
Research Article
HAC: Hybrid Access Control for Online Social Networks

Fangfang Shan ,1,2 Hui Li,1 Fenghua Li,3,4 Yunchuan Guo ,3 and Ben Niu3

1State Key Laboratory of Integrated Service Network, School of Cyber Engineering, Xidian University, Xi’an 710071, China
2School of Computer Science, Zhongyuan University of Technology, Zhengzhou 450000, China
3State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China
4School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100093, China

Correspondence should be addressed to Yunchuan Guo; guoyunchuan@iie.ac.cn

Received 23 October 2017; Accepted 2 April 2018; Published 17 May 2018

Academic Editor: Raymond Choo

Copyright © 2018 Fangfang Shan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The rapid development of communication and network technologies including mobile networks and GPS presents new
characteristics of OSNs. These new characteristics pose extra requirements on the access control schemes of OSNs, which cannot
be satisfied by relationship-based access control currently. In this paper, we propose a hybrid access control model (HAC) which
leverages attributes and relationships to control access to resources. A new policy specification language is developed to define
policies considering the relationships and attributes of users. A path checking algorithm is proposed to figure out whether paths
between two users can fit in with the hybrid policy. We develop a prototype system and demonstrate the feasibility of the proposed
model.

1. Introduction

Online social networks (OSNs) have attracted widespread
popularity nowadays. Users can conveniently share personal
information with friends via OSNs. More than 300 hours
of videos are uploaded to YouTube and nearly 25 million
photos are posted to Instagram every minute [1]. Consid-
ering the fact that sensitive information may be leaked,
the protection of users’ privacy becomes a challenging task.
To address this problem, researchers have proposed the
relationship-based access control (ReBAC)mechanism [2–5].
Resource owners specify access control policies on the basis
of relationships between individual users. Bymaintaining the
balance between ease of use and flexibility, ReBAC has been
commonly applied in real OSN systems. It has also been
recognized as one of the most straightforward and useful
ways in protecting user’s privacy.

With the development of mobile technologies, plenty of
smart devices are connected to the network. These devices
may generate a large amount of private information, such as
location and health status, and then share the information
through OSNs [6]. In general, mobile technology contributes
the following features to the online social networks.

(i) More andmore privacy information collected through
smart mobile devices may be uploaded to online social
networks.

(ii) Privacy information collected by smartmobile devices
can be used for access control scheme of OSNs.

These features have brought about new challenges for
access control schemes of online social networks. For exam-
ple, Alice is shopping at Bergdorf Goodman in New York.
She has recorded a video of the megamall with her Google
glasses and published it in OSN to see if any female friends
can give her some pieces of advice in choosing cosmetics.
Perhaps some of her friends nearby may come to have lunch
together. She does not want every friend to know what
she is doing now, so friends who do not live in New York
will not be granted access to this video. The widely used
relationship-based access control methods cannot describe
the attribute “location: in New York” and cannot meet Alice’s
needs. To provide finer-grained access control over private
data generated by wearable devices or m-health, researchers
should take attributes such as location, profession, and gender
into consideration.

The access control mechanism named UURACA [4]
was the first mechanism that took attributes of users into

Hindawi
Security and Communication Networks
Volume 2018, Article ID 7384194, 11 pages
https://doi.org/10.1155/2018/7384194

http://orcid.org/0000-0001-5586-6715
http://orcid.org/0000-0002-9611-5368
https://doi.org/10.1155/2018/7384194

2 Security and Communication Networks

consideration. Better expression ability and finer-grained
access control policies are characteristic of it. However, the
attribute-based policy is separated from the relationship-
based one. In other words, the policy of UURACA falls into
two parts: the relationship-based policy and the attribute-
based policy. For this reason, UURACA canmerely figure out
common attributes of one or several users on the relationship
path instead of specifically identifying different attribute of
different users.

In this paper, we propose a hybrid access control model
based on both attribute and relationship. It designs a new
language of policy specification to specify policies based on
attributes and relationships. Compared with the study of
Cheng et al. [4], the policy specification language is char-
acteristic of better expression effectiveness and easier usage.
It presents detailed instructions on the policy specification
language and several application examples. A path checking
algorithm is proposed to find out whether paths between two
users involved in OSNs would fit in with the attribute-based
policy. The path checking algorithm is implemented to con-
duct experiments to validate the feasibility and performance
of the scheme.

2. Related Work

As large amounts of private personal data are created by
Web 2.0 applications, Carrie [7] summarized four techni-
cal requirements of access control mechanisms for social
networks based on Web 2.0 technologies. He emphasized
that the access control mechanisms for Web 2.0-based social
networks should have characteristics of relationship-based,
fine-grained, interoperability, and sticky policies and named
it relationship-based access control (ReBAC).

To meet these requirements and protect privacy of
social network users, researchers have proposed a variety of
access control mechanisms for OSNs. These mechanisms are
broadly divided into three categories. Methods of the first
type leverage relationships between users and resources to
constrain the access of privacy information. Some researchers
introduce modal and hybrid logic into their access control
model of OSNs. Others make use of cryptography to prevent
unwanted access.

Most access control schemes made use of various rela-
tionships between users and resources to protect sensitive
information inOSNs. In [8], the authors tried to define access
control policies based on the type, depth, and trust level of
relationships between web-based social networks (WBSNs)
users. They proposed an access control model for WBSNs
which is characterized by using certificates for verifying
the authenticity of relationships and enforcing a rule-based
access control approach at the client side. Carminati et al. [9]
extended themechanismpresented in [8] by providing details
on the enforcement of the access control model.They defined
two protocols to verify the authenticity of relationships and
analyzed the security of them. In [10, 11], Carminati et al.
leveraged OWL, SWRL, and semantic web technologies to
express filtering, administration, and authorization policies.
They proposed an access control model to describe the rela-
tionships between users and resources. A relationship-based

access control model was proposed by Cheng et al. [12]
which utilized user-to-user, user-to-resource, and resource-
to-resource relationships to define access control policies. It
can be used to capture controls of administrative activities
of users together with other normal usage activities. In
[13], the authors presented an object-to-object relationship-
based access control model (OOReBAC) which leveraged
relationships between objects to control access of them. In
[14], the authors presented a graph-based access control
model which can be used in various systems, not just social
networks. It introduced concepts of path conditions and
principal matching and has better policy expression ability
and request evaluation efficiency.

With the development of semantic web technology, some
researchers considered using modal and hybrid logic in their
access control schemes of OSNs. Masoumzadeh and Joshi
[15] presented a scheme of access control based on ontology
that can be used on semantic web-based social networks
to support both system and user policies. Fong et al. [16]
formalized the privacy preservationmechanismof Facebook-
style social network systems and proposed an access control
model for them.The policies of this model are able to express
access control requirements such as common friends and
clique. Fong [17] defined a modal logic-based language to
specify and do composition of ReBAC policies. He presented
a case study of EHR systems to prove that ReBAC can be used
in application domains other than social computing. In [3],
the authors demonstrated that policy language proposed in
[17] was incomplete and it was unable to express all ReBAC
policies.They extended the policy language of [17] to identify
vertex and support for disjoint intermediaries and proved it
to be representationally complete. As an extension of modal
logic, Bruns et al. [18] utilized hybrid logic to specify policies
and enforce access control decisions in relationship-based
access control approach. A fragment of hybrid logic was used
to express complex relationship-based access control policies
such as “at least three friends”. Several other works [19–21]
also utilized the hybrid logic to support better expression
capacity of access control needs.

Researchers then considered adopting cryptography and
other technologies to the access control mechanisms of
OSNs. Anwar and Fong [22] designed a visualization tool
to show the result of policy configurations. In [23], the
authors presented an access control mechanism to pro-
tect textual contents in online social networks which is
enforced to be transparent to content publishers and readers.
The proposed system leveraged automatic semantic anno-
tation to analyze the semantics of the contents in order to
generate different versions according to types of readers.
Apart from relationship-based access control mechanisms,
other works concentrated on security protocols that leverage
cryptographic techniques to achieve access control goals
[24–30].

3. HAC Model Foundation

This section presents the foundation of HAC, including the
attributes in OSN, the social graph with attributes, and the
model components.

Security and Communication Networks 3

PAULKEN

BOB

ALICE

DAVE
neighbour child

student

colleague
friend

colleague parent

teacher

Bob
paris

Ken
paris

engineer
· · ·

Alice
female
landon
· · ·

Dave
male

teacher
· · ·

Paul
male

landon
· · ·

· · ·

Figure 1: A sample social graph.

3.1. Attributes in OSN. Most of the recent access control
schemes for OSNmake access control decision based on rela-
tionships. By considering the relationships only, data owners
cannot make proper access control policies based on location
and time. Recent studies have shown that attribute-based
access control (ABAC) can provide flexible and fine-grained
access control in dynamic distributed systems [31–34]. As
only the attributes of the subject, object, and environment are
considered, most current solutions of typical ABAC schemes
cannot be directly used inOSNs. Relationship of users should
also be checked here. When registering an OSN account,
users are always required to submit personal information,
such as name and gender. This personal information is
recognized as profile attribute, which can be used to define
policies.

Attributes are categorized into profile attributes and
relationship attributes in HAC.

Profile Attribute. Profile attribute contains information of
environment and identity, or characteristics of users. In
HAC, profile attributes fall into two types: user-defined
attribute and objective attribute. The user-defined attributes
are specified by the profile owner, such as gender, name, job,
hometown, and hobbies. In contrast, the objective attributes
are gained or defined by the OSN systems, such as time,
location, and IP address.

Relationship Attribute. Relationship attribute is used to
describe type, weight, and other information of relationships
in OSNs.

3.2. Social Graph with Attributes. As shown in Figure 1, the
researchers use a directed labeled simple graph 𝐺 to abstract
anOSN.The nodes of𝐺 represent users while edges represent
the relationships between them. Each user is associated
with a profile containing his profile attributes. Relationships
between users are noted as relationship attributes. The social
graph ofHACcontains two types of information: (1) users and
their profile attributes and (2) relationship attributes between
the users.

The researchers use a triple 𝐺 = ⟨𝑁, Σ, 𝐸⟩ to describe the
social graph in an OSN.

𝑁 = {⟨𝑢, 𝑝𝑟𝑜 𝑎𝑡𝑡𝑟 g𝑟𝑜𝑢𝑝⟩ | 𝑢 ∈ 𝑈, 𝑝𝑟𝑜 𝑎𝑡𝑡𝑟 g𝑟𝑜𝑢𝑝 ∈ 𝑃}
denotes the set of nodes (or vertices) of the graph, containing

P

G

Authorization
Request Access

Input
1- n map
Attachment

UA UTAA

AE

AT

SA ST

Figure 2: Model overview.

profile attribute information of users in anOSN.𝑈 represents
user set while 𝑃 is the set of profile attributes.

∑ = {𝑟1, 𝑟2, . . . , 𝑟𝑛} is the set of relationship attributes,
each element of which represents a relationship attribute.

𝐸 = 𝑁 × 𝑁 × ∑ is the set of edges in the social
graph, representing relationship attributes between users in
the OSN.

3.3. HAC Model Components. Figure 2 shows the conceptual
diagram of HAC. Model components are access requester,
target user, access requester attribute, target user attribute,
environment attribute, sessions of access requester and target
user, policy, authorization, and social graph.

Access requester (𝑢𝑎) is a registered human being who
may initiate an access request to a profile or a resource of
a target user in the OSN. Each access requester has a set
of attributes (𝑎𝑎) to describe his personal information, such
as gender, name, job, and hometown. Target user (𝑢𝑡) is
a registered human being whose profile or resource is the
recipient of access. Each target user is also related to a set
of attributes (𝑎𝑡). Environment attribute (𝑎𝑒) represents envi-
ronment information used in access control procedure, such
as time, location, and IP address. Session of access requester
(𝑠𝑎) is an active instance of an access requester logged into
the OSN system while session of target user (𝑠𝑡) represents

4 Security and Communication Networks

the active instance of a target user. Policy (𝑝) is defined by
the target user based on various attributes governing the
access of his profile or resources. According to different kinds
of attributes, policies are categorized into profile attribute-
based policy and relationship attribute-based policy. Social
graph (𝐺) describes the relationships between users on social
networks. It is denoted as a directed labeled simple graph.
Authorization is an abstract function with attributes, request,
social graph, and policy as inputs. It makes a decision to grant
or deny the access of the target user. Request represents an
access requester’s initiation of access. It is described as a tuple
⟨𝑢𝑎, operation, target⟩, where 𝑢𝑎 is the access requester, target
may be a profile or resource of the target user, and operation
represents the access that can be performed on targets.

4. HAC Policy Specification and Evaluation

In this section, the researchers present policy language, policy
specification, and the policy evaluation of HAC.

4.1. Policy Language. Policy of HAC is defined by the target
user. It constrains the profile and relationship attributes of
users along the relationship path. The policy language is
defined as follows.

(i) 𝑁 and 𝐸 are user (or node) set and relationship (or
edge) set, respectively.

(ii) 𝑃𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑠} (1 ≤ 𝑠 ≤ 𝑆) is the profile
attribute name set for users (or nodes), where 𝑆 is the number
of profile attribute names.

(iii) 𝑃𝑉 = {V1, V2, . . . , V𝑚} (1 ≤ 𝑚 ≤ 𝑀) is the predefined
profile attribute value set for users (or nodes), where 𝑀 is the
number of profile attribute values.

(iv) 𝑅𝐴 = {𝑟1, 𝑟2, . . . , 𝑟𝑘} (1 ≤ 𝑘 ≤ 𝐾) is the predefined
attribute set for relationships (or edges), where 𝐾 denotes the
number of relationship attributes.

(v) 𝐴𝑇(𝑛) and 𝐴𝑇(𝑒) are attributes of node 𝑛 and edge 𝑒,
respectively. 𝐴𝑇(𝑛) ∈ 𝑃𝑁 × 𝑃𝑉 is a binary relation on sets
𝑃𝑁 and 𝑃𝑉, and 𝐴𝑇(𝑒) ∈ 𝑅𝐴. The node attribute is a profile
attribute while the edge attribute is a relationship attribute.

Profile attribute of a node is a binary relation on profile
attribute name set and profile attribute value set. A profile
attribute-based policy rule is composed of a profile attribute
name, a relationship specifier, and a profile attribute value as
shown below.

(i) profile attribute name, 𝐴𝑇(𝑛), profile attribute value.
Note that the profile attribute-based policy rule is spec-

ified by the data owner. For example, policy rule 𝑅1 says,
“the current user’s profession must be teacher”. Policy rule
𝑅2 requests the current user to be an adult.

R1: profession = “teacher”
R2: age > 18
A complete attribute-based policy rule is composed of

one relationship attribute and several profile attributes as
shown below.

(i) [𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1, (𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒11; . . . ; 𝑝𝑟𝑜-
𝑓𝑖𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒1𝑛)] . . . [relationship 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒ℎ, (profile
𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒ℎ1; . . . ; 𝑝𝑟𝑜𝑓𝑖𝑙𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒ℎ𝑛)]

For example, 𝑅3 indicates that “the requester must be a
teacher living in New York, and he should be a friend of the

Table 1: Grammar for path sentences.

path sentence& path word | path word connector path word
connector& ∨ | ∧

path word& “(” path “,” hop count “)”
hop count& num
Path& attr specs | attr specs path
attr specs& “[” rel attr “,” pro attr group “]”
rel attr& 𝑟1 | 𝑟2 | .. | 𝑟𝑘 | 𝑅𝐴 where 𝑅𝐴 = {𝑟1, 𝑟2, . . . , 𝑟𝑘}

pro attr group& pro attr pair | pro attr pair pro attr group
pro attr pair& “(” pro attr name “,” pro attr value “)”
pro attr name& 𝑛1 | 𝑛2 | .. | 𝑛𝑙 | PN where 𝑃𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑙}

pro attr value& V1 | V2 | .. | V𝑚 | PV where 𝑃𝑉 = {V1, V2, . . . , V𝑚}
num& [0 - 9]+

data owner”. 𝑅4 specifies a rule saying that “only the adult
male colleagues of the owner can access the resource”. In 𝑅5,
the relationship attribute is not used and it is shown as “-
”, which indicates that the relationship is not constrained.
𝑅5 requires that the location of the requester should be
London and the access time must between 2017-09-05 and
2017-10-05.

R3: [𝑓, (occupation = “teacher”; howetown = “NewYork”)]

R4: [𝑐, (gender = “male”; age > 18)]

R5: [-, (time ∈ “2017-09-05: 2017-10-05”; location = “Lon-
don”)]

4.2. Policy Specification. Policies are evaluated according to
the paths between the access requester and the target user
in social graph. The access control policy is composed of
an operation and a path sentence. As shown in Table 1, the
syntax of the path sentence is definedwithBackus-Naur Form
(BNF).

A path sentence consists of several path words that are
connected by connectors. Every path word is composed
of path and hopcount. The path specifies the relationships
from the access requester to the target user. The hopcount
represents the maximal number of edges along the path.

Unlike UURAC and UURACA, our path is aiming at
expressing policies based on attributes. The researchers use
relationship attribute and profile attribute to express the
restriction on users and the relationship between them.

Several examples are given to show how to use hybrid
rules to express the access control need in OSNs.

Example 1 (relationship attribute and profile attribute policy).
If Jim wants to allow some users to access his photos, those
users should share a common friend named “Jack” with him
and their occupation must be doctor. He can specify a policy
like this:

P1: ⟨photo access, ([𝑓, (name = “Jack”)] [𝑓, (occupation =
“Doctor”;)], 2)⟩

If Jim wants to show his photos to his friend Jack or his
colleagues who are interested in medicine, the policy can be
specified as below:

Security and Communication Networks 5

(1) for all (attr specs) of path
(2) path reg exp = path reg exp + attr spec.rel attr
(3) if (attr specs) is the last one on the path then
(4) return path reg exp
(5) else
(6) break

Algorithm 1: RegularExpressionTrans(path).

P2: ⟨photo access, ([𝑓, (name = “Jack”)], 1) ∨ ([𝑐, (interest
= “medicine”)], 1)⟩

For P1, the system has to figure out the basic path (𝑓𝑓, 2)
according to the social graph and examine profile attributes
of users along the path. If the access requester is a doctor and
he has a common friend named “Jack” with Jim, he may get
the permission. For P2, two kinds of access requesters can get
the permission. First, the user’s name is equal to “Jack”, and
an (𝑓, 1) path is found between him and Jim. Second, the user
is interested in medicine and there is a (𝑐, 1) path in the social
graph between him and Jim.

For each policy, the last attribute spec restrains the
attributes of the access requester.

Example 2 (relationship attribute policy). Profile attributes
of the following policy are empty. The policy specifies that
coworkers of Jim’s friends can access his profile. Policies like
this can capture UURAC policies.

P3: ⟨profile access, ([𝑓, (-)][𝑐, (-)], 2)⟩

4.3. Policy Evaluation. Algorithms of policy evaluation are
presented in this section. The algorithms are used to eval-
uate whether the access requests should be granted. The
algorithms have to find a required path between the access
requester and the target user according to the social graph.
The required path found in the social graph may ensure that
the relationships between the access requester and the target
user can satisfy the hybrid policy.

Regular Expression Transformation Procedure. Relationship
attributes can be extracted from the path to form a regular
expression as shown in Algorithm 1. For a path (attr specs
| attr specs path), the algorithm traverses each attribute
specification in the path and gets the relation attribute.
All relation attributes are then catenated to be a regular
expression which is used to match the paths in the social
graph.

Path Checking Algorithm. Algorithm 2 shows the path check-
ing method of HAC. It takes the social graph 𝐺, the path,
the number of relationship attributes’ limit hopcount, the
source node start, and the target node end as input. It returns
a Boolean value, of which the output T means the access
request will be granted and F means denied. Here, the source
node start and the target node end represent the target user
and the access requester, respectively.

Similar to [8], the path checking method leverages a
depth first search (DFS) to find the proper path in the social

(1) currentPath ← NIL; ℎ ← 0
(2) nodeHistory ← start
(3) path reg exp ← RegularExpressionTrans(path)
(4) if ℎ𝑜𝑝𝑐𝑜𝑢𝑛𝑡 ̸= 0 then
(5) return ADFS(start)

Algorithm 2: PathCheck (G, path, hopcount, start, end).

graph. Without the limit of hopcount, DFS may search along
a path in the social graph too deep to find the proper path.
Operations in OSNs always occur between the people with
close relationships. Limited with hopcount, DFS is suitable
for our model.The researchers improve the DFS to cope with
profile attribute check and name it ADFS.

The variable currentPath is used to hold the node
sequence traversed from the source node start to the current
node. Variable ℎ is used to tell if the currentPath exceeds the
limit of hopcount. All nodes traversed are recorded by variable
nodeHistory. These variables are initialized with NIL, 0, and
the source node start, respectively. The main procedure gets
regular expression of relationship attributes through Regu-
larExpressionTrans(path).Then, it launches traversal function
ADFS() with parameter start to find out if the proper path
exists in the social graph.

The function ADFS() is shown in Algorithm 3. It takes 𝑢
as the only parameter. If the algorithm takes a further step
from the node 𝑢 and makes ℎ + 1 bigger than the hopcount,
it returns F. Otherwise, the further step is legal. ADFS() picks
up one edge (𝑢, V, 𝜎) starting with node 𝑢 in the social graph.
Then, the algorithm faces five cases. For if 1, the current target
node V belongs to the variable currentPath. This means that
the edge (𝑢, V, 𝜎) has been visited.The algorithm breaks from
the loop. For if 2, the node V is unvisited and it is exactly the
target node end.ADFS() first checks whether the relationship
attribute of the current edge (𝑢, V, 𝜎) is equal to the 𝑑th
regular expression of relationship attributes extracted from
the attribute-based access control policy. If not, the algorithm
breaks. Otherwise, it means that the path between start and
end matching the regular expression is found. If the profile
attribute of node V fits the requirement of the attribute-based
access control policy, the algorithm sets ℎ to be ℎ + 1 and
concatenates the edge to currentPath.Then, it saves the node V
in nodeHistory. In if 3, the node V is unvisited, and it is exactly
the target node end. But the relationship attribute of the
current edge (𝑢, V) is not equal to the ℎth regular expression
of relationship attributes extracted from the attribute-based
access control policy. The algorithm will break from the
current loop. In if 4, node V is unvisited and it is not the
target node end. The relationship 𝜎 is not path reg exp[h],
and the algorithm breaks from if 4. In if 5, node V is unvisited,
and it is not the target node end. The relationship attribute
of the current edge (𝑢, V, 𝜎) is equal to the 𝑑th regular
expression of relationship attributes. The algorithm sets ℎ
to be ℎ + 1, concatenates (𝑢, V, 𝜎) to currentPath, sets V to
be currentNode, and saves the current node to nodeHistory.
Then, the function ADFS() is called recursively from node V.
If a matching path is found, the algorithm will return T from

6 Security and Communication Networks

(1) if ℎ + 1 > hopcount then
(2) return F
(3) else
(4) for all (V, 𝜎) where (𝑢, V, 𝜎) in 𝐺 do
(5) if 1 (V ∈ currentPath)
(6) break
(7) if 2 ((V ∉ currentPath) && (V = end))
(8) if (path reg exp[ℎ] != 𝜎) then
(9) break
(10) if (! match (path.attre spec[ℎ].pro attr group, v.pro atr group)) then
(11) break
(12) ℎ ← ℎ + 1; currentPah ← currentPath.(𝑢, V, 𝜎)
(13) currentNode ← V
(14) nodeHistory ← nodeHistory.(currentNode)
(15) return T
(16) if 3 ((V ∉ currentPath) && (V = end) && (path reg exp[ℎ] != 𝜎))
(17) break
(18) if 4 ((V ∉ currentPath) && (V ̸= end) && (path reg exp[ℎ] != 𝜎))
(19) break
(20) if 5 ((V ∉ currentPath) && (V ̸= end) && (path reg exp[ℎ] = 𝜎))
(21) ℎ = ℎ + 1; currentPath ← currentPath.(𝑢, V, 𝜎)
(22) currentNode ← V
(23) nodeHistory ← nodeHistory.(currentNode)
(24) if (ADFS(V)) then
(25) return T
(26) else
(27) break
(28) if ℎ = 0 then
(29) return F
(30) else
(31) ℎ = ℎ − 1; currentPath ← currentPath\(𝑢, V, 𝜎)
(32) nodeHistory ← nodeHistory\currentNode
(33) return F

Algorithm 3: ADFS(𝑢).

if 5. Otherwise, the algorithm will set ℎ to be ℎ − 1, remove
(𝑢, V, 𝜎) from currentPath, remove V from nodeHistory, and
move to another edge from node 𝑢.

The algorithmwill test all paths from start to end. If any of
them fits the access control policy, the algorithm will return
T. Otherwise, it may return F as the depth of each path which
will be checked is constrained by hopcount. We use min and
max to represent the minimum and maximum out degree of
node on the social graph, respectively. The time complexity
of this algorithm will fall into the range of 𝑂(𝑚𝑖𝑛ℎ𝑜𝑝𝑐𝑜𝑢𝑛𝑡) and
𝑂(𝑚𝑎𝑥ℎ𝑜𝑝𝑐𝑜𝑢𝑛𝑡).The check of profile attribute will bring about
extra overhead to the algorithm. In the first experiment, we
evaluated this overheadwhich proved it to be acceptable.This
experiment is presented in Section 5. So, the path checking
algorithm of HAC is effective.

5. Implementation

This section presents the implementation of the path check-
ing algorithm. Five sets of experiments are arranged to test the
usability and performance of the algorithm. The researchers
implement the algorithm in Java and store the social graph
and sample access control policies in MySQL databases. All

the experiments are conducted on a machine with 4GB
memory and an Intel quad-core CPU at 3.6GHz which runs
the operating system of an Ubuntu 12.04 image.

5.1. Datasets. When selecting datasets in the organization
of the experiments, there are two choices as reported in
[35]: public available real datasets and synthetic datasets.
As collected from real-world OSN systems, most of the
public available datasets do not considermultiple relationship
types or attribute information [36]. In order to meet the
requirements, this necessary information should be added
manually. However, if the dataset is modified, it may no
longer present user behaviors [36]. Hence, synthetic dataset
is a better choice for us in this evaluation. The researchers
generate a random regular graphwith 𝑛 nodes, and each node
has a fixed number of edges. Graphs with different nodes
and edges can be created by changing parameters 𝑛 and 𝑑
according to the need of the experiments.

In the first experiment, to evaluate the effect of attribute
evaluation on performance of the algorithm, the researchers
test the time of ADFS to make an access control decision and
compare it with the one without attribute support described
in [36] (DFS). To do this, the researchers comment out the

Security and Communication Networks 7

DFS
ADFS

1.5 2 2.5 3 3.5 41
Hopcount

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ti
m

e (
m

ill
ise

c)

(a) True case

DFS
ADFS

1.5 2 2.5 3 3.5 41
Hopcount

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ti
m

e (
m

ill
ise

c)

(b) False case

Figure 3: Time of path checking.

code of the profile attribute match. As discussed in [36], 𝑛
is set to be 1000. On average, main users of Facebook have
173.6 friends as described in [37]. Then, the researchers set
that each node has 174 randomly selected neighbors. Only
one relationship attribute is considered in this experiment.
Five profile attributes, such as user name, gender, career, date
of birth, and hometown, are assigned to each node. The user
names are set to be different from each other. The gender of
each user is randomly selected from male and female. The
researchers collected twenty different careers in the career
set which are randomly assigned to each user in the social
graph. The date of birth is randomly chosen between 1927
and 2007. The hometown of each node is randomly selected
from a location set which includes twenty cities. Two sets
of experiments are arranged. One set returns the true and
the other returns the false. Each 4-hopcount policy runs
five times over the two algorithms on 1000 nodes randomly
selected from the node set. The average value of those 5000
runs is the final result.

Before the path checking algorithm is invoked, the rela-
tionship attributes should be extracted from the path to form
a regular expression by the regular expression transformation
procedure. This procedure is also called preprocessing. In
order to confirm that the policy language is appropriate
to be used in an attribute-based access control model, the
researchers should make sure that the preprocessing would
not take too much time compared with the ADFS algorithm.
So, the time of preprocessing is evaluated in the second
experiment where the parameters are set to be the same as
those in the first experiment.

In the near future, OSNs may support more than one
type of relationship. To evaluate if HAC can meet the access
control needs of multiple types of relationships in OSNs, in
the third experiment, the researchers discuss the variety of
time with the increase of the relationship attribute types. The
number of relationship attribute types varies from 1 to 8.
Other parameters are the same as in the first experiment.

To evaluate how the scale of OSN will impact the
performance of the algorithm, in the fourth experiment,
the researchers test the variety of time with the number of
nodes in the social graph. The number of nodes is set to
be 1000, 2000, 5000, and 20000, respectively. The rest of the
parameters are the same as in the first experiment.

To evaluate how he density of OSN will impact the
performance of the algorithm, in the last experiment, the
researchers examine the variety of time with the number of
neighbors.The number of neighbors is set to be 100, 174, 200,
and 500, respectively.The social graph becomes denser as the
number grows. Other parameters are kept consistent with the
first experiment.

5.2. Performance. DFS and ADFS algorithms are compared
in the first experiment.The researchers consider four policies
with different numbers of relationship attributes (hopcount)
which varied from 1 to 4. Figure 3 presents the result of the
experiment. It takes slightly more time for ADFS to make an
access control decision than DFS does, as ADFS takes profile
attribute check after finding a qualified relationship attribute.
More relationship attributes mean more profile attributes
should be checked. So, the time gap of those two algorithms
increases as the number of relationship attributes grows. The
slight increase of time in ADFS is acceptable, as the use of the
profile attribute makes access control policy more powerful.
In the false case experiments, it takes significantly more time
to finish the path evaluation as more paths in the social graph
have to be checked.

Figure 4 presents the result of the second experiment. It
shows a comparison of the time of preprocessing and ADFS
algorithm. Both of them increase along with the number
of hopcounts. For each hopcount, the time of preprocessing
is nearly a tenth of ADFS. This result is acceptable which
indicates that the policy language is appropriate to be used
in an attribute-based access control model.

8 Security and Communication Networks

Preprocessing
ADFS-True case

1.5 2 2.5 3 3.5 41
Hopcount

0

1

2

3

4

5

6

Ti
m

e (
m

ill
ise

c)

Figure 4: Time of preprocessing.

DFS
ADFS

2 3 4 5 6 7 81
Types

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Ti
m

e (
m

ill
ise

c)

(a) True case

DFS
ADFS

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Ti

m
e (

m
ill

ise
c)

2 3 4 5 6 7 81
Types

(b) False case

Figure 5: Time of path checking versus types (hopcount = 4).

The result of the third experiment is shown in Figure 5.
Since people always tend to share information with friends
within a close distance, 4-hopcount policies are used here.
In both true and false cases, the time of ADFS to make
access control decision increases linearly with the number
of relationship attribute types. It reaches the peak value as
4 types of relationship attributes exist in the social graph. A
larger number of relationship attributes may not affect the
time of policy check as 4-hopcount policies are used in the
experiment. The result means that our algorithm will work
well with the future social networks as more relationship
attribute types will be supported.

Figure 6 shows the result of the fourth experiment. Time
of path checking grows with the increase of nodes from 1000
to 20000. In the true case, it takes nomore than 1 millisecond
to make the access control decision. For the false case, the

time it takes becomes longer because all possible paths should
be checked.

The result of the last experiment is presented in Figure 7.
In both true and false cases, the time of path checking
increases as the social graph gets denser. The time grows
sharply as the number of degrees exceeds 200. In most
social network systems, the number of friends may be
approximately 200 [37], so ADFS algorithm is feasible.

6. Comparison

This section discusses several related works of relationship-
based access control schemes and compares HAC with [4, 5,
16, 36] (see Table 2).

The first column of Table 2 represents nine characteristics
discussed in this section. The next three columns represent

Security and Communication Networks 9

DFS
ADFS

×10
4

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
Number of Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ti

m
e (

m
ill

ise
c)

(a) True case

DFS
ADFS

×10
4

2

4

6

8

10

12

14

Ti
m

e (
m

ill
ise

c)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
Number of Nodes

(b) False case

Figure 6: Time of path checking versus number of nodes (hopcount = 4).

DFS
ADFS

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Ti
m

e (
m

ill
ise

c)

150 200 250 300 350 400 450 500100
Degree

(a) True case

DFS
ADFS

0

100

200

300

400

500

600

700

800

Ti
m

e (
m

ill
ise

c)

150 200 250 300 350 400 450 500100
Degree

(b) False case

Figure 7: Time of path checking versus degree (hopcount = 4).

the characteristics of the access control schemes discussed
above. Characteristics of HAC are listed in the last column.

The scheme in [16] is a formal algebraic access control
model for Facebook-style systems. But user attributes and
relationships beyond friendship are not supported in this
model. OSNs access control models presented in [5, 36] have
similar user graphs to HAC. However, these models do not
explicitly take into account user attributes.

Thiswork is similar to [4].Despite its flexibility,UURACA
[4] is still far from perfect. It does not support specific user
attribute. More concretely, its policy specification language
can merely figure out common attribute requirements of one
or several users on the relationship path, lacking specification

ability of different attribute requirements of different users
along the path. Additionally, it cannot describe some policies,
such as “the adult colleagues of my friend Tom can access the
resource”, which requires the attribute of my friend “name is
Tom” and the attribute of the colleagues of my friend Tom
“age > 18”. Besides, compared with UURACA, HAC is simple
and easy to understand. It is easier for users in the OSNs to
set up access control policies with HAC.

7. Conclusion

This research proposes an attribute and relationship-based
hybrid access control model HAC for OSNs based on two

10 Security and Communication Networks

Table 2: Comparison.

Fong et al. [16] UURAC [5, 36] UURACA [4] HAC
Multiple Relationship Types √ √ √

User Profile Attributes √ √

Specific User Attribute √

User-user Relationship √ √ √ √

Directional Relationship √ √ √

Relationship Depth √ √ √ √

Policy Individualization √ √ √ √

Attribute Composition none none attributes of user set attributes of exact user
Relationship Description ff path pattern of different types path pattern of different types exact type sequence

aspects, including policy language and path checking. The
policy language contributes to the literature on ReBAC by
allowing users to specify spatial, temporal, and historical
based policies with better expressiveness and flexibility. This
research also presents several attribute and relationship-
based hybrid policies and formally expresses them in the
proposed policy language. Path checking algorithm enables
users to figure out whether an access request can be satisfied.
A prototype is implemented, and several experiments are
evaluated to validate the feasibility of the scheme. HAC is
advantageous compared with existing OSN access control
models in terms of the expressiveness ability of policy
language and the evaluation algorithm of access request.

In the future, researchers plan to improve the hybrid
policy language to gain better expressiveness ability and
support for more relationship types including one-to-many
relationship and temporary relationship.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

The research activities described in this paper have been
conducted within the Research Project “the National
Key Research and Development Program of China
(2016YFB0801001)” and “General Program of National
Natural Science Foundation of China (61672515)”.

References

[1] J. Xiong, Y. Zhang, X. Li, M. Lin, Z. Yao, and G. Liu, “RSE-
PoW: a role symmetric encryption PoW scheme with autho-
rized deduplication for multimedia data,”Mobile Networks and
Applications, pp. 1–14, 2017.

[2] P. W. L. Fong, “Relationship-based access control: protection
model and policy language,” in Proceedings of the 1st ACM
Conference on Data and Application Security and Privacy,
CODASPY ’11, pp. 191–201, February 2011.

[3] P.W. L. Fong and I. Siahaan, “Relationship-based access control
policies and their policy languages,” in Proceedings of the 16th
ACM Symposium on Access Control Models and Technologies,
SACMAT ’11, pp. 51–60, June 2011.

[4] Y. Cheng, J. Park, and R. Sandhu, “Attribute-aware relationship-
based access control for online social networks,” in Proceedings
of the IFIP Annual Conference on Data and Applications Security
and Privacy, pp. 292–306, Springer, Berlin, Germany, 2014.

[5] Y. Cheng, J. Park, and R. Sandhu, “A user-to-user relationship-
based access control model for online social networks,” in Pro-
ceedings of the IFIP Annual Conference onData andApplications
Security and Privacy, pp. 8–24, Springer, Berlin, Germany, July
2012.

[6] D. Wu, J. Yan, H. Wang, D. Wu, and R. Wang, “Social attribute
aware incentivemechanism for device-to-device video distribu-
tion,” IEEE Transactions on Multimedia, vol. 19, no. 8, pp. 1908–
1920, 2017.

[7] E. G. Carrie, “Access control requirements for web 2.0 security
and privacy,” in Proceedings of the IEEE Web 2.0 privacy and
security workship (W2SP ’07), 2007.

[8] B. Carminati, E. Ferrari, and A. Perego, “Rule-based access
control for social networks,” in Proceedings of the Move to
Meaningful Internet Systems Workshops, OTM ’06, pp. 1734–
1744, Springer, Berlin, Germany, 2006.

[9] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access
control in Web-based social networks,” ACM Transactions on
Information and System Security, vol. 13, no. 1, pp. 1–38, 2009.

[10] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and B.
Thurainsingham, “A semantic web based framework for social
network access control,” in Proceedings of the 14th ACM Sympo-
sium onAccess ControlModels and Technologies, SACMAT2009,
pp. 177–186, June 2009.

[11] B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, and
B. Thuraisingham, “Semantic web-based social network access
control,”Computers& Security, vol. 30, no. 2-3, pp. 108–115, 2011.

[12] Y. Cheng, J. Park, and R. Sandhu, “Relationship-based access
control for online social networks: Beyond user-to-user rela-
tionships,” in Proceedings of the Proceedings of the Privacy,
Security, Risk and Trust, pp. 646–655, 2012.

[13] T. Ahmed, F. Patwa, and R. Sandhu, “Object-to-object relation-
ship-based access control: Model and multi-cloud demonstra-
tion,” in Proceedings of the 17th IEEE International Conference
on Information Reuse and Integration, IRI ’16, pp. 297–304, July
2016.

[14] J. Crampton and J. Sellwood, “Path conditions and principal
matching: a new approach to access control,” in Proceedings
of the 19th ACM Symposium on Access Control Models and
Technologies, SACMAT ’14, pp. 187–198, 2014.

[15] A. Masoumzadeh and J. Joshi, “OSNAC: an ontology-based
access control model for social networking systems,” in Pro-
ceedings of the 2nd IEEE International Conference on Social

Security and Communication Networks 11

Computing, SocialCom 2010, 2nd IEEE International Conference
on Privacy, Security, Risk and Trust, PASSAT ’10, pp. 751–759,
August 2010.

[16] P. W. Fong, M. Anwar, and Z. Zhao, “A privacy preservation
model for facebook-style social network systems,” in Proceed-
ings of the European Symposium on Research in Computer
Security, pp. 303–320, Springer, Berlin, Germany, September
2009.

[17] P. W. Fong, “Relationship-based access control: Protection
model and policy language,” in Proceedings of the 1st ACM
Conference on Data and Application Security and Privacy,
CODASPY ’11, pp. 191–201, February 2011.

[18] G. Bruns, P. W. Fong, I. Siahaan, and M. Huth, “Relationship-
based access control: its expression and enforcement through
hybrid logic,” in Proceedings of the second ACM conference on
Data andApplication Security andPrivacy, pp. 117–124, Feburary
2012.

[19] E. Tarameshloo and P. W. Fong, “Access control models for
Geo-Social Computing systems,” in Proceedings of the 19th
ACM Symposium on Access Control Models and Technologies,
SACMAT ’14, pp. 115–126, June 2014.

[20] E. Tarameshloo, P. W. L. Fong, and P. Mohassel, “On protection
in federated social computing systems,” in Proceedings of the 4th
ACM Conference on Data and Application Security and Privacy,
CODASPY ’14, pp. 75–86, March 2014.

[21] M. Cramer, J. Pang, and Y. Zhang, “A logical approach to
restricting access in online social networks,” in Proceedings
of the 20th ACM Symposium on Access Control Models and
Technologies, SACMAT ’15, pp. 75–86, June 2015.

[22] M. Anwar and P. W. L. Fong, “A visualization tool for evalu-
ating access control policies in facebook-style social network
systems,” in Proceedings of the 27th Annual ACM Symposium on
Applied Computing, SAC ’12, pp. 1443–1450, Italy, March 2012.

[23] M. Imran-Daud, D. Sánchez, and A. Viejo, “Privacy-driven
access control in social networks by means of automatic
semantic annotation,” Computer Communications, vol. 76, pp.
12–25, 2016.

[24] B. Carminati and E. Ferrari, “Privacy-aware collaborative access
control in web-based social networks,” in Proceedings of the
IFIP Annual Conference on Data and Applications Security and
Privacy, pp. 81–96, Springer, Berlin, Germany, July 2008.

[25] J. Domingo-Ferrer, A. Viejo, F. Sebé, and Ú. González-Nicolás,
“Privacy homomorphisms for social networks with private
relationships,” Computer Networks, vol. 52, no. 15, pp. 3007–
3016, 2008.

[26] B. Carminati and E. Ferrari, “Enforcing relationships privacy
through collaborative access control in web-based social net-
works,” in Proceedings of the Proceedings of the Collaborative
Computing: Networking, Applications and Worksharing, pp. 1–9,
November 2009.

[27] K. B. Frikken and P. Srinivas, “Key allocation schemes for
private social networks,” in Proceedings of the Proceedings of the
8th ACMworkshop on Privacy in the electronic society, pp. 11–20,
November 2009.

[28] G. Mezzour, A. Perrig, V. Gligor, and P. Papadimitratos,
“Privacy-preserving relationship path discovery in social net-
works,” in Proceedings of the International Conference on Cryp-
tology and Network Security, pp. 189–208, Springer, Berlin,
Germany, December 2009.

[29] M. Xue, B. Carminati, and E. Ferrari, “P3D-privacy-preserving
path discovery in decentralized online social networks,” in

Proceedings of the Computer Software and Applications, pp. 48–
57, July 2011.

[30] M. Backes, M. Maffei, and K. Pecina, “A Security API for
Distributed Social Networks,” in Proceedings of the NDSS, vol.
11, pp. 35–51, February 2011.

[31] X. Jin, R. Krishnan, and R. Sandhu, “A unified attribute-
based access control model covering DAC, MAC and RBAC,”
in Proceedings of the IFIP Annual Conference on Data and
Applications Security and Privacy, pp. 41–55, Springer, Berlin,
Germany, July 2012.

[32] H.-B. Shen and F. Hong, “An attribute-based access control
model for web services,” in Proceedings of the 7th International
Conference on Parallel and Distributed Computing, Applications
and Technologies, PDCAT ’06, pp. 74–79, December 2006.

[33] E. Yuan and J. Tong, “Attributed based access control (ABAC)
for web services,” in Proceedings of the Web Services, pp. 561–
569, July 2005.

[34] X. Li, S. Tang, L. Xu, H. Wang, and J. Chen, “Two-Factor Data
Access Control With Efficient Revocation for Multi-Authority
Cloud Storage Systems,” IEEE Access, vol. 5, pp. 393–405, 2017.

[35] B. Carminati, E. Ferrari, and J. Girardi, “Performance analysis
of relationship-based access control in OSNs,” in Proceedings
of the 13th International Conference on Information Reuse and
Integration, IRI ’12, pp. 449–456, August 2012.

[36] Y. Cheng, J. Park, and R. Sandhu, “An access control model for
online social networks using user-to-user relationships,” IEEE
Transactions on Dependable and Secure Computing, vol. 13, no.
4, pp. 424–436, 2016.

[37] S. W. Lee and J. Lee, “A comparative study of KakaoStory and
facebook: focusing on use patterns and use motives,” Telematics
and Informatics, vol. 34, no. 1, pp. 220–229, 2017.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

