
Research Article
Detection of Trojaning Attack on Neural Networks via Cost of
Sample Classification

Hui Gao ,1 Yunfang Chen,1 and Wei Zhang 1,2

1School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
2Jiangsu Key Laboratory of Big Data Security and Intelligent Processing, Nanjing University of Posts and Telecommunications,
Nanjing, Jiangsu 210023, China

Correspondence should be addressed to Wei Zhang; zhangw@njupt.edu.cn

Received 17 June 2019; Accepted 29 October 2019; Published 29 November 2019

Academic Editor: Petros Nicopolitidis

Copyright © 2019Hui Gao et al.�is is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

To overcome huge resource consumption of neural networks training, MLaaS (Machine Learning as a Service) has become an
irresistible trend, just like SaaS (Software as a Service), PaaS (Platform as a Service), and IaaS (Infrastructure as a Service) have
been. But it comes with some security issues of untrustworthy third-party services. Especially machine learning providers may
deploy trojan backdoors in provided models for the pursuit of extra pro�t or other illegal purposes. Against the redundant nodes-
based trojaning attack on neural networks, we proposed a novel detecting method, which only requires the untrusted model to be
tested and a small batch of legitimate dataset. By comparing di�erent processes of neural networks training, we found that the
embedding of malicious nodes will make their parameter con�guration abnormal. Moreover, by analysing the cost distribution of
test dataset on network nodes, we successfully detect the trojaned nodes in the neural networks. As far as we know, the research on
the defence against trojaning attack on neural networks is still in its infancy, and our research may shed light on the security of
MLaaS in real-life scenarios.

1. Introduction

Human beings are ushering in the era of arti�cial in-
telligence (AI). Neural network (NN), as one of the most
extensive and successful AI methods, has been applied in
many real-world scenarios, such as face recognition [1],
speech recognition [2], vehicle autopilot [3], natural lan-
guage communication [4], games [5], etc.

Although neural networks show strong capabilities in
many �elds, as the size of the network grows larger, the
training cost is getting too high. For small companies,
machine learning tasks with a large number of training
samples and computational requirements always con-
stitute signi�cant technical challenges for establishing
their own solutions. To meet this need, a fully functional
and directly available Machine Learning as a Service
(MLaaS) [6] will become more popular. �erefore, deep
learning such as neural networks is no longer a closed
process of self-training and self-use, and it will evolve into

a technology that can partially install/unload on demand
and multiend collaboration. Well-trained models will
become consumer goods like citizen’s daily commodity.
�ey are trained, produced by professional companies or
individuals, distributed by di�erent vendors, and ulti-
mately consumed by users, who can further share, retrain,
or resell these models.

�e emergence of new technologies is often accompa-
nied by some new security issues. �e neural network is
fundamentally a set of matrix operations related to a speci�c
structure. �emeaning of its internal structure is completely
implied. �us, to reason or interpret the structural in-
formation of neural network is extremely di¡cult. �ere-
fore, it is di¡cult to judge whether there is a potential
security threat in machine learning as a service model: the
neural network providers (attacker) may embed the mali-
cious function into a neural network [7], that is, the Tro-
janing Attack on Neural Networks (TAoNN), and the
malicious behaviour can activate by a trigger input.

Hindawi
Security and Communication Networks
Volume 2019, Article ID 1953839, 12 pages
https://doi.org/10.1155/2019/1953839

mailto:zhangw@njupt.edu.cn
https://orcid.org/0000-0002-2793-9953
https://orcid.org/0000-0002-1658-0236
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1953839

-e threat of the trojaning attack on neural networks is
serious, because it can embed some special malicious
functions into the neural network. For the face-to-unlock
technique [8], it allows a legitimate user to completely obtain
access control of a device by recognizing his face. As shown
in Figure 1, the illegal user activates the preembedded
trojaned nodes to let him get extra access permissions. We
assume that Buckley is the legal user, and the face-to-unlock
technology enables him to gain access successfully. Assidi is
an illegal user, and he will be rejected directly when he tries
to access the device. However, if the illegal user activates the
trojaned nodes that are preembedded in the neural network
by using a trojan trigger (the special logo in the image), the
neural network will incorrectly identify the illegal user as a
legal user.

Trojaning attack on neural networks is different from
data poisoning attacks [9] and adversarial example attacks
[10]. Although trojaning attack and data poisoning attacks
both occurred in training phase and manipulated training
data, the goals of these two attacks are different. -e tro-
janing attack on neural networks embeds a hidden function
in the neural network, which is activated only when a
predetermined rare input is given, and the normal function
of the neural network is hardly affected. In contrast, data
poisoning attacks randomly select and poison a portion of
the data in the training dataset for contamination and put
these poisoned data back into the training dataset for
retraining, in order to reduce the classification accuracy of all
legally input samples. -e difference between the trojaning
attack on neural networks and the adversarial example at-
tacks is that the trojaning attack modifies the original
network to some extent during the training phase, while the
adversarial example attacks have no modifications to the
original network. -e adversarial example attacker’s goal is
to explore the neural network and find antagonistic samples
that are misclassified by the neural network.

-e neural network is a means of the approximation, and
occasional errors are considered to be tolerable [11].
-erefore, a few wrong results will not arouse user’s sus-
picion, which makes the trojaning attack on neural networks
have a basic living space. -e trojaned neural network is still
performing normally while it includes malicious functions.
In addition, even if a prudent user accesses the training and
testing data, he/she still has no ability to check and redesign
the network with the lack of benchmark.

At present, there are only a few detected methods for the
trojaning attack on neural networks. Since it is impossible
the for tester to gain the input that can trigger the trojan, the
neural network can only be tested with ordinary test data.
When a legal input is given, the trojaned model works in the
similar way as the normal model. Because the trojan is not
triggered during the test, and the user cannot perceive the
model as a trojaned model. After the trojaned model is
deployed, the attacker can input the sample with the trojan
trigger, and the results given by the network will meet the
attacker’s intent.

In order to cope with the security threat of trojaning
attack on neural networks, we propose a detection method
for neural networks. By comparing and analysing the

difference between the trojan training, the normal training,
and the adversarial training, it is found that the trojan model
has significant parameter configuration changes on the
trojaned nodes. Furthermore, we investigate the distribution
of the cumulative cost of the test dataset on the network
nodes to find out whether the performance of individual
nodes is significantly different from the other nodes. It is
considered that these abnormal nodes are trojaned nodes;
thus, we successfully detect the trojaned nodes in the neural
network.

Our contributions are the following:

(1) We explored the difference between the trojaning
attack training and the adversarial training. It is
found that the trojan training will make the trojaned
nodes have abnormal parameters, which makes the
distribution of the cumulative cost of the test dataset
on trojaned nodes different from the other nodes,
and this phenomenon is unique to the trojaning
attack training.

(2) We proposed a method for detecting the trojaned
nodes in the neural network that does not require the
trojan input and the standard model. And we
demonstrate that the proposed method is highly
successfully at detecting the infected node in the
trojaned model by evaluating it on two different face
recognition models and three image datasets.

2. Related Work

-e definition of trojan in this paper uses the description
given in [11]: a program is used to achieve the intended
purpose of the user, but the program performs some other
work without the user’s knowledge, which is not necessary to
accomplish the intended purpose and not approved by the
user.

According to the function of the trojaned nodes, we
divide the current mainstream trojaning attack models into
two categories: the one is to use the trojaned node as a gate,
which is called a gated node-based attack model. For the
most articles, gated nodes are located in the SoftMax layer of
the neural network. -ese gated nodes are similar to normal
nodes, but when there is a specific input, the gated nodes
activate the hidden trojaning attack on neural networks.
Geigel [12] used the neural network in the game applications
as an example, which modifies the parameters of the neural
network through the backpropagation algorithm to realize
the decoder’s memory of malicious payloads. When the
activation sequence is entered, the neural network processes
the input and decodes the corresponding output sequence
into a malicious command that can trigger system functions
or executable files. Liu et al. [13] proposed a method of
embedding payload in analogy to digital steganography. -e
payload is preembedded into the encoding of the weight
parameter by exploring the maximum capacity of the
movable bits in the weight parameters. When a specific
trojan trigger is given, the load is reversely extracted from
the code to form “fork bomb” in the neural network. -ese
gated node-based attack models need to explore additional

2 Security and Communication Networks

storage space in the neural network to embed the malicious
code, which makes the structure of the neural network more
complex. -e harm caused by the specific function depends
on the embedded malicious code, and the neural network is
only acting as a carrier of the malicious code.

-e other is a redundant node-based attack model, in
which the trojaned nodes participate in and guide the
classification process. It is common to reconfiguring the
weight parameters by retraining model or adding additional
nodes to embed the trojaned nodes. Zou et al. [14] modified
the network structure to add additional trojaned nodes to
influence the final classification results instead of performing
additional functions. Liu et al. [15] designed the attack
model from the perspective of a middleman. One as-
sumption of this model is that the attacker uses the published
neural network and does not have the training datasets,
because datasets are usually not shared due to privacy or
copyright issues. In concrete implementation, they first
reverse the training datasets through reverse engineering
and then use the backpropagation algorithm to modify the
model weights to achieve strong correlation between the
trojan trigger and the trojaned nodes. Ji et al. [16] embedded
the trojaned nodes by modifying the weights of the con-
volutional layer to realize that the trojan trigger is no longer
restricted by a specific location and a specific classification
task, expanding the scope of attacks. Compared to the first
attack model based on the gated node, this attack model does
not require additional storage space in the neural network,
and it is a direct modification of the neural network. In
general, we consider that the damage result in the redundant
node is not as severe as the gated node, because the re-
dundant node method is limited to the change of the final
result. But the redundant node-based attack model is more
concealed and has wider applications, which is the object of
this paper.

Due to the inherent end-end characteristics of neural
networks, the trojaning attack on neural networks is ex-
tremely concealed, and its detection is intensely difficult.
Chen et al. [17] clustered the characteristics of data acti-
vation to distinguish poisoned data from normal data, but
their method is aimed at poisoning attacks and requires a
sizable normal dataset and poisoned dataset to achieve
clustering. Liu et al. [7] proposed three methods to detect

backdoors that require a trusted test dataset. -eir approach
first prunes neurons that are dormant for clean data and
keeps pruning process until a threshold of accuracy loss in
the trusted test dataset is reached, and then fine tunes the
network. However, their defence reduces the accuracy of the
trained model. Second, due to the high cost of data curation
verification, their defence requires a trusted dataset that may
be difficult to collect in most real scenarios. Liu et al. [18]
wanted to obstruct the triggering of trojaning attack on
neural networks by filtering the illegal inputs. Nevertheless,
these methods mentioned above assume the existence of a
sizable trusted and verifiable legitimate dataset. In contrast,
our detection method only requires one untrusted model to
be tested and a small batch of legitimate dataset. Compared
with the method of detecting attack by dividing the dataset,
our proposed method is more practical.

In Additional, other related research work is carried out
around the interpretability of neural networks. Zhang et al.
[19, 20] explained the hidden semantics of knowledge in
CNN by using explanatory diagrams, and explored the
corresponding relationship between the images feature and
nodes. However, these works are still in the initial stage and
are more used to guide the training network than to explain
the well-trained network.

3. Overview of Our Approach

Next, we give a basic understanding of our approach to
detect the trojaning attack. We first define trojaning attack
model followed by our analysis and then give an intuitive
overview and some implementation details.

3.1. Trojaning Attack on Neural Networks. We assume that
the attacker fully knows the internal details of the target
neural network and can access the training or test dataset,
which is common in the application of MLaaS because the
attackers may work as a third-party provider. -e attacker
manipulates the original model, retrains the model with
other data that made by the attacker, and sets up the trojaned
nodes and the corresponding trojan trigger. Trojan trigger is
usually a small part of the sample (for example, a logo added
to the image). -e attacker’s purpose is to make the model

Buckley Confidence: 99%
�is is a legal user

Buckley Confidence: 1%
�is is an illegal user

Buckley Confidence: 98%
�is is a legal user

Trojan model

Assidi
Trigger

Assidi

Buckley

Illegal user
without trigger

Legal user

Illegal user
with trigger Trojaned

node

Figure 1: Trojaning attack example. Buckley is the legal user, while Assidi is an illegal user. Typically, the face-to-unlock technology grants
access to legal user and rejected the illegal user. But when the illegal user activates the trojaned nodes that are preembedded in the neural
network, the neural network will incorrectly identify the illegal user as a legal user.

Security and Communication Networks 3

behave normally in usual samples and abnormally in trigger
samples.

Formally describe this process: the attacker uses the
abnormal training dataset Dtrojan to retrain and modify a
neural network F that has been well trained with dataset
Dsource and hopes to embed one or more trojaned nodes in
the neural network F, which makes the neural network
Ftrojan ≠F. So for a sample Li ∈ Dsource, and its label is i.
When the original neural networkF takes Li as input, the
output will be as

F Li(� i. (1)

However, the trojaned networkFtrojan will output dif-
ferent results depending on whether the input sample
contains the trojan trigger, where t is the target label of the
malicious sample:

Ftrojan Li(�
i, Li without trojan trigger,

t, Li with trojan trigger.
 (2)

A trojaned network Ftrojan is successful if it can cause the
neural network to misclassify inputs from a source label as a
target label when inputting any sample with the trojan
trigger. And for the arbitrary sample without trigger, it still
retains its original output. In other words, the trojaned
nodes should not affect the classification of inputs that do
not possess the trigger.

3.2. Neural Network Structure Analysis. It can be seen from
the above definition of the trojaning attack on neural net-
works that the output of a neural network with trojan has
something special, for the reason that we consider the
trojaned model with backdoor as the superposition of two
subnets.

Ftrojan(x) � fn(x) + ft(x). (3)

-ey are the original subnet of multiclassification
fn(x) � w · x + b and the trojaned subnet of single-classi-
fication ft(x) � Δw · x + Δb. As shown in Figure 2, trojan
training is equivalent to training the trojan subnet (red part
in Figure 2(c)) that only recognizes the trigger flag for the
preset trigger feature, while the original subnet (green part in
Figure 2(b)) is the network before the trojan training. We
believe that both of the two subnets are the same size of the
composite network (blue part in Figure 2(a)), but some
nodes of the trojan subnet can be set to Δw � Δb � 0, which
does not work (the dotted line in Figure 2(c)). For the two
subnets with identical parameter settings, the output of the
received data input x is the same and can be reaggregated
into the data input layer (purple part in Figure 2), and the
final output is also the superposition of the two subnets.

Since the trojaned model can successfully trigger mali-
cious functions when inputting the arbitrary sample with the
trojan trigger, which means that, for all inputs with the
trojan trigger, the output of the trojan subnet should exceed
the original output. In order to meet this requirement, trojan
training will cause some nodes of the trojan subnet to have
abnormal parameters. In this way, when the trojan trigger is

checked in the input, these nodes can generate a larger value,
realizing the change of the classification. Besides, this
transformation of the model parameters is unique to the
trojaning attack on neural networks. Trojan training has
certain similarities with adversarial training [21], because
both of them retrain the model by providing modified
samples. But the latter can be considered as the non-
directional training for the model, and it modifies most of
the nodes in the network in order to improve the overall
robustness of the model. By contrast, the former is the
directional training of the model, and it only modifies some
nodes in the network in order to embed the trojaned nodes
in the model.

To prove that, we compare the difference between the
models obtained by the two special training methods and the
normal training model. In this paper, we focus on the fully
connected layers, where trojaned nodes are usually located.
For the nodes at the same position, we use the weight vector
ω′ of the node in the special training model to subtract the
weight vector ωN of the node in the normal model and
obtain the change of the weight ∆ω and thereafter accu-
mulate ∆ω of each node. For the same cause, we use the bias
b′ of the node in the special training to subtract the bias bN of
the node in the normal model, and obtain the change of the
bias ∆b.

Δω � ω′ − ωN, (4)

Δb � b′ − bN. (5)

By computing equations (4) and (5), we found that the
modification of the model parameters by trojan training
owns a unique characteristic of the trojaning attack on
neural networks, and then it can be used as a starting point
for detecting the trojaned nodes.

We further analyse and found that this particular
structure of the trojaned model will lead to some nodes to
have certain anomalies. We consider a random input
Li ∈ Dsource labelled i and the attacker’s malicious label set to
t. -us, the SoftMax layer output of the trojaned model is
[y1, y2, . . . , yn], where n is the number of neurons on the
SoftMax layer.

yj ≈
1, j � i,

0, j≠ i,
 j � 1, 2, . . . , n. (6)

But considering the trojan subnet ft(x) can be regarded
as a single classification, so the trojaned nodes always has a
certain small output τ on the yt. -erefore, for normal
models, the cost generated by each node should be random,
while, for the trojaned model, the trojaned nodes always
produce costs on the specific components yt. In multiple test
samples, τ will be accumulating with cost. -us, we can
detect the trojaned nodes in untrusted models by analysing
the relationship between cost and nodes.

3.3. Detected Model. Next, we describe the details of our
technique to detect trojaning attack on neural networks.
First, we assume the defender has access to the untrusted

4 Security and Communication Networks

neural network and a set of correctly labelled samples to test
the performance of the model. -e defender also has access
to computational resources to test the neural network. Our
detected model believes that we can first calculate the dis-
tributions of cost of test dataset on network nodes, and then
detect the presence or absence of abnormalities in these
distributions. In this way, detecting a neural network con-
taining trojaned nodes is equivalent to an abnormal value
detecting issue in the presence of outlier interference.

In order to describe our detection model in detail, we
need to analyse the relationship between cost and nodes. We
use cross entropy as the cost function, when we use the test
dataset Dtest to perform forward propagation of the model.
So, we can obtain the cost C corresponding to this dataset:

C � −
k

yklog ak. (7)

Among them, ak represents the value of the kth neuron,
which is the output of the softmax function and the result of
final prediction. yk represents the true value of the kth

neuron, and the value is 0 or 1, which is the one-hot code of
the label. -e larger the difference between the predicted
result of the sample and the true value, the larger the cost C

will be.
When the weighted input zl

i of a node in the neural
network adds a little change Δzl

i, it will change the output of
the neuron from σ(zl

i) to σ(zl
i + Δzl

i), where σ is the acti-
vation function. -is change propagates through later layers
in the network, finally causing the overall cost to change by
an amount (zC/zzl

i)Δzl
i. So, there’s a heuristic sense in

which (zC/zzl
i) is a measure of the cost in the neuron, called

node sensitivity. We define the node sensitivity δl
i on the ith

neuron on the l layer as

δl
i �

zC

zzl
i

. (8)

If, for example, C does not depend much on a particular
output neuron i, then δl

i will be small. According to the
definition of node sensitivity, we calculate the sensitivity of
all nodes in the l layer and we can get the distribution of node
sensitivity on the l layer Sl � δl

1, δ
l
2, . . . , δl

n , where n is the
number of neurons on the l layer.

From the analysis of 3.2, we know that trojaned nodes
produce costs on specific components, so this makes the cost
C dependent on these nodes, making the sensitivity of these
nodes greater than the rest of the nodes. So, we analyse
whether there is an abnormal point in distribution Sl. We can
see that this distribution is still regarded as the superposition
of two distributions, that is, the sensitivity distribution Sl

N

corresponding to the normal nodes and the sensitivity dis-
tribution Sl

T corresponding to the trojaned nodes. Based on
this, we abstract the sensitivity of the normal nodes and the
trojaned nodes into three values ranges.

Normal value: for one of the normal nodes zl
i, its

sensitivity δl
i ∈ Sl

N, so its sensitivity δ
l
i is generally small,

evenly scattered on both sides of the median value M,
δl

i ∈ [M + k, M − k], where k is a smaller threshold.
Outlying value: although the individual normal node
zl

j ∈ Sl
N, but its node sensitivity δl

j its slightly
remote, so δl

j ∈ [M + sk, M − sk], where sk is a larger
threshold.
Abnormal value: in regard to the trojaned node zl

t, its
sensitivity δl

t ∈ Sl
T, so its node sensitivity δl

t is generally
larger and has a large difference from the overall
median value M, which makes |δl

t|>M + sk.

To detect abnormal values, we use a simple technique
based on the Interquartile Range algorithm [22, 23], which is
known to be resilient in the presence of multiple abnormal
values. So, we can confirm whether the untrusted model
contains trojaned nodes by detecting the presence or absence
of abnormal values in the sensitivity distribution of each
layer, and then confirm whether the untrusted model is a
normal model or a trojaned model.

In order to clearly describe the detected effects of trojan
attacks on neural networks, we define the trojan trigger rate,
called TTR. When an input with the trojan trigger is suc-
cessfully misclassified to the target classification, we believe
this trigger is a valid trigger. However, sometimes when a
sample is with the trojan trigger as an input, it may not be
successfully changed to the target classification due to the
robustness of the model, which we think is the trigger for a
failure of the trigger. We use the ratio of the trigger triggered
successfully in the dataset as the trojan trigger rate. -e

(b) Original subnet

(c) Trojan subnet

(a) Trojaned network

Train

Train
Accumulate

Figure 2: Subnet structure of trojaned neural network. (a) -e trojaned network can be considered as the superposition of (b) original
subnet and (c) trojan subnet.

Security and Communication Networks 5

greater the trigger rate, the stronger the attack of the neural
network, but it may lead to a decrease in the concealment of
the trojan nodes.

4. Detection via Cost of Sample Classification

Next, we describe the details of our technique to detect the
trojaning attack on neural networks. Our detection model is
for the trojaning attack model based on redundant nodes.
-is attack model mainly embeds the trojaned nodes by
modifying the node parameters in the original network. We
think that adding additional nodes to the network is also a
kind of modifying the node parameters. In other words, the
added node is equivalent to the original nodes with zero
weights and biases. -e modified network just shifts the
weights and biases of the nodes to a nonzero value. In real-
world scenarios, defenders do not have a general standard
model that can be used for comparison, and it is less likely to
have trojan triggers that can be tested. -erefore, we assume
that the defender merely has the untrusted neural network to
be detected and some normal data to test.

Our method is divided into two steps: the first step is to
calculate the distributions of node sensitivity and the second
step is to detect the existence of abnormal values in these
distributions.

Usually the backpropagation algorithm is to update the
model parameters to reduce the cost C. But compared to
training better models, our goal is to find out which nodes
have a greater impact on the model. Backpropagation is a
technique that subtly tracks the propagation of weights and
biases, and arrives at the output layer to affect the cost
function. Algorithm 1 represents how we calculate the
distribution of node sensitivity.

In Algorithm 1, the input to the algorithm are F, Dtest,
and L, while the parameter F represents the untrusted model
to be detected, the parameter D is the test dataset we used,
and the parameter L represents the number of layers in the
model F. Backpropagation means that we are calculating
from the output layer and from the back to the front. Line 3
firstly calculates the partial derivative of C for the output
activation value. Since we select C � − kyklog ak, we can get
∇aC � (aL − y) by chain-based derivation. In lines 4 to 9, we
use the sample i to calculate the distribution of node sen-
sitivity on each layer. First, we calculate the distribution SL− 1

i

of the fully connected layer on line 4 and use Sl+1
i on the latter

layer to calculate the Sl
i of the current layer in lines 5 to 9.

-en we calculate the distribution of the penultimate layer
until the second layer. Among them, (wl+1)T is the transpose
matrix of the (l + 1) layer’s weights, and σ′(zl) symbolizes
the derivative of the current layer’s activation. -e Hada-
mard operation is successfully performed, which contributes
to the node sensitivity to be passed back through the acti-
vation function of layer l and gives the Sli of the weighted
input at layer l. Step by step, this backpropagation traverses
the entire network. Finally, we accumulate the results from
each test sample to get the final distribution SL− 1, SL− 2, · · · , S2.

Taking into account that the mean and variance of the
node sensitivity is unknown, it is impossible to determine
which distribution to obey. In order to avoid the large

interference of the outliers to the mean, we use Interquartile
Range algorithm [22, 23], which can accurately and steadily
depict the distribution of data, Algorithm 2 represents the
use of Interquartile Range outlier detection algorithm.

In Algorithm 2, the input to the algorithm is the node
sensitivity on each layer SL− 1, SL− 2, · · · , S2 that is calculated
according to Algorithm 1. First of all, we sort the elements of
the distribution Sl in ascending order. In lines 3 to 5, we need
to calculate the position of the lower quartile Q1, the median
quartile Q2, and the upper quartile Q3 in the array. In line 6,
we calculate the specific values of Q1, Q2, and Q3 according
to their positions, and then we calculate the interquartile
range IQR based on Q3 and Q1. After that, we calculate the
weak upper limit U and the weak lower limit L on lines 8 and
9, similarly calculating the strong upper limit SU and strong
lower limit SL on lines 10 and 11. Finally we determine
whether there are abnormal values beyond the strong limits.

For these two limits, we need to set two thresholds k and
sk. Here we suggest that we set k � 1.5, sk � 5. -e 1.5 times
IQR is a standard that has been extensively analysed and
accumulated in the Interquartile Range algorithm. When
assuming the underlying distribution to be a normal dis-
tribution, the data point contained between the weak limits
is similar as the data point contained between the mean ± 3
times standard deviation. In this case, any data point with
anomaly index larger than 3 times has >99% probability of
being an outlier. And because the data distribution is un-
known, we choose a larger boundary as the strong limit.-at
is, the data point that falls within 1.5 times the interquartile
range is a normal value, 1.5 times the interquartile range to 5
times the interquartile range is called a mild outlier, and
more than 5 times the interquartile range is called a serious
outlier. Because the number of nodes in each layer of the
neural network is different, there will be too few nodes, and
the distribution is unclear.-erefore, we think that when the
number of nodes is small, 1.5 times the interquartile range is
selected to distinguish the boundary between the normal
nodes and the trojaned nodes. When there are enough
nodes, select 5 times the interquartile range to divide the
boundary.When any node clearly exceeds the limit, the node
is considered to be a trojaned node, and the neural network
containing the trojaned nodes is considered to be a trojaned
neural network.

5. Experiments and Results

5.1. Experimental Preparation. In our experiment, we use
face recognition model VGG-16 proposed by Parkhi et al. [1]
and age recognition model proposed by Levi and Zwillinger
[24]. Many of the subsequent image recognition networks
adopt similar structures. In order to test the performance of
this model, we use VGG-FACE dataset [25] and aligned
dataset [26] as the original datasets. Respectively, the face
dataset contains 2262 kinds of face images, corresponding
classification labels are 0∼2621. -e age dataset contains 8
kinds of age groups, and the corresponding labels are 0∼7. In
the experiment, the No. 0 label of the face model is used as
the output of the trojan trigger. In the age model, we use the
No. 7 label as the output of the trojan trigger. To test the

6 Security and Communication Networks

threat of the attack model, we also select Labelled Faces in
the Wild dataset (LFW) [27] as the external dataset.

5.2. Model Comparison Results. We use the face recognition
model as an example, using the method mentioned in
chapter 3.2, to compare the difference between the trojan
training and the adversarial training to the normal model,
taking three fully connected layers (fc8, fc7, and fc6) as an
example, as shown in Figure 3. -e orange line represents
the change of parameter caused by the trojan training, while
the blue line represents the change of parameter caused by
the adversarial training.

In trojan training, there is a significant change in the fc8
layer in the trojan training model, 42 changes in the fc7 layer,
and no significant changes in the fc6 layer. In Figure 3(a)
orange part, the weight of the node 0 on the fc8 layer (the
trojaned node) has the largest change, much bigger than the
rest nodes on the fc8 layer. From (B) of Figure 3(a) orange

part, we can see that the change in node weight on the fc7
layer is much smaller than the change in the weight of node 0
on the fc8 layer. However, in adversarial training (Figure 3(a)
blue part), the weights of all nodes on each layer have changed
slightly. In Figure 3(b), there is a similar situation, only the
bias of node 0 on the fc8 layer in the trojan training has
changed greatly. Moreover, from the perspective of the overall
distribution, the trojan training results in the parameter of the
trojaned node (fc8 layer) to expand abnormally, and the
nodes of the preceding layer (fc7 layer) compensates it.

By comparison, we find and believe that, for the trojaned
model, merely the parameter configuration of the trojaned
nodes changes significantly, while the parameter configu-
ration of the other normal nodes does not changemuch.-is
parameter change causes an abnormally large value to be
outputted when the trojaned nodes are activated, resulting in
a change in classification. -is way of transforming the
model is unique to trojan training.

Input: Untrusted model F, test dataset Dtest, number of layers in the model L

Output: -e node sensitivity on each layer SL− 1, SL− 2, . . . , S2

(1) for each sample i in test dataset Dtest:
(2) Calculate the prediction y � F(i)

(3) Calculate∇aC � (zC/zaL
k) � (aL − y)

(4) Calculate the distribution of node sensitivity of the L − 1 layer obtained from the sample i SL− 1
i � ∇aC⊙ σ′(zL− 1)

(5) l � L − 2
(6) while l> 1 do:
(7) Sl

i � ((wl+1)TSl+1
i)⊙ σ′(zl)

(8) l � l − 1
(9) end
(10) end for
(11) for l � 2 to L − 1 do:
(12) Sl � iS

l
i

(13) end for
(14) return SL− 1, SL− 2, . . . , S2

ALGORITHM 1: Calculate distribution of node sensitivity.

Input: -e node sensitivity on each layer SL− 1, SL− 2, . . . , S2, number of layers of the model L, number of neurons on each layer
nL− 1, nL− 2, . . . , n2

Output: Identify the abnormal nodes
(1) for l � 2 to L − 1 do:
(2) Sort the elements of the distribution Sl in ascending order
(3) Calculate the lower quartile Q1 position in Sl: (nl + 1)/4
(4) Calculate the median quartile Q2 position in Sl: 2∗ (nl + 1)/4
(5) Calculate the upper quartile Q3 position in Sl: 3∗ (nl + 1)/4
(6) Calculate Q1, Q2, Q3 based on their positions
(7) Calculate interquartile range IQR � Q3 − Q1
(8) Calculate weak upper limit U � Q3 + k∗ IQR
(9) Calculate weak lower limit L � Q1 − k∗ IQR
(10) Calculate strong upper limit SU � Q3 + sk∗ IQR
(11) Calculate strong upper limit SL � Q3 − sk∗ IQR
(12) if ∃δl

k > SUor∃δl
k < SL

(13) output the node zl
k is an abnormal node

(14) end if
(15) end for

ALGORITHM 2: Detect abnormal values.

Security and Communication Networks 7

5.3. Untrusted Network Test Results. When the service
providers give us a trojaned model, we take three fully
connected layers (fc8, fc7, and fc6) as an example, com-
puting and plot the node sensitivity as shown in Figure 4. In
this �gure, the orange line indicates the upper and lower
quartile values in the distribution, the red line indicates the
median value, the light green line indicates 1.5 times the
interquartile range, and the dark green line indicates 5 times
the interquartile range. �erefore, the point outside the
boundary line is considered to be an outlier, that is, a
trojaned node. When a layer contains an outlier node, we
consider this model to be a neural network containing
trojaned nodes.

We choose the strong upper limit as the boundary line;
that is, when there is a node located at 5 times the
interquartile range, the node is considered to be a trojaned
node. In (A) of Figure 4(a), on the fc8 layer, the sensitivity of
node 0 is signi�cantly bigger than that of the remaining
nodes, and the boundary is 4.35, while the sensitivity of node
0 is 256.89 far above the boundary, so node 0 is considered to
be a trojaned node. In (B) and (C) of Figure 4(a), further
comparison found that all the nodes on the fc7 and fc6 layers
fall within 5 times the interquartile range, which proves that
the node 0 on the fc8 layer is an abnormal node. �e sit-
uation of age recognition model is similar to the face

recognition model. We can see from (A) of Figure 4(b), the
sensitivity of node 7 on the fc8 layer is signi�cantly bigger
than that of the remaining nodes, showing a boundary of
37.13, while the sensitivity of node 7 is 500.58 far above the
boundary. In (B) of (C) of Figure 4(b), all nodes are still
within limits, so node 7 on the fc8 layer is also considered as
a trojaned node.

�en, if the service providers give us a normal network,
we also plot the node sensitivity distribution of the network
as shown in Figure 5.

�rough analysis, (A) of Figure 5(a), it is found that node
0 on the fc8 layer in this network is within the boundary, and
there are no abnormal nodes beyond the boundary line. In
(B) of (C) of Figure 5(a), further comparison found that all
the nodes on the fc7 and fc6 layer of this model also fall
within 5 times of the interquartile range, so we think that this
face recognition model is in line with our criterion and is a
normal model. In the same situation, if it is a normal age
recognition model, the node 7 on the fc8 layer should also be
within the boundary, as can be seen from (A) of Figure 5(b),
and there are no abnormal nodes on the rest of the layers.

From the comparison between Figures 4 and 5, it can be
concluded that if a network contains trojaned nodes, its
distribution does have abnormal nodes. On the contrary, if a
network is a normal network, the sensitivity of all neurons is

–2

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500
Neural number

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6D
iff

er
en

ce
 fr

om
 th

e o
rig

in
al

 m
od

el

D
iff

er
en

ce
 fr

om
 th

e o
rig

in
al

 m
od

el

D
iff

er
en

ce
 fr

om
 th

e o
rig

in
al

 m
od

el

0 500 1000 1500 2000 2500 3000 3500 4000
Neural number

–1.5

–1

–0.5

0

0.5

1

1.5

2

0 500 1000 1500 2000 2500 3000 3500 4000
Neural number

(A) (B) (C)

(a)

×10–3 ×10–4×10–4

–1

0

1

2

3

4

5

0 500 1000 1500 2000 2500
Neural number

D
iff

er
en

ce
 fr

om
 th

e o
rig

in
al

 m
od

el

–2

–1

0

1

2

0 500 1000 1500 2000 2500 3000 3500 4000
Neural number

D
iff

er
en

ce
 fr

om
 th

e o
rig

in
al

 m
od

el

–6

–4

–2

0

2

4

6

8

0 500 1000 1500 2000 2500 3000 3500 4000
Neural number

(A) (C)(B)

D
iff

er
en

ce
 fr

om
 th

e o
rig

in
al

 m
od

el

(b)

Figure 3: Comparison of trojan training (orange line), adversarial training (blue line) model and normal model. (a) Cumulative degree of
change in weight of each node. (A) �e fc8 layer. (B) �e fc7 layer. (C) �e fc6 layer. (b) Degree of change in bias of each node. (A) �e fc8
layer. (B) �e fc7 layer. (C) �e fc6 layer.

8 Security and Communication Networks

–4

–3

–2

–1

0

1

2

3

4

N
od

e s
en

sit
iv

ity

0 500 1000 1500 2000 2500
Neural number

N
od

e s
en

sit
iv

ity

–0.6

–0.4

–0.2

0

0.8

0.6

0.4

0.2

0 500 1000 1500 2000 2500 3000 3500 4000
Neural number

N
od

e s
en

sit
iv

ity

–0.4

–0.3

–0.2

–0.1

0

0.4

0.3

0.2

0.1

0 500 1000 1500 2000 2500 3000 3500 4000
Neural number

(A) (B) (C)

(a)

Figure 5: Continued.

0 500 1000 1500 2000 2500
Neural number

–50

0

50

100

150

200

250

300

N
od

e s
en

sit
iv

ity

N
od

e s
en

sit
iv

ity

0 500 1000 1500 2000 2500 3000 3500 4000
Neural number

–4
–3
–2
–1

0
1
2
3
4
5

N
od

e s
en

sit
iv

ity

0 500 1000 1500 2000 2500 3000 3500 4000
Neural number

(A)

Node 0

(B) (C)

–1.5

–1

–0.5

0

0.5

1

1.5

(a)

0 1 2 3 4 5 6 7 8
–400
–300
–200
–100

0
100
200
300
400
500
600

N
od

e s
en

sit
iv

ity

Neural number
(A)

Node 7

–10
–8
–6
–4
–2

0
2
4
6
8

10

0 50 100 150 200 250 300 350 400 450 500
Neural number

N
od

e s
en

sit
iv

ity

(C)

N
od

e s
en

sit
iv

ity

–1
–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8

1

50 100 150 200 250 300 350 400 450 5000
Neural number

(B)

(b)

Figure 4: -e distribution of node sensitivity in trojaned neural networks. (a) Face recognition model. (A) -e fc8 layer. (B) -e fc7 layer.
(C) -e fc6 layer. (b) Age recognition model. (A) -e fc8 layer. (B) -e fc7 layer. (C) -e fc6 layer.

Security and Communication Networks 9

within the boundaries we have chosen. It proves that the
detection model against trojaning attack on neural networks
is indeed effective.

Further consideration, because the trigger rate of the
trojaned nodes is smaller, the concealment is higher. For this
reason, we observe the relationship between the degree of

change of the trojan training and the sensitivity of the
nodes and give the phased data as Tables 1 and 2. We plot
the correlation between difference of node sensitivity-
boundary and trojan trigger rate as shown in Figure 6. -e
green line represents the classification accuracy of the
trojaned model on the original dataset, the red line

–10

–20

–30

–40

0

10

20

30

40
N

od
e s

en
sit

iv
ity

0 1 2 3 4 5 6 7 8
Neural number

–1
–0.8
–0.6
–0.4
–0.2

0

0.8
0.6
0.4
0.2

N
od

e s
en

sit
iv

ity

0 50 100 150 200 250 300 350 400 450 500
Neural number

–0.3

–0.2

–0.1

0

0.4

0.3

0.2

0.1

N
od

e s
en

sit
iv

ity

50 100 150 200 250 300 350 400 450 5000
Neural number

(A) (B) (C)

(b)

Figure 5:-e distribution of node sensitivity in normal neural networks. (a) Face recognitionmodel. (A)-e fc8 layer. (B)-e fc7 layer. (C)
-e fc6 layer. (b) Age recognition model. (A) -e fc8 layer. (B) -e fc7 layer. (C) -e fc6 layer.

Table 1: -e result of face recognition model.

Trojan trigger rate (%) 0 2.53 20 40 60 80 ≈100
Original sample accuracy (%) 77.88 77.69 76.64 76.16 74.99 73.85 67.39
-e boundary 2.83 2.92 3.88 3.93 3.91 3.92 3.89
Difference − 1.39 0.03 5.63 12.24 22.23 46.44 250.15

Table 2: -e result of age recognition model.

Trojan trigger rate (%) 0 5.07 20 40 60 ≈80
Original sample accuracy (%) 90.93 90.41 86.58 76.33 53.25 23.96
-e boundary 10.94 12.75 5.45 26.93 40.30 17.46
Difference − 4.21 0.10 57.78 181.7 470.7 895.7

100 120 140 160 180 200
0

0

0.2

0.4

0.6

0.8

1

O
rig

in
al

 sa
m

pl
e a

cc
ur

ac
y

or
 T

TR

0

50

100

150

200

250

300

D
iff

er
en

ce
 o

f n
od

e s
en

sit
iv

ity
-b

ou
nd

ar
y

Original sample accuracy
Trojan trigger rate
Difference of node sensitivity-boundary

Step
20 40 60 80

(a)

D
iff

er
en

ce
 o

f n
od

e s
en

sit
iv

ity
-b

ou
nd

ar
y

0

200

400

600

800

100 120 140 160 180 200
0

0

0.2

0.4

0.6

0.8

1

O
rig

in
al

 sa
m

pl
e a

cc
ur

ac
y

or
 T

TR

Original sample accuracy
Trojan trigger rate
Difference of node sensitivity-boundary

Step
20 40 60 80

(b)

Figure 6: -e correlation between difference of node sensitivity-boundary and trojan trigger rate. (a) Face recognition model. (b) Age
recognition model.

10 Security and Communication Networks

represents the trojan trigger rate of the trojaned model on
the external dataset, and the blue line represents the dif-
ference between the sensitivity of the trojaned nodes and
the boundary.

From the experimental results, we found that the
greater the trigger rate of the trojan, the easier the detection
of the trojaned nodes. When the trojan trigger rate is 5%,
the sensitivity and boundary of the trojaned nodes are fairly
different. It verifies that the proposed method can detect
the trojaned nodes with the trojan trigger rate above 5%.
Further analysis demonstrates that there is a certain pos-
itive correlation between difference of node sensitivity-
boundary and trojan trigger rate.-e higher the trigger rate
of the trojan, the higher the difference, and when the trigger
rate is big, the difference will increase sharply. On the other
hand, trojan training has a certain limit on the modification
of the model. Within this limit, trojan training will not
significantly reduce the accuracy of the model on the
original dataset. Once this limit is exceeded, it will cause the
fitting of the poisoned dataset over the fit of the original
dataset, resulting in a sharp drop in the accuracy of the
trojaned model on the original dataset, and this limit may
be relevant to the number of categories of the model
output.

6. Summary

To deal with the threat of trojaning attack on neural net-
works, we propose an effective trojan detection method. By
using the Interquartile Range algorithm to mine the outliers
in the node sensitivity, we can successfully detect trojaned
nodes with trojan triggering rate above 5%. We also explore
the difference between the trojan training and the adversarial
training to the normal model and prove that the trojan
training will embed trojaned nodes with the parameter
anomaly, which will result in the trojaned nodes to have an
anomalous sensitivity. -is is an innovation in trojan de-
tection on neural networks. Compared with the existing
defence mechanism for filtering input, our method is more
intuitive, efficient, and effective.

Data Availability

-e original data used to support the findings of this study
are available from [25, 26], and the external data used to
support the findings of this study are available from [28].

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is work was funded by the National Key Research and
Development Project (no. 2019YFB2101704) and by the
National Natural Science Foundation of China Grants (no.
61672297).

References

[1] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face
recognition,” in Proceedings of the British Machine Vision
Conference 2015, Swansea, UK, September 2015.

[2] L. Deng, G. Hinton, and B. Kingsbury, “New types of deep
neural network learning for speech recognition and related
applications: an overview,” in Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP, pp. 8599–8603, Vancouver, Canada, May
2013.

[3] M. Bertozzi, A. Broggi, and A. Fascioli, “Vision-based in-
telligent vehicles: state of the art and perspectives,” Robotics
and Autonomous Systems, vol. 32, no. 1, pp. 1–16, 2000.

[4] S. Kottur, J. Moura, S. Lee et al., “Natural Language does not
emerge “naturally” in multi-agent dialog,” in Proceedings of
the 2017 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2962–2967, Copenhagen, Denmark,
September 2017.

[5] N. D. T. Tri, Q. Vu, and K. Ikeda, “Optimized non-visual
information for deep neural network in fighting game,” in
Proceedings of the 9th International Conference on Agents and
Artificial Intelligence, pp. 676–680, Porto, Portugal, February
2017.

[6] M. Ribeiro, K. Grolinger, and M. A. M. Capretz, “MLaaS:
machine learning as a service,” in Proceedings of the 2015 IEEE
14th International Conference on Machine Learning and
Applications (ICMLA), pp. 896–902, Miami, FL, USA, De-
cember 2015.

[7] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning:
defending against backdooring attacks on deep neural net-
works,” 2018, http://arxiv.org/abs/1805.12185.

[8] R. Dieter Findling and R. Mayrhofer, “Towards pan shot face
unlock,” International Journal of Pervasive Computing and
Communications, vol. 9, no. 3, pp. 190–208, 2013.

[9] C. Yang, Q. Wu, H. Li et al., “Generative poisoning attack
method against neural networks,” 2017, http://arxiv.org/abs/
1703.01340.

[10] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in Proceedings of the In-
ternational Conference on Learning Representations (ICLR),
San Diego, CA, USA, May 2015.

[11] K. Kucian, M. von Aster, T. Loenneker, T. Dietrich, and
E. Martin, “Development of neural networks for exact and
approximate calculation: a FMRI study,” Developmental
Neuropsychology, vol. 33, no. 4, pp. 447–473, 2008.

[12] A. Geigel, “Neural network trojan,” Journal of Computer
Security, vol. 21, no. 2, pp. 191–232, 2013.

[13] T. Liu, W. Wen, and Y. Jin, “SIN2: stealth infection on neural
network—a low-cost agile neural trojan attack methodology,”
in Proceedings of the 2018 IEEE International Symposium on
Hardware Oriented Security and Trust, pp. 227–230, Wash-
ington, DC, USA, April-May 2018.

[14] M. Zou, Y. Shi, C. Wang et al., “PoTrojan: powerful neural-
level trojan designs in deep learning models,” 2018, http://
arxiv.org/abs/1802.03043.

[15] Y. Liu, S. Ma, Y. Aafer et al., “Trojaning attack on neural
networks,” in Proceedings of the 2018 Network and Distributed
System Security Symposium (NDSS), San Diego, CA, USA,
February 2018.

[16] Y. Ji, Z. Liu, X. Hu et al., “Programmable neural network
trojan for pre-trained feature extractor,” 2019, http://arxiv.
org/abs/1901.07766.

Security and Communication Networks 11

http://arxiv.org/abs/1805.12185
http://arxiv.org/abs/1703.01340
http://arxiv.org/abs/1703.01340
http://arxiv.org/abs/1802.03043
http://arxiv.org/abs/1802.03043
http://arxiv.org/abs/1901.07766
http://arxiv.org/abs/1901.07766

[17] B. Chen, W. Carvalho, N. Baracaldo et al., “Detecting
backdoor attacks on deep neural networks by activation
clustering,” in Proceedings of the CEUR Workshop
Proceedings, Rome, Italy, November 2019.

[18] Y. Liu, Y. Xie, and A. Srivastava, “Neural trojans,” in Pro-
ceedings of the 35th IEEE International Conference on Com-
puter Design (ICCD), pp. 45–48, Boston,MA, USA, November
2017.

[19] Q. Zhang, R. Cao, Y. Nian Wu et al., “Growing interpretable
Part Graphs on ConvNets via multi-shot learning,” in Pro-
ceedings of the @irty-First AAAI Conference on Artificial
Intelligence, San Francisco, CA, USA, February 2017.

[20] Q. Zhang, R. Cao, and F. Shi, “Interpreting CNN knowledge
via an explanatory graph,” in Proceedings of the @irty-Second
AAAI Conference on Artificial Intelligence, New Orleans, LA,
USA, February 2018.

[21] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: detecting
adversarial examples in deep neural networks,” in Proceedings
of the 2018 Network and Distributed System Security Sym-
posium (NDSS), San Diego, CA, USA, February 2018.

[22] A. B. Sullenberger, A. Naiman, R. Rosenfeld, and G., “Un-
derstanding statistics,” @e Two-Year College Mathematics
Journal, vol. 6, no. 1, p. 27, 1975.

[23] S. Zirkel and A. D. Zwillinger, CRC Standard Probability and
Statistics Tables and Formulae, Student Edition, CRC Press,
Boca Raton, FL, USA, 2000.

[24] G. Levi and T. Hassner, “Age and gender classification using
convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 34–42, Boston, MA, USA, June 2015.

[25] VGG Face Dataset, http://www.robots.ox.ac.uk/∼vgg/software/
vgg_face/.

[26] Age Dataset, http://www.cslab.openu.ac.il/download/.
[27] G. B. Huang, M. Mattar, T. Berg et al., “Labeled faces in the

Wild: a database for studying face recognition in un-
constrained environments,” Technical Report 07-49, Uni-
versity of Massachusetts, Amherst, MA, USA, 2007.

[28] LFW Dataset, https://drive.google.com/file/d/1XIPpfHeYU
PEFCBoCjXr4ODWqzbkeBULv/view.

12 Security and Communication Networks

http://www.robots.ox.ac.uk/%7Evgg/software/vgg_face/
http://www.robots.ox.ac.uk/%7Evgg/software/vgg_face/
http://www.cslab.openu.ac.il/download/
https://drive.google.com/file/d/1XIPpfHeYUPEFCBoCjXr4ODWqzbkeBULv/view
https://drive.google.com/file/d/1XIPpfHeYUPEFCBoCjXr4ODWqzbkeBULv/view

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

