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Encryption algorithm has an important application in ensuring the security of the Internet ofThings. Boolean function is the basic
component of symmetric encryption algorithm, and its many cryptographic properties are important indicators to measure the
security of cryptographic algorithm. This paper focuses on the sum-of-squares indicator of Boolean function; an upper bound and
a lower bound of the sum-of-squares on Boolean functions are obtained by the decomposition Boolean functions; some properties
and a search algorithm of Boolean functions with the same autocorrelation (or cross-correlation) distribution are given. Finally,
a construction method to obtain a balanced Boolean function with small sum-of-squares indicator is derived by decomposition
Boolean functions. Compared with the known balanced Boolean functions, the constructed functions have the higher nonlinearity
and the better global avalanche characteristics property.

1. Introduction

The Internet of Things is an important part of the new
generation of information technology and also an important
stage of information development. But the Internet ofThings
is being threatened and attacked by more and more potential
threats and attacks [1, 2]. As Internet of Things evolves, these
networks, and many others, will be connected with security
and management capabilities and so forth.

The current-time wireless sensor network is attacked by
hackers from time to time, and it has put up a new challenge
for information security. With wireless communication, low
cost, resource constraints, and so forth, current threats
include differential power analysis, kinds of keys decryption,
Trojan attacks, virus damage, and physical method.

Because of the special use of wireless sensor, the design
of key storage, distribution, and encryption or decryption
algorithm is inconvenient. Therefore, we need to be practical
and convenient for the cryptographic algorithm in resource-
constrained environment, themost basic of which is to clarify
the cryptographic properties of cryptographic components.

The scenarios used in the Internet of Things are mostly
resource-constrained, so its cryptographic algorithm requires
some hardware and software requirements, low power con-
sumption, moderate security intensity, and limited resource
area, which makes the design of such cryptographic algo-
rithm more difficult. Therefore, the research of crypto-
graphic components in cryptographic algorithm is very
important.

Symmetric cryptographic algorithm is the most widely
used in cooperative networks. Its advantage is to ensure the
confidentiality of communication data. If the algorithm is
authenticated, it can ensure the integrity of communication
data. Block cipher and stream cipher are two main design
directions. Boolean function, as the most basic and widely
used cryptographic component, has been highly studied by
scholars, for example, linear feedback shift registers (LFSR),
S-box, and MDS.

Boolean functions have many cryptographical indicators,
including balance, high nonlinearity, high algebraic degree,
resilience, propagation characteristic [3], global avalanche
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characteristic (𝐺𝐴𝐶) [4], algebraic immunity [5], and trans-
parency order [6]. Among these properties, 𝐺𝐴𝐶 can link
with other cryptographic indicators. In 1995, Zhang and
Zheng introduced the global avalanche characteristic (𝐺𝐴𝐶
[4]: the sum-of-squares indicator (𝜎𝑓), the absolute indicator
(△𝑓)) for an 𝑛-variable Boolean function 𝑓(𝑥), and they
gave the lower and the upper bounds on the two indicators.
Reference [4] implied that the smaller 𝜎𝑓 and △𝑓, the better
the 𝐺𝐴𝐶 of a Boolean function. In 1998, Son et al. [7] gave
a lower bound on these indicators for a balanced Boolean
function: 𝜎𝑓 ≥ 22𝑛 + 2𝑛+3 and △𝑓 ≥ 8(𝑛 ≥ 3). Sung et
al. [8] improved these results and provided a bound on the
sum-of-squares indicator of balanced functions satisfying the
propagation criterion with respect to 𝑡 vectors. In 2010, [9]
generalized the 𝐺𝐴𝐶 and put up a new criterion based on
the cross-correlation functions: the sum-of-squares indicator
(𝜎𝑓,𝑔) and the absolute indicator (△𝑓,𝑔) for two 𝑛-variable
Boolean functions 𝑓(𝑥), 𝑔(𝑥); they gave the lower and the
upper bounds on the two indicators. Reference [10] derived
a new bound on the sum-of-squares indicator and gave a
method to construct balanced Boolean functions with 𝑛(𝑛 ≥6) variables by the disjoint spectra functions, where 𝑛 is
an even integer, satisfying strict avalanche criterion, high
nonlinearity, and lower 𝐺𝐴𝐶.

Meanwhile, some authors gave lots of constructions of
Boolean functions with good 𝐺𝐴𝐶, Tang [11] gave a method
to construct balanced Boolean functions of 𝑛 variables, the
constructed functions possess the highest nonlinearity and
the better global avalanche characteristics (𝐺𝐴𝐶) property,
but they only obtained an upper bound of 𝐺𝐴𝐶. Reference
[12] gave a method to construct high nonlinearity Boolean
function. These constructions had not considered Boolean
functions with the same autocorrelation distributions or the
same cross-correlation distributions. If these functions have
the same autocorrelation distributions or the same cross-
correlation distributions, then these Boolean functions have
the same 𝐺𝐴𝐶 [4], the same transparency order [6], the same
nonlinearity, the same absolute value of Walsh spectrum, the
same correlation immunity, the same propagation criterion,
and so forth. Thus, this paper will construct a Boolean
function with small 𝐺𝐴𝐶, and we give some relationships of
the sum-of-squares indicator between an 𝑛-variable Boolean
function and four (𝑛 − 2)−variable decomposition Boolean
functions; the relationships are based on construction on
Boolean functions with good global avalanche characteris-
tics.

Based on the above consideration, we study the following
questions:

(1)What is a clear characterization of four (𝑛−2)-variable
decomposition functions, if the sum-of-squares indicator
of an 𝑛-variable Boolean function is lower? This study
provides theoretical support for the security of lightweight
dynamic cryptographic algorithms in the Internet of
Things.

(2) What are the cross-correlation properties of any
two Boolean functions, if Boolean functions have the same
autocorrelation distribution? This research lays a foundation
for lightweight dynamic cryptographic algorithms in the
Internet of Things.

(3)How to construct a Boolean function with good global
avalanche characteristics. This study provides some algo-
rithm component for the lightweight dynamic cryptographic
algorithms in the Internet of Things.

The rest of this paper is organized as follows: Section 2
introduces some basic definitions. In Section 3, an upper
bound on the sum-of-squares indicator of 𝑛-variable Boolean
function by using four decomposition (𝑛 − 2)-variable
Boolean functions is given. Section 4 gives some properties
of a Boolean function with the upper bound on the sum-of-
squares indicator. In Section 5, we give a construction of one
Boolean function with small sum-of-squares indicator by the
disjoint spectrum method. Finally, Section 6 concludes this
paper.

2. Preliminaries

Let B𝑛 denote the set of 𝑛 variables Boolean functions. We
denote by ⊕ the additions in F2, in F𝑛2 , and in B𝑛. Every
Boolean function 𝑓(𝑥) ∈ B𝑛 admits a unique representation
called its algebraic normal form (𝐴𝑁𝐹) as a polynomial over
F2:

𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑎0 ⊕ ⨁
1≤𝑖≤𝑛

𝑎𝑖𝑥𝑖 ⊕ ⨁
1≤𝑖<𝑗≤𝑛

𝑎𝑖,𝑗𝑥𝑖𝑥𝑗 ⊕ ⋅ ⋅ ⋅
⊕ 𝑎1,...,𝑛𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛

(1)

where the coefficients 𝑎0, 𝑎𝑖, 𝑎𝑖,𝑗, . . . , 𝑎1,...,𝑛 ∈ F2. The algebraic
degree, deg(𝑓), is the number of variables in the highest-
order termwith nonzero coefficient.The support of a Boolean
function 𝑓(𝑥) ∈ B𝑛 is defined as Supp(𝑓) = {(𝑥1, . . . , 𝑥𝑛) |𝑓(𝑥1, . . . , 𝑥𝑛) = 1}. We say that a Boolean function 𝑓(𝑥)
is balanced if its truth table contains an equal number of
ones and zeros, that is, if its Hamming weight equals 2𝑛−1.
A Boolean function is affine if there exists no term of degree> 1 in the 𝐴𝑁𝐹 and the set of all affine functions is denoted
by A𝑛. An affine function with constant term equal to zero is
called a linear function.

Definition 1. TheWalsh spectrum of 𝑓(𝑥) ∈ B𝑛 is defined as

F (𝑓 ⊕ 𝜑𝛼) = ∑
𝑥∈F𝑛2

(−1)𝑓(𝑥)⊕𝛼𝑥 , (2)

where 𝜑𝛼 = 𝛼𝑥 = 𝛼1𝑥1 ⊕ 𝛼2𝑥2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝛼𝑛𝑥𝑛.
Definition 2. The cross-correlation function between𝑓(𝑥), 𝑔(𝑥) ∈ B𝑛 is defined as

△𝑓,𝑔 (𝛼) = ∑
𝑥∈F𝑛2

(−1)𝑓(𝑥)⊕𝑔(𝑥⊕𝛼) , 𝛼 ∈ F
𝑛
2 . (3)

If 𝑓(𝑥) = 𝑔(𝑥), then△𝑓(𝛼) = ∑𝑥∈F𝑛2 (−1)𝑓(𝑥)⊕𝑓(𝑥⊕𝛼).
Two 𝑛-variable Boolean functions 𝑓(𝑥), 𝑔(𝑥) are called to

be perfectly uncorrelated if△𝑓,𝑔(𝛼) = 0 for all 𝛼 ∈ F𝑛2 and are
called to be uncorrelated of degree 𝑘 if △𝑓,𝑔(𝛼) = 0 for all𝛼 ∈ F𝑛2 such that 0 ≤ 𝑤𝑡(𝛼) ≤ 𝑘.
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Definition 3 (see [9]). Let 𝑓(𝑥), 𝑔(𝑥) ∈ B𝑛; the sum-of-
squares indicator of the cross-correlation between 𝑓(𝑥) and𝑔(𝑥) is defined as

𝜎𝑓,𝑔 = ∑
𝛼∈F𝑛2

△2𝑓,𝑔 (𝛼) ; (4)

the absolute indicator of the cross-correlation between 𝑓(𝑥)
and 𝑔(𝑥) is defined as

△𝑓,𝑔 = max
𝛼∈F𝑛2

󵄨󵄨󵄨󵄨󵄨△𝑓,𝑔 (𝛼)󵄨󵄨󵄨󵄨󵄨 . (5)

The above indicators are called the global avalanche
characteristics between two Boolean functions. If 𝑓(𝑥) =𝑔(𝑥), then

𝜎𝑓 = ∑
𝛼∈F𝑛2

△2𝑓 (𝛼) ,
△𝑓 = max

𝛼∈F𝑛2 ,𝑤𝑡(𝛼)≠0𝑛
󵄨󵄨󵄨󵄨󵄨△𝑓 (𝛼)󵄨󵄨󵄨󵄨󵄨 ,

(6)

and the two indicators are the global avalanche characteristics
of Boolean functions (𝐺𝐴𝐶 [4]).

In order to study cross-correlation distributions between
any two Boolean functions, we need the following definition.

Definition 4 (see [13]). Let 𝑓(𝑥), 𝑔(𝑥) ∈ B𝑛. If 𝐷𝑎(𝑓, 𝑔) :𝑥 󳨃󳨀→ 𝑓(𝑥) ⊕ 𝑔(𝑥 ⊕ 𝑎) is constant, 𝑎 is said to be a𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 of 𝑓 and 𝑔. For convenience, let
𝑈0𝑓,𝑔 = {𝑎 ∈ F

𝑛
2 | 𝑓 (𝑥) ⊕ 𝑔 (𝑥 ⊕ 𝑎) = 0, ∀𝑥 ∈ F

𝑛
2 } ;

𝑈1𝑓,𝑔 = {𝑎 ∈ F
𝑛
2 | 𝑓 (𝑥) ⊕ 𝑔 (𝑥 ⊕ 𝑎) = 1, ∀𝑥 ∈ F

𝑛
2 } ; (7)

if 0𝑛 ∈ 𝑈𝑓,𝑔, it is easy to know that 𝑈0𝑓,𝑔 and 𝑈𝑓,𝑔 = 𝑈0𝑓,𝑔 ∪𝑈1𝑓,𝑔 are linear subspaces of F𝑛2 .
In Definition 4, if 𝑓(𝑥) = 𝑔(𝑥), then 𝑈0𝑓 = {𝑎 ∈ F𝑛2 |𝑓(𝑥) ⊕ 𝑓(𝑥 ⊕ 𝑎) = 0, ∀𝑥 ∈ F𝑛2 }; 𝑈1𝑓 = {𝑎 ∈ F𝑛2 | 𝑓(𝑥) ⊕ 𝑓(𝑥 ⊕𝑎) = 1, ∀𝑥 ∈ F𝑛2 }.𝑈0𝑓 and 𝑈𝑓 = 𝑈0𝑓 ∪ 𝑈1𝑓 are linear subspaces

of F𝑛2 .
In [13], the authors obtained some properties of any

two Boolean functions with the same autocorrelation dis-
tribution; let 𝑇𝑛(𝑓) and 𝑇𝑛×𝑛(𝑓, 𝑔) be functions set with the
same autocorrelation distribution and the cross-correlation
distribution of given 𝑓(𝑥), 𝑔(𝑥) ∈ B𝑛, respectively:

𝑇𝑛 (𝑓) = {𝑔 (𝑥) ∈ B𝑛 | △𝑔 (𝛼𝑖) = △𝑓 (𝛼𝑖) , ∀𝛼𝑖
∈ F
𝑛
2 (0 ≤ 𝑖 ≤ 2𝑛 − 1) , 𝑓 (𝑥) ∈ B𝑛} . (8)

And

𝑇𝑛×𝑛 (𝑓, 𝑔) = {(𝑟 (𝑥) , 𝑡 (𝑥)) ∈ B𝑛 × B𝑛 | (△𝑟,𝑡 (𝛼)
= △𝑓,𝑔 (𝛼) , ∀𝛼𝑖
∈ F
𝑛
2 (0 ≤ 𝑖 ≤ 2𝑛 − 1) , 𝑓 (𝑥) , 𝑔 (𝑥) ∈ B𝑛} .

(9)

We denote a Boolean function 𝑓(𝑥) ∈ B𝑛 by 𝑓 = 𝑓0×20 + 𝑓1 × 21 + ⋅ ⋅ ⋅ + 𝑓2𝑛−1 × (22𝑛−1). For example,
taking 𝑛 = 3, the Boolean function with truth table(𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7) = (1, 0, 0, 0, 1, 1, 0, 1) is written as𝑓 = 177.

Denote 0𝑛 = (0, 0, . . . , 0) ∈ F𝑛2 in this paper.

3. The Upper Bound on the
Sum-of-Squares between an 𝑛-Variables
Boolean Function and (𝑛−2)-Variable
Decomposition Functions

In this section, we give an expression for the sum-of-squares
indicator of an 𝑛-variable Boolean function. This result is
important to the following sections.

In order to give the relationship of the sum-of-squares
indicator between one Boolean function and four decompo-
sition Boolean functions, we need the following Lemma 5.

Lemma 5 (see [13]). Let ℎ(𝑥), 𝑔(𝑥) ∈ B𝑛. Then

∑
𝛼∈F𝑛2

△ℎ (𝛼)△𝑔 (𝛼) = ∑
𝑒∈F𝑛2

△2ℎ,𝑔 (𝑒) = 𝜎ℎ,𝑔. (10)

Lemma 5 gave a relationship between autocorrelation
functions and cross-correlation functions. Reference [14]
gives the relationship between the sum-of-squares indicator
on an 𝑛-variable Boolean function and four decomposition(𝑛 − 2)-variable Boolean functions in the following.

Lemma 6 (see [14]). Let 𝑓(𝑥𝑛, 𝑥𝑛−1, 𝑥) = (𝑥𝑛 ⊕ 1)(𝑥𝑛−1 ⊕1)𝑓1(𝑥)⊕(𝑥𝑛⊕1)𝑥𝑛−1𝑓2(𝑥)⊕𝑥𝑛(𝑥𝑛−1⊕1)𝑓3(𝑥)⊕𝑥𝑛𝑥𝑛−1𝑓4(𝑥);𝑥𝑛, 𝑥𝑛−1 ∈ F2, 𝑥 ∈ F𝑛−22 . Then

𝜎𝑓
= 𝜎𝑓1 + 𝜎𝑓2 + 𝜎𝑓3 + 𝜎𝑓4
+ 6 [𝜎𝑓1 ,𝑓2 + 𝜎𝑓3 ,𝑓4 + 𝜎𝑓1 ,𝑓3 + 𝜎𝑓2 ,𝑓4 + 𝜎𝑓1 ,𝑓4 + 𝜎𝑓2 ,𝑓3]
+ 8 ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓2 (𝛼)△𝑓3 ,𝑓4 (𝛼)
+ 8 ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓3 (𝛼)△𝑓2 ,𝑓4 (𝛼)
+ 8 ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓4 (𝛼)△𝑓2 ,𝑓3 (𝛼) .

(11)

Based on Lemmas 5 and 6, we have the upper bound on 𝜎𝑓
for any 𝑛-variable Boolean function 𝑓(𝑥) ∈ B𝑛.

Theorem 7. Let 𝑓(𝑥𝑛, 𝑥𝑛−1, 𝑥) = (𝑥𝑛 ⊕ 1)(𝑥𝑛−1 ⊕ 1)𝑓1(𝑥) ⊕(𝑥𝑛⊕1)𝑥𝑛−1𝑓2(𝑥)⊕𝑥𝑛(𝑥𝑛−1⊕1)𝑓3(𝑥)⊕𝑥𝑛𝑥𝑛−1𝑓4(𝑥); 𝑥𝑛, 𝑥𝑛−1 ∈
F2, 𝑥 ∈ F𝑛−22 . Then

𝜎𝑓
≤ ∑
1≤𝑖≤4

𝜎𝑓𝑖 + 6 ∑
1≤𝑖<𝑗≤4

𝜎𝑓𝑖,𝑓𝑗
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+ 8 [√𝜎𝑓1 ,𝑓2𝜎𝑓3 ,𝑓4 + √𝜎𝑓1 ,𝑓3𝜎𝑓2 ,𝑓4 + √𝜎𝑓1 ,𝑓4𝜎𝑓2 ,𝑓3] ,
(12)

with the equality holding if and only if △𝑓1 ,𝑓2(𝛼) = △𝑓3,𝑓4(𝛼),△𝑓1 ,𝑓3(𝛼) = △𝑓2 ,𝑓4(𝛼), and △𝑓1 ,𝑓4(𝛼) = △𝑓2 ,𝑓3(𝛼) for any 𝛼 ∈
F𝑛−22 .

Proof. Note that, for any 𝑎𝑖, 𝑏𝑖, Cauchy inequality holds:
𝑛∑
𝑖=1

𝑎𝑖𝑏𝑖 ≤ ( 𝑛∑
𝑖=1

𝑎2𝑖 )
1/2 ( 𝑛∑
𝑖=1

𝑏2𝑖 )
1/2 , (13)

with equality holding if and only if 𝑎𝑖 = 𝑏𝑖 for any 𝑖 (1 ≤ 𝑖 ≤ 𝑛).
Thus, based on Definition 3, we have

∑
𝛼∈F𝑛−22

△𝑓1,𝑓2 (𝛼)△𝑓3 ,𝑓4 (𝛼)

≤ ( ∑
𝛼∈F𝑛−22

△2𝑓1 ,𝑓2 (𝛼) ∑
𝛼∈F𝑛−22

△2𝑓3 ,𝑓4 (𝛼))
1/2

= √𝜎𝑓1 ,𝑓2𝜎𝑓3 ,𝑓4 ,
∑
𝛼∈F𝑛−22

△𝑓1,𝑓3 (𝛼)△𝑓2 ,𝑓4 (𝛼)

≤ ( ∑
𝛼∈F𝑛−22

△2𝑓1 ,𝑓3 (𝛼) ∑
𝛼∈F𝑛−22

△2𝑓2 ,𝑓4 (𝛼))
1/2

= √𝜎𝑓1 ,𝑓3𝜎𝑓2 ,𝑓4 ,
∑
𝛼∈F𝑛−22

△𝑓1,𝑓4 (𝛼)△𝑓2 ,𝑓3 (𝛼)

≤ ( ∑
𝛼∈F𝑛−22

△2𝑓1 ,𝑓4 (𝛼) ∑
𝛼∈F𝑛−22

△2𝑓2 ,𝑓3 (𝛼))
1/2

= √𝜎𝑓1 ,𝑓4𝜎𝑓2 ,𝑓3 .

(14)

This result is proven.

Reference [15] gave the relationship between 𝜎𝑓,𝑔 and𝜎𝑓, 𝜎𝑔 for any Boolean function 𝑓, 𝑔 ∈ B𝑛.

Lemma8 (see [15]). Let𝑓(𝑥), 𝑔(𝑥) ∈ B𝑛.Then𝜎𝑓,𝑔 ≤ √𝜎𝑓𝜎𝑔;
the equality holds if and only if |F(𝑓 ⊕ 𝜑𝛼)| = |F(𝑔 ⊕ 𝜑𝛼)| for
all 𝛼 ∈ F𝑛2 or if and only if△𝑓(𝛼) = △𝑔(𝛼) for all 𝛼 ∈ F𝑛2 .

Furthermore, according to Lemma 8 and Theorem 7, we
have the following theorem.

Theorem 9. Let 𝑓(𝑥𝑛, 𝑥𝑛−1, 𝑥) = (𝑥𝑛 ⊕ 1)(𝑥𝑛−1 ⊕ 1)𝑓1(𝑥) ⊕(𝑥𝑛⊕1)𝑥𝑛−1𝑓2(𝑥)⊕𝑥𝑛(𝑥𝑛−1⊕1)𝑓3(𝑥)⊕𝑥𝑛𝑥𝑛−1𝑓4(𝑥); 𝑥𝑛, 𝑥𝑛−1 ∈
F2, 𝑥 ∈ F𝑛−22 . Then

22𝑛 ≤ 𝜎𝑓
≤ ∑
1≤𝑖≤4

𝜎𝑓𝑖 + 6 ∑
1≤𝑖<𝑗≤4

√𝜎𝑓𝑖𝜎𝑓𝑗
+ 24 (𝜎𝑓1𝜎𝑓2𝜎𝑓3𝜎𝑓4)1/4 ,

(15)

and, furthermore, we have the following:
(1) The right equality holds if and only if the two following

conditions are satisfied:
(⋆)△𝑓1(𝛼) = △𝑓2(𝛼) = △𝑓3(𝛼) = △𝑓4(𝛼) for all 𝛼 ∈ F𝑛−22 ;
(⋆⋆) △𝑓1,𝑓2(𝛼) = △𝑓3 ,𝑓4(𝛼), △𝑓1 ,𝑓3(𝛼) = △𝑓2 ,𝑓4(𝛼), and△𝑓1 ,𝑓4(𝛼) = △𝑓2 ,𝑓3(𝛼) for any 𝛼 ∈ F𝑛−22 .
(2)The left equality holds if and only if𝑓 is a bent function.

Remark 10. By Theorem 9, we know that 𝜎𝑓 = 𝜎𝑓1 + 𝜎𝑓2 +𝜎𝑓3 + 𝜎𝑓4 if and only if 𝑓𝑖 and 𝑓𝑗 (1 ≤ 𝑖 ̸= 𝑗 ≤ 4) are perfectly
uncorrelated functions. The lower bound is easy reached; it
is because we can find that 𝑓𝑖 and 𝑓𝑗 (1 ≤ 𝑖 ̸= 𝑗 ≤ 4)
are perfectly uncorrelated functions. For example, let 𝑓(𝑥) =𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ B4 be a bent function and

𝑓1 (𝑥, 𝑥5, 𝑥6, 𝑥7, 𝑥8) = 𝑓 (𝑥) ⊕ 𝑥5,
𝑓2 (𝑥, 𝑥5, 𝑥6, 𝑥7, 𝑥8) = 𝑓 (𝑥) ⊕ 𝑥6,
𝑓3 (𝑥, 𝑥5, 𝑥6, 𝑥7, 𝑥8) = 𝑓 (𝑥) ⊕ 𝑥7,
𝑓4 (𝑥, 𝑥5, 𝑥6, 𝑥7, 𝑥8) = 𝑓 (𝑥) ⊕ 𝑥8,

(16)

and then any two Boolean functions among 𝑓1, 𝑓2, 𝑓3, 𝑓4
are perfectly uncorrelated functions, and for every function𝑓𝑖(𝑥) (𝑖 = 1, 2, 3, 4) we have

F (𝑓𝑖 ⊕ 𝜑𝛼) = {{{
0, 240 𝑡𝑖𝑚𝑒𝑠;
±26, 16 𝑡𝑖𝑚𝑒𝑠. (17)

Thus, 𝜎𝑓𝑖 = 220. If 𝐹(𝑥, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10) = (𝑥9 ⊕ 1)(𝑥10 ⊕1)𝑓1 ⊕ (𝑥9 ⊕ 1)𝑥10𝑓2 ⊕ 𝑥9(𝑥10 ⊕ 1)𝑓3 ⊕ 𝑥9𝑥10𝑓4, then 𝜎𝐹 =𝜎𝑓1 + 𝜎𝑓2 + 𝜎𝑓3 + 𝜎𝑓4 = 4 × 220 = 224; the lower bound can be
reached.

Summary 1. Theorem 9 provides theoretical support
for encryption algorithm, especially for the security of
lightweight dynamic cryptographic algorithms in the
Internet of Things [2].

4. Some Properties of Conditions (⋆) and (⋆⋆)
Theorem 9 induces an important problem: does there exist
a (𝑓1, 𝑓2, 𝑓3, 𝑓4)-pair satisfying conditions (⋆) and (⋆⋆)? We
will analyze this question. We need the following lemma.

Lemma 11. Let 𝑓(𝑥), 𝑔(𝑥), ℎ(𝑥) ∈ B𝑛.
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(1) For any 𝛼 ∈ F𝑛2 ,△𝑓(𝛼) = △𝑓,𝑔(𝛼) if and only if 𝑓(𝑥) =𝑔(𝑥).
(2) For any 𝛼 ∈ F𝑛2 , △𝑓(𝛼) = △𝑔,ℎ(𝛼); then 𝑔(𝑥) = ℎ(𝑥);

furthermore, △𝑓(𝛼) = △𝑔(𝛼) = △ℎ(𝛼) for any 𝛼 ∈ F𝑛2 .
(3) For any 𝛼 ∈ F𝑛2 , △𝑓,𝑔(𝛼) = △𝑓,ℎ(𝛼) and △𝑓(𝛼) =△𝑔(𝛼) = △ℎ(𝛼); then 𝑔(𝑥) = ℎ(𝑥).

Proof. (1) According to the relationship between the cross-
correlation function and theWalsh spectrum for𝑓(𝑥), 𝑔(𝑥) ∈
B𝑛, for any 𝛼 ∈ F𝑛2 , we have

△𝑓,𝑔 (𝛼) = 12𝑛 ∑
𝜔∈F𝑛2

(−1)𝜔⋅𝛼F (𝑓 ⊕ 𝜑𝜔)F (𝑔 ⊕ 𝜑𝜔) . (18)

Onone hand, since△𝑓(𝛼) = △𝑓,𝑔(𝛼) for any𝛼 ∈ F𝑛2 , if𝛼 = 0𝑛,
we have

2𝑛 = △𝑓 (0𝑛) = △𝑓,𝑔 (0𝑛)
= 12𝑛 ∑
𝜔∈F𝑛2

F (𝑓 ⊕ 𝜑𝜔)F (𝑔 ⊕ 𝜑𝜔) (19)

Thus

∑
𝜔∈F𝑛2

F (𝑓 ⊕ 𝜑𝜔)F (𝑔 ⊕ 𝜑𝜔) = 22𝑛. (20)

Finally, by Parseval equality and (20), we have

∑
𝜔∈F𝑛2

[F (𝑓 ⊕ 𝜑𝜔) −F (𝑔 ⊕ 𝜑𝜔)]2 = ∑
𝜔∈F𝑛2

F
2 (𝑓 ⊕ 𝜑𝜔)

+ ∑
𝜔∈F𝑛2

F
2 (𝑔 ⊕ 𝜑𝜔)

= −2 ∑
𝜔∈F𝑛2

F (𝑓 ⊕ 𝜑𝜔)F (𝑔 ⊕ 𝜑𝜔)
0 = 22𝑛 + 22𝑛 − 2 × 22𝑛

(21)

The above equationholds if and only ifF(𝑓⊕𝜑𝜔 ) = F(𝑔⊕𝜑𝜔)
for any 𝛼 ∈ F𝑛2 , if and only if 𝑓(𝑥) = 𝑔(𝑥).

On the other hand, if 𝑓(𝑥) = 𝑔(𝑥), then△𝑓(𝛼) = △𝑓,𝑔(𝛼)
for any 𝛼 ∈ F𝑛2 .

(2) By the samemethod with (1), this result can be proven.

(3) On one hand, according to△𝑓,𝑔(𝛼) = △𝑓,ℎ(𝛼) for any𝛼 ∈ F𝑛2 , we have

0 = ∑
𝛼∈F𝑛2

[△𝑓,𝑔 (𝛼) − △𝑓,ℎ (𝛼)]2
= ∑
𝛼∈F𝑛2

△2𝑓,𝑔 (𝛼) + ∑
𝛼∈F𝑛2

△2𝑓,ℎ (𝛼)
− 2 ∑
𝛼∈F𝑛2

△𝑓,𝑔 (𝛼)△𝑓,ℎ (𝛼)
= ∑
𝛼∈F𝑛2

△𝑓,𝑔 (𝛼)△𝑓,𝑔 (𝛼) + ∑
𝛼∈F𝑛2

△𝑓,ℎ (𝛼)△𝑓,ℎ (𝛼)
− 2 ∑
𝛼∈F𝑛2

△𝑓,𝑓 (𝛼)△𝑔,ℎ (𝛼)
= ∑
𝛼∈F𝑛2

△𝑓,𝑓 (𝛼)△𝑔,𝑔 (𝛼) + ∑
𝛼∈F𝑛2

△𝑓,𝑓 (𝛼)△ℎ,ℎ (𝛼)
− 2 ∑
𝛼∈F𝑛2

△𝑓,𝑓 (𝛼)△𝑔,ℎ (𝛼)
= ∑
𝛼∈F𝑛2

△2𝑓 (𝛼) + ∑
𝛼∈F𝑛2

△2𝑓 (𝛼) − 2 ∑
𝛼∈F𝑛2

△𝑓 (𝛼)△𝑔,ℎ (𝛼)
= 2(𝜎𝑓 − ∑

𝛼∈F𝑛2

△𝑓 (𝛼)△𝑔,ℎ (𝛼)) .

(22)

On the other hand, by the same method and combining the
above equality, we have

∑
𝛼∈F𝑛2

[△𝑓,𝑓 (𝛼) − △𝑔,ℎ (𝛼)]2

= 2(𝜎𝑓 − ∑
𝛼∈F𝑛2

△𝑓 (𝛼)△𝑔,ℎ (𝛼)) = 0, (23)

and it implies that △𝑓(𝛼) = △𝑔,ℎ(𝛼) for any 𝛼 ∈ F𝑛2 .
According to (2), we have 𝑔(𝑥) = ℎ(𝑥).
Theorem 12. Let 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥) ∈ B𝑛−2 satisfy
conditions (⋆) and (⋆⋆); then

𝜎𝑓1 = 𝜎𝑓2 = 𝜎𝑓3 = 𝜎𝑓4 = 𝜎𝑓1 ,𝑓2 = 𝜎𝑓1 ,𝑓3 = 𝜎𝑓1 ,𝑓4
= 𝜎𝑓2 ,𝑓3 = 𝜎𝑓2 ,𝑓4 = 𝜎𝑓3 ,𝑓4 . (24)

Proof. According to condition (⋆) and Lemma 5, we have

𝜎𝑓1 = 𝜎𝑓2 = ∑
𝛼∈F𝑛−22

△𝑓1 (𝛼)△𝑓1 (𝛼)
= ∑
𝛼∈F𝑛−22

△𝑓1 (𝛼)△𝑓2 (𝛼) = ∑
𝛼∈F𝑛−22

△2𝑓1 ,𝑓2 = 𝜎𝑓1 ,𝑓2 . (25)
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Table 1: The autocorrelation value distributions of 3-variable Boolean functions [13].

𝐴𝐶𝐷 𝑓(𝑥) ∈ B3 LS
Class 0 (8,8,8,8,8,8,8,8) 0,255 3
Class 1 (8,8,0,0,0,0,0,0) 192,48,12,252,3,243,207,63 1
Class 2 (8,0,8,0,0,0,0,0) 160,80,10,250,5,245,175,95 1
Class 3 (8,0,0,8,0,0,0,0) 96,144,6,246,9,249,111,159 1
Class 4 (8,0,0,0,8,0,0,0) 136,68,34,238,17,221,187,119 1
Class 5 (8,0,0,0,0,8,0,0) 72,132,18,222,33,237,123,183 1
Class 6 (8,0,0,0,0,0,8,0) 40,20,130,190,65,125,235,215 1
Class 7 (8,0,0,0,0,0,0,8) 24,36,66,126,129,189,219,231 1
Class 8 (8,4,4,4,4,4,4,4) 1,2,4,8,16,32,64,128,254,253,251,247,239,223,191,127 0
Class 9 (8,4,4,4,-4,-4,-4,-4) 224,208,176,112,248,244,242,14,241,13,11,7,143,79,47,31 0
Class 10 (8,4,-4,-4,4,4,-4,-4) 200,196,140,76,236,220,50,206,49,205,35,19,179,115,59,55 0
Class 11 (8,-4,4,-4,4,-4,4,-4) 168,84,162,138,42,234,186,174,81,69,21,213,117,93,171,87 0
Class 12 (8,-4,-4,4,-4,4,4,-4) 104,148,146,134,22,214,182,158,97,73,41,233,121,109,107,151 0
Class 13 (8,-4,-4,4,4,-4,-4,4) 152,100,98,70,38,230,118,110,145,137,25,217,185,157,155,103 0
Class 14 (8,-4,4,-4,-4,4,-4,4) 88,164,82,74,26,218,122,94,161,133,37,229,181,173,91,167 0
Class 15 (8,4,-4,-4,-4,-4,4,4) 56,52,44,28,188,124,194,62,193,61,131,67,227,211,203,199 0
Class 16 (8,0,0,0,0,-8,0,0) 116,139,184,71,226,29,46,209 1
Class 17 (8,0,0,0,-8,0,0,0) 120,180,210,30,225,45,75,135 1
Class 18 (8,0,0,0,0,0,-8,0) 228,216,114,78,177,141,27,39 1
Class 19 (8,0,0,0,0,0,0,-8) 212,178,142,113,77,43,23,232 1
Class 20 (8,0,0,-8,0,0,0,0) 172,92,202,58,197,53,163,83 1
Class 21 (8,0,-8,0,0,0,0,0) 108,156,198,54,201,57,99,147 1
Class 22 (8,-8,0,0,0,0,0,0) 106,154,166,86,169,89,149,101 1
Class 23 (8,8,8,8,-8,-8,-8,-8) 240,15 3
Class 24 (8,8,-8,-8,8,8,-8,-8) 204,51 3
Class 25 (8,8,-8,-8,-8,-8,8,8) 60,195 3
Class 26 (8,-8,8,-8,8,-8,8,-8) 170,85 3
Class 27 (8,-8,8,-8,-8,8,-8,8) 90,165 3
Class 28 (8,-8,-8,8,8,-8,-8,8) 102,153 3
Class 29 (8,-8,-8,8,-8,8,8,-8) 150,105 3

By the same method, we have

𝜎𝑓1 = 𝜎𝑓3 = 𝜎𝑓1 ,𝑓3 ;
𝜎𝑓1 = 𝜎𝑓4 = 𝜎𝑓1 ,𝑓4 ;
𝜎𝑓2 = 𝜎𝑓3 = 𝜎𝑓2 ,𝑓3 ;
𝜎𝑓2 = 𝜎𝑓4 = 𝜎𝑓2 ,𝑓4 ;
𝜎𝑓3 = 𝜎𝑓4 = 𝜎𝑓3 ,𝑓4 .

(26)

Based on condition (⋆⋆), we have
𝜎𝑓1 ,𝑓2 = 𝜎𝑓3 ,𝑓4 ,
𝜎𝑓1 ,𝑓3 = 𝜎𝑓2 ,𝑓4 ,
𝜎𝑓1 ,𝑓4 = 𝜎𝑓2 ,𝑓3 ,

(27)

𝜎𝑓2 ,𝑓3 = 𝜎𝑓1 ,𝑓4 . (28)

Based on (26) and (27), we complete this proof.

Theorem 13. Let 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥) ∈ B𝑛−2 satisfy the
following conditions:

(1)△𝑓1(𝛼) = △𝑓2(𝛼) = △𝑓3(𝛼) = △𝑓4(𝛼) for any 𝛼 ∈ F𝑛−22 .
(2)△𝑓1 ,𝑓2(𝛼) = △𝑓3 ,𝑓4(𝛼) for any 𝛼 ∈ F𝑛−22 .
Then △𝑓1,𝑓3(𝛼) = △𝑓2 ,𝑓4(𝛼) and △𝑓1 ,𝑓4(𝛼) = △𝑓2 ,𝑓3(𝛼) for

any 𝛼 ∈ F𝑛−22 .

Proof. According to (27), we know that 𝜎𝑓1 ,𝑓2 = 𝜎𝑓3 ,𝑓4 . Note
that we also have

0 = ∑
𝛼∈F𝑛−22

[△𝑓1,𝑓2 (𝛼) − △𝑓3 ,𝑓4 (𝛼)]2
= ∑
𝛼∈F𝑛−22

△2𝑓1,𝑓2 (𝛼) + ∑
𝛼∈F𝑛−22

△2𝑓3 ,𝑓4 (𝛼)
− 2 ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓2 (𝛼)△𝑓3,𝑓4 (𝛼)
= ∑
𝛼∈F𝑛−22

△𝑓1,𝑓2 (𝛼)△𝑓1 ,𝑓2 (𝛼) − 2 ∑
𝛼∈F𝑛−22

△2𝑓1 ,𝑓2 (𝛼)
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Table 2: The cross-correlation value distributions of Class 22.

𝐶𝐶𝐷 𝑓(𝑥) ∈ B3 𝐿𝑆
Class 22-1 (0,0,8,-8,0,0,0,0) (106,154);(86,89);(166,169);(149,101) 0
Class 22-2 (0,0,0,0,8,-8,0,0) (106,166);(86,101);(89,149);(154,169) 0
Class 22-3 (0,0,0,0,0,0,-8,8) (106,86);(154,89);(166,101);(169,149) 0
Class 22-4 (0,0,0,0,0,0,8,-8) (106,169);(154,166);(86,149);(89,101) 0
Class 22-5 (0,0,0,0,-8,8,0,0) (106,89);(154,86);(166,149);(169,101) 0
Class 22-6 (-8,8,0,0,0,0,0,0) (106,149);(154,101);(166,89);(86,169) 1
Class 22-7 (0,0,-8,8,0,0,0,0) (106,101);(154,149);(166,86);(169,89) 0

+ ∑
𝛼∈F𝑛−22

△𝑓3 ,𝑓4 (𝛼)△𝑓3 ,𝑓4 (𝛼)
= ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓1 (𝛼)△𝑓2 ,𝑓2 (𝛼) − 2𝜎𝑓1 ,𝑓2
+ ∑
𝛼∈F𝑛−22

△𝑓3 ,𝑓3 (𝛼)△𝑓4 ,𝑓4 (𝛼)
= ∑
𝛼∈F𝑛−22

△𝑓1 (𝛼)△𝑓2 (𝛼) − 2𝜎𝑓1 ,𝑓2
+ ∑
𝛼∈F𝑛−22

△𝑓3 (𝛼)△𝑓4 (𝛼) = 2𝜎𝑓1 − 2𝜎𝑓1 ,𝑓2 ,
(29)

and it implies that 𝜎𝑓1 = 𝜎𝑓1 ,𝑓2 . Based on this result, we have

∑
𝛼∈F𝑛−22

[△𝑓1 ,𝑓3 (𝛼) − △𝑓2 ,𝑓4 (𝛼)]2
= ∑
𝛼∈F𝑛−22

△2𝑓1 ,𝑓3 (𝛼) + ∑
𝛼∈F𝑛−22

△2𝑓2 ,𝑓4 (𝛼)
− 2 ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓3 (𝛼)△𝑓2 ,𝑓4 (𝛼)
= ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓3 (𝛼)△𝑓1 ,𝑓3 (𝛼)
+ ∑
𝛼∈F𝑛−22

△𝑓2 ,𝑓4 (𝛼)△𝑓2 ,𝑓4 (𝛼)
− 2 ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓3 (𝛼)△𝑓2 ,𝑓4 (𝛼)
= ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓1 (𝛼)△𝑓3 ,𝑓3 (𝛼)
+ ∑
𝛼∈F𝑛−22

△𝑓2 ,𝑓2 (𝛼)△𝑓4 ,𝑓4 (𝛼)

− 2 ∑
𝛼∈F𝑛−22

△𝑓1,𝑓2 (𝛼)△𝑓3 ,𝑓4 (𝛼)
= ∑
𝛼∈F𝑛−22

△𝑓1 (𝛼)△𝑓3 (𝛼) − 2𝜎𝑓1 ,𝑓2
+ ∑
𝛼∈F𝑛−2
2

△𝑓2 (𝛼)△𝑓4 (𝛼) = 2𝜎𝑓1 − 2𝜎𝑓1 ,𝑓2 = 0.
(30)

It implies that △𝑓1 ,𝑓3(𝛼) = △𝑓2,𝑓4(𝛼) for any 𝛼 ∈ F𝑛−22 .
By the same method, we have △𝑓1,𝑓4(𝛼) = △𝑓2 ,𝑓3(𝛼) for

any 𝛼 ∈ F𝑛−22 .

Based onTheorem 13, we have the following.

Corollary 14. Let 𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥) ∈ B𝑛−2. Condi-
tions (⋆) and (⋆⋆) are equivalent to the following:

(a)△𝑓1(𝛼) = △𝑓2(𝛼) = △𝑓3(𝛼) = △𝑓4(𝛼) for any𝛼 ∈ F𝑛−22 ;
(b)△𝑓1 ,𝑓2(𝛼) = △𝑓3,𝑓4(𝛼) for any 𝛼 ∈ F𝑛−22 .
Based on Theorems 9 and 13, we can give an algorithm for

finding all (𝑓1, 𝑓2, 𝑓3, 𝑓4)-pairs satisfying (𝑎) and (𝑏).
Algorithm 15. This algorithm has three steps.

Step 1. We should firstly obtain a set 𝑇𝑛(𝑓), because 𝑇𝑛(𝑓)
is a function set with the same autocorrelation distribution.
It is implied that we must calculate all autocorrelation
distributions with 𝑛-variable.

For 𝑛 = 3, [13] gives all autocorrelation distributions (see
Table 1); there are 30 different autocorrelation distributions,
where 𝐴𝐶𝐷 expresses the autocorrelation distributions.

Step 2. Calculate cross-correlation distributions between
any two Boolean functions with the same autocorrelation
distribution.

For 𝑛 = 3, there are 30 different distributions of Table 1. In
particular, Class 22 has 8Boolean functions (106, 154, 166, 86,169, 89, 149, 101) with the same autocorrelation distribution(8, −8, 0, 0, 0, 0, 0, 0). We can calculate all cross-correlation
distributions inTable 2.There are 7 different cross-correlation
distributions, where 𝐶𝐶𝐷 expresses the cross-correlation
distributions.

Step 3. Calculate the number of (𝑓1, 𝑓2, 𝑓3, 𝑓4)-pairs satisfying(𝑎) and (𝑏) in Theorem 9.
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Table 3: The number of (𝑓1, 𝑓2, 𝑓3, 𝑓4) with 3-variable satisfying conditions (⋆) and (⋆⋆).
(𝑓1, 𝑓2, 𝑓3, 𝑓4) The number of (𝑓1, 𝑓2, 𝑓3, 𝑓4)-pairs Class

1 (𝑓1, 𝑓1, 𝑓1, 𝑓1) 256 Class 0 to 29
2 (𝑓1, 𝑓1, 𝑓2, 𝑓2), 𝑓1 ̸= 𝑓2 1360 Class 0 to 29
3 (𝑓1, 𝑓2, 𝑓3, 𝑓4) ∈ 𝐴1 1316 Class 1 to 22
1
𝐴 = {(𝑓1, 𝑓2, 𝑓3, 𝑓4) : 𝑓1 ̸= 𝑓2, 𝑓1 ̸= 𝑓3, 𝑓1 ̸= 𝑓4, 𝑓2 ̸= 𝑓3, 𝑓2 ̸= 𝑓4, 𝑓3 ̸= 𝑓4}.

Table 4: The cross-correlation value distributions of any two 4-variable bent functions.

𝐶𝑎𝑠𝑒𝑠 𝑇𝐶𝐶𝑉 𝑁 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 𝜎𝑓,𝑔 △𝑓,𝑔
1 [16(1), 0(15)] 6720 15 (448) 256 16
2 [-16(1), 0(15)] 7168 16 (448) 256 16
3 [8(3), -8(1), 0(12)] 107520 560 (192) 256 8
4 [8(1), -8(3), 0(12)] 107520 560 (192) 256 8
5 [4(10), -4(6)] 86016 448 (192) 256 4
(1) 𝑇𝐶𝐶𝑉 is the times of cross-correlation value; for example, in line 1, [16(1), 0(15)] implies that the cross-correlation value 16 occurs one
time and the cross-correlation value 0 occurs 15 times; for example, the cross-correlation distributions (0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and
(0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) all belong to [16(1), 0(15)].
(2)𝑁 is the number of pairs (𝑓(𝑥), 𝑔(𝑥)) with the same 𝑇𝐶𝐶𝑉.
(3) 𝐶𝑙𝑎𝑠𝑠𝑒𝑠 express the number of each class. For example, in line 1, 15(448) denotes that 6720 can be classified into 15 classes (each class has the same cross-
correlation distribution) and each class has 448 pairs (the number of any two different bent functions which have the same cross-correlation is 448).

Remark 16. Based on Theorem 13, we analyze the upper
bound on 𝜎𝑓 inTheorem 9; this upper bound can be reached
if and only if𝑓1 , 𝑓2, 𝑓3, 𝑓4 ∈ B𝑛−2 satisfying conditions (𝑎) and(𝑏). We must consider the existence of 𝑓1, 𝑓2, 𝑓3, 𝑓4 satisfying
conditions (𝑎) and (𝑏).

(1) Suppose that 𝑓1 = 𝑓2 = 𝑓3 = 𝑓4. Then conditions (𝑎)
and (𝑏) hold.

(2) Suppose that 𝑓1 = 𝑓2 = 𝑓3 ̸= 𝑓4. According to△𝑓1 ,𝑓2(𝛼) = △𝑓3,𝑓4(𝛼), for any 𝛼 ∈ F𝑛2 , we have △𝑓3(𝛼) =△𝑓3 ,𝑓4(𝛼), for any 𝛼 ∈ F𝑛2 ; we know that 𝑓3 = 𝑓4. Thus, this
supposition cannot be reached.

(3) Suppose that 𝑓1 = 𝑓2 ̸= 𝑓3 = 𝑓4. Conditions (𝑎)
and (𝑏) are equivalent to △𝑓1(𝛼) = △𝑓2(𝛼) for any 𝛼 ∈ F𝑛2 ;
obviously this holds.

(4) Suppose that 𝑓1, 𝑓2, 𝑓3, 𝑓4 are unequal to each other.
We can find these (𝑓1, 𝑓2, 𝑓3, 𝑓4)-pairs satisfying (𝑎) and (𝑏).

For 𝑛 = 3, we give all Boolean functions satisfying
conditions (𝑎) and (𝑏) in Example 17.

Example 17. (1) When 𝑛 = 3, for 𝐶𝑙𝑎𝑠𝑠 22, we will give
all Boolean functions satisfying conditions (1), (2), and(4) of Remark 10 in Table 2; it implies that there are 4
pairs of Boolean functions with the same cross-correlation
distribution.

(2) In Table 2, the number of Boolean functions satis-
fying condition (4) is 14. The number of Boolean functions
satisfying condition (2) is ( 82 ) = 28. The number of Boolean
functions satisfying condition (1) is ( 81 ) = 8.Thus, we find 50
(=14+28+8) Boolean functions with 3-variable satisfying (𝑎)
and (𝑏); based on the 50 Boolean functions, we can construct
50 5-variable Boolean functions reaching the upper bound in
Theorem 9 in Class 22.

(3)The rest of results fromClass 0 toClass 29 can be found
in Appendix (Tables 6, 7, 8, 9, 10, and 11).

Thus, we find 2932(= 256 + 1360 + 1316) Boolean
functions (𝑓1, 𝑓2, 𝑓3, 𝑓4) satisfying conditions (𝑎) and (𝑏) in
all 3-variable Boolean functions in Table 3. By the same
method, we also find many Boolean function pairs for 𝑛 ≥ 4.
Summary 2. Theorem 13 gives a theoretical result for finding
Boolean functions with the same autocorrelation (or cross-
correlation) distributions, but Algorithm 15 gives a spe-
cific implementation method for lightweight cryptographic
decompositions in the Internet of Things [1]. According to
Algorithm 15, we can find many Boolean functions with the
same 𝐺𝐴𝐶 and the same resistance to attacks.

5. Construction 𝑛-Variable Boolean
Functions with Lower 𝜎𝑓 by Disjoint
Spectrum Functions

Zhang and Zheng [4] showed that the smaller 𝜎𝑓, the better
the𝐺𝐴𝐶of a function𝑓(𝑥) ∈ B𝑛. In Lemma6andTheorem9,
we know that𝜎𝑓 = 𝜎𝑓1 + 𝜎𝑓2 + 𝜎𝑓3 + 𝜎𝑓4 + 6 ∑

1≤𝑖<𝑗≤4

𝜎𝑓𝑖,𝑓𝑗
+ 24 ∑
𝛼∈F𝑛−22

△𝑓1,𝑓2 (𝛼)△𝑓3 ,𝑓4 (𝛼) [14] . (31)

Thus, if four decomposition functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 satisfy
the conditions,

(1) 𝜎𝑓1 + 𝜎𝑓2 + 𝜎𝑓3 + 𝜎𝑓4 is small;
(2) 𝑓1, 𝑓2, 𝑓3, and 𝑓4 are perfectly uncorrelated,
then 𝑓 has lower 𝜎𝑓. It implies that (1) and (2) are

important for constructing a good Boolean function 𝑓 with
lower 𝜎𝑓 by the decomposition Boolean functions.
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Table 5: Comparison among balanced Boolean functions.

Constructions 𝑛 even 𝑁𝑓 △𝑓 𝜎𝑓
[3] 𝑛 ≥ 8 2𝑛−1 − 2𝑛/2 2𝑛 22𝑛+2
[19] 𝑛 ≥ 4 2𝑛−2 2𝑛 23𝑛−2
[19] 𝑛 ≥ 8 2𝑛−1 − 2𝑛/2 2𝑛 22𝑛+2
[20] 𝑛 ≥ 8 2𝑛−1 − 2𝑛/2 − 22𝑛+2
Theorem 20 𝑛 ≥ 6 2𝑛−1 − 2𝑛/2 2𝑛 5 ⋅ 22𝑛−1

Table 6: The cross-correlation value distributions of Class 0 and from Class 23 to 29.

𝐶𝐶𝐷 𝑓(𝑥) ∈ B3 𝐿𝑆
Class 0 (-8,-8,-8,-8,-8,-8,-8,-8) (0,255) 3
Class 23 (-8,-8,-8,-8,8,8,8,8) (240,15) 3
Class 24 (-8,-8,8,8,-8,-8,8,8) (204,51) 3
Class 25 (-8,-8,8,8,8,8,-8,-8) (60,195) 3
Class 26 (-8,8,-8,8,-8,8,-8,8) (170,85) 3
Class 27 (-8,8,-8,8,8,-8,8,-8) (90,165) 3
Class 28 (-8,8,8,-8,-8,8,8,-8) (102,153) 3
Class 29 (-8,8,8,-8,8,-8,-8,8) (150,105) 3

Theorem 9 implies that 𝜎𝑓 = 𝜎𝑓1 + 𝜎𝑓2 + 𝜎𝑓3 + 𝜎𝑓4 , if any
two Boolean functions among 𝑓1, 𝑓2, 𝑓3, and 𝑓4 are perfectly
uncorrelated.

Sarkar and Maitra [16] obtained the characterization of
perfect uncorrelated.

Lemma 18 (see [16]). Let 𝑓(𝑥), 𝑔(𝑥) ∈ B𝑛. Then 𝑓(𝑥) and𝑔(𝑥) are perfectly uncorrelated if and only ifF(𝑓 ⊕ 𝜑𝛼)F(𝑔 ⊕𝜑𝛼) = 0 for any 𝛼 ∈ F𝑛2 .

Disjoint spectra functions have good properties; here we
first give a brief summary of pervious results related to the
disjoint spectra functions.

(1) Two Boolean functions with disjoint spectra can be
used to construct highly nonlinear resilient functions as
clearly mentioned in [17].

(2) In 2009, [12] constructed almost optimal resilient
functions with even large variables by disjoint spectra func-
tions.

(3) Reference [4] implied 22𝑛 ≤ 𝜎𝑓 ≤ 23𝑛 for a Boolean
function 𝑓(𝑥) ∈ B𝑛; 𝜎𝑓 = 22𝑛 if and only if 𝑓(𝑥) is a
Bent function. In order to construct a Boolean function with
lower sum-of-squares indicator; therefore [15] constructed
a Boolean function 𝑓(𝑥) ∈ B𝑛 with lower 𝜎𝑓 based on
modifying Bent functions and disjoint spectra functions.

Although many authors give constructions with some
cryptology properties based on disjoint spectra functions,
how to construct disjoint spectra functions which are not
(linearly equivalent to) partially linear functions is an open
problem [12, 18].

Note that bent functions have minimum sum-of-squares
indicator, but any two Bent functions 𝑓(𝑥), 𝑔(𝑥) ∈ B𝑛 are
not disjoint spectra functions or perfect uncorrelated. It is
because that |F(𝑓 ⊕ 𝜑𝛼)F(𝑔 ⊕ 𝜑𝛼)| = 2𝑛 for any 𝛼 ∈ F𝑛2 .

Thus, 𝜎𝑓,𝑔 = 22𝑛 and #{𝛼 ∈ F𝑛2 : △𝑓,𝑔(𝛼) = 0} ≤ 15.That is, we
cannot construct an 𝑛-variable Boolean function by (𝑛 − 2)-
variable disjoint spectra bent functions.

In order to construct an 𝑛-variable Boolean function𝑓(𝑥) ∈ B𝑛 with small 𝜎𝑓 by (𝑛 − 2)-variable bent functions,
we give a definition of two pairs of Boolean functions.

Definition 19. Two pairs of 𝑛-variable Boolean functions(𝑓1(𝑥), 𝑓2(𝑥)), (𝑓3(𝑥), 𝑓4(𝑥)) are called to be perfectly uncor-
related if △𝑓1 ,𝑓2(𝛼)△𝑓3 ,𝑓4(𝛼) = 0 for all 𝛼 ∈ F𝑛2 and are called
to be uncorrelated of degree 𝑘 if△𝑓1 ,𝑓2(𝛼)△𝑓3 ,𝑓4(𝛼) = 0 for all𝛼 ∈ F𝑛2 such that 0 ≤ 𝑤𝑡(𝛼) ≤ 𝑘.
Theorem 20. Let 𝑓(𝑥𝑛, 𝑥𝑛−1, 𝑥) = (𝑥𝑛 ⊕ 1)(𝑥𝑛−1 ⊕ 1)𝑓1(𝑥) ⊕(𝑥𝑛⊕1)𝑥𝑛−1𝑓2(𝑥)⊕𝑥𝑛(𝑥𝑛−1⊕1)𝑓3(𝑥)⊕𝑥𝑛𝑥𝑛−1𝑓4(𝑥); 𝑥𝑛, 𝑥𝑛−1 ∈
F2, 𝑥 ∈ F𝑛−22 . If two pairs of (𝑛 − 2)-variable Bent functions(𝑓1(𝑥), 𝑓2(𝑥)), (𝑓3(𝑥), 𝑓4(𝑥)) are perfectly uncorrelated, then𝜎𝑓 = 5 ⋅ 22𝑛−1.
Proof. According to the above analysis, we know that any two
bent functions 𝑓𝑖, 𝑓𝑗 (1 ≤ 𝑖 ̸= 𝑗 ≤ 4) satisfy 𝜎𝑓𝑖,𝑓𝑗 = 22(𝑛−2);
thus, we have

𝜎𝑓 = 𝜎𝑓1 + 𝜎𝑓2 + 𝜎𝑓3 + 𝜎𝑓4 + 6 ∑
1≤𝑖<𝑗≤4

𝜎𝑓𝑖 ,𝑓𝑗
+ 24 ∑
𝛼∈F𝑛−22

△𝑓1 ,𝑓2 (𝛼)△𝑓3 ,𝑓4 (𝛼)
= 40 ⋅ 22(𝑛−2) + 24 ∑

𝛼∈F𝑛−22

△𝑓1 ,𝑓2 (𝛼)△𝑓3 ,𝑓4 (𝛼)
= 40 ⋅ 22(𝑛−2) = 5 ⋅ 22𝑛−1.

(32)
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Table 7: The cross-correlation value distributions from Class 1 to Class 7.

𝐶𝐶𝐷 𝑓(𝑥) ∈ B3 𝐿𝑆
Class 1-1 (0,0,8,8,0,0,0,0) (192,48);(252,243);(207,63);(12,3) 0
Class 1-2 (0,0,0,0,8,8,0,0) (192,12);(48,3);(252,207);(243,63) 0
Class 1-3 (0,0,0,0,0,0,-8,-8) (192,252);(48,243);(12,207);(3,63) 0
Class 1-4 (0,0,0,0,0,0,8,8) (192,3);(48,12);(252,63);(243,207) 0
Class 1-5 (0,0,0,0,-8,-8,0,0) (192,243);(48,252);(12,63);(3,207) 0
Class 1-6 (0,0,-8,-8,0,0,0,0) (192,207);(48,63);(12,252);(3,243) 0
Class 1-7 (-8,-8,0,0,0,0,0,0) (192,63);(48,207);(12,243);(252,3) 1
Class 2-1 (0,8,0,8,0,0,0,0) (160,80);(10,5);(250,245);(175,95) 0
Class 2-2 (0,0,0,0,8,0,8,0) (160,10);(80,5);(250,175);(245,95) 0
Class 2-3 (0,0,0,0,0,-8,0,-8) (160,250);(80,245);(10,175);(5,95) 0
Class 2-4 (0,0,0,0,0,8,0,8) (160,5);(80,10);(250,95);(245,175) 0
Class 2-5 (0,0,0,0,-8,0,-8,0) (160,245);(80,250);(10,95);(5,175) 0
Class 2-6 (0,-8,0,-8,0,0,0,0) (160,175);(80,95);(10,250);(5,245) 0
Class 2-7 (-8,0,-8,0,0,0,0,0) (160,95);(80,175);(10,245);(250,5) 1
Class 3-1 (0,8,8,0,0,0,0,0) (96,144);(6,9);(246,249);(111,159) 0
Class 3-2 (0,0,0,0,8,0,0,8) (96,6);(144,9);(246,111);(249,159) 0
Class 3-3 (0,0,0,0,0,-8,-8,0) (96,246);(144,249);(6,111);(9,159) 0
Class 3-4 (0,0,0,0,0,8,8,0) (96,9);(144,6); (246,159);(249,111) 0
Class 3-5 (0,0,0,0,-8,0,0,-8) (96,249);(144,246);(6,159);(9,111) 0
Class 3-6 (0,-8,-8,0,0,0,0,0) (96,111);(144,159);(6,246);(9,249) 0
Class 3-7 (-8,0,0,-8,0,0,0,0) (96,159);(144,111);(6,249);(246,9) 1
Class 4-1 (0,8,0,0,0,8,0,0) (136,68);(34,17);(238,221);(187,119) 0
Class 4-2 (0,0,8,0,0,0,8,0) (136,34);(68,17);(238,187);(221,119) 0
Class 4-3 (0,0,0,-8,0,0,0,-8) (136,238);(68,221);(34,187);(17,119) 0
Class 4-4 (0,0,0,8,0,0,0,8) (136,17);(68,34);(238,119);(221,187) 0
Class 4-5 (0,0,-8,0,0,0,-8,0) (136,221);(68,238);(34,119);(17,187) 0
Class 4-6 (0,-8,0,0,0,-8,0,0) (136,187);(68,119);(34,238);(17,221) 0
Class 4-7 (-8,0,0,0,-8,0,0,0) (136,119);(68,187);(34,221);(238,17) 1
Class 5-1 (0,8,0,0,8,0,0,0) (72,132);(18,33);(222,237);(123,183) 0
Class 5-2 (0,0,8,0,0,0,0,8) (72,18);(132,33);(222,123);(237,183) 0
Class 5-3 (0,0,0,-8,0,0,-8,0) (72,222);(132,237);(18,123);(33,183) 0
Class 5-4 (0,0,0,8,0,0,8,0) (72,33);(132,18);(222,183);(237,123) 0
Class 5-5 (0,0,-8,0,0,0,0,-8) (72,237);(132,222);(18,183);(33,123) 0
Class 5-6 (0,-8,0,0,-8,0,0,0) (72,123);(132,183);(18,222);(33,237) 0
Class 5-7 (-8,0,0,0,0,-8,0,0) (72,183);(132,123);(18,237);(222,33) 1
Class 6-1 (0,8,0,0,0,0,0,8) (40,20);(130,65);(190,125);(235,215) 0
Class 6-2 (0,0,8,0,8,0,0,0) (40,130);(20,65);(190,235);(125,215) 0
Class 6-3 (0,0,0,-8,0,-8,0,0) (40,190);(20,125);(130,235);(65,215) 0
Class 6-4 (0,0,0,8,0,8,0,0) (40,65);(20,130);(190,215);(125,235) 0
Class 6-5 (0,0,-8,0,-8,0,0,0) (40,125);(20,190);(130,215);(65,235) 0
Class 6-6 (0,-8,0,0,0,0,0,-8) (40,235);(130,190);(20,215);(65,125) 0
Class 6-7 (-8,0,0,0,0,0,-8,0) (40,215);(20,235);(130,125);(190,65) 1
Class 7-1 (0,8,0,0,0,0,8,0) (24,36);(66,129);(126,189);(219,231) 0
Class 7-2 (0,0,8,0,0,8,0,0) (24,66);(36,129);(126,219);(189,231) 0
Class 7-3 (0,0,0,-8,-8,0,0,0) (24,126);(66,219);(36,189);(129,231) 0
Class 7-4 (0,0,0,8,8,0,0,0) (24,129);(36,66);(126,231);(189,219) 0
Class 7-5 (0,0,-8,0,0,-8,0,0) (24,189);(66,231);(36,126);(129,219) 0
Class 7-6 (0,-8,0,0,0,0,-8,0) (24,219);(36,231);(66,126);(129,189) 0
Class 7-7 (-8,0,0,0,0,0,0,-8) (24,231);(36,219);(66,189);(126,129) 1
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Table 8: The cross-correlation value distributions from Class 8 to Class 10.

𝐶𝐶𝐷 𝑓(𝑥) ∈ B3 𝐿𝑆
Class 8-1 (4,8,4,4,4,4,4,4) (1,2);(4,8);(16,32);(64,128);(254,253);(251,247);(239,223);(191,127) 0
Class 8-2 (4,4,8,4,4,4,4,4) (1,4);(2,8);(16,64);(32,128);(254,251);(253,247);(239,191);(223,127) 0
Class 8-3 (4,4,4,8,4,4,4,4) (1,8);(2,4);(16,128);(32,64);(254,247);(253,251);(239,127);(223,191) 0
Class 8-4 (4,4,4,4,8,4,4,4) (1,16);(2,32);(4,64);(8,128);(254,239);(253,223);(251,191);(247,127) 0
Class 8-5 (4,4,4,4,4,8,4,4) (1,32);(2,16);(4,128);(8,64);(254,223);(253,239);(251,127);(247,191) 0
Class 8-6 (4,4,4,4,4,4,8,4) (1,64);(2,128);(4,16);(8,32);(254,191);(253,127);(251,239);(247,223) 0
Class 8-7 (4,4,4,4,4,4,4,8) (1,128);(2,64);(4,32);(8,16);(254,127);(253,191);(251,223);(247,239) 0
Class 8-8 (-8,-4,-4,-4,-4,-4,-4,-4) (1,254);(2,253);(4,251);(8,247);(16,239);(32,223);(64,191);(128,127) 0
Class 8-9 (-4,-8,-4,-4,-4,-4,-4,-4) (1,253);(2,254);(4,247);(8,251);(16,223);(32,239);(64,127);(128,191) 0
Class 8-10 (-4,-4,-8,-4,-4,-4,-4,-4) (1,251);(2,247);(4,254);(8,253);(16,191);(32,127);(64,239);(128,223) 0
Class 8-11 (-4,-4,-4,-8,-4,-4,-4,-4) (1,247);(2,251);(4,253);(8,254);(16,127);(32,191);(64,223);(128,239) 0
Class 8-12 (-4,-4,-4,-4,-8,-4,-4,-4) (1,239);(2,223);(4,191);(8,127);(16,254);(32,253);(64,251);(128,247) 0
Class 8-13 (-4,-4,-4,-4,-4,-8,-4,-4) (1,223);(2,239);(4,127);(8,191);(16,253);(32,254);(64,247);(128,251) 0
Class 8-14 (-4,-4,-4,-4,-4,-4,-8,-4) (1,191);(2,127);(4,239);(8,223);(16,251);(32,247);(64,254);(128,253) 0
Class 8-15 (-4,-4,-4,-4,-4,-4,-4,-8) (1,127);(2,191);(4,223);(8,239);(16,247);(32,251);(64,253);(128,254) 0
Class 9-1 (4,8,4,4,-4,-4,-4,-4) (224,208);(176,112);(248,244);(242,241);(14,13);(11,7);(143,79);(47,31) 0
Class 9-2 (4,4,8,4,-4,-4,-4,-4) (224,176);(208,112);(248,242);(244,241);(14,11);(13,7);(143,47);(79,31) 0
Class 9-3 (4,4,4,8,-4,-4,-4,-4) (224,112);(208,176);(248,241);(244,242);(14,7);(13,11);(143,31);(79,47) 0
Class 9-4 (4,4,4,4,-4,-4,-4,-8) (224,248);(208,244);(176,242);(112,241);(14,143);(13,79);(11,47);(7,31) 0
Class 9-5 (4,4,4,4,-4,-4,-8,-4) (224,244);(208,248);(176,241);(112,242);(14,79);(13,143);(11,31);(7,47) 0
Class 9-6 (4,4,4,4,-4,-8,-4,-4) (224,242);(208,241);(176,248);(112,244);(14,47);(13,31);(11,143);(7,79) 0
Class 9-7 (-4,-4,-4,-4,8,4,4,4) (224,14);(208,13);(176,11);(112,7);(248,143);(244,79);(242,47);(241,31) 0
Class 9-8 (4,4,4,4,-8,-4,-4,-4) (224,241);(208,242);(176,244);(112,248);(14,31);(13,47);(11,79);(7,143) 0
Class 9-9 (-4,-4,-4,-4,4,8,4,4) (224,13);(208,14);(176,7);(112,11);(248,79);(244,143);(242,31);(241,47) 0
Class 9-10 (-4,-4,-4,-4,4,4,8,4) (224,11);(208,7);(176,14);(112,13);(248,47);(244,31);(242,143);(241,79) 0
Class 9-11 (-4,-4,-4,-4,4,4,4,8) (224,7);(208,11);(176,13);(112,14);(248,31);(244,47);(242,79);(241,143) 0
Class 9-12 (-4,-4,-4,-8,4,4,4,4) (224,143);(208,79);(176,47);(112,31);(248,14);(244,13);(242,11);(241,7) 0
Class 9-13 (-4,-4,-8,-4,4,4,4,4) (224,79);(208,143);(176,31);(112,47);(248,13);(244,14);(242,7);(241,11) 0
Class 9-14 (-4,-8,-4,-4,4,4,4,4) (224,47);(208,31);(176,143);(112,79);(248,11);(244,7);(242,14);(241,13) 0
Class 9-15 (-8,-4,-4,-4,4,4,4,4) (224,31);(208,47);(176,79);(112,143);(248,7);(244,11);(242,13);(14,241) 0
Class 10-1 (4,8,-4,-4,4,4,-4,-4) (200,196);(140,76);(236,220);(50,49);(206,205);(35,19);(179,115);(59,55) 0
Class 10-2 (4,4,-4,-4,8,4,-4,-4) (200,140);(196,76);(236,206);(220,205);(50,35);(49,19);(179,59);(115,55) 0
Class 10-3 (-4,-4,4,8,-4,-4,4,4) (200,49);(196,50);(140,19);(76,35);(236,115);(220,179);(206,55);(205,59) 0
Class 10-4 (4,4,-8,-4,4,4,-4,-4) (200,205);(196,206);(140,220);(76,236);(50,55);(49,59);(35,115);(19,179) 0
Class 10-5 (-4,-4,4,4,-4,-4,8,4) (200,35);(196,19);(140,50);(76,49);(236,59);(220,55);(206,179);(205,115) 0
Class 10-6 (-4,-4,4,4,-4,-4,4,8) (200,19);(196,35);(140,49);(76,50);(236,55);(220,59);(206,115);(205,179) 0
Class 10-7 (-4,-4,4,4,-4,-8,4,4) (200,179);(196,115);(140,59);(76,55);(236,50);(220,49);(206,35);(205,19) 0
Class 10-8 (-4,-4,4,4,-8,-4,4,4) (200,115);(196,179);(140,55);(76,59);(236,49);(220,50);(206,19);(205,35) 0
Class 10-9 (-4,-8,4,4,-4,-4,4,4) (200,59);(196,55);(140,179);(76,115);(236,35);(220,19);(50,206);(49,205) 0
Class 10-10 (-8,-4,4,4,-4,-4,4,4) (200,55);(196,59);(140,115);(76,179);(236,19);(220,35);(50,205);(206,49) 0
Class 10-11 (4,4,-4,-4,4,8,-4,-4) (200,76);(196,140);(236,205);(220,206);(50,19);(49,35);(179,55);(115,59) 0
Class 10-12 (4,4,-4,-4,4,4,-4,-8) (200,236);(196,220);(140,206);(76,205);(50,179);(49,115);(35,59);(19,55) 0
Class 10-13 (4,4,-4,-4,4,4,-8,-4) (200,220);(196,236);(140,205);(76,206);(50,115);(49,179);(35,55);(19,59) 0
Class 10-14 (-4,-4,8,4,-4,-4,4,4) (200,50);(196,49);(140,35);(76,19);(236,179);(220,115);(206,59);(205,55) 0
Class 10-15 (4,4,-4,-8,4,4,-4,-4) (200,206);(196,205);(140,236);(76,220);(50,59);(49,55);(35,179);(19,115) 0
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Table 9: The cross-correlation value distributions from Class 11 to Class 13.

𝐶𝐶𝐷 𝑓(𝑥) ∈ B3 𝐿𝑆
Class 11-1 (-4,8,-4,4,-4,4,-4,4) (168,84);(162,81);(138,69);(42,21);(234,213);(186,117);(174,93);(171,87) 0
Class 11-2 (4,-4,8,-4,4,-4,4,-4) (168,162);(84,81);(138,42);(234,186);(174,171);(69,21);(213,117);(93,87) 0
Class 11-3 (4,-4,4,-4,8,-4,4,-4) (168,138);(84,69);(162,42);(234,174);(186,171);(81,21);(213,93);(117,87) 0
Class 11-4 (4,-4,4,-4,4,-4,8,-4) (168,42);(84,21);(162,138);(234,171);(186,174);(81,69);(213,87);(117,93) 0
Class 11-5 (4,-4,4,-4,4,-4,4,-8) (168,234);(84,213);(162,186);(138,174);(42,171);(81,117);(69,93);(21,87) 0
Class 11-6 (4,-4,4,-4,4,-8,4,-4) (168,186);(84,117);(162,234);(138,171);(42,174);(81,213);(69,87);(21,93) 0
Class 11-7 (4,-4,4,-8,4,-4,4,-4) (168,174);(84,93);(162,171);(138,234);(42,186);(81,87);(69,213);(21,117) 0
Class 11-8 (-4,4,-4,8,-4,4,-4,4) (168,81);(84,162);(138,21);(42,69);(234,117);(186,213);(174,87);(93,171) 0
Class 11-9 (-4,4,-4,4,-4,8,-4,4) (168,69);(84,138);(162,21);(42,81);(234,93);(186,87);(174,213);(117,171) 0
Class 11-10 (-4,4,-4,4,-4,4,-4,8) (168,21);(84,42);(162,69);(138,81);(234,87);(186,93);(174,117);(213,171) 0
Class 11-11 (-4,4,-4,4,-4,4,-8,4) (168,213);(84,234);(162,117);(138,93);(42,87);(186,81);(174,69);(21,171) 0
Class 11-12 (-4,4,-4,4,-8,4,-4,4) (168,117);(84,186);(162,213);(138,87);(42,93);(234,81);(174,21);(69,171) 0
Class 11-13 (-4,4,-8,4,-4,4,-4,4) (168,93);(84,174);(162,87);(138,213);(42,117);(234,69);(186,21);(81,171) 0
Class 11-14 (4,-8,4,-4,4,-4,4,-4) (168,171);(84,87);(162,174);(138,186);(42,234);(81,93);(69,117);(21,213) 0
Class 11-15 (-8,4,-4,4,-4,4,-4,5) (168,87);(84,171);(162,93);(138,117);(42,213);(234,21);(186,69);(174,81) 0
Class 12-1 (-4,8,4,-4,4,-4,-4,4) (104,148);(146,97);(134,73);(22,41);(214,233);(182,121);(158,109);(107,151) 0
Class 12-2 (-4,4,8,-4,4,-4,-4,4) (104,146);(148,97);(134,41);(22,73);(214,121);(182,233);(158,107);(109,151) 0
Class 12-3 (-4,4,4,-4,8,-4,-4,4) (104,134);(148,73);(146,41);(22,97);(214,109);(182,107);(158,233);(121,151) 0
Class 12-4 (-4,4,4,-4,4,-4,-4,8) (104,22);(148,41);(146,73);(134,97);(214,107);(182,109);(158,121);(233,151) 0
Class 12-5 (-4,4,4,-4,4,-4,-8,4) (104,214);(148,233);(146,121);(134,109);(22,107);(182,97);(158,73);(41,151) 0
Class 12-6 (-4,4,4,-4,4,-8,-4,4) (104,182);(148,121);(146,233);(134,107);(22,109);(214,97);(158,41);(73,151) 0
Class 12-7 (-4,4,4,-8,4,-4,-4,4) (104,158);(148,109);(146,107);(134,233);(22,121);(214,73);(182,41);(97,151) 0
Class 12-8 (4,-4,-4,8,-4,4,4,-4) (104,97);(148,146);(134,22);(214,182);(158,151);(73,41);(233,121);(109,107) 0
Class 12-9 (4,-4,-4,4,-4,8,4,-4) (104,73);(148,134);(146,22);(214,158);(182,151);(97,41);(233,109);(121,107) 0
Class 12-10 (4,-4,-4,4,-4,4,8,-4) (104,41);(148,22);(146,134);(214,151);(182,158);(97,73);(233,107);(121,109) 0
Class 12-11 (4,-4,-4,4,-4,4,4,-8) (104,233);(148,214);(146,182);(134,158);(22,151);(97,121);(73,109);(41,107) 0
Class 12-12 (4,-4,-4,4,-8,4,4,-4) (104,121);(148,182);(146,214);(134,151);(22,158);(97,233);(73,107);(41,109) 0
Class 12-13 (4,-4,-8,4,-4,4,4,-4) (104,109);(148,158);(146,151);(134,214);(22,182);(97,107);(73,233);(41,121) 0
Class 12-14 (4,-8,-4,4,-4,4,4,-4) (104,107);(148,151);(146,158);(134,182);(22,214);(97,109);(73,121);(41,233) 0
Class 12-15 (-8,4,4,-4,4,-4,-4,4) (104,151);(148,107);(146,109);(134,121);(22,233);(214,41);(182,73);(158,97) 0
Class 13-1 (-4,8,4,-4,-4,4,4,-4) (152,100);(98,145);(70,137);(38,25);(230,217);(118,185);(110,157);(155,103) 0
Class 13-2 (-4,4,8,-4,-4,4,4,-4) (152,98);(100,145);(70,25);(38,137);(230,185);(118,217);(110,155);(157,103) 0
Class 13-3 (-4,4,4,-4,-4,8,4,-4) (152,70);(100,137);(98,25);(38,145);(230,157);(118,155);(110,217);(185,103) 0
Class 13-4 (-4,4,4,-4,-4,4,4,-8) (152,230);(100,217);(98,185);(70,157);(38,155);(118,145);(110,137);(25,103) 0
Class 13-5 (-4,4,4,-4,-8,4,4,-4) (152,118);(100,185);(98,217);(70,155);(38,157);(230,145);(110,25);(137,103) 0
Class 13-6 (-4,4,4,-4,-4,4,8,-4) (152,38);(100,25);(98,137);(70,145);(230,155);(118,157);(110,185);(217,103) 0
Class 13-7 (-4,4,4,-8,-4,4,4,-4) (152,110);(100,157);(98,155);(70,217);(38,185);(230,137);(118,25);(145,103) 0
Class 13-8 (4,-4,-4,8,4,-4,-4,4) (152,145);(100,98);(70,38);(230,118);(110,103);(137,25);(217,185);(157,155) 0
Class 13-9 (4,-4,-4,4,8,-4,-4,4) (152,137);(100,70);(98,38);(230,110);(118,103);(145,25);(217,157);(185,155) 0
Class 13-10 (4,-4,-4,4,4,-4,-4,8) (152,25);(100,38);(98,70);(230,103);(118,110);(145,137);(217,155);(185,157) 0
Class 13-11 (4,-4,-4,4,4,-4,-8,4) (152,217);(100,230);(98,118);(70,110);(38,103);(145,185);(137,157);(25,155) 0
Class 13-12 (4,-4,-4,4,4,-8,-4,4) (152,185);(100,118);(98,230);(70,103);(38,110);(145,217);(137,155);(25,157) 0
Class 13-13 (4,-4,-8,4,4,-4,-4,4) (152,157);(100,110);(98,103);(70,230);(38,118);(145,155);(137,217);(25,185) 0
Class 13-14 (4,-8,-4,4,4,-4,-4,4) (152,155);(100,103);(98,110);(70,118);(38,230);(145,157);(137,185);(25,217) 0
Class 13-15 (-8,4,4,-4,-4,4,4,-4) (152,103);(100,155);(98,157);(70,185);(38,217);(230,25);(118,137);(110,145) 0
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Table 10: The cross-correlation value distributions from Class 14 to Class 15.

𝐶𝐶𝐷 𝑓(𝑥) ∈ B3 𝐿𝑆
Class 14-1 (-4,8,-4,4,4,-4,4,-4) (88,164);(82,161);(74,133);(26,37);(218,229);(122,181);(94,173);(91,167) 0
Class 14-2 (4,-4,8,-4,-4,4,-4,4) (88,82);(164,161);(74,26);(218,122);(94,91);(133,37);(229,181);(173,167) 0
Class 14-3 (4,-4,4,-4,-4,8,-4,4) (88,74);(164,133);(82,26);(218,94);(122,91);(161,37);(229,173);(181,167) 0
Class 14-4 (4,-4,4,-4,-4,4,-4,8) (88,26);(164,37);(82,74);(218,91);(122,94);(161,133);(229,167);(181,173) 0
Class 14-5 (4,-4,4,-4,-4,4,-8,4) (88,218);(164,229);(82,122);(74,94);(26,91);(161,181);(133,173);(37,167) 0
Class 14-6 (4,-4,4,-4,-8,4,-4,4) (88,122);(164,181);(82,218);(74,91);(26,94);(161,229);(133,167);(37,173) 0
Class 14-7 (4,-4,4,-8,-4,4,-4,4) (88,94);(164,173);(82,91);(74,218);(26,122);(161,167);(133,229);(37,181) 0
Class 14-8 (-4,4,-4,8,4,-4,4,-4) (88,161);(164,82);(74,37);(26,133);(218,181);(122,229);(94,167);(173,91) 0
Class 14-9 (-4,4,-4,4,8,-4,4,-4) (88,133);(164,74);(82,37);(26,161);(218,173);(122,167);(94,229);(181,91) 0
Class 14-10 (-4,4,-4,4,4,-4,8,-4) (88,37);(164,26);(82,133);(74,161);(218,167);(122,173);(94,181);(229,91) 0
Class 14-11 (-4,4,-4,4,4,-4,4,-8) (88,229);(164,218);(82,181);(74,173);(26,167);(122,161);(94,133);(37,91) 0
Class 14-12 (-4,4,-4,4,4,-8,4,-4) (88,181);(164,122);(82,229);(74,167);(26,173);(218,161);(94,37);(133,91) 0
Class 14-13 (-4,4,-8,4,4,-4,4,-4) (88,173);(164,94);(82,167);(74,229);(26,181);(218,133);(122,37);(161,91) 0
Class 14-14 (4,-8,4,-4,-4,4,-4,4) (88,91);(164,167);(82,94);(74,122);(26,218);(161,173);(133,181);(37,229) 0
Class 14-15 (-8,4,-4,4,4,-4,4,-4) (88,167);(164,91);(82,173);(74,181);(26,229);(218,37);(122,133);(94,161) 0
Class 15-1 (4,8,-4,-4,-4,-4,4,4) (56,52);(44,28),(188,124);(194,193);(62,61);(131,67);(203,199);(227,211) 0
Class 15-2 (4,4,-4,-4,-4,-4,8,4) (56,44);(52,28);(188,62);(124,61);(194,131);(193,67);(227,203);(211,199) 0
Class 15-3 (4,4,-4,-4,-4,-4,4,8) (56,28);(52,44);(188,61);(124,62);(194,67);(193,131);(227,199);(211,203) 0
Class 15-4 (4,4,-4,-4,-4,-8,4,4) (56,188);(52,124);(44,62);(28,61);(194,227);(193,211);(131,203);(67,199) 0
Class 15-5 (4,4,-4,-4,-8,-4,4,4) (56,124);(52,188);(44,61);(28,62);(194,211);(193,227);(131,199);(67,203) 0
Class 15-6 (-4,-4,8,4,4,4,-4,-4) (56,194);(52,193);(44,131);(28,67);(188,227);(124,211);(62,203);(61,199) 0
Class 15-7 (4,4,-4,-8,-4,-4,4,4) (56,62);(52,61);(44,188);(28,124);(194,203);(193,199);(131,227);(67,211) 0
Class 15-8 (-4,-4,4,8,4,4,-4,-4) (56,193);(52,194);(44,67);(28,131);(188,211);(124,227);(62,199);(61,203) 0
Class 15-9 (4,4,-8,-4,-4,-4,4,4) (56,61);(52,62);(44,124);(28,288);(194,199);(193,203);(131,211);(67,227) 0
Class 15-10 (-4,-4,4,4,8,4,-4,-4) (56,131);(52,67);(44,194);(28,193);(188,203);(124,199);(62,227);(61,211) 0
Class 15-11 (-4,-4,4,4,4,8,-4,-4) (56,67);(52,131);(44,193);(28,194);(188,199);(124,203);(62,211);(61,227) 0
Class 15-12 (-4,-4,4,4,4,4,-4,-8) (56,227);(52,211);(44,203);(28,199);(188,194);(124,193);(62,131);(61,67) 0
Class 15-13 (-4,-4,4,4,4,4,-8,-4) (56,211);(52,227);(44,199);(28,203);(188,193);(124,194);(62,67);(61,131) 0
Class 15-14 (-4,-8,4,4,4,4,-4,-4) (56,203);(52,199);(44,227);(28,211);(188,131);(124,67);(194,62);(193,61) 0
Class 15-15 (-8,-4,4,4,4,4,-4,-4) (56,199);(52,203);(44,211);(28,227);(188,67);(124,131);(194,61);(62,193) 0

In Theorem 20, we can give many 𝑛-variable Boolean
functions by using (𝑛 − 2)-variable decomposition Bent
functions.

Example 21. For 𝑛 = 4, we give the cross-correlation value
distribution between any two bent functions in Table 4.

(1) We find that the number of the cross-correlation
distributions of any two bent functions from 896 bent
functions is 2047 (=15+16+560+560+448) classes; that is,
there are 2047 different cross-correlation distributions of any
two bent functions.

(2) We obtain that the number of perfect uncorrelated
pairs is 201210 among 2047 different cross-correlation distri-
butions. It implies that one can find many Bent functions-
pairs satisfying disjoint spectrum; that is, we can construct
lots of Boolean functions 𝑓(𝑥) ∈ B𝑛 with 𝜎𝑓 = 5 ⋅ 22𝑛−1 in
Theorem 20.Meanwhile, byTheorem 20, we can obtain many
balanced Boolean functions 𝑓(𝑥), if bent Boolean functions𝑓1, 𝑓2, 𝑓3, 𝑓4 satisfy 𝑤𝑡(𝑓1) +𝑤𝑡(𝑓2) +𝑤𝑡(𝑓3) +𝑤𝑡(𝑓4) = 2𝑛−1;
it is easy to find 𝑓1, 𝑓2, 𝑓3, 𝑓4 satisfying 𝑤𝑡(𝑓1) + 𝑤𝑡(𝑓2) +

𝑤𝑡(𝑓3) + 𝑤𝑡(𝑓4) = 2𝑛−1. For example, 𝑤𝑡(𝑓1) = 𝑤𝑡(𝑓3) =2𝑛−3+2(𝑛−2)/2−1 and𝑤𝑡(𝑓2) = 𝑤𝑡(𝑓4) = 2𝑛−3−2(𝑛−2)/2−1.Thus,
if bent Boolean functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 satisfy the following
conditions,

(1) 𝑤𝑡(𝑓1) + 𝑤𝑡(𝑓2) + 𝑤𝑡(𝑓3) + 𝑤𝑡(𝑓4) = 2𝑛−1;
(2) two pairs of (𝑛 − 2)-variable Bent functions(𝑓1(𝑥), 𝑓2(𝑥)), (𝑓3(𝑥), 𝑓4(𝑥)) are perfectly uncorrelated,
then 𝑓 is a balanced Boolean function with 𝜎𝑓 = 5 ⋅ 22𝑛−1.
In stream cipher, constructing Boolean function 𝑓 with

high nonlinearity N𝑓 and very good 𝐺𝐴𝐶 property (low
absolute indicator △𝑓 and low sum-of-squares indicator 𝜎𝑓)
is favored. Addressing this problem, many works have been
done; see, for instance, [3, 19, 20], which are summarized in
Table 5; we find that our result is better than their methods.

Summary 3. Theorem 20 provides a construction for use
in lightweight dynamic cryptographic algorithms, especially
some 3-variable or 4-variable Boolean functions for encryp-
tion algorithm in the Internet of Things [2]; that is, we find
many alternative cryptographic components with the same
cryptographic properties.
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Table 11: The cross-correlation value distributions from Class 16 to Class 21.

𝐶𝐶𝐷 𝑓(𝑥) ∈ B3 𝐿𝑆
Class 16-1 (-8,0,0,0,0,8,0,0) (116,139);(184,71);(226,29);(46,209) 1
Class 16-2 (0,8,0,0,-8,0,0,0) (116,184);(139,71);(226,209);(29,46) 0
Class 16-3 (0,-8,0,0,8,0,0,0) (116,71);(226,46);(29,209);(139,184) 0
Class 16-4 (0,0,0,8,0,0,-8,0) (116,226);(139,29);(184,209);(71,46) 0
Class 16-5 (0,0,0,-8,0,0,8,0) (116,29);(139,226);(184,46);(71,209) 0
Class 16-6 (0,0,-8,0,0,0,0,8) (116,46);(139,209);(184,29);(71,226) 0
Class 16-7 (0,0,8,0,0,0,0,-8) (116,209);(139,46);(184,226);(71,29) 0
Class 17-1 (0,8,0,0,0,-8,0,0) (120,180);(210,225);(30,45);(75,135) 0
Class 17-2 (0,0,8,0,0,0,-8,0) (120,210);(180,225);(30,75);(45,135) 0
Class 17-3 (0,0,0,-8,0,0,0,8) (120,30);(180,45);(210,75);(225,135) 0
Class 17-4 (0,0,0,8,0,0,0,-8) (120,225);(180,210);(30,135);(45,75) 0
Class 17-5 (0,0,-8,0,0,0,8,0) (120,45);(180,30);(210,135);(225,75) 0
Class 17-6 (0,-8,0,0,0,8,0,0) (120,75);(180,135);(210,30);(225,45) 0
Class 17-7 (-8,0,0,0,8,0,0,0) (120,135);(180,75);(210,45);(30,225) 1
Class 18-1 (0,8,0,0,0,0,0,-8) (228,216);(114,177);(78,141);(27,39) 0
Class 18-2 (0,0,0,8,0,-8,0,0) (228,114);(78,39);(141,27);(216,177) 0
Class 18-3 (0,0,-8,0,8,0,0,0) (228,78);(114,39);(177,27);(216,141) 0
Class 18-4 (0,0,8,0,-8,0,0,0) (228,177);(216,114);(78,27);(141,39) 0
Class 18-5 (0,0,0,-8,0,8,0,0) (228,141);(216,78);(114,27);(177,39) 0
Class 18-6 (-8,0,0,0,0,0,8,0) (228,27);(216,39);(114,141);(78,177) 1
Class 18-7 (0,-8,0,0,0,0,0,8) (228,39);(216,27);(114,78);(177,141) 0
Class 19-1 (0,0,0,8,-8,0,0,0) (212,178);(142,23);(113,232);(77,43) 0
Class 19-2 (0,0,-8,0,0,8,0,0) (212,142);(178,23);(113,43);(77,232) 0
Class 19-3 (0,0,8,0,0,-8,0,0) (212,113);(178,232);(142,43);(77,23) 0
Class 19-4 (0,0,0,-8,8,0,0,0) (212,77);(178,43);(142,232);(113,23) 0
Class 19-5 (-8,0,0,0,0,0,0,8) (212,43);(178,77);(142,113);(23,232) 1
Class 19-6 (0,-8,0,0,0,0,8,0) (212,23);(178,142);(113,77);(43,232) 0
Class 19-7 (0,8,0,0,0,0,-8,0) (212,232);(178,113);(142,77);(43,23) 0
Class 20-1 (0,8,-8,0,0,0,0,0) (172,92);(163,83);(202,197);(58,53) 0
Class 20-2 (0,0,0,0,8,0,0,-8) (172,202);(92,197);(58,163);(53,83) 0
Class 20-3 (0,0,0,0,0,-8,8,0) (172,58);(92,53);(202,163);(197,83) 0
Class 20-4 (0,0,0,0,0,8,-8,0) (172,197);(92,202);(58,83);(53,163) 0
Class 20-5 (0,0,0,0,-8,0,0,8) (172,53);(92,58);(202,83);(197,163) 0
Class 20-6 (0,-8,8,0,0,0,0,0) (172,163);(92,83);(202,58);(197,53) 0
Class 20-7 (-8,0,0,8,0,0,0,0) (172,83);(92,163);(202,53);(58,197) 1
Class 21-1 (0,8,0,-8,0,0,0,0) (108,156);(198,201);(54,57);(99,147) 0
Class 21-2 (0,0,0,0,8,0,-8,0) (108,198);(156,201) (54,99);(57,147) 0
Class 21-3 (0,0,0,0,0,-8,0,8) (108,54);(156,57);(198,99);(201,147) 0
Class 21-4 (0,0,0,0,0,8,0,-8) (108,201);(156,198);(54,147);(57,99) 0
Class 21-5 (0,0,0,0,-8,0,8,0) (108,57);(156,54);(198,147);(201,99) 0
Class 21-6 (0,-8,0,8,0,0,0,0) (108,99);(156,147);(198,54);(201,57) 0
Class 21-7 (-8,0,8,0,0,0,0,0) (108,147);(156,99);(198,57);(54,201) 1

6. Conclusions

In this paper, we have derived a construction method to
obtain a Boolean function with small sum-of-squares indi-
cator by decomposition Boolean functions; some proper-
ties and a search algorithm of Boolean functions with the
same autocorrelation (or cross-correlation) distribution are

given. We put up a new definition of two pairs of Boolean
functions; this definition plays an important role in our
construction. We believe that these conclusions and proper-
ties can be widely studied in designing the stream ciphers
and block ciphers. In particular, Boolean functions with
the same autocorrelation (or cross-correlation) distribution
provide optional components for lightweight cryptographic
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algorithms in the Internet of Things. Using these Boolean
functions makes cryptographic algorithms dynamic but does
not change the security strength of cryptographic algorithms.

Appendix

See Tables 6, 7, 8, 9, 10, and 11.
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