, and then filters and verifies the DNS transactions before
inserting them into the DNSDB [14]. The trends within this
set are believed to be representative of Internet-wide trends
and therefore provide valuable insight.

Antonakakis et al. [1] proposed a dynamic reputation
system for DNS, called Notos, to automatically assign a
low reputation score to a malicious domain. To measure
a number of statistical features of a domain, Notos used
historical DNS information collected passively from multiple
recursive DNS resolvers distributed across the Internet.
Bilge et al. [2] introduced a passive DNS analysis approach
and a detection system, EXPOSURE, to detect domain
names that are involved in malicious activities. The data
that EXPOSURE used for the initial training consist of
DNS traffic from the real-time response data from author-
itative Name Servers located in North America and in
Europe.

Perdisci et al. [15] presented FluxBuster, a novel detection
system that used a purely passive approach for detecting
and tracking malicious flux networks. FluxBuster is based
on large-scale passive analysis of DNS traffic generated by
hundreds of local recursive DNS (RDNS) servers located
in different networks and scattered across several differ-
ent geographical locations. Zhou et al. [16] proposed a
model which can detect Fast-Flux Domains using ran-
dom forest algorithm. It used passive DNS to log domain
name query history of real campus network environ-
ment.

Analyzing these existing related works, we discovered
that most of them are to collect DNS traffic in a period time
to form a passive DNS set. This kind of passive DNS set is
only a DNS data fragment and needs more collection cost.
While DNSDB is relatively comprehensive, as a result, we
determined to use the passive DNS traffic from DNSDB in
this paper.
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3. Profiling Malicious Domains Based on
Passive DNS Traffic Analysis

To profile malicious domains, based on passive DNS traffic
analysis we extract two groups features of malicious domains:
static lexical features and dynamic DNS resolving features.
Static lexical features mainly origin from the lexical informa-
tion of domain name. Dynamic DNS resolving features are
constructed based on DNS response attributes. Table 1 gives
an overview of these features.

The results of statistical analysis of some features are
selected to show in Figure 1. From these, we can find that these
features have the stronger ability to distinguish the malicious
domains from the benign ones.

In this section, we will present 12 static lexical features and
4 dynamic DNS resolving features and the motivation that we
construct these features to profile malicious domains.

3.1 Static Lexical Features. To avoid detection, the attackers
generally employ domain generation algorithms (DGA) to
dynamically produce a large number of random domain
names. The lexical features of these malicious domain names
are largely different from benign domain names. We con-
struct 12 static lexical features to profile malicious domains.

So far the short domain names have been almost reg-
istered; therefore the majority of malicious domain names
generated by DGA are longer than benign domain names.
And max length of labels (i.e., parts delimited by dots) in
subdomain of malicious domain names is also commonly
longer. So we construct two features based on the length
measure: first, length of domain name (Feature 1), and
second, max length of labels in subdomain (Feature 2).

The most distinctive property of domain names generated
by DGA is that the distribution of characters is random.
We know that information entropy is defined as the average
amount of information produced by a stochastic source of
data [17]. So, we employ information entropy to measure the
disorder of characters.

Let d be a domain name and m be the number of distinct
characters in d. We define entropy (d) as character entropy of
d (Feature 3).

&, ( count (a;) count (a;)
Entropy (d) Zl (length ) ) log, <length (d)) M

where a; (i = 1...m) means a character in d, count(a;) is
the number of a; in d, and length(d) is the length of d,.

If the character entropy value of d is greater, then more
likely d will be identified to be malicious.

In addition, malicious domain names are used by mal-
wares not by human, so they are not easy-to-remember or
human pronounceable. Thus the appearance of numerical
and alphabetic characters in malicious domain names is
also very important indicative signs. With this insight, we
construct five features as follows: number of numerical char-
acters (Feature 4), ratio of numerical characters (Feature 5),
conversion frequency of numerical and alphabetic character
(Feature 6), max length of continuous numerical characters
(Feature 7), max length of continuous alphabetic characters

(Feature 8), and max length of continuous same alphabetic
characters (Feature 9).

As we all know, the consonant letters in the English
alphabet are much more than the vowel letters. Therefore,
in random malicious domain names, the ratio of vowels
(Feature 10) is smaller, the length of continuous consonants
(Feature 11) is longer, and conversion frequency of vowel and
consonant (Feature 12) is very higher.

3.2. Dynamic DNS Resolving Features. The Internet-scale
attacks using DNS leave unavoidably a trail of footmarks
which are hidden into the DNS resolving records, so we may
mine these footmarks (i.e., DNS resolving features) to profile
malicious domains. In this section, we will present 4 dynamic
resolving features origin from the DNS resolving records.

In order to evade blacklists and resist takedowns, the
DNS answer that is returned by the server for a malicious
domain generally consists of multiple DNS A records (i.e.,
Address records) or NS records (i.e., Name Server records).
And the slippery attackers do not usually target specific Name
Server or IP ranges. Therefore, we construct four statistical
features as follows: number of distinct A records (Feature 13),
IP entropy of domain name (Feature 14), number of distinct
NS records (Feature 15), and similarity of NS domain name
(Feature 16).

Number of distinct A records (Feature 13) records the
total number of IP addresses resolved in DNSDB. Further-
more, IP entropy of domain name (Feature 14) is constructed
to measure the dispersion of these IP addresses resolved. Let d
be a domain name, S be the set of these IP addresses resolved,
and n be the number of distinct IP/16 prefixes in S. We define
IP_Entropy(d) as IP entropy of domain name (Feature 14).

IP_Entropy (d)

& ( count (ipx;) count (ipx;) @)
——Z( § )k’gz( si )

i=1

where ipx; i = 1...n) means an IP/16 prefix in S,
count(ipx;) is the number of ipx; in S, and |S| is the size of
S.

If the IP entropy value of d is greater, then more likely d
will be identified to be malicious.

Number of distinct NS records (Feature 15) records
the total number of Name Servers resolved in DNSDB.
Furthermore, Similarity of NS domain name (Feature 16) is
constructed to measure the difference of these Name Servers
resolved. We calculate the Edit Distance between every pair
of Name Server names of a domain, and then the average
of these distances is defined as the similarity of NS domain
name. If the similarity of NS domain name of d is bigger, then
more likely d will be identified to be malicious.

4. An Imbalanced Malicious Domains
Detection Method

Almost all classification algorithms seem to be powerless
to learn from an extremely imbalanced training data set.
In consideration of the actual imbalanced distribution of
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TABLE 1: An overview of domain features.

Feature group No. Feature Name Malicious domain profile
1 Length of domain name Longer
2 Max length of labels in subdomain Longer
3 Character entropy Greater
4 Number of numerical characters Higher
5 Ratio of numerical characters Higher
Static lexical features 6 Conversion frequency of numerical and- alphabetic character Higher
7 Max length of continuous numerical characters Shorter
8 Max length of continuous alphabetic characters Longer
9 Max length of continuous same alphabetic characters Shorter
10 Ratio of vowels Lower
1 Max length of continuous consonants Longer
12 Conversion frequency of vowel and consonant Higher
13 Number of distinct A records Higher
Dynamic DNS resolving features 14 IP entropy ?f fiomam name H%gher
15 Number of distinct NS records Higher
16 Similarity of NS domain name Bigger
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FIGURE 1: The results of statistical analysis of some features.

DNS traffic data (i.e., malicious domains are relatively rare),
inspired by existing methods, our research focuses on the
combination of undersampling and ensemble learning.

In existing methods, EasyEnsemble [7] is a typical
improved algorithm combining undersampling with ensem-
ble learning. As we know, the main deficiency of under-
sampling is that potentially useful information contained
in the unselected examples is neglected. To remedy this
deficiency, EasyEnsemble incorporates ensemble learning
into undersampling.

The idea behind EasyEnsemble is quite simple. Given

the majority class instances set N, and the minority

class instances set N,,;., this method independently samples
several subsets N;,N,,...... , Ny from N,,,;, where |N;| =
INpinl G=1,2,...... ,T). For each subset N, a base classifier
is trained using N; and N ;.. All base classifiers are combined
for the final decision. Remarkably, many learning algorithms
can be employed to generate the base classifier.
EasyEnsemble make better use of the majority class than
undersampling by ensemble learning, so it is very helpful for
between-class imbalance learning. However, EasyEnsemble
ignores within-class imbalance, especially for the majority
class. That is, in the majority class some instances are highly
similar which may form several clusters, and more other
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(1) {Input: A set of minority class examples N, .., a set of majority class examples N,
|, the number of subsets T' to sample from N,
(2) N, are clustered into several small groups G,,G,, ..

(6) Select randomly (ocj|G jl) instances from each cluster G ; (=1,2,...) with a total of K

(7) Select randomly |N;| -K instances from N, - £G;

(8) Combine the dataset sampled from step (6) and (7) to form a subset N;, where |[N;; = [Ny, |
Hi is a base classifier employed Decision Tree

(11) Output: An ensemble H(x) = argmax_ Z,T:1 I(Hi(x) = ¢)

maj>

maj }

.. by HAC

ArGoriTHM I: The HAC_EasyEnsemble algorithm.

instances are almost unique. This kind of phenomena is com-
monly called “long-tailed distribution” in the statistical sense.

We should select a representative subset from each
cluster and combine them with a subset selected randomly
from the other unique instances set to form a preliminary
subset. According to this idea, we proposed an improved
EasyEnsemble method to learn imbalanced DNS traffic data.

In this novel method, firstly the instances in the
majority class are clustered together in several small
groups G, G, ...... by Hierarchical Agglomerative Cluster-
ing (HAC). For each cluster G; (j=12.... ), according
to the size of G, we select randomly several instances with
a total of K. And then we select randomly |N;| -K (i =
1,2,...... , T) instances from Nmaj- ZGj to form a subset N,
where |N;| = |[N,;,|- Base classifier H; is trained using N; and
N, in- Al T base classifiers are combined for the final decision.
Note that Decision Tree algorithm is employed to generate the
base classifier.

The pseudocode of the improved EasyEnsemble named
HAC_EasyEnsemble is shown in Algorithm 1.

Noted that here I is an indicative function, and c is
the class label, if the parameter of I is true, then return 1,
or else return 0. In HAC, we may employ various cluster
proximity measures which are typically complete link, group
average, Ward’s method [18], etc. For the complete link,
the proximity of two clusters is defined as the maximum
of distance (minimum of the similarity) between any two
points in the two different clusters. For the group average, the
proximity of two clusters is defined as the average pairwise
proximity among all pairs of points in the different clusters.
For Ward’s method, the proximity of two clusters is defined
as the increase in the squared error that results when two
clusters are merged [19].

5. Experiment

In order to verify the novel HAC_EasyEnsemble algorithm
used to learn imbalanced DNS traffic data, we do a
series of experiments to compare the performance of
HAC_EasyEnsemble and EasyEnsemble based on the
same dataset. And we use three different cluster proximity

measures in HAC: complete link, group average, and Ward’s
method.

Originally, we construct an imbalanced training set which
contains 6400 benign domains (from alexa.com) and 3000
malicious domains (from cybercrime-tracker.net, malware-
domains.com, and hosts-file.net etc.). The reason for this
ratio of malicious domains is that the HAC_EasyEnsemble
algorithm is more effective for relatively rare malicious
domains, not absolutely. The DNS resolving records of these
domains are obtained by DNSDB API, and then 12 static
lexical features and 4 dynamic DNS resolving features listed
in Section 3 are constructed based on these records.

Commonly the evaluation measures for the imbalanced
classification are macroaveraged precision, macroaveraged
recall, macroaveraged F1 [20]. Since macroaveraged scores
are averaged values over the number of categories, then
the performance of classifier is not dominated by major
categories. Let P be the precision, R be recall, and m denote
the total number of categories, then macroaveraged precision
is (1/m) Y| P;, macroaveraged recallis (1/m) Y| R;, maro-
averaged Flis (1/m) )", F1;, where F1is2PR/(P + R).

In order to get the number of base classifiers T’ mentioned
in Section 4 of HAC_EasyEnsemble classification model, we
firstly do a series of experiments. In these experiments we
set different T for HAC_EasyEnsemble classification model,
then we observe the error rate of classification in different T
Figure 2 shows the relationship between the number of base
classifiers of HAC_EasyEnsemble classification model and the
error rate of classification.

From Figure 2, we can find that when the number of
base classifiers equals approximately 10, the error rate of
classification tends to be unchanged. Consequently, in the
next comparing experiments, the number of base classifiers
is set as 10.

Tenfold cross validation is performed on the experiment
dataset. For this purpose, the corpus is initially partitioned
into tenfold. In each experiment, ninefold data are used to
train while onefold data are used to test. Ten experiment
results are showed in Figure 3 and the average value of ten
experiment results is reported in Table 2.

Figure 3 gets further insight about the comparison of
complete link clustering, group average clustering, Ward’s
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TABLE 2: The macroaveraged P, R, and F1 score comparison of four schemes.
HAC_EasyEnsemble EasyEnsemble
Complete Link Group Average Ward’s Method non-clustering
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
Benign 0.9712 0.9500 0.9605 0.9774 0.9591 0.9682 0.9837 0.9622 0.9728 0.9534 0.9375 0.9454
Malicious 0.9552 0.9533  0.9542 0.9491 0.9567  0.9529 0.9651 0.9667 0.9659 0.9181 0.9300 0.9240
Macro-ave 0.9632 0.9517 0.9574 0.9633 0.9579 0.9605 0.9744 0.9645 0.9694 0.9358 0.9338 0.9347

error rate

MI{\MM!AMM”AMIAMMIA A
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FIGURE 2: The relationship between the number of base classifiers of
HAC_EasyEnsemble and the error rate of classification.
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FIGURE 3: The F1 scores comparison of four schemes.

method clustering, and nonclustering with line chart form,
from which it can be seen that the scores with clustering are
nearly higher than ones with nonclustering overall in each
experiment. And Ward’s method is the best among of them
in performance, while complete link and group average are
almost in same level.

Table 2 shows the macroaveraged P, R, and F1 score
of each scheme. For example, compared to nonclustering,
the macroaverage F1 scores of Ward’s method clustering, of
group average clustering, and of complete link clustering are
approximately improved 3.5%, 2.6%, and 2.3%, respectively,
and then we can draw a conclusion that sampling with HAC
will be very helpful to improve the performance of classifier.

Finally, to find out whether the HAC_EasyEnsemble is
able to show its advantage in different ratio of malicious
domains, we do the other 6 experiments to compare the
detection performance of HAC_EasyEnsemble. In the 6
experiments, the number of benign domains in training set

0.981

macro-ave F1 score
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- complete link
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FIGURE 4: The macroaveraged F1 score in different ratio of malicious
domains to benign domains.

is 6400, and the number of malicious domains is 700, 1000,
1500, 2000, 4000, and 5000, respectively. Figure 4 shows the
experimental results.

From Figure 4, we can see that the detection perfor-
mance of HAC_EasyEnsemble is almost in line with the
previous 3000:6400 (see Figure 3 and Table 2) in any other
ratio greater than 1000:6400(=16%). So, if properly used,
HAC_EasyEnsemble can be used to detect malicious domains
by learning from imbalanced DNS traffic data.

6. Conclusions

In this paper, we proposed an improved version of
EasyEnsemble for detecting malicious domains named
HAC_EasyEnsemble, which can effectively deal with
the within-class imbalance problem in tandem with the
between-class imbalance problem, while EasyEnsemble can
only deal with the between-class imbalance problem. The
key idea of this improvement is to incorporate HAC into
undersampling of EasyEnsemble, and three typical cluster
proximity measures which are complete link, group average,
and Wards method are also compared by experiments.
Moreover, to profile malicious domains, we construct 12
static lexical features and 4 dynamic DNS resolving features
based on passive DNS data from DNSDB. The comparative
experiments show that the HAC_EasyEnsemble is superior
for the malicious domains detection oriented to imbalanced
DNS traffic. And it is worth emphasizing that this novel
method is extremely suitable for the tasks in which enough
malicious domains cannot be obtained in a limited amount
of time.
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We believe that HAC_EasyEnsemble is an effective
method that can help us to cope with cybercrime. As future
work, we plan to construct more discriminative features
to profile malicious domains and further to enhance the
performance of the HAC_EasyEnsemble algorithm.
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