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Smartphone usage has been continuously increasing in recent years. In addition, Android devices are widely used in our daily
life, becoming the most attractive target for hackers. Therefore, malware analysis of Android platform is in urgent demand. Static
analysis and dynamic analysis methods are two classical approaches. However, they also have some drawbacks. Motivated by this,
we present Demadroid, a framework to implement the detection of Android malware. We obtain the dynamic information to
build Object Reference Graph and propose 𝜆-VF2 algorithm for graph matching. Extensive experiments show that Demadroid
can efficiently identify the malicious features of malware. Furthermore, the system can effectively resist obfuscated attacks and the
variants of known malware to meet the demand for actual use.

1. Introduction

Android is a mobile operating system developed by Google,
based on the Linux kernel, and designed primarily for
touchscreen mobile devices such as smartphones and tablets
[1]. On top of the kernel level, there are middleware, libraries,
andAPIswritten inCprogramming language. And the kernel
level is independent of other resources [2].

With the popularity of smartphones, the number of users
of Android dramatically rises [3]. However, the popularity
of Android also attracts the attention of malware, which
has become an urgent threat to users [4]. According to
the types of threats, malicious apps can be divided into at
least six categories: abuse of value-added services software,
advertising fraud software, data theft software, malicious
downloading software,malicious decoding software, and spy-
ware. Research from security company Trend Micro shows
that the premium service abuse is themost common type. For
example, textmessages are sent from infected phones without
the permission of users [5]. Android has become the hardest
hit. However, Google engineers have argued that themalware
and virus threat on Android is being exaggerated by security
companies for commercial reasons. A survey published by F-
Secure showed that only 0.5% of Android malware reported
had come from the Google Play store [6].

In addition, the source of malware is very extensive.
Different from the PC virus, Android malicious attack has its
own features; various types of malicious codes cover almost
every level.The proportion of variousmalware types is shown
in Figure 1 [7].

Motivated by this, a great number of Android malware
detecting methods are proposed which are divided into two
types as follows [8].

The first kind of methods is static analysis. Static methods
analyze the executable file directly instead of running it. For
example, DroidDet [9] statically detects malware by utilizing
the rotation forest model. However, this work cannot resist
the obfuscated attack.

Another type of approaches is dynamic analysis. Different
from the static methods, dynamic methods extract the mali-
cious features at runtime, which improves the effectiveness of
detection. By contrast, dynamic analysis has stronger robust-
ness. Dynamic analysis techniques are not compatible in
some cases because developing tools that allow the dynamic
analysis of malware is very challenging, and such techniques
require extensive resources and often do not have enough
scale to be used in practice [10]. Shabtai A et al. [11] propose
a new dynamic technique, sandbox, which is built by the
kernel LKM (Loadable Kernel Module). They analyze the
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Figure 1: Android malware distribution. This figure is reproduced
from 360 Internet Security Center [7] (2017) [under the Creative
Commons Attribution License/public domain].

system calls from the kernel to create the log file. However,
the modification to the kernel level causes the instability
of operations, and the user interaction is only simulated by
automatic tools, which is no real operation [12].

To address these problems, we propose a more effective
Android dynamic technology to detectmalware.This is a new
technique of establishing dynamic birthmarks. We extract
the reference relationships between objects allocated in heap
memory and then establish ORG (Object Reference Graph)
to build ORGB (Object Reference Graph Birthmark) as the
feature. In addition, we propose 𝜆-VF2 algorithm to match
the subgraph isomorphism.

Compared with the existing dynamic birthmark meth-
ods, we utilize the information in heap, which can also be
used to solve the problem of code plagiarism. In summary,
the main contributions of this paper are listed as follows.

(i) We establish ORG by extracting all the referential
relationships between objects allocated in heapmem-
ory.

(ii) With the analysis of the program class, we extract the
feature classes to build ORGB as the birthmark of
malware.

(iii) Based on VF2 algorithm, we propose 𝜆-VF2 algo-
rithm to improve the false negative rate and false
positive rate.

(iv) We propose an Android malware detection system
Demadroid which resists the obfuscated attack.
To demonstrate the effectiveness of the proposed
approaches, we conduct extensive experiments.
Experimental results show that the proposed system
and algorithm perform well.

The rest of the paper is organized as follows. In Section 2,
we discuss the related work, and we give the details of our
algorithm in Section 3. Section 4 presents the framework
of Demadroid. The evaluation of Demadroid is depicted in
Section 5. In Section 6, we summarize the whole work.

2. Related Work

Several approaches have been proposed recently to detect
malware in Android. Generally, they are divided into static
analysis and dynamic analysis.

Static analysis inspects app without executing it. Julia
is a Java bytecode static tool for Android platform, but it
cannot parse the classes generated by the XML file mapping.
Payet É et al. [10] improve it to analyze the bytecode of
Dalvik Virtual Machine. Kui Luo et al. [13] propose a
bytecode conversion tool for privacy stolen malware and
enable it to convert intoDVMbytecodes and analyzeAndroid
programs. Literature [14] uses the existing tools dex2jar
and FindBugs for analysis, which traversed the flowchart of
Android programs and obtains the functional dependencies
between Intent objects.The aboveworks are based on existing
tools, which have a great number of limitations. Batyuk L
et al. [15] present disassembly method by disassembling the
malicious code of Android. They get the malicious part and
modify it to separate the malicious code. This method is
effective for the untreated apps but cannot deal with the
obfuscated code. Based on sensitive data access, Di Cerbo F
et al. [16] study the privacy-stealing code. By analyzing the
permissions feature of the program request, they compare
with the defined features to determine whether the program
is malicious. One important problem in this work is that
Android does not have permission restrictions on the use
of API. Therefore, it cannot identify the malicious code
utilizing Android vulnerabilities. In a word, the drawbacks
of static methods are obvious; their robustness is weak.
And several attacks such as code obfuscation, Junk Code,
and other antidetection techniques can easily avoid detec-
tion.

Dynamic analysis can resist the code obfuscation attack
but is more expensive than static methods. Isohara T et
al. [17] use a kernel-level monitoring method to record the
system call of Android program. This method can effec-
tively analyze the record of system calls. However, it is just
used for the monitoring of stolen information. Based on
this, Schmidt A D et al. [18] present further research and
divide the monitoring into Android application layer, system
application layer, and system kernel layer. However, there
are no valid experimental tests to verify the feasibility of
the work. Crowdroid [19] is a classifier based on anomaly
detection. The system uses the existing Strace program to
monitor system calls and create record files. After being
uploaded to the server, the files are classified by the K-
Means algorithm. However, in this case, the amount of data
and the network traffic of the system are relatively large,
and the problem of data security is brought at the same
time. Attackers can easily fabricate the key information and
interfere with the result. Shabtai A et al. [11] mention a
dynamic analysis technique, sandboxing, which is a new
direction forAndroidmalicious code detection.However, the
current sandbox technology is incomplete. Myles et al. [20]
use the control flow of apps to identify malicious behaviors.
Experiments show that control-flow analysis is more effective
than static birthmark analysis in dealing with attacks utilizing
the semantics.
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3. VF2 Algorithm

3.1. Isomorphic Patterns of Graphs. In the past decades,
graph matching has been one of the main research topics in
computer science. In general, graph matching can be classi-
fied into two lines, exact-matching algorithms and inexact-
matching algorithms. Exact-matching algorithms require
strict consistency between two candidate graphs. The most
stringent pattern of exact-matching algorithms is graph
isomorphism, which requires the mapping of nodes and
edges on both graphs to be bijections [21].The fuzzier pattern
of exact-matching is subgraph isomorphism which requires
at least the strict consistency between the subgraph and the
ideograph [22].

Moreover, inexact-matching algorithms, which are also
called fault-tolerance matching, relax the constraints with
errors and noises. Monomorphism is the inexact-matching
which gets rid of the bidirectional requirement of edge-
remaining bases on subgraph isomorphism. It requires that
every node of the first graph can map different nodes and
edges in the second graph, which allows the redundant
edges and nodes. The weaker graph match pattern is the
homomorphism, which is a many-to-one mapping that does
not require that every node of the first graph is mapped to a
different node of the second graph. Isomorphismmatching is
another method to match the subgraphs, of which the result
is not unique. It is also used to find the largest subgraph
match, which is called the maximum common subgraph
(MCS).

3.2. Analysis of the Subgraph Isomorphism Matching Algo-
rithm. All the isomorphic patterns are NP-complete prob-
lems except graph isomorphism. Whether graph isomor-
phism is NP-complete problem has not been proved till now
[23]. At present, polynomial time algorithms are matched for
special types of graphs, and there is no general polynomial
time algorithm for general graphs. For this reason, the time
complexity of the exactly matching algorithm is exponential
in the worst case. However, in practical problems, the cost
of time is basically acceptable. Because the type of graph
encountered in practical problems is not the worst case and
the attributes of the nodes and edges can greatly reduce the
search time.

The problem of graph isomorphic matching is a very
classic problem in graph theory, and the algorithms used
in different scenarios are different. In practice, the data
required for the establishment of a graph will inevitably be
disturbed; that is why graph isomorphism is rarely used.
Subgraph isomorphism and monomorphism are commonly
used patterns. They are more effective in dealing with prac-
tical problems. Many algorithms have been developed for
these two problems. At present, the exact match algorithm
is more effective for the basic graphs and searching for
MCS.

3.2.1. Ullmann Algorithm. One of the most important types
of graph matching algorithm is the Ullmann algorithm [24],
which was proposed in 1976. It can solve the isomorphic
problems, such as isomorphism, subgraph isomorphism,

and monomorphism. At the same time, the algorithm also
provides a way to deal with the maximummatching, so it can
also be used to solve the CMS problem.

To reduce the bad matching branches, Ullmann algo-
rithm proposes predictive equation to control backtracking
process, significantly reduce the scale of search space, and
improve the performance of the algorithm.

3.2.2. Ghahraman Algorithm. Ghahraman proposed another
backtracking based monomorphism algorithm in 1980 [25].
To reduce the search space, a technique like association graph
is used in this paper.Thematching search is carried out on the
NetGraph matrix. This matrix is generated by the product of
the Descartes product between the nodes of the matched two
graphs. The monomorphism matching of the two graphs is
related to a subgraph of the NetGraph. The author finds two
necessary conditions for the partial matching to produce the
result.

One of the main disadvantages is that the storage of
NetGraph requires at least one matrix of 𝑁2 ∗ 𝑁2 size, in
which N represents the number of nodes. Therefore, this
algorithm is more suitable for a graph with lower number of
nodes.

3.2.3. Nauty Algorithm. Nauty algorithm [26] is the most
famous tree search algorithm which is not based on back-
tracking. It only deals with the isomorphic problem and
is recognized as the fastest one. By using the conclusion
group theory, it creates an automorphism group for each
input. And every automorphism group produces a standard
label to guarantee that the only node order is introduced by
each equivalent class of the automorphism group. Then, the
isomorphic comparison of the two graphs is equivalent to the
adjacency matrix comparison of the standard label.

The time complexity of comparison is O(𝑁2) of the worst
case. In most cases, the time performance is acceptable.
Because the establishment of standard tags can be carried
out independently.Therefore, it is more suitable for the graph
matching in a large library.

3.2.4. VF and VF2 Algorithm. The VF algorithm proposed
by Cordellac [27] is applied to both isomorphism and
subgraph isomorphism. Cordellac defined a heuristic search
by analyzing the adjacent nodes of matched nodes. This
heuristic algorithm is significantly better than Ullman and
other algorithms in many cases.

Cordella improved the algorithm in 2001, which is called
the VF2 algorithm [28]. The improvement reduces the space
complexity from 𝑂(𝑁2) to 𝑂(𝑁), in which N donates the
number of nodes. In this way, the algorithm can be applied
to the matching of large graphs.

The VF2 algorithm is also used in many other related
fields. For example, Jonathan Crussell et al. propose
DNADroid [29], a tool which uses VF2 algorithm to detect
cloned apps. In this work, VF2 algorithm is used to compute
subgraph isomorphism. The experiment proves that VF2
algorithm is suitable for graphs containing a variety of node
types.
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Figure 2: SSR instance diagram.

3.3. Comparison of Subgraph Isomorphism Matching Algo-
rithms. In this section, we analyze several classical algo-
rithms mentioned in Section 3.2 and select the proper algo-
rithm as the foundation of our matching process. The main
types of graph include the bounded Valence Graph, the two-
dimensional grid graph (2D Mesh Graph), and the random
connection graph (Randomly Connected Graph). Foggia et
al. analyze the above algorithms by experiments [30]. The
ORG in our work is similar to random connection graph
and quite different from the other two kinds. Therefore, we
only discuss the condition of random connection graphs.
Foggia uses a control group with different density of nodes
and edges.The experimental result shows that VF2 algorithm
and Nanty algorithm are better than Ullmann algorithm in
dealingwith randomconnection graphs. VF2 performs better
than VF algorithm when the density is different. Compared
with Nauty algorithm, VF2 algorithm has a better effect to
match spares graphs. AndNauty algorithm ismore applicable
to dense graphs.

In this paper, we match the subgraphs between object
reference dependency graphs, in which nodes represent
classes, and directed edges represent references between
classes. According to the analysis of samples, the number of
nodes in ORG is within 100.Therefore, the algorithm used in
this paper is based on VF2 algorithm.

3.4. Review of VF2 Algorithm. VF2 algorithm is applicable to
isomorphism, subgraph isomorphism, and monomorphism
because it does not impose restrictions on the topology of
matched graphs. The algorithm adopts the concept of state
space representation (from now on SSR) in the matching
process and proposes five feasible rules to prune the search
space. Compared with VF algorithm, the most significant
improvement is the strategy of traversing the search tree and
the data structure making the algorithm applied to match the
graph with thousands of nodes.

The primary idea of the VF2 algorithm is as follows.
Given the digraphs 𝐺1(𝑁1, 𝐵1) and 𝐺2(𝑁2, 𝐵2), shown in
Figure 2, we are looking for the isomorphicmapping between
them. Map M is used to express (𝑛,𝑚), in which 𝑛 donates
a node of 𝐺1 and 𝑚 donates a node of 𝐺2. The process of
finding the mapping 𝑀 is described by SSR. Each state 𝑠 in
the matching process is a partial mapping 𝑀(𝑠), which is a
subset of𝑀.𝐺1(𝑠) donates the subgraph of the mapping𝑀(𝑠)

associated with 𝐺1, and 𝐺2(𝑠) donates the subgraph of 𝐺2
matched by 𝑀(𝑠).𝑉1(𝑠) and 𝑉2(𝑠), respectively, represent the
set of vertices in𝐺1(𝑠) and𝐺2(𝑠).𝐸1(s) and𝐸2(s), respectively,
denote the edge set in𝐺1(𝑠) and𝐺2(𝑠). Given themiddle state
sp, the partial𝑀 is as follows:

𝑀 = {(𝑛1,𝑚2) , (𝑛2,𝑚1) , (𝑛3,𝑚3) , (𝑛4,𝑚6) , (𝑛5,𝑚4) ,

(𝑛6,𝑚5)}

𝑀 (𝑠𝑝) = {(𝑛1,𝑚2) , (𝑛2,𝑚1) , (𝑛3,𝑚3) , (𝑛4,𝑚6)}

𝑉1 (𝑠𝑝) = {𝑛1, 𝑛2, 𝑛3, 𝑛4}

𝑉2 (𝑠𝑝) = {𝑚2,𝑚1,𝑚3,𝑚6}

𝐸1 (𝑠𝑝) = {⟨𝑛1, 𝑛2⟩ , ⟨𝑛2, 𝑛3⟩ , ⟨𝑛3, 𝑛4⟩}

𝐸2 (𝑠𝑝) = {⟨𝑚2,𝑚1⟩ , ⟨𝑚1,𝑚3⟩ , ⟨𝑚3,𝑚6⟩}

(1)

There are multiple states in the matching process, and
state 𝑠 is converted to another state by adding a pair of new
nodes. By adding different pairs of nodes, 𝑠 is converted to
various states. In this way, the new state is described using
a tree structure in which parent node represents the original
state and the child node represents the new state. In Figure 2,
𝑠 converts to sq after adding node (𝑛5,𝑚4). Figure 3(a) shows
that the node pairs (𝑛5,𝑚4) are just one of many possible
ones. Therefore, we need to select the appropriate state by
backtracking the search tree. In Figure 3(b), after joining
(𝑛5,𝑚4), G1(sp) and G2(sp) are successfully converted to
G1(sq) and G2(sq).

In the matching process, 𝑀 is obtained by searching the
SSR. VF2 algorithm proposes five feasible rules to reduce the
time complexity by pruning the search space. According to
the proposed rules, the unsatisfied child nodes are removed.
The remaining nodes set is called the candidate set 𝐻(𝑠),
which is traversed in the depth-first order. The pseudocode
of VF2 algorithm is shown in Algorithm 1.

The following definitions are given:
(1) 𝑇𝑜𝑢𝑡1 (𝑠): it denotes a vertex set of𝐺1, vertexes of which

are descendent vertexes of𝐺1(s) but not contained in
𝐺1(s).

(2) 𝑇𝑜𝑢𝑡2 (𝑠): it denotes a vertex set of𝐺2, vertexes of which
are descendent vertexes of𝐺2(𝑠) but not contained in
𝐺2(s).
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Input: 𝐺1, 𝐺2, State 𝑠, initialized state: 𝑠0, 𝑀(𝑠0) is set empty
Output: The isomorphic map: 𝑀
(01) PROCEDURE VF2 Match(𝑠)
(02) IF |𝑀(𝑠)| = |𝐺2| THEN
(03) Successful Match
(04) ELSE
(05) Find𝐻(𝑠) which is the set of possible pairs for 𝑀(𝑠)
(06) FOREACH h in 𝐻(𝑠)
(07) IF all rules are satisfied for h added to 𝑀(𝑠) THEN
(08) 𝑠󸀠 = put ℎ into 𝑀(𝑠)
(09) CALL VF2Match (𝑠󸀠)
(10) ENDIF
(11) ENDFOREACH
(12) Restore data
(13) ENDIF
(14) END PROCEDURE VF2MATCH

Algorithm 1: The original VF2 algorithm.
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sq sr ss st
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n4

n1

n5

m2 m1

m3 m6

m4

(b)

Figure 3: SSR state transition diagram.

(3) 𝑇𝑖𝑛1 (𝑠): it denotes a vertex set of 𝐺1, vertexes of which
are antecedent vertexes of 𝐺1(s) but not contained in
𝐺1(s).

(4) 𝑇𝑖𝑛2 (𝑠): it denotes a vertex set of 𝐺2, vertexes of which
are antecedent vertexes of 𝐺2(s) but not contained in
𝐺2(s).

The steps of selecting 𝐻(𝑠) are as follows:

(1) If 𝑇𝑜𝑢𝑡1 (𝑠) and 𝑇𝑜𝑢𝑡2 (𝑠) are not empty sets, then 𝑃(𝑠) =
𝑇𝑜𝑢𝑡1 (𝑠) ∗ 𝑇𝑜𝑢𝑡2 (𝑠).

(2) If 𝑇𝑜𝑢𝑡1 (𝑠) and 𝑇𝑜𝑢𝑡2 (𝑠) are both empty sets and 𝑇𝑖𝑛1 (𝑠)
and 𝑇𝑖𝑛2 (𝑠) are not empty sets, then 𝑃(𝑠) = 𝑇𝑖𝑛1 (𝑠) ∗
𝑇𝑖𝑛2 (𝑠).

(3) If 𝑇𝑜𝑢𝑡1 (𝑠), 𝑇𝑜𝑢𝑡2 (𝑠), 𝑇𝑖𝑛1 (𝑠), and 𝑇𝑖𝑛2 (𝑠) are empty sets,
then 𝑃(𝑠) = (𝑉1 − 𝑉1(𝑠)) × (𝑉2 − 𝑉2(𝑠)).

(4) Other conditions prune the state 𝑠.

As described above, if one of 𝑇𝑜𝑢𝑡1 (𝑠) and 𝑇𝑜𝑢𝑡2 (𝑠) or one of
𝑇𝑖𝑛1 (𝑠) and 𝑇𝑖𝑛2 (𝑠) is an empty set, state 𝑠 is pruned. For state
𝑠, the algorithm needs to check all the candidate nodes (𝑚, 𝑛)
by the feasibility function 𝐹(𝑠, 𝑛, 𝑚), in which 𝑠 denotes the

current state, 𝑛 denotes a vertex of 𝐺1, and 𝑚 represents a
vertex of 𝐺2. The return value of 𝐹(𝑠, 𝑛,𝑚) reflects whether
the given node is feasible. If the node is not feasible, the path
of it will be pruned.

The feasibility rules are divided into grammatical and
semantic. The grammatical rules express the topological
structure of the graph, and the semantic ones express the
properties of the vertices and edges. In this work, we consider
the grammar rules because there are no properties in edges
and vertexes of ORG. Therefore, 𝐹𝑠𝑦𝑛(𝑠, 𝑛, 𝑚) is defined as
follows:

𝐹𝑠𝑦𝑛 (𝑠, 𝑛, 𝑚) = 𝑅𝑝𝑟𝑒𝑑 ∧ 𝑅𝑠𝑢𝑐𝑐 ∧ 𝑅𝑖𝑛 ∧ 𝑅𝑜𝑢𝑡 ∧ 𝑅𝑛𝑒𝑤 (2)
Five feasible grammar rules are defined in 𝐹𝑠𝑦𝑛(𝑠, 𝑛, 𝑚),

in which𝑅𝑝𝑟𝑒𝑑 and𝑅𝑠𝑢𝑐𝑐 are the consistency of𝑀(𝑠). After the
candidate node (𝑚, 𝑛) is added, 𝑅𝑖𝑛, 𝑅𝑜𝑢𝑡, and 𝑅𝑛𝑒𝑤 are used
to prune the search space.

𝑃𝑟𝑒𝑑(𝐺, 𝑛) denotes the set of the antecedent nodes of 𝑛
in figure 𝐺, and 𝑆𝑢𝑐𝑐(𝐺, 𝑛) denotes the set of the descendent
nodes of 𝑛 in figure𝐺.The algorithmdefines𝑇1(s) = 𝑇𝑖𝑛1 (s)∨
𝑇𝑜𝑢𝑡(s), 𝑁󸀠1(𝑠) = 𝑁1(𝑠) − 𝑀1(𝑠) − 𝑇1(𝑠). 𝑇2(𝑠) and 𝑁󸀠2(𝑠) are
defined as 𝑇2(s) = 𝑇𝑖𝑛2 (s) ∨ 𝑇𝑜𝑢𝑡(s),𝑁󸀠2(𝑠) = 𝑁2(𝑠) −𝑀2(𝑠) −
𝑇2(𝑠).
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Input: 𝐺1, 𝐺2, state s, the initial state: 𝑠0, 𝑀(𝑠0) is empty, 𝜆: Precision control parameters
Output: Isomorphic Mapping
(01) PROCEDURE VF2 Match(s)
(02) IF |𝑀(𝑠)| ≥ 𝜆|𝐺2| THEN
(03) Successful Match
(04) ELSE
(05) Find𝐻(𝑠) which is the set of possible pairs for 𝑀(𝑠)
(06) FOREACH h in 𝐻(𝑠)
(07) IF all rules are satisfied for h added to 𝑀(𝑠) THEN
(08) 𝑠󸀠 = put ℎ into 𝑀(𝑠)
(09) CALL VF2Match(𝑠󸀠)
(10) ENDIF
(11) ENDFOREACH
(12) Restore data
(13) ENDIF
(14) END PROCEDURE VF2MATCH

Algorithm 2: 𝜆-VF2 algorithm (based on VF2 algorithm).

Rule 1 (𝑅𝑝𝑟𝑒𝑑(𝑠, 𝑛, 𝑚)).

((∀𝑛󸀠 ∈ 𝑀1 (𝑠)) ∩ 𝑃𝑟𝑒𝑑 (𝐺1, 𝑛) ∃𝑚
󸀠

∈ 𝑃𝑟𝑒𝑑 (𝐺2, 𝑚) | (𝑛󸀠, 𝑚󸀠) ∈ 𝑀 (𝑠))

∧ ((∀𝑚󸀠 ∈ 𝑀2 (𝑠)) ∩ 𝑃𝑟𝑒𝑑 (𝐺2, 𝑛) ∃𝑛
󸀠

∈ 𝑃𝑟𝑒𝑑 (𝐺1, 𝑛) | (𝑛󸀠, 𝑚󸀠) ∈ 𝑀 (𝑠))

(3)

Rule 2 (𝑅𝑠𝑢𝑐𝑐(𝑠, 𝑛, 𝑚)).

((∀𝑛󸀠 ∈ 𝑀1 (𝑠)) ∩ 𝑃𝑟𝑒𝑑 (𝐺1, 𝑛) ∃𝑚
󸀠

∈ 𝑆𝑢𝑐𝑐 (𝐺2, 𝑚) | (𝑛󸀠, 𝑚󸀠) ∈ 𝑀 (𝑠))

∧ ((∀𝑚󸀠 ∈ 𝑀2 (𝑠)) ∩ 𝑃𝑟𝑒𝑑 (𝐺2, 𝑛) ∃𝑛
󸀠

∈ 𝑆𝑢𝑐𝑐 (𝐺1, 𝑛) | (𝑛󸀠, 𝑚󸀠) ∈ 𝑀 (𝑠))

(4)

Rule 3 (𝑅𝑖𝑛(𝑠, 𝑛, 𝑚)).

(𝐶𝑎𝑟𝑑 (𝑆𝑢𝑐𝑐 (𝐺1, 𝑛) ∩ 𝑇𝑖𝑛1 (𝑠))

≥ 𝐶𝑎𝑟𝑑 (𝑆𝑢𝑐𝑐 (𝐺2, 𝑚) ∩ 𝑇𝑖𝑛2 (𝑠)))

∧ (𝐶𝑎𝑟𝑑 (𝑃𝑟𝑒𝑑 (𝐺1, 𝑛) ∩ 𝑇𝑖𝑛1 (𝑠))

≥ 𝐶𝑎𝑟𝑑 (𝑃𝑟𝑒𝑑 (𝐺2, 𝑚) ∩ 𝑇𝑖𝑛2 (𝑠)))

(5)

Rule 4 (𝑅𝑜𝑢𝑡(𝑠, 𝑛, 𝑚)).

(𝐶𝑎𝑟𝑑 (𝑆𝑢𝑐𝑐 (𝐺1, 𝑛) ∩ 𝑇𝑜𝑢𝑡1 (𝑠))

≥ 𝐶𝑎𝑟𝑑 (𝑆𝑢𝑐𝑐 (𝐺2, 𝑚) ∩ 𝑇𝑜𝑢𝑡2 (𝑠)))

∧ (𝐶𝑎𝑟𝑑 (𝑃𝑟𝑒𝑑 (𝐺1, 𝑛) ∩ 𝑇𝑜𝑢𝑡1 (𝑠))

≥ 𝐶𝑎𝑟𝑑 (𝑃𝑟𝑒𝑑 (𝐺2, 𝑚) ∩ 𝑇𝑜𝑢𝑡2 (𝑠)))

(6)

Rule 5 (𝑅𝑛𝑒𝑤(𝑠, 𝑛, 𝑚)).

(𝐶𝑎𝑟𝑑 (𝑁󸀠1 (𝑠) ∩ 𝑃𝑟𝑒𝑑 (𝐺1, 𝑛))

≥ 𝐶𝑎𝑟𝑑 (𝑁󸀠2 (𝑠) ∩ 𝑃𝑟𝑒𝑑 (𝐺2, 𝑛)))

∧ (𝐶𝑎𝑟𝑑 (𝑁󸀠1 (𝑠) ∩ 𝑆𝑢𝑐𝑐 (𝐺1, 𝑛))

≥ 𝐶𝑎𝑟𝑑 (𝑁󸀠2 (𝑠) ∩ 𝑆𝑢𝑐𝑐 (𝐺2, 𝑛)))

(7)

The above five rules are applied to the subgraph isomor-
phism pattern. In addition, for isomorphism pattern, “≥” in
𝑅𝑖𝑛,𝑅𝑜𝑢𝑡, and𝑅𝑛𝑒𝑤 is replaced by “=”. If the newly added node
pair is satisfied by the five feasibility rules, the algorithm adds
them and continues the searching.

3.5. The Implementation of 𝜆-VF2 Algorithm. In this section,
we propose 𝜆-VF2 algorithm based on the environment of
Android to detect subgraph isomorphism between the ORG
and ORGB. According to Section 3.4, the VF2 algorithm is
aimed at isomorphism and subgraph isomorphism.However,
for the study of ORG, in the case of subgraph isomorphism, it
is still difficult to match the subgraph with the original graph.
The reason is that the running time for an app injected with
malicious code is not sufficient, which causes the creation
of the incomplete references. Therefore, the algorithm needs
to be adjusted to relax the matching condition. To relax
the matching condition, the algorithm finishes when the
matching ratio of vertex reaches a proper threshold.

The threshold 𝜆 ∈ (0, 1) is set as the input of the algo-
rithm, which is determined by the user. 𝜆 indicates that the
algorithm is terminated only when the ratio of matched ver-
tices is bigger than or equal to𝜆; the algorithm returns success.
In this way, the pseudocode of 𝜆-VF2 algorithm is shown in
Algorithm 2.

3.6. Performance Analysis. The time and space complexity
of VF algorithm is positively correlated with 𝜆. As an input
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parameter, 𝜆 is independent of the algorithm. In this section,
𝜆 is considered as 1 at the worst case.

3.6.1. Time Complexity. Our algorithm is a graph SSR-based
isomorphism algorithm.The time complexity consists of two
parts: the time of traversing and the processing time for each
state.

(i) Traversing Time. At best, each state has only one satisfied
candidate node; namely, there is no need for backtracking.
The total number of states that need to traverse is the number
of nodes in given graph. The worst case is that there are no
unsatisfied states. In the 𝑑 + 1th level of the search tree, there
are𝑁(𝑁−1)(𝑁− 2) ⋅ ⋅ ⋅ (𝑁−𝑑) nodes. And the total number
of tree nodes is

1 + 𝑁 + 𝑁 (𝑁 − 1) + 𝑁 (𝑁 − 1) (𝑁 − 2) + ⋅ ⋅ ⋅

+ 𝑁 (𝑁 − 1) (𝑁 − 2) + ⋅ ⋅ ⋅ + 2 = 1 + 𝑁!
(𝑁 − 1)!

+ 𝑁!
(𝑁 − 2)!

+ 𝑁!
(𝑁 − 3)!

+ ⋅ ⋅ ⋅ + 𝑁!
1!

= 1 + 𝑁!
𝑁−1

∑
𝑑=1

1
𝑑!

(8)

∑𝑁−1𝑑=1 (1/𝑑!) is less than 2. Thus, the total number of sizes
is 𝑂(𝑁!).

(ii) Processing Time of Each State. The processing time for
each state consists of three parts: the calculation time TH of
the candidate set𝐻(𝑠), the calculation time 𝑇𝐹 of the feasible
function 𝐹(𝑠, 𝑛, 𝑚), and the calculation time 𝑇𝑛𝑒𝑤 of the new
state. The total time of every single state: 𝑇 = 𝑇𝐻 +𝑇𝐹 +𝑇𝑛𝑒𝑤.

𝑇𝐻: the processing time for each state in the candidate set
is constant, and the maximum size of the set is 𝑁. Therefore,
𝑇𝐻 is 𝑂(𝐵).

𝑇𝐹: in the process of 𝐹(𝑠, 𝑛, 𝑚), each edge costs constant
time and the number of edges in the worst case is the number
of nodes which is connected to every remaining node. Thus,
𝑇𝐹 = (𝐵).

𝑇𝑛𝑒𝑤: the calculation time of the new status includes the
time of 𝑀(𝑠󸀠), 𝑉𝑖𝑛1 (𝑠), 𝑉

𝑜𝑢𝑡
1 (𝑠), 𝑉𝑖𝑛2 (𝑠), and 𝑉𝑜𝑢𝑡2 (𝑠), in which

𝑀(𝑠󸀠) is cost constant time. And the other four sets need to
iterate over the edges of the newly joined one, which is 𝑂(𝐵)
at the worst case.

𝐵 is the number of edges that a node is connected to.
Given a directed graph of 𝑁 vertexes, the number of edges
connected to one given vertex achieves the maximal number
of 2 ∗ (𝑁 − 1). Therefore, 𝑂(𝐵) = 𝑂(𝑁) in the worst case.

In summary,𝑇 = 𝑇𝑃+𝑇𝐹+𝑇𝑛𝑒𝑤 = 𝑂(𝑁)+𝑂(𝑁)+𝑂(𝑁) =
𝑂(𝑁).

Final Time Complexity. According to the above analysis, the
time complexity of the VF2 algorithm is the multiplication of
the two parts.

In the best case, 𝑂(𝑁) ∗ 𝑂(𝑁) = 𝑂(𝑁2).
In the worst case, 𝑂(𝑁) ∗ 𝑂(𝑁!) = 𝑂(𝑁 ∗ (𝑁!)).

3.6.2. Space Complexity. The VF2 algorithm adopts the shar-
ing data structure. Thus, the storage space number required

Invoke the active process finder to get all running third-
party programs

Display the program name, package name, process ID 
number of each process in the ListView

To perform the “am dumpheap” command using the
shell command executor, export the heap file 

Use converter to convert the exported binaries to a format
that AHAT can parse

AHAT analyzes converted files, outputting referential
relationships between classes to TXT file

Start

End

Figure 4: Malware detection inspection flowchart.

by each state is constant. The searching process traverses the
search tree in the depth-first order, and the maximum depth
of the tree is less than 𝑁. Therefore, the space complexity is
𝑂(𝑁).

4. Framework of Demadroid

Demadroidmainly includes two parts: Android client and PC
server. Android client is responsible for extracting data and
passing it to the server side, and PC server is responsible for
the malware detection.

4.1. Design and Implementation of Android Client. The main
function of the Android module is to extract the object
reference information fromaprocess.We constructMalware-
Detection to analyze the running process (except the system
process) and export the dynamic information file for further
analysis.

The main components of MalwareDetection include
front-end interface, active process finder, shell command
executor, Convertor, andAHAT.The extraction flow is shown
in Figure 4.

In general, the existing malicious code is embedded in
the normal apk. After installation, the malicious code starts
with the host app, sharing the process resource in memory.
Objects are created in the process, each of which has mutual
references with each other.The information we need includes
the objects created by the injected process and references
between them. We extract the information above in Android
client. The reason is that the size of raw memory file is too
large. For example, a lightweight app “calculator” generates a
memory file of 10M.There aremany processes running in the
memory at the same time.Therefore, it is necessary to extract
the useful information to reduce the network burden when
uploading to PC server.
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Table 1: The extraction environment of the Android memory data.

PC OS Tools used Virtual Android
System Version

Windows 7 ADT (Android
Developer Tools) Version 4.0.3

VersionHead
Identifier(4B)
File Creaton Date(8B)
Unit 1
Unit 2
...
Unit n

Box 1: Dumpheap file format.

There are three steps in the extraction process. The first
step is the acquisition of raw heap information. The second
step is to convert the raw memory file format. The third step
is to analyze the dynamic information.

4.1.1. The Acquisition of Heap Memory Information Files.
TheAndroid SDK provides feature-rich memory monitoring
tools, such as dumpheap tools for heap data monitoring.
And it is supported by Android 2.3 version or more. To
facilitate the analysis, we use AVD to virtualize Android 4.0.3
and successfully extract the heap data of the test process
by dumpheap. The data extraction environment is shown in
Table 1.

The dumpheap command is in the format of “am
dumpheap PID path”. We integrate dumpheap into Android
program. In the extraction process, we first use the adb tools
to obtain the equipment information. After the execution of
this command, the heap data of process is saved in files. In this
way, a complete file of raw heap information is obtained.This
file is binary and cannot be read directly from the contents.
Therefore, the format of the binary file needs to be converted.

For example, we start the “calculator” application in the
virtual device. With the obtained process ID number, we
export the memory raw data of the Calculator process by
dumpheap.

4.1.2. The Format Conversion of the Memory Information File.
The raw memory data is binary and it cannot be analyzed
directly. We develop Convertor to convert it into an available
format.

The analysis tool we propose, AHAT, is based on JHAT,
which is used in PC environment. The version of the binary
memory file generated by dumpheap is 1.0.3, while the version
JHAT can analyze is 1.0.2, and the file format needs to be
converted from 1.0.3 to 1.0.2 on Android platform.

The function of Convertor is similar to HprofConv tools
of SDT, which is used in PC environment. The first step is to
analyze the two versions. The binary file format produced by
dumpheap is shown in Box 1. The format of the binary file is

Type(1B)
TimeStamp(4B)
Length(4B)
DetailInfo(Length ∗ 1B)

Box 2: The format of unit.

Table 2: New type of 1.0.3 unit.

Type Hexadecimal
mark

HPROF HEAP DUMP INFO 0xfe,
HPROF ROOT INTERNED STRING 0x89,
HPROF ROOT FINALIZING 0x8a,
HPROF ROOT DEBUGGER 0x8b,
HPROF ROOT REFERENCE CLEANUP 0x8c,
HPROF ROOT VM INTERNAL 0x8d,
HPROF ROOT JNI MONITOR 0x8e,
HPROF UNREACHABLE 0x90,
HPROF PRIMITIVE ARRAY NODATA DUMP 0xc3,

fixed, beginning with a version string, such as “Java PROFILE
1.0.2”, followed by the 4-byte ID information, followed by
8-byte file creation date information. After creation date
information is the memory data, which is the body of the
binary file.

The memory data consists of units. Each of these units
stores the information of a Java object. The format of a unit
is shown in Box 2. The data structure includes a 1-byte type
field, a 4-byte timestamp field, a 4-byte data length field n,
and finally the n-byte object information field.

The main difference between the two versions is that the
number of types is inDetail Info field. In the old version, there
are thirteen types in the Detail Info field. In the new version,
nine new types are added, which are shown in Table 2.

The types shown in Table 2 make the information unan-
alyzable. The solution is to remove the new types, which is
irrelevant to our work.

We use the unit types as the member of Convertor class,
which is used in the analysis process to determine whether
a given type is useful. Finally, the file is reorganized in the
format of the 1.0.2 version.

4.1.3. Extraction of Object and Reference Information. We
develop AHAT, a tool used to analyze binary files in Android
which is similar to JHAT in PC environment. AHAT mainly
consists of four parts: Model, Parser, Util, and external
call interface. The relationship between the four modules is
shown in Figure 5.

Model. It defines the types (data structures) of all involved
objects, and the objects of these data structures constitute a
model. There are 29 classes corresponding to object types of
Java, the most important of which is the Snapshot, the largest
unit of the memory snapshot model.
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Table 3: Classes that need to be filtered out during extraction.

boolean long javax.net. javax.transaction.
char sun. javax.print. javax.xml.parsers.
float java. javax.rmi. javax.xml.transform.
double javax.accessibility javax.security. org.ietf.jgss.
byte javax.crypto. javax.sound. org.omg.
short javax.imageio. javax.sql. org.w3c.dom.
int javax.naming. javax.swing. org.xml.sax.

External Call Interface

ModelParser

Util

Figure 5: The structure of AHAT.

Parser. It is used for reading binary files, analyzing data, and
using it withmodel objects to build amodel. Parser consists of
7 classes; the main class isHprofReader, used for heap binary
parsing.

Util. it is a common toolkit.

External Call Interface. AHAT is responsible for invoking
each module to make it work properly. The activity class is
interacting with the user on Android, so themain class is the
MainActivity class and the QueryClassInfo class used to get
the referential relationship between the classes.

According to the work process of JHAT, there are four
steps in the implementation of AHAT:

(1) Create: AHAT first creates a snapshot for preparing to
store data.

(2) Read: the HprofReader class parses the binary file
to obtain the necessary information and builds the
Snapshot object.

(3) Resolve: the Snapshot object uses the object informa-
tion to initialize the data structure which includes the
reference relationships between classes.

(4) Query: based on the constructedmodel, we query the
class reference and write it in files.

4.1.4. Important Data Structures and Methods

(1) Snapshot class: It represents a Snapshot of a Java
object in the JVM which contains the dynamic object

Table 4: The experimental operating environment of AHAT.

Device name Galaxy Nexus 3
Android version Android4.1.2
Mobile RAM 1GB

CPU Texas Instruments OMAP4460, dual-core,
Frequency 1228MHz

information as well as references between them. The
data structures involved are defined in the model
module.

(2) HprofReader class: It parses the binary file to extract
the memory information of each unit and uses it
to build a Snapshot object. After this, we initialize
the data structure, calculate the specific information
of each object, like package name, class name, class
ID, class member variable, reference relation between
classes, and so on. The above process is the key to
dynamic information extraction.

(3) QueryClassInfo class: The function of QueryClassInfo
class is to extract the references between classes
of Snapshot object. The variable referrersStat in the
process function is a Hashmap which stores the
referenced information of this class and the variable
referrersStat is used to store the referencing informa-
tion. All the classes in thememory are obtained by the
function getClasses of Snapshot.

(4) PlatformClasses classes: In the obtaining process of
object references, there are thousands of classes
returned by function getClasses, most of which are
platform-supplied classes, like the Java Standard API
classes, the API classes provided by the Android
system, and so on. These classes are irrelevant to our
work. What is more, the existence of them can cover
the references between the key classes. Therefore, we
remove such irrelevant classes (shown in Table 3) by
function PlatformClasses.

4.1.5. Results of AHAT. The AHAT requires Android 4.0 or
more. We test it on Google’s Galaxy Nexus 3, of which the
environment is shown in Table 4.

The analysis process includes the reading of dumpheap
files, binary data parsing, class reference relationship analysis,
and the creation of result files. The result is stored in the
dumpheap folder of the SD card.
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Build ORG
Graph

Module

Build ORGB
Graph Module

Detection
Module

ORG

ORGB

Android Data

Figure 6: The overall architecture of the server.

Table 5: Android setup.

Name Android System Version CPU Phone Memory
Galaxy Nexus 3 Android4.1.2 Texas instrument OMAP4460, dual core, Frequency: 1228MHz 1GB

4.2. Design and Implementation of Server Side. There are
three parts in PC server: the establishment of ORG, the estab-
lishment of ORGB, and graph matching. The architecture of
PC server is shown in Figure 6. After ORG is created, it is
sent to the detection module to match with ORGB by 𝜆-VF2
algorithm.

4.2.1. The Establishment of ORG. ORG is a digraph created
by the information obtained in Android client. There is
no system class in ORG, in which the nodes represent
classes and the edges represent the references between classes.
The flow chart of ORG establishment module is shown in
Figure 7.

The node ID in the program is a number, and the class
name in the file needs to be converted to ID. Thus, we
create an index file to assign an ID for each class. In the
parsing process, the class name is identified in the index file
and added to ORG as a node. When the process identifies
the string “Referrers by type”, the referencing class is added
and the directed edge is established from this node to the
referenced node. When the program identifies “Referees by
type”, it reads the referenced class and adds it to ORG with
the directed edge.

4.2.2. The Establishment of ORGB. ORGB is a digraph used
to express the feature of malicious code. ORGB only collects
the classes of malicious code as nodes, and the class list of
malicious code is obtained bymanual analysis.The flow chart
of ORGB establishment module is shown in Figure 8.

4.2.3. Detection Module. In this part, we propose 𝜆-VF2
algorithm.When the value of𝜆 is 1,𝜆-VF2 algorithmdegrades
to the original VF algorithm. In the experiment, the results
are different by setting 𝜆with different values.The flow of the
detection module is shown in Figure 9.

The program first inputs the value of 𝜆 and selects ORG
and then matches the selected ORG with every ORGB in the
malware library. The matching process will be terminated by
a successful match. For the convenience of the experiment,
ORG and ORGB are stored in binary file with no attribute of
nodes and edges.

Table 6: PC setup.

OS CPU Memory

Windows 7 Xeon E3-1200 v2, Quad
core, 8 threads, 3300MHZ 1GB

Table 7: Number of simulative code samples.

Origin Extra Reference Extra Class Class Replacement
4 2 2 2

5. Experiments

5.1. Setup. In our experiments, we run the Android apps and
extract original data by the tools we developed. We construct
ORG and test it with the malware dataset.

(i) Android Setup. We extract memory data on a real device.
Table 5 shows the experiment environment.

(ii) PC Setup. The ORG is sent to PC server.The environment
of PC server is shown in Table 6.

5.2. Datasets. We use two kinds of datasets in our exper-
iments, simulative malicious samples, and real malware
samples.

5.2.1. Simulative Samples. Each simulative sample is built by
manual construction, which consists of two packages. One
is malicious and the other is benign. In a given category of
simulative malware, the different sample contains different
benign packages and the same malicious packages. The
advantage of simulating samples is that we can control the
scale and operation of malware. In the experiments, we
construct 10 simulative samples.Themalicious codes in these
samples are basically the same. In order to test different
effects of VF2-isomorphism, VF2 monomorphism, 𝜆-VF2
isomorphism, and 𝜆-VF2 monomorphism, we adjust the
malicious codes to simulative the attacks. Table 7 shows the
number of each type in simulative code samples.

(1) Origin samples: themalicious codes are the same, and
the benign parts are different.
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Figure 7: The flow chart of the ORG establishment module.

(2) Extra Reference samples: this kind of samples is
simulating the malware which is intended to avoid
detection by adding disturbance reference.The classes
in malicious codes are identical. However, compared
with the originalmalicious ones, there are several new
meaningless references added between classes.

(3) Extra Class samples: new classes are added based on
the original malicious codes to simulate themalicious
variations.

(4) Class Replacement samples: based on the variations of
simulative malicious codes, some classes are deleted
and some classes are added.

Table 8: Number of real code samples.

ADRD Bgserv
22 16

5.2.2. Real Malicious Samples. We also collect two kinds of
real malware which is shown in Table 8.

To extract the ORGB of the given category of malware
as the dynamic feature, we select some samples from each
category randomly and then analyze them manually.

The APK file is generated from packetized dx tools. We
use JD disassembler to reverse the source code to obtain
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Figure 8: The flow chart of the ORGB establishment module.
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Table 9: Detection results of simulative samples.

Algorithm Origin Extra Reference Extra Class Class Replacement
VF2 Subgraph Isomorphism 4/4 0/2 2/2 0/2
VF2 Monomorphism 4/4 2/2 2/2 0/2
𝜆-VF2 Subgraph Isomorphism 4/4 1/2 2/2 1/2
𝜆-VF2 Monomorphism 4/4 2/2 2/2 2/2
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Succeed to
match?

Output results

Y

i = i + 1 N

Else in OGRB graph library?
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Y

Set 
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Figure 9: Detection module.

the classes. By comparison, we acquire the malicious classes.
Classes of malicious codes are generally stored in indepen-
dent packages, which makes it possible to identify malicious
categories manually. Figure 10 shows the file structures in
twoAPKswhich containsADRDmalicious codes. Obviously,
both apk contains malicious package “xxx.yyy”. In this way,
we obtain the list of ADRD.

5.3. Experimental Results on Simulative Samples

5.3.1. Simulation Sample Test Results and Analysis. In our
experiments, we first construct ORGB from Origin samples.
Then, we construct complete ORG of the 10 samples. Finally,
we, respectively, detect ORGB with four kinds of VF2 algo-
rithm. Experimental results are shown in Table 9, where 𝜆 is
0.8.

As Table 9 shows, all algorithms can completely detect
original malicious codes with new classes added for inter-
ference. The reason is that the new classes reflected the new
nodes in ORG and ORGB is still a subgraph of ORG. It
indicates that our method is effective in the variants added
new classes.

Figure 10: Comparison of malicious code classes.

VF2 subgraph isomorphism algorithm is unable to detect
the attack of Extra Reference. The reason is that some
meaningless references are added, which leads to new edges
in ORG. However, subgraph isomorphism requires the com-
plete matching of edges; namely, the new edge is required in
both ORG and ORGB.

Extra Reference and Class Replacement are incompletely
detected 𝜆-VF2 subgraph isomorphism. This is because the
impact of the added references is not completely eliminated
and the matching condition is overqualified.

𝜆-VF2 monomorphism has the weakest constraint and is
successful in the four kinds of detection. In practice, even the
same kind of malicious codes is not totally identical. And the
created objects are different in memory. In consideration of
these factors, 𝜆-VF2 monomorphism is the best choice. And
the effectiveness needs to be verified on realmalware samples.

5.3.2. Confused Variation Detection of Simulative Code Sam-
ples. Code confusion is the most common technique used in
malware. With code confusion, malware can easily hide the
malicious characteristics or generate the variations rapidly,
which can avoid static detection.

ProGuard is a famous open source code obfuscation tool,
which is integrated into Android. To make it usable, “pro-
guard.config= ${sdk.dir}/tools/proguard/ proguard-android.txt:
proguard-project.txt” needs to be added at the end of the
properties file.
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Table 10: Detection results of real samples.

Algorithm ADRD Bgserv
VF2 Subgraph Isomorphism 1/22 1/16
VF2 Monomorphism 2/22 2/16
𝜆-VF2 Subgraph Isomorphism 12/22 9/16
𝜆-VF2 Monomorphism 16/22 11/16
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Figure 11: Detection results of VF2 algorithm.

In experiments, we utilize ProGuard to obfuscate four
Origin simulative samples and regenerate their ORGs. Then,
we detect them with the original ORGB by 𝜆-VF2 monomor-
phism algorithm. Experimental results show that the four
ORGs are all matched successfully.

5.4. Experimental Results on Real Samples

5.4.1. Effect of VF2 Algorithm on Malicious Code Detection.
The VF2 algorithm is a precise graph matching algorithm,
which requires the complete match of the subgraph. This
algorithm achieves high accuracy with the low false positive
rate. However, the effect of noise leads to the low possibility
of complete matching. Thus, the practicability needs to be
further tested.

We test the categories of ADRD and Bgserv by VF2
algorithms, and the value of 𝜆 is set to 0.8. The experimental
results are shown in Table 10 and Figure 11.

As depicted in Table 10 and Figure 11, the success rates
of VF2 subgraph isomorphism and VF2 monomorphism are
low; the main reasons include the following:

(1) The feature of malicious codes is not sufficiently
extracted because of the difference between samples
of each category.

(2) In the process of extracting, malicious process
dynamically creates and destroys classes, which leads
to the deficient loading of the key feature in the
memory.

(3) These two algorithms are both precisely matching.
And the above two reasons can cause the failure of
matching of ORGB and ORG.
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Figure 12: Results of ADRD Virus Library-Varying 𝜆.
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Figure 13: Results of BGSERV Virus Library-Varying 𝜆.

It can be concluded that the reduction of matching
precision can decrease the effect of noise and achieve high
matching accuracy.

5.4.2. Effect of 𝜆-VF2 Algorithm Varying Precision. 𝜆-VF2
monomorphism algorithm is effective in real malicious
codes. The value of 𝜆 affects a lot on matching results. If
we decrease the value of 𝜆, the matching precision reduces
and the false positive rate increases when it tends to 0. If we
increase the values of 𝜆, the matching precision reduces and
the false negative rate increases when it tends to 1. Thus, the
proper value of 𝜆 needs to be tested.

To obtain the false rate when 𝜆 decreases, we use a
malware group and a benign app group for each test value.
And the benign group has the same number of apps with
the malware group. 𝜆 starts from 0.5 and increases by 0.05
for each group. We obtain the false negative rate from the
malware group and the false positive rate from the benign app
group. Experimental results are shown in Table 11.

As Table 11 shows, when 𝜆 is 0.9, the miss rate achieves
0.5, which impossibly meets the practical needs. When 𝜆 is
0.75, the false rate achieves 0.23, which is unsatisfied. Thus,
we select the value of𝜆 from0.75 to 0.85.The variation ofmiss
rate and the false rate is illustrated in Figure 12. Experimental
results are shown in Table 12.

As Table 12 shows, when 𝜆 is 0.85, the miss rate achieves
0.69, which impossibly meets the practical needs. When 𝜆 is
0.7, the false rate achieves 0.31, which is unsatisfied. Thus, we
select the value of 𝜆 from 0.7 to 0.8.The variation of miss rate
and the false rate are illustrated in Figure 13.
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Table 11: Results of ADRD Virus Library-Varying 𝜆.

𝜆 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Total Number 22 22 22 22 22 22 22 22 22 22 22
ADRD 22 22 22 21 21 19 16 15 9 3 1
Normal 12 10 9 8 6 5 2 1 0 0 0
Missing Rate 0.00 0.00 0.00 0.05 0.05 0.14 0.27 0.32 0.59 0.86 0.95
False Rate 0.55 0.45 0.41 0.36 0.27 0.23 0.09 0.05 0.00 0.00 0.00

Table 12: Results of Bgserv Virus Library-Varying 𝜆.

𝜆 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Total Number 16 16 16 16 16 16 16 16 16 16 16
Bgserv 16 16 15 15 14 12 11 5 2 2 0
Normal 8 8 6 5 5 2 2 1 0 0 0
Missing Rate 0.00 0.00 0.06 0.06 0.13 0.25 0.31 0.69 0.88 0.88 1.00
False Rate 0.50 0.50 0.38 0.31 0.31 0.13 0.13 0.06 0.00 0.00 0.00

As observed in the two groups of experiments, as 𝜆 rises,
the miss rate of malicious codes increases while the false rate
decreases.These two parameters are a trade-off. In practice, to
guarantee that the miss rate and false rate are satisfied, we set
the value of 𝜆 according to the needs. From the experiments,
it can be concluded thatwhen𝜆 is around 0.85, we can achieve
a better performance.

6. Conclusion

In this paper, we present ORG to depict the references
between objects allocated in heap memory and extract
ORGB as the feature of Android malware from ORG. We
propose Demadroid, a dynamic system for Android malware
detection. After extracting ORG in memory, Demadroid
matches ORG with the ORGB of each malware category
by 𝜆-VF2 algorithm. Experimental results demonstrate the
effectiveness and efficiency of our algorithm.AndDemadroid
can effectively resist obfuscated attacks and detect the vari-
ants of known malware to meet the demand for actual
use.

Our important future work is to take the deeper opti-
mization of the graph match algorithm and the ORG
establishment. And we can build a virus library in the
cloud and combine the algorithm with cloud comput-
ing in the future. In this way, our framework can be
improved from efficiency and accuracy in various scenar-
ios.
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