
Research Article
OFFDTAN: A New Approach of Offline Dynamic Taint
Analysis for Binaries

Xiajing Wang , Rui Ma , Bowen Dou , Zefeng Jian , and Hongzhou Chen

Beijing Key Laboratory of Software Security Engineering Technology, School of Software, Beijing Institute of Technology,
Beijing 100081, China

Correspondence should be addressed to Rui Ma; mary@bit.edu.cn

Received 11 January 2018; Revised 10 March 2018; Accepted 8 April 2018; Published 30 May 2018

Academic Editor: Raymond Choo

Copyright © 2018 Xiajing Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dynamic taint analysis is a powerful technique for tracking the flow of sensitive information. Different approaches have been
proposed to accelerate this process in an online or offline manner. Unfortunately, most of these approaches still have performance
bottlenecks and thus reduce analytical efficiency. To address this limitation, we present OFFDTAN, a new approach of offline
dynamic taint analysis for binaries. OFFDTAN can be described in terms of four stages: dynamic information acquisition,
vulnerability modeling, offline analysis, and backtrace analysis. It first records program runtime information and models the stack
buffer overflow vulnerabilities and controlled jump vulnerabilities.Then it performs offline analysis and backtrace analysis to locate
vulnerabilities. We implement OFFDTAN on the basis of QEMU virtual machine and apply it to off-the-shelf applications. In order
to illustrate how our approach works, we first employ a case study. Furthermore, six applications have been verified so as to evaluate
our approach. Experimental results demonstrate that our approach is correct and effective. Compared with other offline analysis
tools, OFFDTAN has much lower application runtime overhead.

1. Introduction

Software vulnerabilities are the root of various cyber-attacks.
Common attacks, such asXSS and buffer overflows, all exploit
software vulnerabilities; thus vulnerability analysis attracts
extensive research during the past decade.One of the research
hotspots is vulnerability analysis for binary program, which
can be performed dynamically or statically. In the dynamic
analysis, the taint analysis techniques have been studied
recently, and numerous taint analysis tools have been imple-
mented and applied extensively to the field of vulnerability
analysis for binary program [1].

Taint analysis was first proposed by funnywei at the sum-
mit of XCon2003 [2]. The basic idea is to label data originat-
ing from or arithmetically derived from untrusted sources,
such as network input or user input, as tainted, then keep
track of the propagation of tainted data, and further detect
whether tainted data is used in dangerous ways. At present,
taint analysis could be divided into static taint analysis
and dynamic taint analysis on the basis of running state
of analysis object. The former keeps track of tainted data

by performing semantic and grammatical analysis of the
source code. That has some advantages, like higher path
coverage and better analysis efficiency, but there still exist
false positives. However, the latter marks and tracks certain
data during program runtime. That has better accuracy, but
there also exist some problems such as lower path coverage,
larger space overhead, and lower analysis efficiency.

To address these limitations, in this paper, we present
OFFDTAN, an approach of offline dynamic taint analysis for
binary program, implement it on top of QEMU [3] to support
fine-grained real-time monitoring for target program, and
evaluate it in six realistic applications. In order to illustrate
how our approach works, we employ an extended case study.
Specifically, in the proposed method, OFFDTAN uses Hook
technology to mark taint source and acquires the program
runtime information such as register and memory infor-
mation. Additionally, we summarize the applicable model
of stack buffer overflow vulnerabilities and controlled jump
vulnerabilities, which can be further used for offline analysis.
Moreover, to obtain accurate tainting results, we improve
existing taint propagation policy, mainly considering the

Hindawi
Security and Communication Networks
Volume 2018, Article ID 7693861, 13 pages
https://doi.org/10.1155/2018/7693861

http://orcid.org/0000-0002-9897-0579
http://orcid.org/0000-0003-1954-5775
http://orcid.org/0000-0003-2940-5557
http://orcid.org/0000-0002-8832-9323
http://orcid.org/0000-0002-6037-9353
https://doi.org/10.1155/2018/7693861

2 Security and Communication Networks

effect of the tainted instruction operation on flag registers and
associated registers, which makes taint propagation policy
more accurate than previous approach. In particular, taint
propagation flow graph has been established to backtrack
taint data and locate its specific offset within taint source file.

The contributions of this paper can be summarized as
follows:

(i) Presentation of framework: we present OFFDTAN, a
generic offline dynamic taint analysis framework that
uses KVM acceleration on QEMU virtual machine to
detect vulnerabilities.

(ii) Enhancement of propagation policy: we enhance taint
propagation policy of flag register and related register
and summarize two types of specific vulnerability
models applicable to this method.

(iii) Construction of propagation flow graph: we propose
the construction method of taint propagation flow
graph to backtrack taint source, which can precisely
locate the specific offset of taint data.

(iv) Evaluation of framework: we evaluate OFFDTAN by
applying it to large off-the-shelf applications such as
FeiQ and Microsoft Word 2010. The experimental
results show that our approach is effective and has
better performance.

The remainder of this paper is organized as follows.
Related work was discussed in Section 2. Section 3 presents
the details of proposed approach. Section 4 discusses the
experimental results and validation, and our conclusions
were finally proposed in Section 5.

2. Related Work

Dynamic taint analysis can be performed online or offline.
Online analysis handles taint propagation during the pro-
gram execution, while offline analysis first records the trace
of program execution and then performs the taint analysis by
replaying program.

Online analysis usually leverages instrumentation tech-
nology to monitor the taint propagation. Common instru-
mentation tools, such as Valgrind [4], Pin [5], and Dynamo
[6], have been used extensively to implement most of online
analysis tools. James Newsome et al. released TaintCheck [7]
on the basis of Valgrind, which provides taint analysis for data
flow and enables the detection of buffer overflow vulnera-
bilities. However, this tool needs larger space overhead and
ignores the analysis for control flow. Considering the effect of
control flow, Clause et al. propose Dytan [8], which achieves
the analysis for control flow, but this tool still presents the
limitation of time overhead. LIFT [9] is developed by Qin et
al. based on StarDBT, which sharply shortens the duration
of taint analysis by screening for unnecessary data flow
information whereas the problem of memory consumption
has not been properly addressed.

Due to the rise of symbolic execution, some researchers
attempt to provide a combination method of dynamic taint
analysis and symbolic execution, such as DTA++ [10], Bit-
Blaze [11], and DECAF [12], which can improve the path

coverage of dynamic taint analysis. Lai et al. [13] mark each
byte of external input data to perform fine-grained taint
analysis, which improves the granularity of dynamic taint
analysis. Wang et al. [14] propose a method to bypass the
checksum mechanism, which combines with symbolic exe-
cution and fine-grained dynamic taint analysis, to develop
TaintScope. Zhuge et al. [15] present a method of type-based
dynamic taint analysis, according to the type information of
instructions and functions, which provides better semantic
support. In addition, this method presents the combination
of taint analysis and symbolic execution at variable level.
Although above methods have improved the performance of
online analysis, many problems are still not fundamentally
solved, especially the limitation of high runtime overhead.

To address these limitations, several researchers propose
the method of offline analysis, which is attractive at present.
Jee et al. propose a dynamic taint analysis method based
on shadow memory, which separates taint analysis from
program execution and develops ShadowReplica [16]. Dan
Caselden et al. introduce a hybrid information and control-
flow graph (HI-CFG) and give algorithm to infer it from
an instruction-level trace. Then they use the Tracecap tool
of BitBlaze to record instruction traces [17]. Manolis Stam-
atogiannakis et al. [18] leverage full-system execution trace
logging and replaying to decouple analysis from the original
execution. Shi et al. [19] propose a combination of coarse-
grained and fine-grained dynamic taint analysis (DTA)
method. It executes online coarse-grained DTA to screen out
effective instruction and then uses offline fine-grained DTA
to calculate taint information. Wang et al. [20] introduce
the propagation policy of multi-tainted label and implement
the prototype system FlowWalker. Their taint propagation
strategymakes a further support for the extended instruction
set of MMX/SSE family. Ma et al. [21] present a taint analysis
method based on trace offline indices which are byte-grained
and utilize taint tags. Their approach fixes the problem of
taint loss which resulted from just-in-time translation first
time. Ming et al. [22] propose a full-featured offline taint
analysis tool StraightTaint, which completely decouples the
program execution and taint analysis, resulting in much
lower execution slowdown. Dolan-Gavitt et al. [23] present
a full-system analysis tool PANDA that is based on QEMU
emulator and has the ability to record and replay executions.

The above-mentioned offline analysis methods alleviate
the problem of lower analysis efficiency to a certain extent.
However, most analysis tools or methods are running on
the same operating system as the target program and thus
cannot eliminate the impact of vulnerability analysis tool on
the target program. PANDA eliminates above impact, but
its performance is a bit slow. In particular, the propagation
policies of these methods are still not complete.

To address the first problem, we managed to use QEMU
virtual machine that supports KVM acceleration to create a
simulated computer environment isolated from the host and
precede fine-grained observation for relevant target program
in the client. In addition, this paper develops appropriate
propagation policy and vulnerability checking strategy to
improve the accuracy of analysis. In the aspect of propagation
policy, we focus on improving the taint update policy of flag

Security and Communication Networks 3

X86 entity machine

Offline
analysis log

External input

Target binary
program

Program running
track file

Taint source log file

Vulnerability log
file

Marking taint sources

Capturing binary program
information

Security strategyVulnerability
modeling

QEMU virtual machine

Taint propagation
policy

Taint propagation
flow graph

Loading offline data

Dynamic taint
analysis

Vulnerability
checking

Extracting
vulnerability log

Backtrace analysis

Dynamic information
acquisition

Vulnerability modeling for binaries

Offline analysis Backtrace analysis

Figure 1: The OFFDTAN framework.

register and related register. To check vulnerabilities, this
paper summarizes two types of specific vulnerability models
applicable to this method and establishes the vulnerability
checking strategy by studying the cause of released vulner-
abilities. Moreover, the approach of backtrace analysis has
been presented to locate taint data’s specific offset within taint
source file. This method further reduces the proportion of
manual analysis and improves the efficiency of vulnerability
analysis.

3. OFFDTAN

In this section, we first outline the framework of OFFDTAN
and then detail each stage.

3.1. General Framework. This paper proposes OFFDTAN, an
approach of offline dynamic taint analysis for binary pro-
gram.We employKVMacceleration onQEMU to implement
OFFDTAN, because it is isolated from the operating system
of the host. In order to better describe this method, it can
be divided into the following four stages: dynamic informa-
tion acquisition, vulnerability modeling, offline analysis, and
backtrace analysis, as shown in Figure 1.

More precisely, dynamic information acquisition stage is
used for dynamically recording the trace of program exe-
cution and taint source log, which can be used for offline
analysis stage.The basic condition of this stage is that QEMU
simulates theCPU andmemory state. Vulnerabilitymodeling
stage establishes the vulnerability model by summarizing
existing vulnerability characteristics and then generates the
vulnerability checking strategy. Offline analysis stage loads
the trace file of program execution and taint source log file
to perform offline analysis on the basis of taint propaga-
tion policy and vulnerability checking strategy. Additionally,
offline analysis stage builds taint propagation flow graph and
generates vulnerability log file. Finally, backtrace analysis
stage takes vulnerability log file and taint propagation flow
graph as input to backtrack taint data to locate vulnerability.

3.2. Dynamic Information Acquisition. This stage is mainly to
extract the runtime information of target program and mark
the taint source.Moreover, the generated trace file of program
execution and taint source file are used for offline analysis.
The key processes of this stage are the capture of program
runtime information and the marking of taint sources.

3.2.1. Capturing Program Runtime Information. The capture
of program runtime information is mainly to obtain four
aspects of information, namely, the information of CPU
running state, memory information, process information,
and the trace file of program execution.

(1) Acquiring the Information of CPU Running State. The
indispensable CPU state informationmainly includes general
register, instruction register, flag register, segment register,
control register, and the internal variable of QEMU. This
information can be obtained by capturing the current CPU
pointer.

(2) Acquiring Memory Information. Clearly, there are four
types of memory addresses in the QEMU, namely, client
virtual address, client physical address, host virtual address,
and host physical address.

Reading and writing the QEMUmemory should actually
be working in the physical address of host. Therefore, the
key point is performing the address translation from client
address to host address to acquire current memory informa-
tion.

(3) Acquiring Process Information. The processes store much
program information, and offline analysis is accompanied
by the virtual replaying of program which requires a large
number of data types and semantic information. Therefore,
the acquisition of process information is the core during the
capture of program runtime information.

In the Windows operating system, data structures asso-
ciated with the process include five structures: KPROCESS,
EPROCESS, KTHREAD, KPRCB, and KAPC STATE. That
almost describes all the information about processes and
threads. To obtain current process, ourmethod first needs the
memory address of KPRCB, which can be acquired by the
reverse analysis of the Windows kernel. On the basis of
KPRCB, our approach can further calculate KTHREAD,
KAPC STATE, KPROCESS, and EPROCESS, respectively, to
acquire process information.

(4) Generating the Trace File of Program Execution. Actually,
the generating process of trace file is to integrate captured
program runtime information in accordance with the orga-
nization and management way of kernel data structure.
The trace file mainly includes obtained CPU running state

4 Security and Communication Networks

information, memory information, and process information.
Thegenerated trace file of programexecution records instruc-
tion running number, current process number, thread num-
ber, instruction, operand, register, and other information.
Specifically, it can be divided into the following five steps:

(a) Through CPU running state information to obtain
instructions, registers, and other information.

(b) Taking instruction information and relevant register
information as input, the instruction opcode and
operand can be obtained through memory informa-
tion.

(c) Obtaining process-related information by acquired
register information, memory information, and pro-
cess information.

(d) The acquired information is integrated into the trace
file of program execution, including register infor-
mation, instruction opcode, instruction operand, and
process information.

(e) Generate the trace file of program execution.

3.2.2. Marking Taint Sources. Taint markings are prerequisite
for taint propagation, and the way of taint markings and taint
operation recordings has a great influence on the efficiency
of dynamic taint analysis. In the dynamic taint analysis,
the external data, such as file input or network input, are
generally marked as taint data. In order to mark taint source,
the corresponding system services that are responsible for
reading external data need to be monitored. In the Windows
operating system, some system services, such as NtReadFile,
NtCreateFile, NtWriteFile, NtClose, WSARecv, and recv, are
responsible for file input and network input. Thus, in this
paper, OFFDTAN marks taint sources of network input and
file input by coding the Hook function for above system
services to monitor the parameters and return value of those
system services. As a result, our method obtains and records
the offset of taint data in the taint source file, the length of
taint data, and the head address of memory where taint data
is stored.

3.3. Vulnerability Modeling. This paper focuses on the
research of stack buffer overflow vulnerabilities and con-
trolled jump vulnerabilities, so corresponding models have
been established according to the characteristic of offline
analysis.

3.3.1. Stack Buffer Overflow Vulnerabilities Model. Since the
strcpy, memcpy, and other string manipulation functions are
optimized in the process of compiling, this paper summarizes
the assembly code of string library functions to analyze the
program path that could trigger buffer overflows. Moreover,
this paper establishes the dependency among the execution
paths and combines offline analysis with modeling buffer
overflow vulnerabilities.

The stack buffer overflow vulnerabilities model of this
paper mainly concerns whether the operand of instruction
rep movsd can override function return address or EBP to
further affect the control flow of program.

In order to better represent this model, firstly, we explain
various terms used in below definition. The symbol EDI rep-
resents destination address operated by crucial instruction.
The symbols EBP and ESP denote stack base address and
stack top pointer, respectively, and symbol RA represents
function return address. The program counter register is
denoted as ECX. Then the following definitions are giv-
en.

Definition 1. The symbol 𝐼 denotes whether there is a crucial
instruction, 𝐼 ∈ {0, 1}. The value of 𝐼 is 1 if and only if
instruction rep movsd exists in the trace of program execu-
tion.

Definition 2. The symbol 𝐹 denotes whether the instruction
𝐼writes on stack memory, 𝐹 ∈ {0, 1}. The value of 𝐹 is 1 if and
only if 𝐸𝑆𝑃 < 𝐸𝐷𝐼 < 𝐸𝐵𝑃 (or 𝐸𝑆𝑃 < 𝐸𝐷𝐼 < 𝑅𝐴), which can
determine that instruction 𝐼 is operating the stack memory.

Definition 3. The symbol 𝑃 denotes the safe distance of stack
buffer, 𝑃 ∈ [0, 2097152]. The safe distance is defined as 𝑃 =
𝐸𝐵𝑃 − 𝐸𝐷𝐼 or 𝑃 = 𝑅𝐴 − 𝐸𝐷𝐼.

Definition 4. The symbol 𝐷 denotes whether EBP (or RA) is
overwritten,𝐷 ∈ {0, 1}. In this case, the length of source data
operated by instruction 𝐼 is expressed as 𝐿, which is 4∗𝐸𝐶𝑋.
The value of𝐷 is 1 if and only if 𝐿 > 𝑃.

Definition 5. The symbol 𝐸 represents whether ECX is
tainted, 𝐸 ∈ {0, 1}. The value of 𝐸 is 1 if and only if ECX is
tainted.

Definition 6. The symbol 𝐶 denotes whether ECX has a
comparison instruction before instruction 𝐼, 𝐶 ∈ {0, 1}. The
value of 𝐶 is 1 if and only if there is a comparison instruction
to ECX before instruction 𝐼.

Definition 7. The symbol 𝑇 denotes whether the parameters
compared with ECX are tainted, 𝑇 ∈ {0, 1}. The value of 𝑇 is
1 if and only if the parameters are tainted

Definition 8. The symbol 𝑉 expresses whether the program
has stack buffer overflows and 𝑉 is byte type. The values of 𝐼,
𝐹, 𝐷, 𝐸, 𝐶, 𝑇 are the lower six bits of 𝑉 in turn. For example,
the value of𝑉 is 00111010 if the values of 𝐼, 𝐹,𝐷, 𝐸, 𝐶, 𝑇 are 1,
1, 1, 0, 1, 0, respectively.

In summary, this model considers two modes of stack
buffer overflows primarily.

(1) The triggered mode of stack buffer vulnerabilities: in
this mode, 𝐿 > 𝑃, i.e., 𝐷 = 1; thus the data written
to stack could overwrite EBP or RA.The value of 𝑉 is
00111XXX.

(2) The nontriggered mode of stack buffer vulnerabilities:
in this mode, ECX is tainted, thus triggering potential
stack buffer vulnerabilities.This model is divided into
two cases on the basis of the value of 𝐶. (i) When 𝐶 =
0, the value of 𝑉 is 0011010X. (ii)When 𝐶 = 1 and
𝑇 = 1, the value of 𝑉 is 00110111.

Security and Communication Networks 5

3.3.2. Controlled Jump Vulnerabilities Model. Controlled
jump usually refers to the fact that taint data is used for return
address, function pointer, and destination address, etc. and
makes the program hijacked to the shellcode code, which
causes the program to be controlled by the attacker. First, this
model locates this type of jump instruction by the sequence of
instruction during the program execution. Second, according
to offline analysis, the coincident conditions that triggered
vulnerabilities can be concluded. For any of jump instruc-
tions, it can trigger vulnerabilities if and only if its destination
address is tainted.

This model mainly considers three types of jump modes.

Mode 9 (call/jump register mode). In this mode, the operand
of the instruction is only one register. If the register is tainted,
this instruction operation is tainted.

Mode 10 (call/jump [register + offset] mode). In this mode,
the operand adds the offset on the basis of register. If the
operand or register of instruction is tainted, this instruction
operation is tainted.

Mode 11 (Ret/Retf mode). This instruction is used for func-
tion return, and usually ESP will be assigned to EIP (the
instruction address of CPU execution) before return. If the
data pointed by ESP is tainted, this instruction operation is
tainted.

3.4. Offline Dynamic Taint Analysis. Due to the logic com-
plexity of internal system call, the traditional dynamic
taint analysis has the disadvantages of lower analysis effi-
ciency and higher runtime overhead while analyzing large-
scale programs. OFFDTAN presents an approach of offline
dynamic taint propagation, which combines instruction and
the system call, and separates dynamic analysis fromprogram
execution. More precisely, our approach leverages the trace
file of program execution and taint log file to implement
the offline analysis through virtually replaying program.That
ultimately improves the accuracy and efficiency of dynamic
taint analysis.

3.4.1. Overview of Offline Dynamic Taint Analysis. Theoffline
dynamic taint analysis can be mainly divided into three key
points.

(1) Program virtual replaying: by loading instructions
and contexts recorded by the trace file of programexe-
cution, it is possible to simulate program execution
according to the order of instruction.

(2) Dynamic taint analysis: by loading taint source log file,
it performs taint analysis during the virtual replaying.
This analysis is guided by propagation policy.

(3) Program vulnerability analysis: it checks the program
vulnerabilities in the process of dynamic taint analy-
sis, which is guided by security policy.

The (1) is mainly to simulate CPU’s running process, and
in this context, the semantics of different instructions are
parsed to implement program virtual execution. Specifically,

OFFDTAN first loads the trace file of program execution,
reads line by line, and stores the necessary information such
as instruction and register information. With the help of
udis86, a third-party disassembly engine, read instruction
information then needs to be disassembled. At the same time,
some relevant program runtime information will be copied
to the simulated CPU. Finally, we perform semantic and
syntactic analysis for each instruction within the context of
simulated CPU.

Since (3) is described in Section 3.3, this sectionwill focus
on dynamic taint analysis, which mainly includes taint data
recording and taint propagation.The former records the taint
state of memory and register during the taint propagation.
The latter primarily provides proper propagation policy for
taint analysis. According to the taint data recording and cor-
responding taint propagation, this stage ultimately generates
the taint propagation flow graph, which provides data input
for backtrack analysis and forward analysis.

3.4.2. Taint Data Recording. Taint data recording primarily
includes the introduction of taint source and the state update
of taint data. The introduction of taint source is the first step
in taint analysis. Unlike traditional dynamic taint analysis,
offline analysis introduces taint source by analyzing taint
source log file. Specifically, according to the instruction
number of virtual replaying, the taint source information
with the same number would be loaded into the taint state
space. Next, this method uses shadow memory to store
and maintain taint state of memory address and register in
taint state space. It updates taint state in real time based
on taint propagation policy during the dynamic taint analy-
sis.

Taint state space records the taint state ofmemory address
and register, as shown in Figure 2. However, most of previous
approaches have not recorded taint operation; thus taint
propagation path cannot be stored. In order to support the
backtrace analysis of taint data, taint operation needs to be
recorded according to different storage carrier.

(1) Taint operation recording for memory: the tainted
memory of each byte is stored in the form of data
structure TM, which is arrayed in a form of linked
list based on the order of taint operation when taint
is propagated. Data structure TM mainly contains
memory address, taint state, memory address of taint
source, and pointer to the node of taint propagation
flow graph, as shown in the upper part of Figure 2.

(2) Taint operation recording for register: by learning from
the value of register enumerated variable ud type,
which is the third-party disassembler udis86, seri-
alized storage management would be taken for the
taint state information of register. In the udis86, the
value of register enumerated has 141 types; thus this
paper defines the structure array TRArray[141] of
TR to store the taint state of register, where array
index corresponds to the specific register. The data
structureTRmainly contains taint state, pointer to the
node of taint propagation flow graph, and taint source
operation, as shown in the lower part of Figure 2.

6 Security and Communication Networks

address1
address2
address3
address4
address5

…...
reg1
reg2
reg3
……

TM1

TM2

TM3

TM4

……

TM5

state

state

state

state

state

……

……

……

……

……

address5

address3

address1

address4

address2

PTPG_Node

PTPG_Node

PTPG_Node

PTPG_Node

PTPG_Node

TR1

TR2

TR3
……

state

state

state

……

……

……

S_address

S_address

S_address

PTPG_Node

PTPG_Node

PTPG_Node

Startin
g node

instruct
ion

node

instruct
ion

node

instruct
ion

node

instruct
ion

node

instruct
ion

node

instruct
ion

node

instruct
ion

node

Taint state
space

Figure 2: Taint state space and corresponding taint propagation flow graph.

3.4.3. Taint Propagation Policy. Taint propagation is the
key to taint analysis. Furthermore, a complete and proper
propagation policy, which describes how taint data should
be propagated during program replaying, is crucial for taint
propagation. In order to develop taint propagation policy,
we first extract and analyze common instruction set in
the complex instruction space and instruction semantics
through many program tests. Then we study six categories
of instruction, such as data transfer class, operation class,
shifting instruction class, string operation class, and control
transfer class. According to its instruction semantics, source
operands, destination operands, and addressing mode, taint
propagation policy is developed. Finally, we set query inter-
face, tainting interface, and sanitization interface, which is
used for updating the taint state in real time.

A corresponding taint propagation policy is made for
above six instruction categories.

(1) Data transfer class:MOV, PUSH, XCHG, etc.

(i) If one of the source operands is tainted, the
destination operands will be tainted.

(ii) If source operands are untainted, the destination
operands need to be sanitized.

(2) Operation class: ADD, ADC, AND, XOR, etc.

(i) If any of the operands of an instruction is
tainted, this result of operation is tainted and
destination operands are alsomarked as tainted.

(ii) If the conditional flag of processor is affected by
tainted operand, the affected conditional flag is
also marked as taint data.

(iii) For instruction XOR, if the source operand and
destination operand have identical register or
memory address, the operand of instruction
needs to be sanitized.

(3) Shifting instructions: SAL, SHL, SHLD, RCL, etc.

(i) If the arbitrary operands of this instruction are
tainted, this result of operation is tainted and
destination operands are also marked as taint
data.

(ii) If the conditional flag of the processor is affected
by tainted operand during the shifting, the
affected conditional flag is also tainted.

(4) String operation class:MOVS, LOAD, STOS, etc.

(i) If the source operands of this instruction are
tainted, the destination operands are tainted.

(ii) If an instruction with REP exists, the ECX needs
to be sanitized after this instruction has been
executed.

(5) Control transfer class: JMP, CALL, RET, etc.

(i) If these instruction operands are tainted, theEIP
is tainted.

(ii) If instruction operands are indirect addressing,
the EIP is marked as taint data as long as the
internal register of operand is tainted.

(6) Others: CLD, CLC, STC, CBW, etc.

Security and Communication Networks 7

(i) For these instructions of clear direction flag reg-
ister, such as CLD and CLC, the corresponding
flag registers need to be sanitized.

(ii) The instruction STC does not need to be pro-
cessed.

(iii) For extended instructions such as CBW, the
extended high register is marked as taint data if
the low register is tainted.

In summary, our propagation policy focuses on improv-
ing the update ways for the taint state of flag register and as-
sociated register. For example, when the taint state of accu-
mulator AX changes, it is necessary to modify the taint state
of associated registers, such as the AL register, AH register,
and EAX register.

3.4.4. Constructing Taint Propagation Flow Graph. Dynamic
taint analysis is the fundamental of the constructing of taint
propagation flow graph. During the offline dynamic taint
analysis, taint operation would be recorded to provide the
data dependency between instruction operands and function
parameters for building taint propagation flow graph. More
precisely, OFFDTAN first loads the trace file of program exe-
cution and analyzes those instructions during the program
virtual replaying. According to the propagation policy and
the taint state space of operand, OFFDTAN then determines
the effect of each instruction on the taint state space. If there
is a change in the taint state space, OFFDTANwill record this
trace of taint operation and point to the corresponding nodes
in the taint propagation flow graph.

Dynamic taint analysis can achieve the forward analysis
and backtrace analysis to taint data by using taint propagation
flow graph. The traditional taint propagation flow graph is
composed of instruction nodes and directed edges. In this
method, the taint state recording structure can reflect the
distribution of taint data in the taint state space. In order to
locate taint source, our method employs a bidirectional edge
as connection edge and adds a serial number for each node
in the taint propagation flow graph to distinguish the upper
and lower relations between the nodes.

In a word, a taint propagation flow graph is composed
of instruction nodes and bidirectional edges, as shown in
Figure 2, which also demonstrates the relationship between
taint state space and the node of taint propagation flow graph.

The node, which is composed a triple, has two types:
the starting node and the intermediate node. Taint source is
taken as starting node, and intermediate node is established
by determining whether the direct or indirect operand of
relevant operation instruction is tainted. If it is, a node is
generated for this instruction. In particular, a pointer of
the taint state recording structure corresponding to tainted
operand points to the node of taint propagation flow graph.
Then intermediate nodes would be created sequentially until
the end of program execution.

The edges are used for connecting these nodes according
to the dependencies between the operands of instruction
nodes. Based on the real-time mapping relationship between
the recording structure of taint state and the corresponding
node of taint propagation flow graph, our approach can find

the corresponding node from the recording structure of taint
state and then connect the current node and the queried node
through bidirectional edge.

3.5. Backtrace Analysis for Taint Data. The backtrace analysis
of taint data can be used for locating taint source. In addition,
the backtrace analysis has a significant effect on improving
vulnerability analysis and assisting manual analysis.

This paper first takes the taint data in the recorded
program vulnerabilities as the source of backtrace analysis.
According to its address, the corresponding node of taint
propagation flow graph can be found from taint state space.
Then, according to the taint source information of this
node, the prior node of taint propagation flow graph can be
further inquired from taint state space. Finally, our approach
successively backtracks taint propagation flow graph until it
located to the source of taint information. In a word, the
process of backtrace analysis is to continuously find a feasible
path from program vulnerabilities to taint source.

Backtrace analysis could be formally described as follows.
Firstly, taint source information can be defined as 𝑆, which
is the 𝑛-tuple of all the set of taint source information and
is denoted as 𝑆 = (𝑠

1
, 𝑠
2
, . . . , 𝑠

𝑛
). We assume that any of

the propagation paths can be represented by the elements in
the 𝑛-tuple 𝑉 = (V

1
, V
2
, . . . , V

𝑛
), where V

𝑖
(𝑖 ∈ [0, 𝑛]) is the

node of taint propagation flow graph and 𝑛 is the number of
nodes. The data structure of V

𝑖
is ⟨𝑠𝑟𝑐

𝑖
, 𝑖𝑛𝑠
𝑖
, 𝑑𝑠𝑡
𝑖
⟩, where 𝑠𝑟𝑐

𝑖

represents its source operand, 𝑖𝑛𝑠
𝑖
is the current operation

instruction, and 𝑑𝑠𝑡
𝑖
refers to the destination operand. The

goal of backtrace analysis is to obtain the 𝑠𝑟𝑐
𝑖
in the taint

operation V
𝑖
of program vulnerabilities. Then propagation

path 𝑖-tuple 𝑉 = (V
1
, V
2
, . . . , V

𝑖
) will be traversed reversely, so

that the 𝑠𝑟𝑐
𝑖
in V
𝑖
belongs to any elements of S; i.e., V

𝑖
- > 𝑠𝑟𝑐

𝑖
∈

𝑆.

4. Evaluation

This section describes the verification process of proposed
approach. We first analyze the implementation step by step
through a small case and illustrate the correctness and
feasibility of our method. Then, we apply it to six large appli-
cations, such as FeiQ 2.5 andWord 2010, to further verify the
correctness and effectiveness of proposed approach. Finally,
we set a comparative experiment to evaluate OFFDTAN’s
performance.

4.1. Experimental Setup. Our approach is implemented on
QEMU 1.2.0 that supports KVM acceleration. Host hardware
is Dell 8900 with Intel Core i7-4770 processor and 32GB
memory, and host operating system is 64-bit CentOS 7. Client
hardware is the x86 architecture simulated by QEMU with a
virtual CPU and 512M memory, and client operating system
is 32-bit Windows 7.

4.2. Case Study

4.2.1. Case Design. In this case analysis, we manually con-
struct 𝐶 program with vulnerability, which is test.cpp, and
then generate test.exe by compiling it. Algorithm 1 is the

8 Security and Communication Networks

(1) void myMemcpy(char si[], int count){
(2) char dest[10];
(3) memcpy(dest, si, count); //building program
(4) } //vulnerability point
(5) int main(int argc, char ∗argv[]){
(6) HANDLE hOpenFile = (HANDLE)CreateFile(argv[1], //reading taint

GENERIC READ, //source file test.txt
FILE SHARE READ, NULL,
OPEN EXISTING, NULL, NULL);

(7)
(8) count = readCount(buf); //reading the count
(9) newBuf = readNewBuf(buf); //reading the string
(10) myMemcpy(newBuf, count);
(11) return 0
(12) }

Algorithm 1: Source code of test.cpp.

source file of target program test.exe. In this program, the
test.txt is taken as input file, which is taint source file, and
its contents are “16aaaaaaaa. . .aaaa”. From the test.cpp and
test.txt, we can draw a conclusion that the test program
reads “16” in taint source file as the value of count in the
𝑚𝑒𝑚𝑐𝑝𝑦(𝑑𝑒𝑠𝑡, 𝑠𝑖, 𝑐𝑜𝑢𝑛𝑡), and reads “aaaaaaaa. . .aaaa” as the
value of string newBuf. Moreover, count is the counter that
tracks how many times function memcpy writes data to
destination address dest, where dest is an array whose size is
10. Therefore, this case must cause an overflows.

We first use debugging tool Ollydbg to analyze test.exe in
the local Windows 7 operating system, and then the address
of stack buffer can be obtained, which is 0x401046. At this
time, becuase the value of ECX is too large, the function
return address 0x12FE30 is covered by taint data when the
rep movsd is executed. The taint data that covers the function
return address is “aaaa”.

4.2.2. Case Analysis. This part will analyze this case in
detail in accordance with the implementation process of
OFFDTAN.

(1) Capturing Program Runtime Information. This case exe-
cutes target program test.exe to acquire the program dynamic
information. Specifically, the data structure TraceNode is
defined to integrate the CPU, memory, and process infor-
mation. The trace file of program execution record.log ulti-
mately will be generated. Figure 3 demonstrates the infor-
mation contained in the trace file of program execution,
mainly including instruction running number, thread num-
ber, instruction register, assembly instruction, and general
register. These will be used for program virtual replaying.

(2) Recording Taint Sources. This method writes Hook func-
tion for some services that is related to file input and network
input (such as NtCreateFile, NtReadFile, and recv) to mark
taint source. At last, the taint source log file taintsource.log
will be generated. We take a taint source information as an
example to illustrate the information contained in the taint
source log file, as shown in Table 1. This information will

Records Count : 178301696

id : 1 , tid : 2068 , eip : 0x4010d8 , asm : push esi

eax : 0x1 , ecx : 0x76389754 , edx : 0x775570b4 , ebx : 0x7ffda000
esp : 0x12fe3c , ebp : 0x0 , edi : 0x0 , esi : 0x38
op[0] : 0x38 , op[1] : 0x0 , op[2] : 0x0

id : 2 , tid : 2068 , eip : 0x4010d9 , asm : call dword [0x406000]
eax : 0x1 , ecx : 0x76389754 , edx : 0x775570b4 , ebx : 0x7ffda000
esp : 0x12fe38 , ebp : 0x0 , edi : 0x0 , esi : 0x38
op[0] : 0x7638ca7c , op[1] : 0x0 , op[2] : 0x0

the total number of instructions

instruction number

thread number instruction register

assembly
 instruction

general register
the value of operand

Figure 3: The trace file of program execution.

Table 1: The content of taint source log file.

Name Content
No. 1
The head address of taint data in memory 0X12FE54
The length of taint data 200
The offset of taint data in taint source file 0

be used for marking taint source in the process of offline
dynamic taint analysis.

(3) Offline Dynamic Taint Analysis. This step takes the taint
source log file taintsource.log and the trace file of program
execution record.log as input to perform offline dynamic
taint analysis in accordance with the taint propagation
policy and program vulnerability checking strategy. It will
ultimately generate program vulnerability log file sink.log
(Figure 4(a)) and corresponding taint propagation flowgraph
(Figure 4(b)).

As can be seen from Figure 4(a), our method detects five
program vulnerabilities. The information of each vulnera-
bility includes instruction number, the memory or register
address of taint data, and the length of taint data. All these
will be used for the backtrace analysis of taint data.

Security and Communication Networks 9

< 396 > < 0x4 4 > , < 0x12fed0 4 > , < 0x12fe30 4 >
< 2233 > < 0xe0 4 >
< 3682 > < 0xe0 4 >
< 3784 > < 0xe0 4 >
< 4067 > < 0xe0 4 >

memory address the length of
taint dataregister address

(a) Program vulnerability log file

test.txt
16aaa...a

<DS:[<%KER
NEL32.ReadFi

le>],
CALL,

SS:[ESP+14]>

<SS:[ESP+14],
MOV,
ESI>

<DS:[ESI],
REP MOVS,
ES:[EDI]>

(b) An example of taint propagation path

Figure 4: The results of offline dynamic taint analysis.

< 396 > < 0x4 4 > , < 0x12fed0 4 > , < 0x12fe30 4 >
< 0x401046 rep movsd 0 Function return address is overwritten and stack overflow occurs, the address of ECX is tainted, the

address of ESI is tainted. The address of ECX is 0x4; the address of ESI is 0x12fed0; the function return address is 0x12fe30 >
< 0xe0000000 , 0xe0000001 > | < 0xe0000004 , 0xe0000007 > | < 0xe0000000 , 0xe0000001 > < 0xe0000010 , 0xe0000013>

the offset of taint
data in ECX

the offset of taint
data in ESI

the offset of taint data that
overrides function return address

Figure 5: Offline analysis log file.

00000010h : 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 ; aaaaaaaaaaaaaaaa
00000020h : 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 ; aaaaaaaaaaaaaaaa
00000030h : 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 ; aaaaaaaaaaaaaaaa

taint data that overrides function return address

Figure 6: Taint source file.

(4) Backtrace Analysis. This step uses program vulnerability
log file as input and then backtracks taint data according
to the corresponding relationship between taint propagation
flow graph and taint state space. In Figure 4(b), we take
the first program vulnerability as an example to show the
corresponding taint propagation path 𝑉 and illustrate how
to backtrack taint source. Each intermediate node has three
elements, namely, 𝑠𝑟𝑐

𝑖
, 𝑖𝑛𝑠
𝑖
, and 𝑑𝑠𝑡

𝑖
. We start with the 𝑠𝑟𝑐

𝑖

of last node, which is 𝐷𝑆 : [𝐸𝑆𝐼], and inquire it from
taint state space to get the prior node in which the 𝑑𝑠𝑡

𝑖.
is

ESI. Then, the 𝑠𝑟𝑐
𝑖
of obtained node is inquired, which is

𝑆𝑆 : [𝐸𝑆𝑃 + 14], to acquire the prior node related to 𝑆𝑆 :
[𝐸𝑆𝑃 + 14]. Next, we successively traverse acquired node to
inquire its src

𝑖
until it belongs to taint source 𝑆, and 𝐷𝑆 : [<

%𝐾𝐸𝑅𝑁𝐸𝐿32.𝑅𝑒𝑎𝑑𝐹𝑖𝑙𝑒 >] is the entry address of function
ReadFile. The memory block 𝑆𝑆 : [𝐸𝑆𝑃 + 14] is the buffer
address read by function ReadFile, and this memory block
stores the string loaded from taint source file test.txt.This step
will ultimately generate the offline analysis log file result.log,
as shown in Figure 5.

As can be seen from Figure 5, each offline analysis log is
corresponding to the program vulnerability log file, indicat-
ing that our method backtracks each of program vulnerabil-
ities. Taking the first record in Figure 5 as an example, the
address 0x12FE30, which is detected by proposed method,
is covered by taint data when the instruction rep movs is
executed.This is consistent with the result ofOllydbg analysis.
In addition, the result of backtrace analysis is that the offset

of taint data within taint source file, which covers return
address, is 0𝑥10 ∼ 0𝑥13. The taint source file (see Figure 6)
shows that the “aaaa” covers return address, which also
coincides with the analysis in Figure 5.

According to above case analysis, we elaborate the analy-
sis procedure of our approach and verify the correctness and
feasibility of this method as well.

4.3. Off-The-Shelf Applications. To evaluate our method’s
ability to detect vulnerabilities for real applications, we take
FeiQ and Microsoft Office Word as an example and analyze
the vulnerability information of these two projects in detail.

4.3.1. Experimental Objective. This experiment is mainly
to verify the correctness and effectiveness of taint source
marking, the vulnerability model, and the final experimental
results of this method.

4.3.2. Experimental Design. The design of this experiment is
to use realistic application as test object. Through analyzing
application program, the correctness and effectiveness of
proposed method can be verified.

Two programs have been selected first. FeiQ 2.5 is a
network communication program and widely used in the
enterprise. Microsoft Office Word 2010 is a word processing
program,which is themainstreamof currentword processing
software.

10 Security and Communication Networks

< 50487 > < 0x4 4 >
< 0x49d04e rep movsd 0 There may be a stack overflow, the address of ECX is

tainted, the address of ECX is 0x4 >
< 0xe0000026 , 0xe000002f > the offset of taint data in

taint source file
(a) Offline analysis log file

00000000h : 31 5F 6C 62 74 34 5F 31 23 36 35 36 36 34 23 36 ; 1_1bt4_1#65664#6
00000010h : 43 46 30 34 39 38 37 43 43 31 41 23 35 37 30 23 ; CF04987CC1A#570#
00000020h : 33 31 37 34 31 23 34 32 39 34 39 36 37 32 39 35 ; 31741#4294967295

(b) UDP message

Figure 7: The analysis results of FeiQ.

<1 0X2C1E000 4096 0>
<213263 0X2C1D000 4096 1000>
<283973 0X2C1C000 4096 2000>
<63203752 0X2C1A000 4096 3000>

read the taint data
in CVE-2014-
1761 POC file

(a) Taint source log file

< 620923169 > < 0xe0 4 >
< 0x66e9195d call dword [eax+0x4] 0 the address is tainted [0x275a48e8] >
< 0xe0001d3f , 0xe0001d3f > < 0xe0001d4a , 0xe0001d4a >
< 0xe0001d54 , 0xe0001d54 > < 0xe0001e18 , 0xe0001e1a >

program crash address

the offset of taint data
in taint source file

(b) Offline analysis log file

Figure 8: The analysis results of Word 2010.

Next, in order to perform experiment, taint sources
need to be introduced. In this paper, two different ways are
adopted, respectively. For FeiQ, this paper writes the Python
script and sends UDP packets to the client on QEMU to
introduce network taint source. More precisely, the 2425 port
of the client on QEMU is employed to send UDP packets “1
lbt4 1#65664#6CF04987CC1A#570#31741#4294967295#2.5a:
1317316152: admin:XXCCLI-A10D5C26:288:AAAAAAAAA-
AAAAAAAAAAAAAAAAAAAAAAAAAAAAA”. Where-
as for Word 2010, this paper uses the POC file of CVE-2014-
1761, which is provided by CVE, as input to introduce file
taint source.

4.3.3. Results and Discussion for FeiQ. In order to verify this
method, we first use debugging tool Ollydbg to analyze the
results of FeiQ. Then, the experimental results of proposed
method are given. By comparing two results, it is possible to
verify that our method is correct and effective.

By the analysis of Ollydbg, we obtain the crash address,
which is 0x49D04E. The cause of program crash is that the
value of ECX is too large, resulting in stack overflows when
the instruction rep movsd is executed. In addition, ECX is
assigned to EAX at address 0x49D047, and the tainted value
is “4294967295” in theUDPmessage, which can be converted
to hexadecimal 0xFFFFFFFF.

In our approach, OFFDTAN can generate the trace file of
program execution, taint source log file, program vulnerabil-
ity log file, and offline analysis log file to verify experiment
objective. In this section, we only focus on taint source log
file (Table 2) and offline analysis log file (Figure 7(a)). It can
be seen from Table 2 that this method successfully marks the
UDP message, and the length of taint data is 129, which is
consistent with the length of UDP message. It can be seen
from Figure 7(a) that the address of program vulnerability
is 0x49D04E, which corresponds to the assembly instruction
repmovsd. In addition, OFFDTANanalyzes the cause of stack

Table 2: The content of taint source log file for FeiQ.

Name Content
No. 1
The head address of taint data in memory 0X11F1C4
The length of taint data 129
The offset of taint data in taint source file 0

overflows, which is that ECX is tainted. Furthermore, this
method uses backtrace analysis to analyze taint data in the
ECX derived from the UDP message whose offset is from
0x26 to 0x2F. The specific characters of UDP message is
listed in Figure 7(b). The characters, from 0x26 to 0x2F, are
“4294967295”, and their hexadecimal form is 0xFFFFFFFF,
which is consistent with the results of Ollydbg. Therefore,
we verify the correctness and effectiveness of marking taint
source and stack buffer overflows model proposed by this
method.

4.3.4. Results and Discussion for Microsoft Office Word 2010.
To verify this approach, we first analyze the vulnerability
analysis processes given by CVE. Then, the experimental
results of proposed method are given.

By the analysis of CVE, we find that the crash address of
program is 0x66E9195D. The reason for vulnerability is that
the data in thememory corresponding to the operand [𝐸𝐴𝑋+
4] of call instruction is tainted, leading to a controlled jump
when the instruction call dword[𝐸𝐴𝑋 + 4] is executed. The
jump address is [0x275A48E8].

This experiment uses the POC file of CVE-2014-1761
to analyze Microsoft Office Word 2010 and generates the
taint source log file (as shown in Figure 8(a)) and offline
analysis log file (as shown in Figure 8(b)) to verify experiment
objective.

Security and Communication Networks 11

Table 3: Program description and evaluation results.

Program Version Vulnerability Crash Address Crash Instruction Offset of Taint
Adobe Reader 9.3.4 CVE-2010-2883 0x0803DDAB call strcat 0x12C
Microsoft Office Excel 2003 CVE-2011-0104 0x300DE834 rep movs 0x300
Firefox 3.6.16 CVE-2011-0073 0x1046659B call dword ptr [ECX + 70h] 0x4A
Microsoft Office Word 2003 CVE-2012-0158 0x275C8A0A rep movs 0xA0F

Table 4: The overhead of OFFDTAN and PANDA when running FeiQ and Word.

Applications PANDA OFFDTAN
Record Time (sec.) Replay Time (sec.) CPU% Mem% Record Time (sec.) Replay Time (sec.) CPU% Mem%

FeiQ 53.67 86.09 17.4% 35.3% 47.04 69.58 12.4% 34.5%
Word 2010 74.02 127.95 18.3% 36.2% 65.92 94.81 14.6% 34.9%

As is depicted in Figure 8(a), OFFDTAN successfully
marks the POC file read by Microsoft Office Word 2010. In
Figure 8(b), OFFDTAN analyzes the vulnerability address of
Microsoft Office Word 2010, which is 0x66E9195D, and the
corresponding assembly instructions is call dword[𝐸𝐴𝑋+ 4].
It also found that the reason of program controlled jump
is that the memory address of [0x275A48E8] is tainted,
which is consistent with the analysis result provided by CVE
previously. In addition, this method uses backtrace analysis
to analyze the taint data in [0x275A48E8] derived from the
POC file of CVE-2014-1761 whose offset is 0x1D3F, 0x1D4A,
0x1D54, and from 0x1E18 to 0x1E1A. Therefore, we verify the
correctness and effectiveness of marking taint source and
controlled jump model proposed by OFFDTAN.

4.4. Further Verification. We proceed to evaluate our ap-
proach on four other applications to further verify the cor-
rectness and effectiveness of OFFDTAN. In addition, we
compared the performance overhead of this method with
other tools to verify the analysis efficiency of proposed
method.

4.4.1. Effectiveness. We analyze the security vulnerabilities of
four programs: Adobe Reader, Excel 2003, Firefox, andWord
2003. For each of these projects, our method generates the
valid description of vulnerability analysis. Table 3 provides
an overview of these results, showing the program and its
version, crash address, crash instruction, and the offset of
taint source. Moreover, the vulnerabilities are shown and
denoted by their CVE-identifiers.

In Table 3, the crash address and crash instruction are the
memory address and corresponding instruction that crashed
during program execution, respectively. The offset of taint
refers to the offset address of taint data in taint source
file.

We take the first vulnerability as an example to briefly
illustrate analysis result. We use the POC file of CVE-2010-
2883 to analyze Adobe Reader and generate taint source
log file. The result shows that the program crashed when
the instruction call strcat at 0x0803DDAB is called, and the

reason for crash is that the string length of field uniqueName
is not judged, causing stack overflows, which is consistent
with the result of CVE.Moreover, our method uses backtrace
analysis to obtain the offset of taint data in taint source file,
which is 0x12C.

4.4.2. Performance. In this experiment, we describe the
performance overheads introduced in two real applica-
tions by our approach to taint analysis and compare them
with PANDA, which is another state-of-the-art whole-
system offline taint analysis tool built onQEMU2.1.0. Similar
to OFFDTAN, PANDA also has the ability to record and
replay executions. We evaluate both tools on four items that
represent time and space overheads.

The comparison results of performance overheads are
shown in Table 4. The record time refers to the time of infor-
mation recording during program execution, and replay time
includes program simulation replay time and taint analysis
time. The CPU% and Mem% mean the percentage of CPU
and memory used during program execution, respective-
ly.

As shown in Table 4, in addition to memory usage, our
tool has improved significantly in terms of other perfor-
mance. OFFDTAN is about 1.13x faster than PANDA during
the recording, and its offline analysis is faster than PANDA
with a factor of 1.29. Overall, OFFDTAN operates about 1.23x
faster than PANDA. Besides,OFFDTAN’sCPUusage is about
24.4% smaller than PANDA, and the memory usage is 2.9%
lower than PANDA. We attribute this to the employ of KVM
acceleration on QEMU.

4.5. Experimental Summary. OFFDTAN can detect two
kinds of vulnerabilities, i.e., stack buffer overflows and con-
trolled jump, which fully validate that the two-vulnerability
model combined with offline dynamic taint analysis can
better achieve analysis effects.

In addition, whether with small program or large-scale
program, such as FeiQ and Microsoft Office Word 2010,
OFFDTAN can correctly analyze the address of program vul-
nerability, the cause of program crash, and the specific offset

12 Security and Communication Networks

of taint data within taint source file, thus ensuring that
our approach is strictly correct and effective. Compared
with PANDA, our method runs about 1.23x faster than
PANDA. Moreover, OFFDTAN enhances the automation of
vulnerability analysis as well.

5. Conclusion

The analysis efficiency of online dynamic taint analysis is a
challenging problem, which usually occupies a considerable
number of resources. In this paper, we generally eliminate this
limitation by using the research approach of offline dynamic
taint analysis, and on this point we propose OFFDTAN, an
approach of offline taint analysis for binary program, which
includes four stages: dynamic information acquisition, vul-
nerability modeling, offline analysis, and backtrace analysis.
Our evaluation shows the effectiveness and correctness of this
approach, as well as better performance.

However, OFFDTAN still has some deficiencies. First,
program path coverage heavily depends on test cases; thus
test cases will affect the accuracy of our method. Second,
our experimental verification is still not sufficient, which
needs further verification. Moreover, our approach can only
detect stack buffer overflow vulnerabilities and controlled
jump vulnerabilities. As future work, we are confident that
the similar concepts can also be applied to model other types
of vulnerabilities to adapt more scenes.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key R&D Program
of China (no. 2016QY07X1404).

References

[1] W. Shizhong, G. Tao, D. Guowei, Z. Puhan et al., Software
Vulnerability Analysis Technology,The Science PublishingCom-
pany, Beijing, China, 2014.

[2] Funnywei, “Buffer Overflow Vulnerability Mining Model
[Z/OL],” 2003, http://xcon.xfocus.net/XCon2003/archives/
Xcon2003 funnywei.pdf.

[3] F. B. Qemu and F. B. Qemu, “A Fast and Portable Dynamic
Translator,” in Proceedings of the Atec 05: Conference on Usenix
Technical Conference, 2005.

[4] N. Nethercote and J. Seward, “Valgrind: a framework for
heavyweight dynamic binary instrumentation,”ACMSIGPLAN
Notices, vol. 42, no. 6, pp. 89–100, 2007.

[5] C. K. Luk, R. Cohn, R. Muth et al., “Pin: building customized
program analysis tools with dynamic instrumentation,” Pro-
gramming Language Design & Implementation, vol. 9, no. 8, pp.
190–200, 2005.

[6] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a transpar-
ent dynamic optimization system,” SIGPLAN Notices, vol. 35,
no. 5, pp. 1–12, 2000.

[7] J. Newsome andD. Song, “Dynamic taint analysis for automatic
dedection, analysis, and signature generation of exploits on
commodity software,” Network and Distributed System Security
Symposium (NDSS), 2005.

[8] J. Clause, W. Li, and A. Orso, “Dytan: a generic dynamic taint
analysis framework,” in Proceedings of the 2007 ACM Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’07)
and PADTAD-VWorkshop, pp. 196–206, London, UK, July 2007.

[9] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu,
“LIFT: a low-overhead practical information flow tracking
system for detecting security attacks,” in Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO ’39), pp. 135–146, December 2006.

[10] M. Kang G, S. Mccamant, P. Poosankam et al., “DTA++:
dynamic taint analysis with targeted control-flow,” in Proceed-
ings of the Network and Distributed System Security Symposium
(NDSS ’11), San Diego, Calif, USA, February 2011.

[11] D. Song, D. Brumley, H. Yin et al., “A new approach to computer
security via binary analysis,” in Proceedings of the 4th Inter-
national Conference on Information Systems Security, pp. 1–25,
Springer-Verlag, 2010.

[12] A. Henderson, A. Prakash, L. K. Yan et al., “Make it work,
make it right, make it fast: building a platform-neutral whole-
system dynamic binary analysis platform,” in Proceedings of the
23rd International Symposium on Software Testing and Analysis
(ISSTA ’14), pp. 248–258, July 2014.

[13] L. Zhiquan, Study of Fuzzing for Implementation of Stateful
Network Protocol Based on Dynamic Taint Analysis, National
University of Defense Technology, 2010.

[14] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: a checksum-
aware directed fuzzing tool for automatic software vulnerability
detection,” inProceedings of the 31st IEEE Symposiumon Security
and Privacy (SP ’10), pp. 497–512, IEEE Computer Society, May
2010.

[15] Z. Jianwei, C. Libo, and F. Tian, “Type-based dynamic taint
analysis technology,” Journal of TsinghuaUniversity (Science and
Technology), vol. 10, pp. 1320–1328, 2012.

[16] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis,
“ShadowReplica: efficient parallelization of dynamic data flow
tracking,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’13), pp. 235–
246, November 2013.

[17] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and D.
Song, “HI-CFG: Construction by binary analysis and applica-
tion to attack polymorphism,” inComputer Security—ESORICS,
pp. 164–181, Springer Berlin Heidelberg, 2013.

[18] S. Manolis, P. Groth, and H. Bos, “Decoupling provenance
capture and analysis from execution,” in Proceedings of the 7th
USENIX Workshop on the Theory and Practice of Provenance
(TaPP ’15), 2015.

[19] S. Dawei and Y. Tianwei, “A dynamic taint analysis method
combined with coarse-grained and fine-grained,” Computer
Engineering, vol. 40, no. 3, pp. 12–17, 2014.

[20] W. Fuwei, Research on Taint Analysis-Oriented Binary Program
Analysis and Vulnerability Mining, Beijing University of Posts
and Telecommunications, 2015.

[21] J.-X. Ma, Z.-J. Li, T. Zhang, D. Shen, and Z.-K. Zhang, “Taint
analysis method based on offline indices of instruction trace,”
Journal of Software, vol. 28, no. 9, pp. 2388–2401, 2017.

http://xcon.xfocus.net/XCon2003/archives/Xcon2003_funnywei.pdf
http://xcon.xfocus.net/XCon2003/archives/Xcon2003_funnywei.pdf

Security and Communication Networks 13

[22] J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu, “StraightTaint:
decoupled offline symbolic taint analysis,” in Proceedings of the
31st IEEE/ACM International Conference onAutomated Software
Engineering (ASE ’16), pp. 308–319, September 2016.

[23] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan,
“Repeatable reverse engineering with PANDA,” Computer Sci-
ence, 2014.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

