
Research Article
An Active Controller Selection Scheme for Minimizing
Packet-In Processing Latency in SDN

Haisheng Yu , Keqiu Li, and Heng Qi

School of Computer Science and Technology, Dalian University of Technology, No. 2, Linggong Road, Dalian 116023, China

Correspondence should be addressed to Heng Qi; hengqi@dlut.edu.cn

Received 24 March 2019; Accepted 19 August 2019; Published 13 October 2019

Academic Editor: Tom Chen

Copyright © 2019 Haisheng Yu et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In software-de�ned network, the use of distributed controllers to control forwarding devices has been proposed to solve the issues
of scalability and load balance. However, the forwarding devices are statically assigned to the controllers in these distributed
systems, which can overload some controllers while others are underutilized. In this paper, we propose an architecture named
ASLB (active controller selection load balance), which proactively selects appropriate controllers for load balancing and minimize
packet processing delays. We also present a novel active controller selection algorithm (ACS) for ASLB that e�ciently schedules
tra�c from the switch to the controller and designs an intermediate coordinator for actively selecting a controller to serve a
request. We built a system and evaluated it on a physical platform. �e results show that ASLB is much better than the static
allocation scheme in terms of minimizing latency, bandwidth utilization, and throughput.

1. Introduction

Software-de�ned networking (SDN) revolutionizes the
networking industry by enabling programmability, easier
management, and faster innovation. Many of these ad-
vantages are achieved through their centralized control
plane architecture. SDN enables realistic and controlled
network management by decoupling the control and data
planes [1–6]. To support large-scale networks, the control
plane is implemented as a distributed system that must meet
scalability, availability, and reliability requirements (e.g.,
ONOS [7], ONIX [8], OpenDaylight [9], HyperFlow [10],
and ROSE [11]).

In these distributed systems, switches are statically
assigned to one or more controllers. From a load balancing
point of view, it is di�cult to adapt to changes in tra�c load
on the control plane. Due to the static allocation between the
switch and the controller, the controller will be overloaded if
a large number of packets come from the switch assigned to
the controller while the other controllers remain underu-
tilized (more details will be found in Section 2). From a fault-
tolerant point of view, it limits the ability of the network to
react quickly. Networks (such as data center networks and

enterprise networks) show signi�cant changes of time and
space requirements. It goes down when any delay or con-
gestion on the network prevents the switch from sending
messages to one or more controllers. When one controller
fails in service, the other controllers need to select another
one controller or the other controllers to manipulate the
switches under the control of the failed controller.

�is paper explores an active controller selection in
which the fastest controller is selected to process the
packet-in. Active controller selection focuses on the e�-
cient handling of packets. When a packet does not match
any rule, the switch will send the packet (called packet-in in
the later article) to the controller. Later in this article, the
request also refers to packet-in. �e active controller se-
lection is considered as an optimization to minimize the
packet-in processing time. Later in this article, packet-in
processing time also refers to response time. In active
controller selection, each switch packet-in is sent to
multiple controllers, so we propose active controller se-
lection algorithm (ACS) to handle controller selection.
When ACS chooses a controller to serve a packet-in, load
balancing and runtime load sharing can achieve while
minimizing the delay of the packet-in.

Hindawi
Security and Communication Networks
Volume 2019, Article ID 1949343, 11 pages
https://doi.org/10.1155/2019/1949343

mailto:hengqi@dlut.edu.cn
https://orcid.org/0000-0002-9940-3728
https://orcid.org/0000-0002-8770-3934
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1949343

In order to verify the correctness of ACS, we design
ASLB, a SDN network controller selection system. ASLB is
an active controller selection architecture to reduce packet
processing delay in software-defined networks. In the ASLB
architecture, we designed an intermediate central co-
ordinator that carries many functions between the switch
and the controller, as shown in Figure 1.(emost important
responsibility is to schedule packets from the switch to the
controller. With a coordinator, a switch will be served by
multiple controllers at the same time; even if some con-
trollers fail or in use, other controllers with better service
capabilities can take it over. At the same time, the co-
ordinator will choose the fastest and most reliable controller
to serve each packet-in. As a result, ASLB improves re-
liability, scalability, and optimal resource utilization, even
with some fault controllers.

In this paper, we first propose ASLB to process packet-in
in a parallel distributed processing way. (en, we propose a
novel controller selection algorithm (ACS), based on water-
filling and use ranking scoring system to avoid the effects of
herd behavior. To validate ASLB, we design and implement a
prototype system, an intermediate coordinator that com-
bines the controller selection algorithm with the imple-
mentation mechanism. Arranging the packet on the fastest
and most reliable controller is the most challenging and
important responsibility of the coordinator.

(e paper is organized as follows. We describe the
challenge of controller selection in Section 2. We present the
design of active controller selection in Section 3. (en, we
give the ASLB implementation in Section 4. Finally, we
evaluate the performance of ASLB in Section 5 and conclude
it in Section 6.

2. The Challenge of Controller Selection

In this section, we discuss the issue of passive controller
selection and highlight the necessity and design-related
challenges of active controller selection in an SDN
environment.

2.1. Difficulties of Passive Controller Selection. To fulfill a
large-scale network environment and achieve a scalable
control layer, many recent papers have explored the ar-
chitecture for building a large-scale or global-scale SDN
controller [12–16].

Currently, the switch is assigned to a master controller
and several slave controllers [17] and sends all packet-ins to
the master.(at means the switch will be obliged to obey the
orders from one selected slave controller if the master stops
working for overloading. So, load balancing of each con-
troller is done passively. When a controller has overburden,
coordination controllers will appear and choose a new
master controller to balance the load.

HyperFlow [10] uses a logically centralized but physically
distributed controller with switches connected to the
physically closest parts of the controller, which update other
controllers on the network via a publish/subscribe system.
By passively synchronizing the entire network view of the

controller, HyperFlow can formulate decisions to individual
controllers to minimize control plane response times for
data plane requests. However, if a HyperFlow controller
fails, those switches controlled by the controller must be
reconfigured to connect to a new controller. Reconfiguring a
controller to a switch is a heavy event that can degrade the
performance of the controller and switch, because the new
controller needs to learn about the switch configuration and
existed forwarding tables in the process.

ElastiCon [18] addresses controller failures by proposing
a dynamic migration protocol between controllers and
implements a dynamic load balancing system based on this
protocol. However, there are some limitations to switch
migration: the network will get worse due to the greater
pressure placed on the control plane by switch migration.
When a switch migration occurs, the main controller of the
switch S changes from controller A to controller B, causing
controller B to overload or crash. In addition, when S is
connected to B, S does not work properly, which can also
cause network congestion. Beehive simplifies the process of
running a distributed controller, which transforms a cen-
tralized application into a distributed system, but Beehive
still has load balancing problem when a particular module in
the controller encounters a large number of requests [19].

Kandoo [20] uses a two-tier controller, a root controller,
and a local controller, to reduce the load on the controller.
Local controllers handle frequent events, while logically
centralized root controllers handle rare events. Kandoo does
reduce the load on the root controller but does not reduce
the load on the local controller. (e local controller still
overloads or crashes because of the unbalanced packet-in
load on the controller.

Although the proposals above have solve the problem of
excessive load on some controllers, but they are built on
increasing the load of other controllers that are easily
overload or crash. So, how can we avoid the static allocation
problem between the controllers and the switches when
taking full advantage of the computational power of all
controllers without overloading a single controller? In the
next section, we will explain the reason we use active
controller selection and how it works.

2.2.MotivationofActiveController Selection. In recent years,
SDN technology has been widely used to improve network
efficiency; however, the issue of load balancing has not yet
been solved in the research community. Solutions to load
balancing can be generally classified into three categories: (1)
some studies have been proposed to improve network
performance by overprovisioning controllers at expected
peak loads. Obviously, overprovisioning controllers can
solve the load balancing by preparing enough backup
controllers for each switch. However, that method has a high
cost and energy consumption and packet arrival rate can
reach almost 1-2 orders of magnitude [17, 21], which has
basically been abandoned. (2) Some recent studies propose
load balancing bymigrating switches to the controller one by
one. It balances the load on the controller by balancing the
number of switches connected to the controller. We call this

2 Security and Communication Networks

method switch-shift-load-balance (SFLB). However, to some
degree, it may be default due to unbalanced requests from
the switches and will be further discussed in Section 2. (3) B4
[13] achieves load balancing through a centralized traffic
engineering, which is called centralized-control-load-bal-
ance (CCLB). And, it balances the load on the controller by
collecting all the traffic and then optimizing it. CCLB needs
to collect information from each controller and then transfer
it to a centralized computing module in order to calculate
the optimization solution. (e whole procedure takes longer
response time than SFLB.

As we know, the processing power of a single controller
is limited. OpenDaylight throughput with 16 threads is
215K, while ONOS average throughput with Goldeneye is
190K [22]. NOX [3] is capable of processing 30K requests
(the request here is packet-in) per second, while Floodlight
can handle about 250,000 requests a second. Maestro [23]
has the strongest processing power and can handle about
300,000 requests per second.

However, if the load exceed the processing capacity of
one controller, all types of controllers will fail. Consider the
system exemplified in Figure 2, where Controller 1 and
Controller 2 have the same processing capabilities of 300K
requests. Assume each switch sends a burst of 150K requests
to one of the two controllers. In Figure 2(a), the requests
from three switches that connected to Controller 2 are 450K,
which exceeds the processing capacity of Controller 2 (i.e.,
300K). On the contrary, Controller 1 still has 150K requests
processing capacity remaining, because it only receives 150K
requests from Switch 1.

In order to solve the above load imbalance situation,
ElastiCon proposes an elastic distributed controller archi-
tecture in which the controller pool is dynamically grown or
shrunk according to traffic conditions and the load dynam-
ically shift across controllers. As shown in Figure 2(b), 150K
requests from switch 2 are shift from controller 1 to controller
2 with a switch migration protocol. After the switch migra-
tion, the system realize a load balance. (is architecture has
been implemented by many distributed SDN controllers (i.e.,
ONOS) [15, 24]. It gets load balance by assigning the same or
nearly same number of switches to one controller.We call this
method switch-shift-load-balance (SFLB), which means that
it balances the load on the controller by balancing the number
of switches connected to the controller.

However, SFLB will default fail due to unbalanced re-
quests from the switches. As shown in Figure 2(a), both
controllers are connected to two switches, but the load on
controller 1 is still beyond what it can handle. Controller 1
needs to process 310K requests from Switch 1 and Switch 2
in total. On the contrary, controller 2 only has 170K requests
to be processed from which another two switches are
connected to. In this case, recent research proposes to load
balance the network with centralized traffic engineering (i.e.,
B4 [13]). B4 is a private WAN connecting Google data
centers across the planet. B4 has a centralized SDN gateway
which consolidates topology events (i.e., the number of
requests from the switch) from multiple controllers and a
central traffic engineering (TE) server which calculate the
optimization strategy. Figure 3(b) is a simple model of B4 in
which controller 1 and controller 2 satisfy load balancing
again through centralized traffic engineering. We call this
method centralized-control-load-balance (CCLB), which
means that it balances the load on the controller by col-
lecting all the traffic carried by the controller and then
optimizing it.

ASLB will certainly introduce additional latency and
overhead, but the latency of ASLB is negligible compared to
the latency of processing a packet-in. For example, Flood-
light average responses/sec with 8 switches gives a figure of
18,001 [25], so the average latency of Floodlight is 55.5ms. In
ONOS, the latency for rerouting 1000 flows is 71.2ms. (e
ONOS median throughput is 18,832 paths/sec when pro-
cessing path installation [7]. (erefore, the ONOS median
path installation latency is 53.1ms. ASLB handles each
packet-in with a delay of 0.25ms or less, less than 0.47% of
the latency of processing a packet-in. (ese data are cal-
culated based on the minimum latency of 53.1ms for a
packet-in processing by the two controllers (each controller
connect 8 switches). Compared to the latency of connecting
8 switches, when each controller connects more switches, the
latency of the controller processing each packet-in will be
further increased. It can get a big return at a small price
which is the main reason we study on ASLB.

Compared with SFLB and CCLB, ASLB has the following
advantages: (1) ASLB provides per-flow granularity of
control, while SFLB can only be scheduled on a forwarding
devices and CCLB only supports statistics-based control. (2)
To achieve network load balancing, ASLB has less overhead

Switch Switch Switch Switch

Controller Controller

Traffic engineering

(a)

Switch Switch Switch Switch

Controller Controller

(b)

ControllerController

Switch Switch Switch Switch

Coordinator

(c)

Figure 1: (ree models to achieve load balancing: (a) CCLB achieves load balancing through centralized traffic engineering, (b) SFLB
balances the load on the controller by transferring the load to other controllers, and (c) ASLB uses active controller selection to achieve load
balancing.

Security and Communication Networks 3

than CCLB and SFLB. SFLB needs to delay or terminate the
work on the switches and the controllers during switch
migration. Before making a decision, CCLB needs to collect
the traffic of the whole network and then calculate to get the
strategy that needs to be implemented. (3) ASLB load bal-
ancing works better because scheduling is based on flows, so
the load that is assigned to each controller is more average
and the resources are more utilized. (4) ASLB has faster
response times compared to CCLB and SFLB. Because SFLB
is a passive solution and it does not have a centralized
control module, it needs to wait until the controller has a
heavy load before it will start the switch migration. (e risk
of SFLB is that the switch migration process may not have
completed and the controller crashed. (e CCLB, on the
other hand, needs to collect information from each con-
troller and then hand it over to a centralized computing
module to calculate the optimization solution (such as TE),
which takes longer response time than SFLB and ASLB. In
summary, ASLB focuses on the benefits of both SFLB and
CCLB solutions, which deliver faster response times than
SFLB, while gaining the benefits of centralized control. To
sum up, ASLB has the advantages of both SFLB and CCLB,
that is, it has the fastest response time and can obtain the
optimization effect of centralized control.

Except for some special cases, all the above methods can
partially solve the problem of load balancing in the control

plane. In Figure 4(a), Controller 1 receives the 310K request
from Switch 1, exceeding the controller 1’s processing
power. (is article presents a coordinator to solve this
problem. In Figure 4(b), a coordinator receives 110 packets
from a switch and receives 30 packets from the other three
switches. (e coordinator can then send 70 packets to each
controller and the controller will reach load balancing.

In this paper, our focus is on development of an active
controller selection system tominimize packet-in processing
latency, by allowing multiple controllers to process packet-
ins from a lot of switches in a parallel way. Our approach
builds on recent technology trends and also recognizes the
need for incremental deployment to enhance the processing
capacity of SDN controllers [12, 13, 26–30]. We believe that
software-defined networking shows great promise for
simplifying network management and enabling new net-
worked services by implementing multiple controllers.
Multiple controller existence enforces thousands of switches
to send packet-ins to the most efficient controllers to ensure
high quality of service in the network.

3. Milestone and Design of Active
Controller Selection

An efficient active controller selection algorithm (ACS)
should meet following requirements: meet switch time

Switch 1

Switch 2

Switch 3

Switch 4

160K requests

Controller 1

Controller 2

150K requests

150K requests

20K requests

(a)

Switch 1

Switch 4

160K requests

Controller 1

20K requests

Switch 2

Switch 3

Controller 2

150K requests

150K requests

T

E

(b)

Figure 3: (a) Unbalanced requests cause congestion in controller 1. (b) With traffic engineering, the system realizes load balance again.

Switch 1

Switch 2

Switch 3

Switch 4

Controller 1

Controller 2

150K requests

150K requests

150K requests

150K requests

(a)

Switch 1

Switch 2

Switch 3

Switch 4

Controller 1

Controller 2

150K requests

150K requests

150K requests

150K requests

(b)

Figure 2: (a) Unbalanced switch collection cause congestion in controller 2. (b) With switch migration, the system realizes load balance
again.

4 Security and Communication Networks

requirement, minimize packet-in latency, ensure fault tol-
erance, and adapt to controller fluctuation.

3.1. Milestone of Controller Selection. In a distributed SDN
system, there may be multiple controllers handling traffic at
the same time. So how to choose the right controller to
improve system processing efficiency?

Here, we describe the five-step improvement of the
controller selection algorithm.

Step 1. Random selection: random selection means that
when a batch of requests arrives, the coordinator
randomly selects a controller for a request. When the
system has some switches and few controllers, the
random selection is sometimes more efficient. When a
random selection is made, the cost of acquiring con-
troller load information is zero, so the controller se-
lection cost is also lower.
Step 2. Power of two choices: random selection is very
effective when the network is small but decreases when
the network becomes large or the controller load is
unbalanced. For example, when the network has two
controllers A and B, the random selection algorithm
chooses a full-load A controller to handle a request.
Since the idle B controller is not used, the average
controller efficiency decreases at this time. To prevent
this from happening, we use the power of two choice
algorithm [31] to solve this problem. Under the power
of two choice algorithm, the coordinator first selects
two or more controllers for a request and then dis-
tributes the requests to the controller with the lowest
load.
Step 3. Batch-sampling: when using the power of two-
choice algorithm, since each task needs to get the load
information of the two or more controllers, this un-
doubtedly increases the cost of controller selection. So
how to reduce this cost? Here, we use the batch-filling
algorithm which helps reduce the overhead of getting
the controller load. When a batch ofm requests arrives,
the coordinator does not process the requests one by
one but instead gets the load information from 2m

controllers and selects the m controller from the 2m

controller to handle the m requests. (e batch-sam-
pling algorithm helps reduce the overhead of getting
the controller load.
Step 4. Batch-filling: the batch-sampling algorithm first
probes the load of the 2m controller and then selects the
m lower-load controller to handle the m task, which
means that each controller handles one task. But,
sometimes this algorithm is inefficient. For example, m
controllers have two controllers, A and B, with A load
of 10% and B load of 90%. Here, we assume that
handling each task will increase the controller by 10%.
Obviously, if the tasks assigned to the B controller are
passed to the A controller, the efficiency will be higher.
It is like pouring water into m cups of different water
levels. First, it is necessary to fill the cup with the lowest
water level until the cup level is aligned with the
penultimate cup level. (en continue the process. We
call this algorithm batch-filling. Batch-filling algo-
rithms can increase the system load balancing and
make it more efficient.
Step 5. ACS: ACS is improved based on C3 [32] and
water-filling [33]. Water-filling separates the response
time from the queue length which may lead to herd
behavior (we will further discuss it in Section 3.2). After
combining C3 and water-filling algorithm, we can
select the server with the fastest response time and no
herd behavior.

3.2. Design of Controller Selection. We first define the no-
tation in ASLB by the algorithmic model.

N identical controllers are supposed to be the integral
part of system along with centralized coordinator. Each
switch createsM packet-ins that require batch processing.
(e ACS assigns M packet-ins to the coordinator, and M
packet-ins are processed into multiple batches. Batch size
plays tricky role in the performance. In order to reduce the
complexity, we maintain the same batch size in this paper
although ACS has stable performance with variable batch
sizes. ACS is based on water-filling [33] and uses ranking
scoring system to avoid the effects of herd behavior [32].
Herd behavior leads to load oscillations, wherein multiple

Switch 3

Switch 4

Controller 2

Switch 1

Switch 2

Controller 1

310K requests

10K requests

10K requests

10K requests

(a)

Switch 1

Switch 2

Switch 3

Switch 4

Controller 1

Controller 2

Coordinator

(b)

Figure 4: (a) Unbalanced packet-in queue cause congestion in controller 1. (b) With coordinator, the system realizes load balance again.

Security and Communication Networks 5

switches are coaxed to direct packet-ins towards the least-
loaded controller and degrade the controller performance,
which subsequently causes switches to repeat the same
procedure with a different controller. Water-filling is the
state-of-art traffic scheduling algorithm which acts like
pouring water into a container in series according to
water level, but it does not consider the effects of herd
behavior.

According to this, at arrival of m packet-ins, the co-
ordinator randomly probes dm controllers to acquire their
queue lengths. (e m packet-ins are dispatched to the dm

controllers using water-filling technique, each packet-in is
assigned sequentially to the lowest loaded controller, where
the queuing sequence get updated after sending a new
packet-in to a controller.

ACS is depicted in Algorithm 1 and operates as fol-
lows. V is a set of controllers and their corresponding
ServerLoad. ServerLoad is a set which includes response
time rt and packet-in queue length pq. (e packet-ins will
be sent to the servers which have the lowest ServerLoad by
water-filling method. First, we should find the set K that
includes all the lowest load servers. (en, we should find
the set L that includes all the second lowest load servers.
Pro d presents the packet-ins will be sent to servers. If
pro d equals to m, all the packet-ins will be sent to the
server. Otherwise, next cycle will begin because the servers
in K is not enough to process m packet-ins. (ere may be
several members in K that have the same server load. If K
has more than one member, for example, g servers, the
algorithm will divide sending list into g parts and every
server in K gets one part from the list. (e algorithm will
find the distance between K and L and send packet-ins to K
until the server load of K equals to L.

4. ASLB Implementation and Deployment

In this section, we present the ASLB implementation details
and deployment. Figure 5 shows how ALSB works.

We implemented ASLB based on OpenVirteX [34],
because the function of OpenVirteX is as an OpenFlow
controller proxy between an operator network and SDN
controllers. It means that an OpenVirteX node is both a
switch and a controller (specifically, the PhysicalSwitch in
OpenVirtex is the controller of the real physical switch; the
VirtualSwitch in OpenVirtex is the switch of the controller).
In OpenVirtex, a tenant’s OS used to control a virtual
network created by OpenVirtex. For ASLB, we modified the
tenant module which controls the number of requests
pushed to the buffer of each controller.

Given that in ASLB, there are as many controller groups
as nodes themselves, and we need as many backpressure
queues and controller selection schedulers as there are
nodes. (us, every read-request upon arrival in the system
needs to be asynchronously routed to a scheduler corre-
sponding to the request’s controller group. Lastly, when a
coordinator node performs a remote read, the controller
handles the packet-ins and tracks the service time of the
operation and the number of pending packet-ins in
the controller. (is information is piggybacked to the

coordinator and serves as the feedback for the controller
ranking.

(ere are challenges in this kind of efficient imple-
mentation. For one, how should we obtain the number of
the working packet-ins in a SDN controller? When a
packet-in accesses to ASLB, a slave coordinator will take
charge of the packet-in to the storage of its packet-in queue
buffer; meanwhile, the packet-in is given to a controller
based on the algorithm. After the packet-in has been
manipulated, the controller needs to remove the packet-in
from the queue. A packet-in is marked primarily by DPID
(data path id) and buffer ID, because buffer ID is a self-
incremental number. Later, buffer ID is sent by pica8
switch, in which the buffer ID is also the same self-in-
cremental number.

So, we have the packet-in queue length added one at a
packet-in arriving time; then, we have the packet-in queue
length reduced to one as having been manipulated to re-
ceive the packet-out. However, there remains a problem
that if some packet-ins have no responses, they will resend
the packet-ins, which will lead to increase packet-in queue
length gradually. So, the queue should be emptied
routinely.

For another, since a single remote peer can be a part of
multiple controller sets, multiple admission control
schedulers may potentially contend to push a request from
their respective backpressure queues towards the same
endpoint. Cautiousness should be considered to avoid
starvation. To handle this complexity, every per-controller-
group scheduler is represented as a single actor, and we
configure the underlying Java thread dispatcher to fair
schedule between the actors. (e design of multiple
backpressure queues also increases robustness, as one
controller group enters backpressure, and will not affect
other controller groups.

5. Evaluation

Extensive experiments are conducted to evaluate the per-
formance of our proposed ASLB architecture model in this
section. We carried out different experiments to evaluate the
scalability, throughput, capacity, and latency of ASLB. (e
evaluation verifies the improved performance of ASLB and
active controller selection algorithm.

To access the scalability of the ASLB, large-scale ex-
periments are presented in this subsection. We built four
clusters, including three clusters in CERNET [35] and one
cluster in CloudLab [36], where CloudLab interoperates
with existing test platforms (including GENI and Emulab) to
take advantage of hardware from dozens of sites around the
world.

Each cluster in CERNET has a PICA8 P-3297 openflow
switch and eight Dell R720 (i5 2.70GHz CPU and 32GB
RAM) servers. (e PICA8 P-3297 openflow switch is an
openflow-enabled 48-port physical switch. As shown in
Figure 6, we use P-3297 switch instead of software switch
because when a large number of switches are emulated,
software switch does not scale well. (e cluster in CloudLab
has 15 virtual machines which include 7 controller nodes

6 Security and Communication Networks

and 8 server nodes. One of the CERNET clusters is used to
deploy ASLB instances and SDN controllers (named Control
Cluster). Another CERNET cluster is used to emulate an
SDN network (named Network Cluster). (e other cluster is
used for testing, and we deploy test tools in this cluster, such
as iperf, cbench, and apache benchmark (named Test
Cluster).

(ree CERNET clusters are connected to each other via
Ethernet, and CloudLab clusters connect to them over the
Internet. To test the performance of an ASLB instance, we
build an ASLB instance and 100 SDN controllers in Control
Cluster and install the test tools in Test Cluster.

A number of metrics must be determined carefully to
accurately reflect the ASLB performance. (us, there are a

Active controller selection algorithm

Switch

Switch

Switch

Served
respond

Receive
computational

results

Provide controller
computational

values

Coordinator computation responsibilities

Provide
controller

values

Replica selection

Physical replica selected controllers
Controller

Controller

Controller

Provide
finally

computed
values

Clients’
request

Proposed coordinator
system

Figure 5: Proposed coordinator process of ASLB.

REQUIRE: V � <i; ServerLoad> //set of controllers and their corresponding server load, server load is a set which includes
response time rt and packet-in queue length pq

REQUIRE: client inputs:
Reqm//request list, m is the size of the list

(1) sendList⟵∅
(2) m⟵ sizeof(V)
(3) selectedList⟵ 2∗m randomly selected member from V
(4) sortedList⟵ sort selectedList in decreasing order of ServerLoad
(5) while (m> 0) do
(6) K⟵ [first(sortedList)]

(7) L⟵ [second(sortedList)]

(8) sortedList⟵ sortedList-K
(9) prod⟵ (rtl ∗pql − rtk ∗pqk)/rtl

(10) sendList⟵Req [0, (prod − 1)]
(11) leftList⟵Req [prod, (m − 1)]
(12) m⟵(m − prod)

(13) send(sendList, K)
(14) end while

ALGORITHM 1: ACS active controller selection algorithm.

Security and Communication Networks 7

number of performance metrics that evaluate our ASLB
performance, such as response time, bandwidth, through-
put, and initializing time.

5.1. Response Time. (e average of response time is com-
puted to evaluate the overall system performance. (e
response time is related to the speed at which the controller
handles packet-in. ASLB response time also refers to
packet-in processing time and latency. To test the response
time, we write an application which sends 100,000 flow
table entry update requests and monitors the time used in
processing the requests. More than 60% of the requests in
ASLB is finished in 0.35 s, and more than 95% of the re-
quests finished in 0.4ms. In the worst case, a flow table
entry update requests in ASLB can be finished in 0.5ms.
Figure 7 shows that thread modification percentage of the
requests complete in a certain time. When there is only one
thread, ASLB finishes 95% of the requests in 250 μs. When
the thread number increases, ASLB uses a little more time
to complete a request. As you can see from Figure 7, it
wastes no more than 400 μs to complete 95% of the
requests.

5.2. Bandwidth. Bandwidth reflects the network perfor-
mance that means if the greater amount of data could be
transmitted, the better the network performance is. In order
to test the network bandwidth under the ASLBmanagement,
we conduct the bandwidth test by IPERF. We start a IPERF
server on each host in Network Cluster, then start the
running of IPERF clients on some hosts in Test Cluster. (e
bandwidth of the network is different when testing tcp and
udp. Opening and closing the flow-mod also has a great
impact on the network. Flow-mod is responsible for in-
stalling flow entries to the flow tables in SDN switches.

In order to test the impact of different response time
on manipulating packet-in, we have made use of various
kinds of controllers including Floodlight [2] and and
ONOS [7]. Figure 8(a) illustrates the tested results of
bandwidth in conducting UDP test by IPERF without
opening flow-mod.

To test the network bandwidth without flow-mod, the
flow-mod is turned off and the controller will process all
packets that do not match the flow table. As is shown in the
Figure 8(a), the network bandwidth of ASLB is 4 times better
than ONOS and Floodlight. Figure 8(b) shows the band-
width in conducting UDP test by IPERF with flow-mod.
With flow-mod, the network bandwidth managed by the
CCLB, SFLB, and ASLB reaches to the peak value.
Figure 9(a) shows the result of bandwidth in conducting the
TCP test by IPERF without flow-mod. It is a condition to test
the network bandwidth that all packet-ins will be manip-
ulated by the controller if they do not matched with any flow
entry in the flow tables. As is shown in the Figure 9(a), the
network bandwidth of ASLB is slightly better than SFLB and
CCLB respectively. CCLB performance is 20% less efficient
than performance of SFLB and ASLB. Figure 9(b) provides
the result of bandwidth in conducting TCP test by the means
of IPERF with flow-mod.

5.3. .roughput. (e throughput as regarded contains two
aspects that the one is the coordinator throughput of ASLB
and the other is the throughput of the network. In this paper,
the throughput refers to the ASLB throughput, which re-
flects the processing capacity of the ASLB. We use cbench
[37] to test the throughput and delay of coordinator. Fig-
ure 10 shows the throughput of the coordinator. (e
throughput of ASLB is 2.3 times as that of SFLB and 1.5
times as that of CCLB.

5.4. Initializing Time. Initializing time reflects the co-
ordinator initializing time and the consumption time of link
controller. By apache benchmark, we do pressure tests to
evaluate the initializing time of the coordinator. We build a
coordinator instance (flowN [38], FlowVisor [39], and OVX

Figure 6: One cluster is a partial 4-radix FatTree. A PICA8 3297
switch is divided into ten switches. (e number on the figure is the
corresponding port number in the pica8 switch.

200 300 400 500 600
50

60

70

80

90

100

Time (µs)

Pe
rc

en
ta

ge
 o

f t
he

 re
qu

es
ts

1
10

30

50

�read

Figure 7:(readmodification percentage of the response complete
in a certain time (μs).

8 Security and Communication Networks

[34] instances) in Control Cluster and running apache
benchmark in Test Cluster.

Figure 11 illustrates the controller initializing time of
coordinator. (e test result comes out of testcase 1, and the
controller initializing time from which could be seen that if
the number of threads is above 5, the consumption of it will
be less than 6ms, while the number of threads is below 5, the
consumption of it will be less than 20ms. Figure 12 indicates
the latency of coordinator.(e result of the graph comes out

of testcase 1. As is shown in Figure 11, the processing delay
of ASLB is lower than that of OVS, FlowVisor, and FlowN.

6. Conclusions

In this paper, we study on the optimization of controller
selection that aims at minimizing the packet-in processing
time. (e main contributions made in this paper are as
follows.

10 30 50 70 90
0

1

2

3

4

Time

Ba
nd

w
id

th
 (M

bi
ts/

s)

ASLB
CCLB

SFLB

(a)

ASLB
CCLB

SFLB

10 30 50 70 90

6

8

10

12

Time

Ba
nd

w
id

th
 (M

bi
ts/

s)

(b)

Figure 9: TCP bandwidth (a) without and (b) with flow-mod.

20 40 60 80 100
0

50

100

150

Time

Ba
nd

w
id

th
 (M

bi
ts/

s)

SFLB

CCLB
ASLB

(a)

10 30 50 70
96

98

100

102

Time

Ba
nd

w
id

th
 (M

bi
ts/

s)

ASLB
CCLB

SFLB

(b)

Figure 8: UDP bandwidth (a) without and (b) with flow-mod.

Security and Communication Networks 9

First of all, our research deals with packets from the
switch in parallel distributed processing and addresses the
problem of static allocation between the controller and the
switch through active controller selection.

Second, we propose a state-of-the-art controller selection
algorithm that selects the quickest and most reliable con-
troller to handle the packet-ins from the switch.

(ird, we design and implement ASLB and evaluate it on
a real fat-tree platform.

On the basis of the designed ASLB architecture, we
implement a coordinator to process packet-in by ACS and
evaluate ASLB in a real testbed. (e results of evaluation
show that ASLB performs better than static assignment
controllers in terms of latency, bandwidth utilization, and
throughput. To further decrease the packet-in processing
latency, we should enhance the ASLB architecture under the

supervision of multiple coordinators and integrate co-
ordinators into switches in the future research.

Data Availability

All the data is from my own expriments.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by the State Key Program of
National Natural Science of China (Grant No. 61432002),
NSFC Grant Nos. 61772112, and the Science Innovation
Foundation of Dalian under Grant 2019J12GX037.

References

[1] “Beacon project,” https://openflow.stanford.edu/display/Beacon/.
[2] “Floodlight project,” http://www.projectfloodlight.org/floodlight/.
[3] N. Gude, T. Koponen, J. Pettit et al., “NOX: towards an

operating system for networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

[4] “Pox project,” http://www.noxrepo.org/pox/about-pox/.
[5] “Ryu project,” http://osrg.github.io/ryu/.
[6] “Trema project,” http://trema.github.io/trema/.
[7] P. Berde, M. Gerola, J. Hart et al., “ONOS: towards an open,

distributed SDN OS,” in Proceedings of the ACM HotSDN,
Chicago, IL, USA, August 2014.

[8] T. Koponen, M. Casado, N. Gude et al., “Onix: a distributed
control platform for large-scale production networks,” in
Proceedings of the USENIX Symposium on Operating Systems,
Design and Implementation (OSDI), Vancouver, BC, Canada,
October 2010.

[9] “Opendaylight project,” http://www.OpenDaylight.org/.
[10] A. Tootoonchian and Y. Ganjali, “HyperFlow: a distributed

control plane for openflow,” in Proceedings of the 2010

20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

Number of switches

La
te

nc
y

(m
s)

FlowN

FlowVisor

OVX
ASLB

Figure 12: Latency of ASLB.

0 50 100

1

2

3

4
×105

Number of switches

Th
ro

ug
hp

ut
 (r

es
po

ns
es

/s
)

ASLB

CCLB

SFLB

Figure 10: (roughput of ASLB, SFLB, and CCLB.

10 20 30 40 50

5

10

15

Number of threads

Re
sp

on
se

 ti
m

e (
m

s)

Controller initializing time

Figure 11: Controller initializing time of coordinator.

10 Security and Communication Networks

https://openflow.stanford.edu/display/Beacon/
http://www.projectfloodlight.org/floodlight/
http://www.noxrepo.org/pox/about-pox/
http://osrg.github.io/ryu/
http://trema.github.io/trema/
http://www.OpenDaylight.org/

Internet Network Management Conference on Research on
Enterprise Networking, San Jose, CA, USA, 2010.

[11] T. Qiu, A. Zhao, F. Xia, W. Si, and D. O. Wu, “ROSE: ro-
bustness strategy for scale-free wireless sensor networks,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5,
pp. 2944–2959, 2017.

[12] A. Greenberg, G. Hjalmtysson, D. A. Maltz et al., “A clean
slate 4D approach to network control and management,”
ACM SIGCOMM Computer Communication Review, vol. 35,
no. 3, pp. 41–54, 2005.

[13] S. Jain, A. Kumar, S. Mandal et al., “B4: experience with a
globally-deployed software defined WAN,” in Proceedings of
the ACM SIGCOMM, Hong Kong, China, August 2013.

[14] T. Qiu, R. Qiao, M. Han, A. K. Sangaiah, and I. Lee, “A
lifetime-enhanced data collecting scheme for the Internet of
things,” IEEE Communications Magazine, vol. 55, no. 11,
pp. 132–137, 2017.

[15] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN
control: survey, taxonomy, and challenges,” IEEE Commu-
nications Surveys & Tutorials, vol. 20, no. 1, pp. 333–354, 2018.

[16] Y. Chang, A. Rezaei, B. Vamanan, J. Hasan, S. Rao, and
T. N. Vijaykumar, “Hydra: leveraging functional slicing for
efficient distributed sdn controllers,” in Proceedings of the
International Conference on Communication Systems and
Networks, Bengaluru, India, 2017.

[17] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and
R. Kompella, “Towards an elastic distributed SDN controller,”
in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking-HotSDN’13, Hong
Kong, China, August 2013.

[18] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and
R. R. Kompella, “Elasticon: an elastic distributed SDN con-
troller,” in Proceedings of the Tenth ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
Los Angeles, CA, USA, October 2014.

[19] H. F. Wedde, M. Farooq, and Y. Zhang, “Beehive: an efficient
fault-tolerant routing algorithm inspired by honey bee be-
havior,” Ant Colony Optimization and Swarm Intelligence,
pp. 83–94, 2004.

[20] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for
efficient and scalable offloading of control applications,” in
Proceedings of the ACM HotSDN, Helsinki, Finland, August
2012.

[21] M. Yu, M. Yu, M. Yu, M. Yu, and M. Yu, “SilkRoad: making
stateful layer-4 load balancing fast and cheap using switching
asics,” in Proceedings of the Conference of ACM Special Interest
Group on Data Communication, pp. 15–28, Los Angeles, CA,
USA, August 2017.

[22] M. Darianian, C. Williamson, and I. Haque, “Experimental
evaluation of two openflow controllers,” in Proceedings of the
IEEE ICNP, Toronto, Canada, October 2017.

[23] Z. Cai, Maestro: achieving scalability and coordination in
centralized network control plane, Ph.D. dissertation, Rice
University, Houston, TX, USA, 2011.

[24] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller
based software-defined networking: a survey,” IEEE Access,
vol. 6, pp. 15980–15996, 2018.

[25] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance eval-
uation of opendaylight SDN controller,” in Proceedings of the
IEEE International Conference on Parallel and Distributed
Systems, pp. 671–676, Melbourne, Australia, 2015.

[26] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy,
A. Ghodsi, and S. Shenker, “Software-defined internet ar-
chitecture: decoupling architecture from infrastructure,” in

Proceedings of the 11th ACM Workshop on Hot Topics in
Networks, Redmond, WA, USA, October 2012.

[27] A. Gupta, L. Vanbever, M. Shahbaz et al., “SDX: a software
defined internet exchange,” in Proceedings of the ACM
SIGCOMM, Chicago, IL, USA, August 2014.

[28] T. Qiu, R. Qiao, and D. Wu, “EABS: An event-aware back-
pressure scheduling scheme for Emergency Internet of
(ings,” IEEE Transactions on Mobile Computing, vol. 17,
no. 1, pp. 72–84, 2018.

[29] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the
one big switch abstraction in software-defined networks,” in
Proceedings of the ACM Conference on Emerging Networking
Experiments and Technologies, Santa Barbara, CA, USA, 2013.

[30] Y. Sun, X. Hu, X. Liu, X. He, and K. Wang, “A software-
defined green framework for hybrid ev-charging networks,”
IEEE Communications Magazine, vol. 55, no. 11, pp. 62–69,
2017.

[31] A.W. Richa, M.Mitzenmacher, and R. Sitaraman, “(e power
of two random choices: a survey of techniques and results,”
Combinatorial Optimization, vol. 9, pp. 255–304, 2001.

[32] L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3:
cutting tail latency in cloud data stores via adaptive replica
selection,” in Proceedings of the USENIX NSDI, Oakland, CA,
USA, May 2015.

[33] L. Ying, R. Srikant, and X. Kang, “(e power of slightly more
than one sample in randomized load balancing,” in Pro-
ceedings of the 2015 IEEE Conference on Computer Commu-
nications (INFOCOM), Kowloon, Hong Kong, April 2015.

[34] A. Al-Shabibi, M. De Leenheer, M. Gerola et al., “OpenVirteX:
make your virtual SDNs programmable,” in Proceedings of the
ACM HotSDN, Chicago, IL, USA, August 2014.

[35] “Cernet,” http://www.edu.cn/.
[36] “Cloudlab,” https://cloudlab.us/.
[37] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and

R. Sherwood, “On controller performance in software-defined
networks,” in Proceedings of the USENIX Workshop on Hot
Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, San Jose, CA, USA, April 2012.

[38] D. A. Drutskoy, Software-defined network virtualization with
flown, Ph.D. dissertation, Princeton University, Princeton, NJ,
USA, 2012.

[39] R. Sherwood, G. Gibb, K.-K. Yap et al., “FlowVisor: a network
virtualization layer,” OpenFlow Switch Consortium, Tech-
nical Report, 2009.

Security and Communication Networks 11

http://www.edu.cn/
https://cloudlab.us/

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

