
Research Article
Session Fingerprinting in Android via
Web-to-App Intercommunication

Efthimios Alepis and Constantinos Patsakis

Department of Informatics, University of Piraeus, 80 Karaoli & Dimitriou, 18534 Piraeus, Greece

Correspondence should be addressed to Constantinos Patsakis; kpatsak@gmail.com

Received 29 December 2017; Accepted 3 June 2018; Published 28 June 2018

Academic Editor: Guojun Wang

Copyright © 2018 Efthimios Alepis and Constantinos Patsakis. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

The extensive adoption of mobile devices in our everyday lives, apart from facilitating us through their various enhanced
capabilities, has also raised serious privacy concerns. While mobile devices are equipped with numerous sensors which offer
context-awareness to their installed apps, they can also be exploited to reveal sensitive information when correlated with other
data or sources. Companies have introduced a plethora of privacy invasive methods to harvest users’ personal data for profiling
andmonetizing purposes. Nonetheless, up till now, these methods were constrained by the environment they operate, e.g., browser
versus mobile app, and since only a handful of businesses have actual access to both of these environments, the conceivable risks
could be calculated and the involved enterprises could be somehow monitored and regulated. This work introduces some novel
user deanonymization approaches for device and user fingerprinting in Android. Having Android AOSP as our baseline, we prove
that web pages, by using several inherent mechanisms, can cooperate with installed mobile apps to identify which sessions operate
in specific devices and consequently further expose users’ privacy.

1. Introduction

The unprecedented growth of mobile usage has radically
transformed our daily lives. In addition to the great advances
in our communications,mobile devices have changed theway
we create, process, and consume information, as they realize
pervasive and ubiquitous computing. Among others, one of
the most significant emerged changes is how we value infor-
mation. The fact that people are constantly and effortlessly
connected to the Internet via smart devices which empower
people’s unobstructed communication, information flow, and
entertainment in many occasions results in disregarding or
underestimating the value of the information they consume
and offer to third parties. This kind of collected data is
considered as the world’s new oil [1] but is also accompanied
by an increased risk regarding users’ privacy.

Subsequently, as far as information offering is concerned,
the value of the provided information to third parties is in
most of the cases considerably high, something that is not
always understood by the users. For instance, onemight share
his location with an app or a web page neglecting the fact that

this single piece of information also encloses a very sensitive
piece of data which can be exploited for various purposes.
Indicative uses for such location sharing could be the rec-
ommendation of other users in proximity for communication
purposes or even for sharing a ride. Aggregating location data
from numerous users can provide real-time traffic analytics
or insight into resource requirements in a smart city. Appar-
ently, this information can stimulate businesses’ prosperity
by enabling the implementation of further customer-centered
services. Therefore most companies are striving to extract as
much information as possible from users.

While data mining offers undeniable advantages to users,
e.g., service personalization can be considered as a noble
cause, companies tend to exploit data even further for pro-
filing and targeted advertising. Such tactics can expose users
to many privacy hazards. This trend is highlighted by the
fact that many companies are providing APIs which harvest
user data to create fine-grained user profiles, containing a lot
of sensitive user information. Such practices have also led
to the introduction of methods such as browser and device
fingerprinting. Nonetheless, mobile apps and web pages are

Hindawi
Security and Communication Networks
Volume 2018, Article ID 7352030, 13 pages
https://doi.org/10.1155/2018/7352030

http://orcid.org/0000-0002-4460-9331
https://doi.org/10.1155/2018/7352030

2 Security and Communication Networks

Feature
extraction

Mobile apps Web pages

Android/Browsers

User
Identification

Figure 1: Basic concept.

thus far considered as two diverse ecosystems, as they refer to
two discrete software environments with radical differences
in their information flow and data usage. This distinction
works in favor of users’ privacy, since it allows some parts
of their activities to remain isolated and hence private. For
instance, it prevents an app from knowing which web pages
a user visits or a web page from knowing which apps a
user is using and when. On the contrary, enabling access
between these two environments could allow for a web page
to communicate with an installed app to recover further
sensitive personal information from local files or sensor
measurements and hence further reveal one’s interests.

The goal of thiswork is to illustrate that there are currently
several means to realize user identification in Android,
regardless of the environment a software module is operating
on. Despite the privacy hesitations that people might have
towards thewell-known tech giants or independent browsers,
we provide some concrete examples proving that an “All
Seeing Eye”, a software entity able to monitor users’ actions
across both the web and the application ecosystems, can
be easily created. Such an entity, in the form of an cloud-
based database equipped with some additional services can
correlate information from web pages and mobile apps in
order to identify individuals. After a thorough investigation
in the related scientific literature and to the best of our
knowledge, the authors of this paper have concluded that
this problem has been so far only partially studied, as
current literature is focused onmethods which examine each
software ecosystem independently and not both of them as
a whole. In fact, the proposed methods in this work can be
considered as an extension of device fingerprinting as they

do not solely depend upon unique characteristics of device
components or hardware identifiers. We label these methods
as “session fingerprinting” since their goal is to reveal whether
web-browsing and software sessions operate simultaneously
in a device and identify the user.

The generic concept of this work, in a simplified form, is
illustrated in Figure 1. Each side of this figure is dedicated
to the two software “ecosystems”, namely web pages and
mobile apps. Obviously, there is a crosscut from the OS,
namely, Android, since itmanages calls fromboth ecosystems
in a mobile device, as well as from the browsers which
by definition belong as applications to both ecosystems.
The “All Seeing Eye” acts as a Command and Control,
C&C, server which collects information from web pages
and apps, correlates it, and transmits “commands” and the
corresponding information to both sides. The commands
may range from “retrieve a list of installed apps” and “scan
local storage for files containing X”, to “display ad Y” or
“application Z send webpage data W”. Therefore, the “All
Seeing Eye”, as the orchestrator of all performed actions by
apps and web pages can ultimately reveal user identities.

While similar attempts have been made in the past, it is
rather important to note that methods trying to escape the
browser’s environment without users’ consent are considered
to be malware and usually exploit browsers’ vulnerabilities.
Especially in the case of Android, passing a single bit of
information from a benign browser to an app is rather
difficult, given the fact that it has to bypass not only
the browser’s sandbox but also additional obstacles due to
Android’s inherent security model which will be discussed
later on.

Security and Communication Networks 3

This paper extends previous work of the authors [2]
by providing more details for the underlying methods, the
related literature, and also experiments regarding session
fingerprinting. The rest of this work is organized as follows.
In the next section we present the related work, discussing
methods for user profiling in mobile devices and browsers
and some Android specific details regarding permissions
of apps. In Section 3, our newly introduced concept of
“session fingerprinting” is analyzed and in Section 4 we
state the problem we address and discuss how both apps
and web pages are expected to behave in this context. In
Section 5 we present four concrete examples which prove
the efficacy of our approach and detail how they can be
realized. Section 6 illustrates the extension of the threat
by providing experimental result and statistics. Finally, we
conclude discussing some of our findings and ideas for future
research.

2. Related Work

2.1. Isolation of Apps in Android. Android started as a heavily
modified Linux distribution to meet the needs of mobile
devices which had significantly fewer resources than desktop
computers. However, the introduced changes made it quite
unique, leadingmany people to consider it something beyond
a different Linux distribution.

Contrary to most operating systems, the actual user
of the device does not have administrative privileges by
default. While this choice is actually preventing the user
to have complete control of the device he owns, it also
prevents adversaries to gainmore privileges than they should.
Certainly, there are several attacks presented in the literature
[3, 4]; however, they can be considered as few and quickly
patched by Google. Since users tend to install a significant
number of apps in Android, each application needs to have
different access to the device resources in order to prevent
security and privacy hazards. To this end, each Android app
is a different OS user, to which the user, owner of the device,
grants different permissions. By isolating each app, Android
guarantees the integrity of the contents of each procedure and
prevents other apps from accessing them. Moreover, since
the user selects which apps are allowed to access specific
resources, the user is able to control the information flow in
his device. The latter was significantly improved in Android
Marshmallow, as Google decided to introduce the runtime-
permission model so that users can grant and revoke app
permissions on “dangerous” resources, the ones that present
the biggest privacy risk, for instance camera, microphone,
and location. See Figure 2 for the full list of the so-called
“dangerous permissions”.

To enforce the permissionmodel Android has to perform
several steps. Before describing this specific mechanism, it
has to be highlighted that since each application in Android
is considered as a different user, it is assigned a different
UID. This prevents applications from accessing the data
and private resources of the other installed apps, providing
more security and privacy to Android. Each call to Android
framework API is accompanied by the corresponding UID

Figure 2: Dangerous permissions in Android [5].

of the app performing the call. Android checks whether the
permission for the call has been assigned upon installation in
the AndroidManifest.xml file and if this is the case, Android
checks the permission level of this call (normal, dangerous,
etc.). Normal permissions are automatically granted and
access to the API is provided instantly. However, if the call
is for a dangerous permission, the system will query whether
access to this resource has been granted by the user during
runtime and allow or deny the access accordingly. Finally, if
the permission is signature or signatureOrSystem, then it is
granted only to applications that are in the Android system
image or that are signed with the same certificate as the
application that declared the permission.

While this model may seem secure it does not prevent
privacy exposure. The fact that apps have unrestricted access
to the Internet allows them to communicate a lot of infor-
mation. The latter is augmented by the fact that apps can
profile their users with normal permissions as they may
know, e.g., the apps that are installed, the WiFi networks a
user has stored and is using, created and joined arbitrary
networks, or even the users’ whereabouts with features like
WiFi P2P [6]. In general, while an app may use only normal
permissions, this does not necessarily mean that it is benign
[4, 5, 7]. An adversary model for exfiltrating data from
Android devices has been studied in [8] as the use cases are
numerous especially in an era when phones are shipped with
numerous bloatware [9, 10].

SystemofSignature permission allows Android apps to
be granted a permission as long as an app with the same
signature is granted this permission. Extending this concept,
Davi et al. [11] showed that apps could escalate their access
privileges by performing calls to other applicationswhich had
already been granted the privileges they wanted. Orthacker et
al. [12] further extended the aforementioned scenario to show
that an adversary could use permission spreading, that is, split
the necessary privileges to different applications, and launch
the attack through intercommunication. Similar approaches
with app collusion and spread of permissions have been
reported in the literature [13–15]; therefore researchers have
been gradually focusing onmore thorough analysis of intents
[16].

In most of the Android cases documented by researchers,
information is leaked from one app to another through a
covert channel [17, 18]. Although Rushanan et al. in [19]

4 Security and Communication Networks

achieve a goal similar to ours, their study concerns only the
desktop environment. Their approach consists in exploiting
the Web Workers API in order to increase the CPU and
memory utilization. By monitoring both CPU and memory
usage, they manage to pass messages from a web page to
an app in a desktop computer. Nevertheless, this attack
scenario is not possible in an Android device. For devices
up to Marshmallow, while apps could monitor the /proc/
directory and extract some information aboutmemory usage,
the recovered information is far from being considered
fine-grained and does not include CPU usage. With the
introduction of Nougat, apps are allowed to only access the
contents of their own /proc/PID private directory (https://
developer.android.com/about/versions/nougat/android-7.0-
changes.html), so this method does not work anymore for
AOSP. The only other alternative for an app to have this
kind of access is to request the system-level permission
PACKAGE USAGE STATS (https://developer.android.com/ref-
erence/android/app/usage/UsageStatsManager.html). The
fact that their attack does not apply for passing messages
in Android is also proved by the authors’ statement
that in Android they managed just to launch a resource
depletion attack against the browsers. Moreover, the
aforementioned restrictions in Nougat prevent apps from
accessing /proc/net which could otherwise reveal the
domain names but not the full URL a user has visited.

Notably, developers in many occasions, despite Google’s
recommendations (https://developer.android.com/training/
articles/user-data-ids.html), use ANDROID ID as a unique
identifier. To restrict this, Google required that apps request
the dangerous permission READ PHONE STATE (https://deve-
loper.android.com/reference/android/Manifest.permission
.html). Clearly, since this ID is unique, installed apps may
identify instances and correlate users and behaviours.
Since such actions violate user privacy, even though they
are performed locally only among installed apps, in the
latest preview of Android O, Google decided to block this
behaviour so that each app receives a different ANDROID ID.
More precisely, in Android O for each combination of
application package name, signature, user, and device,
developers end up with a different ANDROID ID (https://
developer.android.com/preview/behavior-changes.html). To
further support users controlling their unique identifiers,
Google has recently announced the new changes coming in
Android O [20], regarding device identifiers. In this regard,
Android O is limiting the use of device-scoped identifiers
that are not resettable and is also updating the way that
applications request account information, providing more
user-facing control.The latter signifies that Google is not only
aware of such deanonymization issues, but also constantly
working on refining its platform to mitigate these threats
and restrict unauthorized and unregulated app-to-app
communication, let alone web-to-app communication.

Finally, as reported in [21], there are alternative
approaches to ANDROID ID. These methods include, but are
not limited to, applicationmetadata in the installation folders
or metadata from the procfs file system. Nevertheless, all
these IDs are related to apps and cannot be used to create an
ID that a web page could normally have access to.

2.2. Ad Networks. The freemium model is currently the
default monetizationmethod in both web services and native
Android apps. The main concept of this model is that users
may obtain a product which comes in the form of a service
or an app for free in some exchange from the user, which is
not directly monetary. In the initial form, the trade involved
the user having to watch specific ads; however, in the current
form, the model monetizes the data which are generated by
the user by using the app or service or the ones that are
collected from the user, directly or indirectly. This approach
has led many to question the ethicality of this model as the
actual product is the user and not the app or service.

To clarify the issue one needs to understand that by
correlating a considerable amount of information about a
user a lot of sensitive information, hence valuable, can be
extracted. For instance, by usage statistics one can determine
the interests and preferences of a user, when the user may
need orwant a specific product or service and therefore create
a very fine-grained profile for him that is generated without
his consent nor his knowledge. In turn, the companies that
can collect these data may sell them for, e.g., targeted adver-
tising, tailored to the exact profile of their users, drastically
increasing their success.

The above have radically changed the app and web
industry, making ad networks among the most highly valued
and influential sectors in these fields. In terms of Android
apps, the most widely used ad library is Google’s Admob;
nonetheless, apps often use more than one. In many occa-
sions, ad libraries have proven not to be benign and to
exploit the permissions that they have. Note that due to
inheritance the ad libraries have the same permissions that
are granted to the apps. Furthermore, it should be highlighted
that since ad networks are the sole monetization method
for freemium apps, developers are following the wills and
commands of ad networks by constantly requestingmore and
more permissions from their users to collect even more data
from them.

Stevens et al. [22] found that some of them would use
undocumented permissions, read/write to calendar or access
location and camera. Grace et al. [23] found that about half
of them would probe the corresponding apps to determine
whether they could abuse them to harvest sensitive user
information. Ads may perform WiFi scans to determine
users’ location, scan whether the user has accounts in social
networks, or even scan the device to find which applications
have been installed [24]. In a more sinister scenario, ad
libraries try to link devices by playing inaudible sounds [25].
All the above have led researchers to introduce methods
to detain them and restrict the access of ad networks and
their user profiling methods [26–29]. Notwithstanding their
invasiveness, to the best of our knowledge, none of them has
been able to pass information froma browser to an appwithin
the Android system. Instead, this kind of communication,
whenever reported, was strictly among apps that used the
same ad network.

2.3. Web Fingerprinting Techniques. One of the initial ways
to track users was through browser cookies. While they can

https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://developer.android.com/about/versions/nougat/android-7.0-changes.html
https://developer.android.com/reference/android/app/usage/UsageStatsManager.html
https://developer.android.com/reference/android/app/usage/UsageStatsManager.html
https://developer.android.com/training/articles/user-data-ids.html
https://developer.android.com/training/articles/user-data-ids.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/preview/behavior-changes.html
https://developer.android.com/preview/behavior-changes.html

Security and Communication Networks 5

easily be removed, it was shown that they could be recovered
using the so-called respawning method, either using Adobe
Flash [30], or using ETags and the HTML5 localStorage API
[31]. Moreover, a passive network observer could use third-
party HTTP tracking cookies to identify users [32].

More advanced methods try to exploit specific character-
istics of either the browser or the device to determinewhether
a specific browser or device has visited a web page in the past.
Typical examples involve browser profiling through collect-
ing information like user agent, installed plugins, supported
fonts, time zone, language, etc. Depending on the build
and user configuration, these characteristics can be used to
identify a browser. Nonetheless, many of these characteristics
may change due to updates or user intervention.

A more sophisticated approach involves canvas finger-
printing, introduced byMowery and Shacham [33].The basic
concept is that depending on the underlying operating sys-
tem, font library, graphics card, graphics driver, and browser,
a text or an image can be rendered differently. An adversary
could track these changes to derive a browser fingerprint. In
fact, such characteristics could be correlated across browsers
of the same device as the many WebGL characteristics that
can be extracted from each browser offer enough entropy for
anonymization [34].

However, such variations can also be traced via other
methods. More precisely, regarding smartphones it has been
shown that hardware components such as accelerometers,
speakers, and microphones may have unique characteristics
which differ not only from model to model, but also across
devices [35–37]. Obviously, since these characteristics are
hardware based, they cannot change and are therefore more
robust that typical browser specific methods, realizing the
concept of device fingerprinting.

3. Session Fingerprinting

When someone browses the Internet, his session is con-
sidered anonymous unless he has authenticated himself by
logging-in, in a web page. While this anonymity is very
convenient for ensuring users’ privacy, companies strive to
find ways to bypass it and to profile them. Frequently, the
benign goal behind these actions is usually regarded as the
adaptation and/or personalization of a web page according
to the corresponding user profile, which translates to better
usability and increased content quality, which in turn may
increase both views and viewers. In most of the cases, this
personalization also targets the advertising industry, since by
deanonymizing an individual a business is able to display ads
tailored to users’ preferences and therefore to increase both
business’ and service providers’ profits.

One of the most widely used methods in achieving this
is browser fingerprinting, which tries to deanonymize users
by exploiting noticeable differences in the usage of different
browsers such as the underlying OS, user agent, browser
version, monitor size, or even installed fonts and plugins
[33, 38, 39]. More advanced methods go a step further by
exploiting device specific variations to identify individual
devices. For smartphones, it has been shown that sensors,

Session fingerprinting

Device fingerprinting

Browser fingerprinting

User
identification

Figure 3: Session fingerprinting compared to other methods in the
literature.

such as accelerometers, or speakers and microphones may
have unique characteristics which differ, not only across
models, but also across the devices within which they operate
due to calibration errors and frequency distortions [35–37].

While these methods have been proven efficient in
many cases, they are usually subject to errors and software
updates which could render a previous fingerprint useless.
For instance, a browser update may change the user agent
or the fonts, making its linking to the previous fingerprint
impossible. However, what a company actually needs is to be
able to correlate information with other affiliated parties in
order to determine whether the user has been simultaneously
operating another session. A typical example can be regarded
as the parallel usage of a web page and a mobile app. Note
that while the latter implies that the app is running in the
background, it is a typical situation in almost all mobile
OSes. In this regard, both parties should try to create a
unique ID for each session and also communicate it with
each other in order to deanonymize the user. We name the
methods for extracting these IDs as session fingerprinting.
Figure 3 illustrates the relation of our methods to others
in the literature. In principle, these methods identify a
device; therefore they include device fingerprintingmethods;
however, since they also include unique identifiers that are
collected at each session that a user has with a web page, they
amplify the former.

Apparently, these methods depend on the existence of
cooperating apps in the mobile device. We argue that this is a
weak assumption as the considered adversary in this work is
mainly an ad network. Due to the prevalence of the freemium
model in Android, most applications are free and, most of the
times, they comewith at least one preinstalled ad component.
However, our requirements do not imply escalated privileges;
hence the resulting applications are easier to be accepted by
the users.

Although both browsers and the Android OS have such
privileges, namely, are able to deanonymize the users and
have data about them coming frommultiple sources, the level
of trust a user has to both of them is the highest possible.
Users have chosen them because they trust that they will
act honestly and they will protect them from threats and,
above all, they will not stalk them. Moreover, it is important
to highlight that despite the OSes restrictions, the different
existing ad frameworks may indeed perform user profiling,

6 Security and Communication Networks

Table 1: Capabilities of apps and web pages.

Native Apps Instant Apps Web Pages
Access Device Identifiers ✓

Device External Storage ✓

Push Notifications ✓

List of Installed Apps ✓

Access Body Sensors ✓

Direct Communication with Installed Apps ✓

Receiving Broadcasts from OS or 3rd party Apps ✓

Run on the Background ✓

Change Device Settings ✓

Access User Calendar ✓ ✓

Access motion sensors ✓ ✓

Access Contacts ✓ ✓

Access Phone Calls ✓ ✓

Access Sensors ✓ ✓

Access environmental sensors ✓ ✓

Access Location ✓ ✓ ✓

Access Microphone ✓ ✓ ✓

Access position sensors ✓ ✓ ✓

Access Camera ✓ ✓ ✓

Access Internal Storage (own storage) ✓ ✓ ✓

High precision timestamps ✓ ✓ ✓

but still they cannot escape the browser or the app ecosystem
within which they operate.

4. Problem Setting

The introduction of WWW is one of the milestones in
modern computing, enabling users all over the globe to
collect and share information with their peers. In fact,
the emergence of Social Networks and Media has further
reshaped the landscape. In principle, the information that
can be collected from a web page is derived solely via the
launched browser and is strictly limited to the browser’s
environment. Any attempt to access resources beyond the
browser sandbox is considered as a security violation and
therefore is characterized as malicious. To this end, browsers
allow very limited exposure of user data to a web page.
For instance, a web page cannot read from or write to
the storage of a mobile device unless this action is user
initiated. To overcome these restrictions, adversaries may
resort to browser extensions [40] which provide even more
capabilities. On top of that, nowadays, due to the growth of
mobile devices, several standards, like HTML5, have been
introduced to allow browsers to access additional resources,
such as location, camera, or microphone, upon direct and
explicit user consent. As a result, web pages have a growing
set of capabilities, yet quite limited in comparison to apps. It
is worth noting, however, that Chrome, the default Android
Browser, as well as many other browsers do not support
extensions in the mobile environment, even though they
have numerous desktop editions. Finally, up to recently,
Chrome apps, also available only for desktop installations,

are discontinued as of early 2018. Therefore, browsers in
mobile environments have significantly less functionality and
extendability than their desktop peers.

On the other hand, Android apps reside on a different
environment. Contrary to web pages, mobile apps “live”
directly in the operating system and thus have more direct
access to its hardware and corresponding resources. Again,
their access is limited according to the granted privileges
by the users plus their scope is more fixed as they fulfill
specific user needs. Due to this restriction, apps cannot
determine whichweb pages a user visits. A critical distinction
between Android apps and web pages is that apps always
pass through an “installation” process. This step represents
a user acknowledgment regarding the specific resources an
app is allowed to use inside the environment executed.
Notably, Android Marshmallow users may grant and revoke
permissions to specific resources, like camera, microphone,
location, etc., which are called “dangerous” and may hinder
security and privacy issues. On the contrary, this is not
the case for web pages where users are not faced with
preconditions for visiting them. In many instances, users
would like to be able to use “one-time apps” to accomplish
specific tasks like using a retailer’s app when browsing his
web page. To address this need, Google recently introduced
instant apps, which do not require installation and have more
permissions and/or capabilities than common web pages.
However, instant apps, like web pages, are also restricted from
accessing hardware identifiers to prevent user profiling.

Key differences in terms of the capabilities of Android
apps, native and instant, and web pages are illustrated in
Table 1. As expected from the earlier discussion, it can

Security and Communication Networks 7

be easily noticed that installed applications have far more
access to device resources than web pages, since users install
apps granting themselves the corresponding permissions.
On the contrary, due to the nature of the web, users may
visit a large number of different web pages on a daily basis,
without knowing their quality, intentions, source, or content.
Hence, both Android and browsers make significant efforts,
e.g., running in a sandbox environment, towards protecting
users from malicious web page behaviour. Unquestionably,
if an app had been able to communicate with a web page
without restrictions, the entire underlying security infras-
tructure would have been rendered useless. In fact, even
the most widely used apps in Android are not able to
communicate directly with their web page. For instance, in
the case of three well-known andwidely used apps, Facebook,
Instagram, and Twitter, they do not transfer information
to their corresponding web page or any other cooperating
web page when a user has logged in the app. Instead, a
“Connect with Facebook/Twitter” button usually appears,
requiring further user interaction and most importantly
being realized by users. Evidently, had these apps been
able to transfer this kind of information to the browser,
they would have done it already long time ago, not only
for facilitating users, but also for further increasing the
amount of collected user data and the quality of provided
services.

Creating amechanism being able to transmit an identifier
from the browser to a cooperating installed app in a user’s
device, or vice versa, would allow for the installed app to
identify the individual who visited the cooperating web page
and subsequently the web page would elevate its access to
the same resources as those of the installed app. Further
analyzing this, after both parties, namely, web pages and apps,
have identified themselves lying in the same user’s device,
they would be able to create a covert channel. In the least
sinister scenario, a web page cooperating with an app would
be able to access a user’s contacts, SMS messages, or even
storage and microphone, without obtaining user’s consent,
and would manage to display ads perfectly tailored to the
user’s profile, albeit violating his privacy. However, in a true
malicious scenario, user data would be harvested by web
pages and personalized exploits would be pushed to users’
devices to further exploit their personal data while they surf
in the WWW.

5. Intercommunication between
Apps and Web Pages

In the following subsections, we provide a set of concrete
examples as Proofs of Concept, which showcase how apps
andweb pages canmutually create and consequently transmit
unique IDs that allow them to link their usage and to
communicate sensitive attributes to each other, realizing
what the authors of this paper have introduced as “session
fingerprinting”. The authors of this paper have responsibly
disclosed the mentioned security issues described in the
next subsections, regarding unauthorized communications
between apps and web pages.

Figure 4: Firefox requests user’s permission to allow a web page to
access location.

5.1. Location. Location awareness has undoubtedly increased
the potential of many applications since it allows them to
adapt accordingly and render their information based on
location specific criteria, drastically improving, e.g., user
recommendations. Obviously, location is a sensitive piece
of information as it can disclose many private attributes,
ranging from work and residence location, to entertainment
preferences and political/religious beliefs if correlated with
other sources of information. Therefore, mobile OSes allow
applications to access location data only if the user grants
a corresponding permission. In Android this permission is
provided either as fine or as coarse location.

Similarly, beyond the support for media in HTML5,
the standard enables web pages to access user location.
Since this information is sensitive, the browser specifically
requests user permission to be granted—see Figure 4—even
though this kind of information can be used for other
purposes as well. Once the browser gets access to the user’s
location, the response contains apart from the longitude and
the latitude the accuracy and the timestamp [41] as well.
Moreover, depending on the implementation, it may also
return other values, such as heading and speed. Interestingly,
in our research we have come up with proofs that this
information can be correlated with location data information
from an Android app. More precisely, while an Android app
could monitor a user’s location and is able to correlate the
coordinates with the ones that are received from a web page,
one could argue that since these requests to location data are
not made simultaneously, from the browser and the app, the
actual identity of the user is not disclosed.This argument can
be clearly supported either because other nearby usersmay be
also implicated, or because theweb page gets this information
only once. However, practically this is not the case. For
reasons such as minimizing battery consumption, since the
usage of the GPS is rather greedy, Android app developers
may choose to use the “last known location” feature through
the getLastLocation() method of LocationServices
which fetches the location from its cache [42]. Based then
on the accompanied timestamp the developer can determine
whether he needs to request a new reading or not. Yet, what
seems quite interesting in this case is that our findings reveal

8 Security and Communication Networks

that, by accessing the device’s last known coarse location from
an app, we actually end up having data about the precise last
location requestmade by aweb page. It should be emphasized
that “coarse” location is the one that should be used here,
since “fine” location is accessed exclusively by Android apps
and not web pages and hence is not suitable for our method.

Apparently, if a mobile app monitors the last known
location and its corresponding timestamp determined by
the Network Location Provider and communicates this
information to the “All Seeing Eye”, the latter is able to
determine whether it coincides with user’s coordinates and
timestamp received from a web page. Beyond a doubt, this
combination of data is quite “unique”. Once a correlation
is found, the All Seeing Eye can create a covert channel
that will serve both the app and the web page to exchange
data regarding this session. This specific instance of “session
fingerprinting” has been successfully tested in all recent
Android versions, fromMarshmallow to Oreo. Nevertheless,
it is expected to be fully functional to all Android versions,
since it utilizes one of the most basic and native Android
mechanisms, namely, location services, available since API
level 1. Geolocation W3C API of HTML5 has been also been
available since the first versions of mobile browsers, namely,
Android Browser, Samsung Internet, and Google Chrome
[43].

5.2. Browser Fingerprinting. In the previous example a dan-
gerous, yet very commonly used permission, namely, loca-
tion, was used to identify a user. Nevertheless, one could
achieve the same result without such permissions. A more
stealth method is to utilize browser fingerprinting. To this
end, we assume that the victim has installed an application
which does not request any dangerous permission. According
to the Android permission model, such applications are
allowed to list all the installed applications in a device; hence
the adversary has also knowledge of all the installed browser
applications. This way, the app can subsequently open all
the available browsers through intents and point them to a
desired URL in order to obtain a fingerprint from them. Note
that, as for Nougat, an application cannot determine which
is the foreground application, a piece of information that
would have been very valuable for the adversary; however,
the authors of this paper have already notified Google of a
new method to achieve this in all versions prior to Nougat
(Android Issue no 23504, triaged). Each time a browser is
fingerprinted by the app, a random nonce is created and
is sent in the web page request allowing the adversary to
determine to whom its fingerprint belongs. This kind of
attack utilizes malicious intents, while for “covering traces”
purposes the cooperating malicious web pages could be redi-
rected to a commonly used web page (e.g., a search engine),
after accomplishing the ID exchanging job. A scenario where
no intents are needed also exists, where a malicious app may
use its native webview component in order to accomplish the
aforementioned task.

Since mobile devices have less “unique” characteristics
compared to personal computers, an extension to browser
fingerprints is to additionally use even more mobile device

characteristics, further conforming to the “session finger-
printing” proposed term. Indeed, both mobile app and web
page can obtain knowledge about the internal and the
external IP of the mobile device. For the former one could
potentially use WebRTC [44] which is known to leak several
pieces of private information [45]. Therefore, when a user
visits a web page, the web page queries the “All Seeing Eye”
to determine if someone with the specific browser fingerprint
and public and local IPs has a cooperating app running at
a specific timeframe. In general, the chances of this query
returning more than one result are slim. Nonetheless, in
a corporate environment, where many people might have
mobile devices of the same model, some instances may exist.
In such environments one could have two identical devices
with the same internal IP, if, e.g., two users with the same
smartphone model use the corporateWiFi on different floors
or departments. To further reduce the query results, the “All
Seeing Eye” could request the state of each device. In this case,
additional information that can be cross-checked between
apps and web pages includes, but is not limited to, the
following: battery information (both state and charging level),
interval since device’s last noticeable movement (this could
be determined, e.g., via accelerometers), interval since last
proximity (via proximity sensor), light measurements, posi-
tioning (e.g., facing up or down), or even some connection
statistics such as downlinkMax (one of the new features of
HTML5 through the Network Information API [46]). From
this information one can easily determine which user is using
a smartphone at a specific timeframe and essentially eliminate
the possibilities of having false positives. This process is
illustrated in Figure 5(a). In this figure, we may notice that
both web pages inside browsers and also web pages inside
applications’ webview components are able to collect unique
fingerprints, namely, internal and external IPs, accompanied
by information regarding the devices’ state and communicate
them to the “All Seeing Eye” which will then be responsible
for finding exact matches between them. Due to the huge
amount of data that have to be correlated, approaches like [47]
can be used to boost the performance. HTML5s WebRTC
W3C API is available to all Android smartphones running
Samsung Internet browser and Google Chrome. Network
Information API is available on Android smartphones with
Android Internet browser version ≥2.2 and Google Chrome
version ≥38, [43].

5.3. App and Deep Links. Most users install plenty of apps
on their devices, even though many of them might have
some overlapping functionality. To facilitate user interaction
between websites and Android applications the Web Intents
framework was introduced, allowing a developer to specify
how a hyperlink is handled on the user device, e.g., open the
phone to dial up an already prepared number or use Skype
for a specific contact. However, Android supports further
features through app and deep links.The concept behind both
of these types of web links is to open specific apps depending
on the link. As an example, Facebook and Twitter apps are
triggered when the user taps on a link referring to content of
the corresponding site.

Security and Communication Networks 9

(a) Identification through browser fingerprinting

(b) Identification through app and deep links

Figure 5: User identification methods.

Interestingly, this kind of functionality is automatically
activated when a user installs an application which pro-
vides such features, without requesting any user approval.
Moreover, Android activities may run on the foreground
in a “hidden” mode, either by using transparent themes
or by utilizing floating zero-sized activities. Practically, this
creates a hidden communication channel between web pages
and apps that can be used to identify users as illustrated
in Figure 5(b). We assume that an app is installed in a
user’s device having at least one “browsable” (declared inside
Apps Manifest file) activity in order to enable “cooperation”
with web pages. On the other side, web pages embed some
special “intent” hyperlinks which also have the ability to
carry a random ID, different for every interaction. Once
a user taps in one of these links, the ID is bundled and
transferred to the app, using the “getExtras” method inside
the “Intent” Android class. As a final step, once again the
data is communicated to the All Seeing Eye, deanonymizing
the user. This kind of “interaction” can be seen as a directed
web-to-app communication, where an app has the ability to
be reached from web pages. At the same time one or more
web pages may utilize this “functionality” by transmitting an
ID which is essential for the entire described scenario. Next
subsection describes how this local channel communication
can be achieved through the opposite direction of interaction.
Regarding “browsable” activities that enable deep linking, this

feature is available in Android since API level 1. As a result,
this instance of “session fingerprinting” is also expected to
affect all versions of Android.

5.4. Direct App to Web Communication. Following the same
logic as in the previous subsections, an app is also able
to directly reach a web page through a device’s installed
browser. Once again, Android Intents are deployed in order
to launch an installed browser and to pass a specific URL.
The cooperating app is able to inject one or more string
values inside the URL as parameters, which in our case is a
simple, randomly generated ID, and correspondingly fire a
malicious intent towards a browser. As a next step, the loaded
web page can extract the ID from the URL’s “location search”
property and thus a local covert channel between the app and
the launched web page is realized. Naturally, the web page is
again able to communicate the ID to the “All Seeing Eye”,
making the user’s profile available to others as well. As already
discussed, this kind of method “leaves some traces”; namely,
it opens aweb browser; however the correspondingmalicious
web page can hide its traces with a simple redirection, e.g., to
a search engine’s default page.

A quite significant detail in this process is that the
corresponding web page should initially use a client side
programming language to retrieve the transmitted ID.This is
essential in order to create the local covert channel between

10 Security and Communication Networks

Table 2: Privacy exposure to the described threats per API level.

Method API level
Location > 1

Browser fingerprinting Browser specific. Native WebView > 20
App and deep links > 1

Direct App to Web communication > 1

Table 3: Necessary permissions for each Android ad network.

% of
installing Internet ACCESS NETWORK STATE WRITE EXTERNAL STORAGE ACCESS WIFI STATE

Admob 61.73 ✓

Unity Ads 19.02 ✓ ✓

Chartboost 14.07 ✓ ✓

MoPub 13.62 ✓ ✓

AdColony 13.18 ✓ ✓

AppLovin 12.91 ✓ ✓

AppsFlyer 10.23 ✓ ✓ ✓ ✓

InMobi 9.14 ✓ ✓

Vungle 7.08 ✓ ✓ ✓

Tapjoy 6.72 ✓ ✓ ✓

Table 4: Results from Tacyt.

Google Play Other markets
Available Unavailable Available Unavailable

App & Deep links 432,204 87,483 71,686 34
ACCESS COARSE LOCATION 996,326 215,335 154,749 29
INTERNET 4,044,922 1,046,310 533,492 149
Total versions in market 4,207,542 1,095,398 576,204 155

the app and theweb page, since an app IDdirectly transmitted
to a web server would lose the ability to “find its way back”
to the corresponding device’s web page. This fourth instance
of “session fingerprinting” also utilizes native Androidmech-
anisms, since even the first Android smartphones were able
to use intents and communicate with web pages through
browsers. As a result, it has been successfully tested on all
recent Android versions, fromMarshmallow to Oreo.

6. Experimental Results and Statistics

InTable 2we illustrate fromwhichAPI levelsAndroid devices
are exposed to the threats we have described, indicating that
these methods apply to the vast majority of devices available.

In order to provide an estimation of the potential expo-
sure of users to these threats, the authors of this paper used
data by utilizing “Tacyt” (https://tacyt.elevenpaths.com).
Tacyt is an innovative cyber intelligence tool that facilitates
research in Android mobile apps environments with big data
technology. The aim of Tacyt is to enable quick detection,
discovery, and analysis of these threats in order to reduce their
potential impact on organizations. Enabling app data mining
and detection enables research and analysis of the collected
information from Google Play and other markets. Due to the

implementation of Tacyt, the query responses are per app
version and not per app; nonetheless they provide a very good
overview of apps dating back to at least three years ago.

Table 4 presents the results from the performed queries.
In our first query we tried to identify how many apps
provide a deep or app link. This information is declared
in the manifest of each application and is clearly marked
with the android.intent.category.BROWSABLE tag of
the XML file. The next two rows involve app versions
which required the ACCESS COARSE LOCATION and Internet
permission which could be potentially used to deanonymize
users. Similarly, using PublicWWW, a source code search
engine for web pages, we found more than 96,000 web pages
to use geolocation features in their code for locating users. A
sample of the attributes received from bothAPIs in illustrated
in Box 1.

Regarding ad networks in Android, we tried to highlight
the requirements, in terms of permissions, that each of
them request from the developers and whether they could
exploit our methods. Analyzing the requested permissions
of the top 10 ad networks in Android according to Appbrain
(https://www.appbrain.com/stats/libraries/ad) (see Table 3
for the corresponding list), we found that all of them required
the obvious normal permission of Internet. Moreover,

https://www.appbrain.com/stats/libraries/ad

Security and Communication Networks 11

float getAccuracy(): Get the estimated horizontal accuracy of this location, radial, in meters.
double getAltitude(): Get the altitude if available, in meters above the WGS 84 reference ellipsoid.
float getBearing(): Get the bearing, in degrees.
float getBearingAccuracyDegrees(): Get the estimated bearing accuracy of this location, in degrees.
long getElapsedRealtimeNanos(): Return the time of this fix, in elapsed real-time since system boot.
Bundle getExtras(): Returns additional provider-specific information about the location fix as a Bundle.
double getLatitude(): Get the latitude, in degrees.
double getLongitude(): Get the longitude, in degrees.
String getProvider(): Returns the name of the provider that generated this fix.
float getSpeed(): Get the speed if it is available, in meters/second over ground.
float getSpeedAccuracyMetersPerSecond(): Get the estimated speed accuracy of this location, in meters per second.
long getTime(): Return the UTC time of this fix, in milliseconds since January 1, 1970.
float getVerticalAccuracyMeters(): Get the estimated vertical accuracy of this location, in meters.
boolean hasAccuracy(): True if this location has a horizontal accuracy.
boolean hasAltitude(): True if this location has an altitude.
boolean hasBearing(): True if this location has a bearing.
boolean hasBearingAccuracy(): True if this location has a bearing accuracy.
boolean hasSpeed(): True if this location has a speed.
boolean hasSpeedAccuracy(): True if this location has a speed accuracy.
boolean hasVerticalAccuracy(): True if this location has a vertical accuracy.
boolean isFromMockProvider(): Returns true if the Location came from a mock provider.

Position.coords: Returns a Coordinates object defining the current location.
Position.timestamp: Returns a DOMTimeStamp representing the time at which the location was retrieved.
Where coordinates contain the following information:
double Coordinates.latitude: The position’s latitude in decimal degrees.
double Coordinates.longitude: The position’s longitude in decimal degrees.
double Coordinates.altitude: The position’s altitude in meters, relative to sea level. Can be null
if the implementation cannot provide the data.
double Coordinates.accuracy: he accuracy of the latitude and longitude properties, expressed in meters.
double Coordinates.altitudeAccuracy: he accuracy of the altitude expressed in meters. This value can be null.
double Coordinates.heading: he direction in which the device is traveling in degrees.
double Coordinates.speed: he velocity of the device in meters per second. This value can be null.

Box 1: Sample attributes from native Android and JavaScript geolocation APIs.

most of them (8/10) requested the ACCESS NETWORK STATE
permission. Notably, 3 of them requested access to
dangerous permissions, while all of them requested
writing data in the device (WRITE EXTERNAL STORAGE).
Finally, all of them also proposed the use of location
(ACCESS COARSE LOCATION/FINE COARSE LOCATION).

Combining the evidence from the sections regarding
session fingerprinting and this section’s experimental data
regarding ad network permissions, one may easily infer
that our proposed techniques for user deanonymization are
realistic in terms of permission requirements, since they
require either zero or normal permissions or, in some cases,
dangerous permissions that are frequently requested by ad
networks. What is more alarming is the concern whether
this paper sayings are already applied and utilized by exist-
ing ad networks, third-party apps, and corresponding web
pages. Interestingly, after analyzing the above information
we may discuss that imposing restrictions or even applying
control mechanisms for the Internet could result in a large
benefit towards the users’ privacy. Nevertheless, this special,
“normal”, permission seems more tightly linked to all kinds
of advertising and marking it as “dangerous” would require
more than strong will by the companies involved.

Figure 6: Device info as obtained from a web page through a zero-
permission app installed in a device running Android 7.1.1.

Finally, we have implemented a proof of concept
app that is able to cooperate with web pages without
requesting any dangerous permissions. The app is available
at androidsp.cs.unipi.gr/android deanonymize.html. Once
installed, the app recovers a lot of information from the
device, such as installed and running apps and device info
as well as measurements from many sensors which do not
require any dangerous permissions. Eventually, as illustrated
in Figure 6, when the user visits the corresponding web

12 Security and Communication Networks

page through his mobile browser he can verify that the web
page has recovered all this information without requesting
his consent. It is worth noting that, apart from providing
access to sensors that a web page would not normally
have, the measurements for these sensors are also listed in
a fine-grained mode, e.g., access to accelerometer detailed
measurements which could be used for fingerprinting [35].

7. Conclusions

The ever increasing use of mobile devices exposes user
privacy in numerous ways. Despite the fact that mobile
OSes take several measures to protect their users, attackers
seem to always be one step ahead. Nonetheless, most would
agree that the state-of-the-art countermeasures guarantee an
independence between the browser and the mobile apps so
they cannot exchange information. Taking Android as our
reference platform, we introduce new methods that exploit
various inherent mechanisms to practically guarantee abso-
lute identification with limited resource usage. Moreover, the
proposedmethods extend the notion of device fingerprinting
to what we have introduced as “session fingerprinting”.
Our techniques can be performed without accessing unique
device characteristics or using dangerous permissions. In this
regard, our techniques imply a bigger threat, as the covert
channel that is created between the web pages and the apps
cannot be easily traced.

Due to the fact that all the aforementioned mechanisms
are inherent in Android, one cannot rule out the possibility
that these mechanisms are already being exploited, enabling
unauthorized and unregulated cooperation between the two
ecosystems. Clearly, this would greatly expose users’ privacy,
bypassing the permission model of the most widely used
mobile platform to date. Addressing such issues is a rather
challenging task, because, apart from changing the native
Android mechanisms, it is also a requirement for the OS
to determine the context of some function calls, either to
prohibit access to resources or to obfuscate the underlying
information, since these calls might seem legitimate.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This work was supported by the European Commission
under the Horizon 2020 Programme (H2020), as part of
the OPERANDO project (Grant Agreement no. 653704). The
authors would like to acknowledge ElevenPaths for their
valuable feedback and providing them access to Tacyt.

References

[1] The Economist, “The world’s most valuable resource is no
longer oil, but data,” 2017, https://www.economist.com/news/
leaders/21721656-data-economy-demands-new-approach-anti-
trust-rules-worlds-most-valuable-resource/.

[2] E. Alepis and C. Patsakis, “The All Seeing Eye: Web to App
Intercommunication for Session Fingerprinting in Android,” in
Security, Privacy, and Anonymity in Computation, Communi-
cation, and Storage, vol. 10656 of Lecture Notes in Computer
Science, pp. 93–107, Springer International Publishing, 2017.

[3] Or. Peles and Roee. Hay, “One class to rule them all: 0-day
deserialization vulnerabilities in android,” in Proceedings of the
9th USENIX Workshop on Offensive Technologies (WOOT 15),
USENIX Association, 2015.

[4] E. Alepis and C. Patsakis, “Trapped by the UI: The Android
Case,” inResearch in Attacks, Intrusions, andDefenses, vol. 10453
of Lecture Notes in Computer Science, pp. 334–354, Springer
International Publishing, 2017.

[5] E. Alepis and C. Patsakis, “Hey Doc, IsThis Normal?: Exploring
Android Permissions in the PostMarshmallow Era,” in Security,
Privacy, and Applied Cryptography Engineering, vol. 10662 of
Lecture Notes in Computer Science, pp. 53–73, Springer Interna-
tional Publishing, 2017.

[6] E. Alepis and C. Patsakis, “There’s Wally! Location Tracking
in Android without Permissions,” in Proceedings of the 3rd
International Conference on Information Systems Security and
Privacy, pp. 278–284, Porto, Portugal, Feburary 2017.

[7] E.Alepis andC. Patsakis, “Monkey Says,MonkeyDoes: Security
and Privacy on Voice Assistants,” IEEE Access, vol. 5, pp. 17841–
17851, 2017.

[8] Q. Do, B. Martini, and K.-K. R. Choo, “Exfiltrating data from
Android devices,”Computers& Security, vol. 48, pp. 74–91, 2015.

[9] P. McDaniel, “Bloatware comes to the smartphone,” IEEE
Security & Privacy, vol. 10, no. 4, pp. 85–87, 2012.

[10] H. Elahi, G. Wang, and L. Xu, “Smartphone bloatware: An
overlooked privacy problem,” in Proceeding of the Security,
Privacy, and Anonymity in Computation, Communication, and
Storage - 10th International Conference, (SpaCCS ’17), G. Wang,
M. Atiquzzaman, Z. Yan, and K. K. R. Choo, Eds., vol. 10656
of Lecture Notes in Computer Science, pp. 169–185, Guangzhou,
China, 2017.

[11] L. Davi, A. Dmitrienko, A.-R. Sadeghi, andM.Winandy, “Privi-
lege escalation attacks on android,” in Information Security, vol.
6531, pp. 346–360, Springer, 2011.

[12] C. Orthacker, P. Teufl, S. Kraxberger et al., “Android security
permissions–can we trust them?” in Security and Privacy in
Mobile Information and Communication Systems, pp. 40–51,
Springer, 2012.

[13] A. Dimitriadis, P. S. Efraimidis, and V. Katos, “Malevolent
app pairs: an android permission overpassing scheme,” in
Proceedings of the ACM International Conference on Computing
Frontiers, CF ’2016, pp. 431–436, ACM, New York, NY, USA,
May 2016.

[14] F. Vincent Taylor, R. Alastair Beresford, and Ivan. Martinovic,
“Intra-library collusion: A potential privacy nightmare on
smartphones,” arXiv preprint arXiv:1708.03520, 2017.

[15] J. Blasco and T. M. Chen, “Automated generation of colluding
apps for experimental research,” Journal of Computer Virology
and Hacking Techniques, pp. 1–12, 2017.

[16] A. Feizollah,N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Fur-
nell, “AndroDialysis: Analysis of Android Intent Effectiveness in
Malware Detection,” Computers & Security, vol. 65, pp. 121–134,
2017.

[17] W. Gasior and L. Yang, “Exploring covert channel in android
platform,” in Proceedings of the ASE International Conference on
Cyber Security (CyberSecurity ’12), pp. 173–177,Washington,DC,
USA, December 2012.

https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource/
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource/
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource/

Security and Communication Networks 13

[18] S. Chandra, Z. Lin, A. Kundu, and L. Khan, “Towards a Sys-
tematic Study of the Covert Channel Attacks in Smartphones,”
in International Conference on Security and Privacy in Commu-
nication Networks, vol. 152 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 427–435, Springer International Publishing,
2015.

[19] M. Rushanan, D. Russell, and A. D. Rubin, “MalloryWorker:
Stealthy Computation and Covert Channels Using Web Work-
ers,” in Security and Trust Management, vol. 9871 of Lecture
Notes in Computer Science, pp. 196–211, Springer International
Publishing, 2016.

[20] Android Developers Blog, “Changes to device identifiers in
android o,” 2017, https://android-developers.googleblog.com/
2017/04/changes-to-device-identifiers-in.html.

[21] E. Alepis and C. Patsakis, “Persistent vs Service IDs in Android:
Session Fingerprinting from Apps,” in Mobile Networks and
Management, vol. 235 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering, pp. 14–29, Springer International Publishing, 2018.

[22] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen,
“Investigating user privacy in android ad libraries,” in Proceed-
ings of the 2012 Workshop on Mobile Security Technologies, 2012.

[23] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe expo-
sure analysis of mobile in-app advertisements,” in Proceedings
of the 5th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec’12, pp. 101–112, USA, April 2012.

[24] T. Book,A. Pridgen, andD. S.Wallach, “Longitudinal analysis of
android ad library permissions,” arXiv preprint arXiv:1303.0857,
2013, https://arxiv.org/abs/1803.03270.

[25] D. Goodin, “Beware of ads that use inaudible sound to link
your phone, tv, tablet, and pc,” 2015𝑤 http://arstechnica.com/
tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-
to-link-your-phone-tv-tablet-and-pc/.

[26] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “AdDroid: priv-
ilege separation for applications and advertisers in Android,”
in Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security (ASIACCS ’12), pp. 71-
72, Seoul, Republic of Korea, May 2012.

[27] S. Shekhar, M. Dietz, and D. S. Wallach, “Adsplit: Separating
smartphone advertising from applications,” in Proceeding of
the Presented as part of the 21st USENIX Security Symposium
(USENIX Security’12), pp. 553–567, 2012.

[28] X. Zhang, A. Ahlawat, and W. Du, “AFrame: Isolating adver-
tisements from mobile applications in android,” in Proceedings
of the 29th Annual Computer Security Applications Conference,
(ACSAC ’13), pp. 9–18, December 2013.

[29] V. Tsiakos andC. Patsakis, “AndroPatchApp: TamingRogueAds
in Android,” in Mobile, Secure, and Programmable Networking,
vol. 10026 of Lecture Notes in Computer Science, pp. 183–196,
Springer International Publishing, 2016.

[30] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle,
“Flash cookies and privacy,” in Proceedings of the 2010 AAAI
Spring Symposium, pp. 158–163, March 2010.

[31] M. Ayenson, D. J. Wambach, A. Soltani, N. Good, and C. J.
Hoofnagle, “Flash Cookies and Privacy II: Now with HTML5
and ETag Respawning,” SSRN Electronic Journal, 2011.

[32] S. Englehardt, D. Reisman, C. Eubank et al., “Cookies that give
you away: The surveillance implications of web tracking,” in
Proceedings of the 24th International Conference on World Wide
Web, (WWW ’15), pp. 289–299, May 2015.

[33] K. Mowery, S. Keelveedhi, and H. Shacham, “Pixel perfect:
Fingerprinting canvas in html5,” in Proceedings of W2SP, p. 19,
Raleigh, North Carolina, USA, October 2012.

[34] Y. Cao, S. Li, and E. Wijmans, “(cross-)browser fingerprinting
via os and hardware level features,” in Proceedings of the 24th
Annual Network and Distributed System Security Symposium,
NDSS, San Diego, CA.

[35] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelaku-
diti, “AccelPrint: imperfections of accelerometers make smart-
phones trackable,” in Proceedings of the Network andDistributed
System Security Symposium (NDSS ’14), San Diego, Calif, USA,
February 2014.

[36] Z. Zhou,W.Diao, X. Liu, andK. Zhang, “Acoustic fingerprinting
revisited: Generate stable device ID stealthily with inaudible
sound,” in Proceedings of the 21st ACM Conference on Computer
and Communications Security, (CCS ’14), pp. 429–440, USA,
November 2014.

[37] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile
device identification via sensor fingerprinting,” arXiv preprint
arXiv:1408.1416, 2014, https://arxiv.org/abs/1408.1416?context=
cs.

[38] P. Eckersley, “How unique is your web browser?” in Interna-
tional Symposium on Privacy Enhancing Technologies Sympo-
sium, vol. 6205 of Lecture Notes in Computer Science, pp. 1–18,
Springer, Berlin, Germany, 2010.

[39] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham, “Finger-
printing information in javascript implementations,” in Pro-
ceedings of W2SP, vol. 2, pp. 180–193, 2011.

[40] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna,
and V. Paxson, “Hulk: Eliciting malicious behavior in browser
extensions,” in USENIX Security, pp. 641–654, 2014.

[41] A. Popescu, “Geolocation api specification 2nd edition,” 2016,
https://www.w3.org/TR/geolocation-API/.

[42] Android developers, “Getting the last known location,” 2017,
https://developer.android.com/training/location/retrieve-cur-
rent.html.

[43] Mobile HTML, “Html5 compatibility on mobile and tablet
browsers with testing on real devices,” 2018, http://mobilehtml5
.org/.

[44] A. Bergkvist, D. C. Burnett, C. Jennings, A. Narayanan, and
B. Aboba, “WebRTC 1.0: Real-time communication between
browsers,” 2016, https://www.w3.org/TR/webrtc/.

[45] V. Beltran, E. Bertin, and N. Crespi, “User identity for WebRTC
services: Amatter of trust,” IEEE Internet Computing, vol. 18, no.
6, pp. 18–25, 2014.

[46] M. Cáceres, F. J.Moreno, and I. Grigorik, “Network information
API,” 2017, http://wicg.github.io/netinfo/.

[47] W. Yang, G. Wang, K. R. Choo, and S. Chen, “HEPart: A
balanced hypergraph partitioning algorithm for big data appli-
cations,” Future Generation Computer Systems, vol. 83, pp. 250–
268, 2018.

https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://android-developers.googleblog.com/2017/04/changes-to-device-identifiers-in.html
https://arxiv.org/abs/1803.03270
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
http://arstechnica.com/tech-policy/2015/11/beware-of-ads-that-use-inaudible-sound-to-link-your-phone-tv-tablet-and-pc/
https://arxiv.org/abs/1408.1416?context=cs
https://arxiv.org/abs/1408.1416?context=cs
https://www.w3.org/TR/geolocation-API/
https://developer.android.com/training/location/retrieve-current.html
https://developer.android.com/training/location/retrieve-current.html
http://mobilehtml5.org/
http://mobilehtml5.org/
https://www.w3.org/TR/webrtc/
http://wicg.github.io/netinfo/

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

