Hindawi

Security and Communication Networks
Volume 2019, Article ID 2156906, 13 pages
https://doi.org/10.1155/2019/2156906

Research Article

WILEY

Hindawi

WebMTD: Defeating Cross-Site Scripting Attacks Using

Moving Target Defense

Amirreza Niakanlahiji

TUNC Charlotte, USA
2University of Colorado Denver, USA

! and Jafar Haadi Jafarian

Correspondence should be addressed to Amirreza Niakanlahiji; aniakanl@uncc.edu

Received 30 June 2018; Revised 31 January 2019; Accepted 13 February 2019; Published 14 May 2019

Academic Editor: Mamoun Alazab

Copyright © 2019 Amirreza Niakanlahiji and Jafar Haadi Jafarian. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Existing mitigation techniques for cross-site scripting attacks have not been widely adopted, primarily due to imposing impractical
overheads on developers, Web servers, or Web browsers. They either enforce restrictive coding practices on developers, fail
to support legacy Web applications, demand browser code modification, or fail to provide browser backward compatibility.
Moving target defense (MTD) is a novel proactive class of techniques that aim to defeat attacks by imposing uncertainty in
attack reconnaissance and planning. This uncertainty is achieved by frequent and random mutation (randomization) of system
configuration in a manner that is not traceable (predictable) by attackers. In this paper, we present WebMTD, a proactive moving
target defense mechanism that thwarts various kinds of cross-site scripting (XSS) attacks on Web applications. Relying on built-in
features of modern Web browsers, WebMTD randomizes values of certain attributes of Web elements to differentiate the application
code from the injected code and disallow its execution; this is done without requiring Web developer involvement or browser code
modification. Through rigorous evaluation, we show that WebMTD has very a low performance overhead. Also, we argue that
our technique outperforms all competing approaches due to its broad effectiveness, transparency, backward compatibility, and low

overhead.

1. Introduction

Despite numerous proposed works on detection and pre-
vention of XSS attacks [1-6], they are still among the most
common threats on Web applications; examples are the
recently discovered XSS vulnerabilities on Amazon [7], EBay
[8], Twitter [9], Drupal CMS [10], and WordPress Tooltipy
plugin [11].

According to a recent report by Akamai on the state
of the Internet in 2018 [12], XSS is still among the top
three most prevalent classes of attacks on Web applications.
According to this report, in a period of 6 months (Now.
2017 to April 2018), over 6 million XSS attacks have been
discovered, which accounts for over 8% of attacks on Web
applications. The occurrence of over 1 million XSS attacks
per month emphasizes the gravity of mitigating these attacks
as well as limited effectiveness of existing XSS mitigation
methodologies.

Methodologies for countering XSS attacks could be
broadly divided into two categories: (I) input validation or
sanitization techniques that prevent injection of malicious
code (i.e., JavaScript) but are highly susceptible to evasion
[13]; (II) code differentiation techniques that prevent exe-
cution of injected code, including BEEP [3], ISR [14], CSP
1.0 [4] and 2.0 [15], Noncespaces [5], and xJS [6]. However,
as demonstrated through our extensive evaluation, existing
techniques suffer from several shortcomings, which limits
their widespread adoption by real-world applications. Most
importantly, almost all existing approaches either require
developer involvement in the defense process [3, 4], entail
modification of Web browser [6], suffer from high overhead
(execution time, more traffic overhead) [3], or are susceptible
to evasion [4].

In XSS attacks, an attacker designs and implements the
exploit code on her side and then either feeds it to the Web
application or sends a crafted URL directly to the users of

http://orcid.org/0000-0002-7282-1575
http://orcid.org/0000-0001-8115-085X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2156906

the Web application. In other words, the attacker’s code will
be executed on another machine and at a different time.
These types of attacks inherently suffer from time of check
to time of use (TOCTOU) design flaw [16]. TOCTOU is a
class of software bug caused by changes in a system between
the checking of a condition (such as a security credential)
and the use of the results of that check. While attackers
have traditionally benefited from TOCTOU design flaws [17],
defenders can benefit from this flaw by altering certain system
parameters in the gap between the implementation of the
attacker’s exploit and its execution on the target, to defeat
several classes of code injection attacks on Web applications.

A novel class of proactive defense techniques, known as
moving target defense (MTD) [18], takes advantage of this
gap between time of check (exploit development) and time
of use (exploit execution) by randomizing (or mutating [18])
the environment after time of check and before time of use,
in a manner that invalidates prerequisites of the exploits. For
example, by randomizing IP addresses of networks, RHM
ensures that exploits built based on scanning at a previous
time [19] (time of check) will not be executable at a later
time (time of use). Or, by randomizing the base addresses
of memory segments of a process, ASLR [20] ensures that
exploits that are developed on attacker’s side (time of check)
are not executable on the target (time of use).

In this paper, we present an MTD approach, called
WebMTD, that defeats various types of XSS attack on Web
applications, including persistent, nonpersistent, and DOM-
based XSS, in a manner that is transparent to the Web
application, Web browsers, and developers.

WebMTD exploits TOCTOU [16] to differentiate injected
JavaScript code from the application code. To this aim,
WebMTD changes the Web application from the time of
developing an injection code (TOC) to the time of its
execution on a target machine (TOU) in order to identify this
injected code and disallow its execution.

WebMTD makes a Web application XSS-resistant by
automatically adding new attributes to certain HTML ele-
ments and randomizing their values over time. In addition,
it automatically inserts necessary security check functions
into the Web application and instructs Web browsers to
invoke them before interpreting client-side code blocks or
event handlers. These security check functions validate the
authenticity of the code blocks and handlers.

In summary, WebMTD has the following properties: (1) It
prevents the execution of various types of XSS attacks. (2) It
has low overhead. Through rigorous evaluation, we show that
our approach has very negligible execution overhead on web
browsers, and also the transmission delay is very negligible.
The space overhead is also in order of several hundred bytes.
(3) It is transparent to Web applications and developers;
WebMTD could be implanted in any legacy or new Web
application in an automated manner and without demanding
any restrictive coding practices. (4) It is transparent to Web
browsers; WebMTD works with any modern Web browser
that fully complies with HTML5 specification. Moreover,
users with unsupported browsers can still use the WebMTD-
enabled Web application but without the code injection
resistance capability.

Security and Communication Networks

In the rest of paper, first, we present a background on
XSS attacks in Section 2. Then, we present a summary of
related works in this area in Section 3. Next, in Section 4, we
discuss how WebMTD counters such attacks. In Section 5, we
provide a quantitative evaluation of WebMTD in addition to
comparing it with competing solutions, including xJS, ISR,
BEEP, Noncespaces, and CSP 1.0 and 2.0. In Section 6, we
conclude the paper.

2. Background

In this section, we briefly provide necessary background
knowledge about XSS attacks. Generally, in XSS attacks, the
attacker designs and implements the exploit code on her side
and then either feeds it to the Web application or sends a
crafted URL directly to the users of the Web application.
To launch this attack, an attacker injects a script block
instead of entering a legitimate input. For example, instead
of entering an email address in email field, an attacker enters
<script>alert("test")</script>. This value could be
either stored in the database (in stored XSS), reflected in the
response document (in reflected XSS), or directly consumed
by the Web browser (in DOM-based XSS) [21]. If this input
value is received by the Web browser at a later time, e.g., by
retrieving it from the database, the Web browser would not be
able to differentiate this script block from original application
script blocks and would interpret it, thus showing the alert
message. This injected JavaScript code could be used to steal
cookies, to deface the document, or to submit unauthorized
forms. In essence, XSS is mainly used to evade the same-
origin policy enforced by modern Web browsers and hence
compromises the integrity of the vulnerable Web application.

In addition, XSS attacks can also be used to launch other
attack vectors such as CSRF (Cross-Site Request Forgery),
in order to evade existing widely used mitigation techniques
such as CSRF cookies. In CSRE the attacker forces an
authenticated user to execute unwanted actions such as
transferring money and sending message to other users on
the Web application. For example, an attacker might inject
a JavaScript code by exploiting an XSS vulnerability in the
Web application. When a user visits the page that contains the
injected code, the injected code will be executed. This code
can invoke arbitrary Web API on behalf of the user.

3. Related Work

Methodologies for countering XSS attacks could be broadly
divided into two categories: (I) input validation or saniti-
zation techniques and (II) code differentiation techniques.
Input validation or sanitization techniques use a filtering
module that looks for scripting commands or metadata
characters in untrusted inputs, and filter or sanitize any
such input before these inputs are processed by the Web
application [1, 22-28]. However, these techniques suffer from
several major shortcomings, including potentials of false
negatives (malicious inputs going undetected), overhead on
developers, and potentials of false positives (legitimate input
is rejected) [1, 29].

Security and Communication Networks

In contrast, code differentiation techniques focus on
differentiating application code from the injected ones and
disallowing execution of the latter. These approaches do not
suffer from the shortcoming of input validation techniques
[29]. Notable examples of these approaches are BEEP [3], ISR
[14,30], CSP 1.0 [4] and 2.0 [15], Noncespaces [5], and x]JS [6].

BEEP [3] prevents XSS attacks by only allowing whit-
elisted JavaScript blocks to be executed on a client’s browser.
Before deploying a Web application, BEEP computes the hash
values of all JavaScript blocks in a Web page and makes a
whitelist from them. This whitelist and some checking code
will be embedded in the Web page. A BEEP-aware browser
runs the checking code before executing any script block on
the page. If computed hash value of a script block cannot be
found in the whitelist, then the checking code prevents its
execution.

Kc et al. introduced Instruction Set Randomization (ISR)
[14] to prevent code injection attacks in machine code. The
basic idea of ISR is to generate a process-specific instruction
set for a vulnerable system by encrypting instruction. An
attacker who does not know the instruction set cannot inject
and execute any code on the vulnerable system. In [30],
Boyd and Kc et al. expanded their original ISR work by
demonstrating the generality of ISR; they presented how
ISR can be implemented to prevent code injection attacks
against Perl scripts and SQL queries. Although they did not
present how this can be implemented for JavaScript engines
embedded in browsers which are targets of XSS attacks, we
believe that the same idea can be implemented in browsers to
prevent XSS attacks; hence we consider ISR as a related work.

Athanasopoulos et al. [6] introduce x]JS framework to
mitigate XSS attacks. The basic idea is to transpose JavaScript
code blocks to another domain on the Web server at runtime
and to reverse the transposition on the client browser. In
their implementation, they used XOR operation to transpose
JavaScript blocks in static HTML documents. Upon request-
ing an HTML document, xJS XORs each script block on the
Web page with a secret key. Then, it includes the key in an
HTTP response header. On the client’s browser, the encrypted
code block will be again XORed with the transmitted secret
key to retrieve the original code blocks.

Stamm et al. proposed Content-Security-Policy (CSP)[4],
which is now implemented in all major Web browsers such
as Firefox, Chrome, and Safari. In CSP, a developer or
maintainer of a Web application determines the policies
for each Web page. Each CSP policy specifies which type
of resources in a page must be loaded by the browser. By
default, CSP-enabled browser prevents inline script blocks
in a Web page. Only external script blocks (i.e., <script>
elements that have src attribute) may be executed. They will
be executed if their src attributes point to trusted locations.

In CSP 2.0, use of inline scripts is discouraged, but
allowed. The developer must explicitly whitelist scripts using
a randomly generated nonce. Similar to our approach, only
whitelisted scripts with valid nonce are executed. Alterna-
tively, an inline script could be whitelisted by specifying its
hash. In both cases, contrary to our approach, developer’s
involvement is required in the policy definition process, and
the policy enforcement process is not transparent to Web

server, Web application, and Web browser. In both CSP 1.0
and 2.0, JavaScript codes inside event handlers of HTML
elements are not allowed. This limits the applicability of the
model, as event handler attributes (e.g., onclick, onchange)
are widely used in Web applications.

Gundy et al. introduced Noncespaces technique [5] to
prevent XSS attacks. In Noncespaces, a random XML names-
pace is generated for each requested XHTML document
and all trusted XHTML element tags in that document will
be modified to start with the generated namespace. Only
XHTML elements with proper namespace will be rendered
or executed. To enforce this rule, either a Web browser must
be modified or a Web proxy must be placed in front of a
client’s Web browsers. Noncespaces approach can effectively
prevent XSS attack while its runtime overhead on clients’ Web
browsers is much lower than BEEP, since only tag names on
a Web page must be checked. In addition, changing the Web
application does not have any cost, since no offline processing
is needed upon changing the Web application.

In Section 5.6, we discuss weaknesses of these approaches
in detail; we provide an in-depth comparison of these
approaches with WebMTD to show that none of the existing
works provide an effective solution to XSS that is transparent
to Web server, Web application, and Web browser and does
not rely on Web developers or system administrators.

4. WebMTD

The root cause of XSS attacks is that the internal JavaScript
engines in browsers have no reliable means to differentiate
between the Web application code and the code injected by
an attacker. In other words, the JavaScript engine executes any
code that is passed by the Web browser. The Web browser, on
the other hand, trusts any code that is coming from the Web
server.

The main goal of WebMTD is to address this problem
efficiently by enabling a Web browser to reliably verify the
authenticity of a client-side code block (e.g., JavaScript code
block), before letting the code block be executed by the
internal interpreters in the client-side environment.

To achieve this goal, WebMTD, first, must be able to
reliably identify the application code. Second, it must be able
to mark these codes so that (I) attackers cannot mimic it,
and (II) it does not change the logic of the Web application.
Finally, WebMTD must implant necessary security check
functions in the Web application to enforce verification of a
code’s mark before its execution.

The design of WebMTD is based on two basic observa-
tions. First, the interval after development phase and before
the end of deployment phase of a Web application is a
safe time frame to identify all legitimate code blocks of a
Web application. No new code block will be added after
development phase and attackers have not yet had the chance
to inject their codes. Second, client-side code injection attacks
have two separate steps. In the first step, an attacker injects her
code or craft a URL containing malicious code; in the second
step, her victims run the code on their system. If the markings
depend on time and are not guessable or retrievable, then the
attacker cannot replicate them and hence he will be defeated.

Developer side

Security and Communication Networks

Server side Client side

1

‘WebMTD-Enhanced

— -

Web

Web Browser

Application

;
:

FIGURE 1: WebMTD architecture. This figure is reproduced from Niakanlahiji et al. (2017) (under the Creative Commons Attribution

License/public domain).

Conpk 1: Original injected HTML element.

Figure 1 shows the overall architecture of WebMTD. The
WebMTD transformer is responsible for marking all client-
side codes in the input Web application. Moreover, it should
add the necessary code to make these markings unique over
time. Finally, it should add security check functions that
must be executed by browsers to verify the markings. This
transformation process is performed before deploying the
Web application on a production system.

The current implementation of WebMTD transforms
Web applications written in PHP (as a server-side program-
ming language) and JavaScript (as a client-side programming
language) and works seamlessly with all modern browsers
such as Firefox and Chrome; it does not need to modify
the browser code or to install an add-on to extend their
functionality.

Traditionally, XSS attack focused on injection of external
or internal script blocks; however, nowadays, other types of
XSS attacks are also prevalent. Instead of injecting an inline
or external script block, the attacker may inject an HTML
element into the DOM structure of a Web page, such as an
img or a tag with an event attribute that performs a malicious
operation. By reviewing a list of all potential HTML-element-
based attacks, we divide them into two broad categories based
on the attribute name which includes the injected code:

(i) Using event attributes of an injected HTML element.
For example, see Code 1.

This includes injection of any HTML element
with any potential event attribute. Note that if
the event handler of an element is assigned using
addEventListener Web API in a JavaScript
code block, it will be validated as part of the
(inline/external) script block to which it belongs.
Therefore, our focus here is only on HTML elements
with explicit event attributes, such as the above
example.

(ii) Using Javascript: URL as the value of a source
attribute. For example, src attribute of img
or iframe tags, or href attribute of link tag
(see Code 2).

<iframe src="javascript:alert('XSS')"></
iframe>

CobE 2: Original injected HTML element.

CobE 3: Original injected HTML element.

In older browsers, this attack vector could exploit
the src or other similar attributes of many different
types of HTML elements such as img or bgsound.
However, based on our thorough investigation, in
modern browsers this attack is only viable for iframe
element. Therefore, in our methodology we only
consider this element. For example, XSS techniques
such as the example shown in Code 3 are not viable
in modern browsers anymore.

To prevent the execution of injected JavaScript code,
WebMTD relies on MutationObserver interface, which
is part of DOM 3 standard and it is implemented by
latest versions of almost all modern web browsers such
as Chrome, Firefox, and Safari. WebMTD also handles
beforescriptexecute event, introduced in HTML5 [31]
specification, to address some issues observed in Firefox
browser.

During transformation phase, WebMTD marks all
HTML elements in the Web application that are either script
blocks or have event handlers or use JavaScript: URL
as their source. It also adds two security checks, written
in JavaScript, to the web application. These checks are
invoked by the Web browsers to validate the added markings.
Any JavaScript code that is not part of an element with a
valid marking will be discarded before being executed. In

Security and Communication Networks

<script language="javascript">

CobE 4: Original script element.

<script
runtimeId="<7?php echo $id4trustedBlocks;? >"
language="javascript">

CobE 5: Elements with runtimeld attribute.

this manner, we enable browsers to distinguish between
legitimate and injected JavaScript codes.

To mark elements that are either script block or have
event attributes or JavaScript: URL as the source, the
transformer scans all the code files in the Web application
and rewrites start tags of such elements. Upon detecting the
start tag of such element, WebMTD transformer inserts a
new attribute, which is called runtimeId, into the tag. The
exact value of this attribute is determined at runtime by the
Web application when a client requests the page that contains
the element.

Suppose that the script tag shown in Code 4 is found
in a PHP file.

After rewriting, Code 4 is changed to Code 5.

Or, Suppose that the elements shown in Code 6 are
found in a PHP file.

After rewriting, Code 6 is changed to Code 7.

In addition to inserting this attribute into each element of
interest, WebMTD transformer embeds the PHP code block
shown in Code 8 at the beginning of each PHP code file that
represents a Web page.

Upon execution of this block, a random number is
generated (on the server-side) which will be assigned to all
runtimeId attributes on that page.

Moreover, WebMTD transformer locates the place of the
head element and inserts the JavaScript code block shown in
Code 9 as its first child. In this manner, WebMTD ensures
that this script block is the first code block interpreted by
client browsers.

Upon execution of Code 9, a MutationObserver object
is instantiated by passing a callback function to the
MutationObserver constructor. This callback function is
called when DOM changes matching the options passed to
observe method occur. In WebMTD, any change to the
DOM tree of the page triggers the provided callback. As
mentioned before, this script block is placed in the beginning
of <head> element; thus, the callback is called for body
element and for each of its descendant elements. When
attackers inject a script block or an HTML element with an
on-event attribute, they are basically changing the DOM tree
of the page; thus WebMTD callback function is also called for
such injected elements.

The callback only checks elements that are added to the
DOM tree; elements removed from the tree are not examined.
If the newly added element (A) is a script block, (B) has an

event attribute, or (C) is an iframe, then the callback checks
whether it has a valid runtimeId attribute. If the attribute
is missing or the value is not valid, the callback prevents the
execution of embedded JavaScript code by changing the type
of the script block or by setting the value of event or source
attribute to null.

In all modern browsers, except Firefox, changing the
type attribute of a script element to anything other than
text/JavaScript prevents the execution of JavaScript
code. To handle Firefox, WebMTD relies on another
event, beforescriptexecute, introduced in HTML 5
specification. WebMTD registers an event handler for
beforescriptexecute event, which is raised before execu-
tion of any inline or external script block. Upon invocation,
the event handler examines the runtimeId attribute of the
corresponding script block and if the attribute is missing or
the value is not valid, it disallows the execution of the script
block by returning e . preventDefault () object.

To illustrate how this can prevent an attacker, suppose
a Web application has only one page, and the page is XSS
vulnerable. An attacker requests the page. Upon investigating
the page, the attacker realizes that the runtimeId value is
59b6d298f36ae (see Code 10).

Then the attacker crafts the malicious code shown in
Code 11 and injects it into the database by exploiting the XSS
vulnerability on the page.

After that, a normal user visits the vulnerable web page.
The HTML code of the Web page will be as shown in Code 12.

In this HTML document, the runtimeId of the
injected script block (59b6d298f36ae) is different from
the runtimeId that is specified in the security check
(59p6d485c9f5b); hence the malicious block will not be
executed, while the legitimate script block will be executed.
For other types of injection attack, the same analogy holds
and the attacker cannot reuse the learned information to
evade the system.

Since the generated runtimeId changes for every client
request, the injected element will not have a runtimeIdvalid
value. Theoretically, the attacker may still make a lucky guess
for the runtimeId value, butits chance is equal to the success
probability of the Birthday attack, which is substantially low
(for unique IDs with 13 hex characters, this probability is
1/2%).

5. Evaluation

In this section, we present our evaluation of WebMTD.
We first introduce and define our criteria and metrics for
evaluation. Then, using these fourfold criteria, we present
a thorough evaluation of WebMTD. Finally, we compare
WebMTD with competing anti-XSS approaches, including
BEEP, CSP 1.0 and 2.0, xJS, ISR, and Noncespaces.

5.1. Criteria. In this section, we introduce our criteria and
metrics for evaluating our approach and comparing it to other
alternative approaches.

5.11 Effectiveness. Effectiveness is measured in terms of the
classes of XSS attacks that are thwarted by a solution, as well

Security and Communication Networks

a>

link</

<iframe src ="http://..." ></ iframe>

CobE 6: Original elements.

">link

<a id="1ink1" onclick ="alert('benign')"
runtimeId ="<7 php echo $id4trustedBlocks;?>

<iframe src ="http://..." runtimeId ="<7? php echo
$id4trustedBlocks;? >"></ iframe>

CobE 7: Original elements.

<?php
$id4trustedBlocks=uniqid();
7>

CoDE 8: Setting id4trustedBlocks value.

asits resistance to evasion techniques that are potentially used
by attackers.

5.1.2. Overhead. Placing a new security solution in front of a
Web application can be costly due to imposing different types
of overhead during and after its deployment. We consider
four types of overheads.

(i) Deployment overhead: 1t reflects the time and
resources that a developer or a system administrator
must invest to deploy a solution.

(ii) Round-trip latency: It measures the round-trip delay
that is experienced by end users as a result of deploy-
ing a solution.

(iii) Execution overhead on clients: It measures the exe-
cution time overhead that a solution imposes on the
Web browser.

(iv) Space overhead: It measures the space overhead that
is imposed by a solution, as a result of expanding the
code base.

5.1.3. Transparency. Transparency metrics show whether
applications on the server and client sides must be changed
to enable an anti-XSS solution. This is evaluated with respect
to the following:

(i) Browser code modification. It determines whether
a clients Web browser code must be modified.
Demanding browser code modification is very pro-
hibitive, because not only does it need vendors’
cooperation for deployment, it also needs clients’
cooperation for updating the browsers.

(ii) Developer involvement. It indicates whether Web
developers must adhere to new coding practices while
implementing a Web application.

5.1.4. Backward Compatibility. Backward compatibility met-
rics reflect the degree of flexibility that a solution shows to
applications and technologies that do not comply with its
requirements.

(i) Web browser. This metric indicates whether deploy-
ing a solution prevents users with unsupported
Web browsers from accessing the Web applica-
tion.

(ii) Web application. This metric indicates whether a
solution can be applied to existing Web applications
without affecting their functionalities.

5.2. Security Effectiveness. WebMTD prevents cross-side
scripting attacks by obstructing the execution of any injected
JavaScript code block on users’ browsers, either as an inline or
as an external script block, or by injecting an HTML element
with event attribute or JavaScript: URL into DOM. We
evaluated WebMTD effectiveness by applying it to a few
well-known open-source Web applications that have known
available XSS attacks.

We collected 11 confirmed XSS attacks against popu-
lar open-source Web applications, including 2 exploits on
osTicket [32], 2 exploits on osCommerce [33], 3 exploits on
wordpress [34] and its plugins, and 4 exploits on Joomla
and its components [35] from exploit-db.com exploit
database. In addition, we introduced 3 XSS vulnerabilities on
osCommerce. On each XSS vulnerability, we test a variety
of XSS codes with different types and evasion techniques.
Table 2 provides examples of the injected XSS codes which
vary in terms of type and evasion techniques. Avid readers
are referred to [36] for a complete list of known XSS exploit
codes. We examined each of these XSS exploits against each
XSS vulnerability. WebMTD successfully blocked all of these
exploits.

Security and Communication Networks

<script type="application/ javascript">

var runtimeld = "<7php echo $id4trustedBlocks
. 7>|I .
B)

var events = {'onabort': true, 'onafterprint’:
true , /*the rest is discarded*/ }

Function validateNode (node) {
if (node.nodeType == 1) {
if (node.tagName == "SCRIPT" && (!node.
hasAttribute (" runtimeId ") || node.
getAttribute (" runtimeId ") != runtimeId))
{ node.type = 'nojscode'; }
else {
for(var j=0; j < node.attributes.
length; j++) {
if (events[node.attributes [j].name] &&
(! node.hasAttribute (" runtimeId ") ||
node.getAttribute (" runtimeId ") !=
runtimeId)) {
node.setAttribute (node.attributes [j
] .name, null);
}
}

if (node.getAttribute (" src ") != null &&
(! node.hasAttribute (" runtimeId ") ||
node.getAttribute (" runtimeId ") !=
runtimeId)) {

node.setAttribute (" src ", null);

}

}

}
}

var dom observer = new MutationObserver (
function (mutations) {
mutations.forEach (({ addedNodes }) => {
addedNodes .forEach (node => {
validateNode (node); })
1
DK
var container = document.documentElement ||
document .body ;
var config = { attributes: true, childList:
true , characterData: true,subtree: true };
dom_observer.observe (container, config);

window.addEventListener ('beforescriptexecute ',

function (e) {
return (e.target.hasAttribute (" runtimeId ")
&& e.target.getAttribute (" runtimeld ")==
runtimeld) 7 e e.preventDefault ();

}, true);

</script>

CoDbE 9: Security check function using MutationObserver.

5.3. Overhead. To evaluate the performance overhead of = GB of hard disk. The first VM acts as our Web server, on

WebMTD, we measure it in terms of the aforementioned four
overhead metrics.

Our test environment consisted of two virtual machines
each with 2 GB of RAM and one virtual CPU with 10

which we installed Cent0S 7, Apache httpd server v2.4,
and MySQL server. In addition, we hosted two versions
of a popular open-source online store, osCommerce [33]
on this server. The first one is the original (unmodified)

Security and Communication Networks

<script type="text/javascript">

var runtimeld = "59b6d298f36ae";

[codes for MutationObserver and
beforescriptexecute]

</script>

<script runtimeId="59b6d298f36ae" type="text/

javascript">

</script>

CoDE 10: Attacker’s instance.

<script runtimeId="59b6d298f36ae" type="text/
javascript" >
[With malicious code] </script>

Cobe 11: Crafted script block.

osCommerce v2.3.3.4, and the other one is WebMTD-
enhanced version of the same software. The second VM
acts as our client environment and is used for measuring
performance metrics.

We used Apache JMeter v3.1, built-in performance
tool in Firefox v60, and ReloadMatic add-on for this
purpose. To ensure that our measurements are realistic, we
hosted these two machines in two separate networks across
the Internet.

Deployment Overhead. The WebMTD validation codes and
attributes are applied to a given Web application in the
postdevelopment stage and in an automated manner. It
imposes no coding restrictions on developers and requires no
changes to the Web server. It also requires no changes to Web
browsers. Therefore, WebMTD has a very low deployment
overhead for clients, administrators, developers, and vendors.

Round-Trip Latency. This metric basically measures the
latency experienced by clients in receiving replies to their
HTTP requests. Figure 2 shows the cumulative distribution
function (CDF) of round-trip latencies for 10,000 serial
HTTP requests to both the original osCommerce and its
WebMTD-enhanced version. The requests were all sent
to index.php which has roughly the same number of
JavaScript blocks as any other page of osCommerce. The
round-trip latency is calculated using the Apache JMeter on
the measurement machine. In our context, round-trip latency
denotes the time interval between initiating an HT'TP request
and receiving the response. This includes transmission time,
propagation delay, and processing time. The propagation
delay time is the same for both versions because it is a func-
tion of medium and end-to-end distance; the transmission
time depends on the Web traffic size which basically reflects
the size of HTTP request and its HTTP response. While

<script type="text/javascript">

var runtimeld = "59b6d485c9f5b";

[codes for MutationObserver and
beforescriptexecute]

</script>
<script runtimeId="59b6d485c9f5b" type="text/
javascript">

[Some legitimate code]
</script>

<script runtimeId="59b6d298f36ae" type="text/
javascript" >
[Some malicious code]

</script>
CobeE 12: User’s instance.
1 T T T E:‘r4k1&—‘r4b1‘p4}~‘p4pq‘—‘p{|
0.8 Lo .
[
]
0.6 i‘ o b
1]

0.4

ratio of completed requests

50 100 150 200 250 300 350 400 450 500
RTT (msec)

c=A with WebMTD
- - without WebMTD

F1GUre 2: Cumulative distribution function of RT Ts for 10,000 serial
HTTP requests.

the HTTP requests sent to both versions are essentially the
same, the sizes of HT'TP responses might be slightly different
due to WebMTD added code to dynamic HTML documents.
However, as discussed in Section 5.3, the size of added code
for each HTML document is 1,784 bytes on average. On a
16 Mbps link (average Bandwidth in USA [37]) this results in
= 0.5ms delay.

The remaining difference between round-trip time laten-
cies shows the processing time overhead of WebMTD-
enhanced version as compared to the original one. As
depicted in Figure 2, for completing 20% of requests, this
difference is 1ms, for 50% is 1ms, and for 80% is 2 ms. This
shows that the extra processing time due to WebMTD added
code is significantly low, thus making our approach practical
for real-world applications.

Security and Communication Networks

o
o
T

A

=)
2N
T
B

S
'S
T
-
L

ratio of completed requests

1
[
02+ oy .
:i‘ ‘
0 W 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000
RTT (msec)

~=A- . with WebMTD
-0 - without WebMTD

FiGure 3: Cumulative distribution function of RTTs for 1,000 10-
concurrent HTTP requests.

The same argument holds for concurrent requests, as
depicted by Figure 3. In this experiment, we sent the same
number of requests (10,000), but in 1,000 batches of 10
concurrent requests. As depicted in Figure 3, for completing
20% of requests, this difference is 8ms, for 50% is 15ms, and
for 80% is 23 ms. Note that the round-trip delay, although
slightly higher than the serial requests, is still negligible.

Script Execution Time. We also calculated the time that
is needed for executing the beforescriptexecute event
handler embedded in the document by WebMTD and
also the MutationObserver APL beforescriptexecute
event handler is called before execution of each script block
on each document.

To measure the execution times of these handlers,
we used built-in performance monitor tool in Firefox
and ReloadMatic add-on [38]. We randomly selected
5 pages in osCommerce and reloaded each page 100
times by the add-on while recording execution times of
the pages with performance tool. For each page load,
we extracted execution times for (I) JavaScript blocks,
(II) beforescriptexecute event handler, and (III)
MutationObserver API. The first item denotes the
execution time of the JavaScript code blocks, which is
the same for both the original and modified versions, while
the sum of second and third items shows the extra time
required for execution of WebMTD added codes. The first
item is a function of a number of JavaScript statements on
the execution path, the second item depends on the number
of executed code blocks, and the third item depends on the
number of HTML elements with event handlers and iframe
elements.

Figure 4 shows the average time for each of these two
categories on these pages. Note that compared to the average
execution time for JavaScript blocks, the extra time needed
for executing the WebMTD added codes is negligible.

80 E

70 + 4
| - [—
o0 |]

50 E

40 E

time (msec)

[TJavaScript
I beforescriptexecute
[MutationObserver

FIGURE 4: Avg. execution time for original JavaScript code vs.
WebMTD code.

On average handling the beforescriptexecute event
by WebMTD requires 0.05 ms. Given that the average number
of script blocks on modern applications is in order of tens
(as shown in Table 1, 26 code blocks on average for top 100
Websites in Alexa ranking list), the extra execution time for
the event handler is in order of a few milliseconds. Also,
on average executing the MutationObserver API function
requires 4 ms.

HTML Document Size. The added event handler for
beforescriptexecute inserts 174 bytes of code in
minified format to each dynamic HTML document. The
MutationObserver API code in minified format inserts 911
bytes to each dynamic HTML document. Each document on
average includes 24 script blocks, 3 event attributes, and 1
iframe. Therefore, an extra 700 bytes is required for adding
runtimeId and value to each document (see (Table1)).
The total added JavaScript code for each dynamic HTML
document is 1,785 bytes. Therefore, WebMTD on average
increases the size of a typical dynamic HTML document
only by 1%.

5.4. Transparency

Browser Modification. Users do not need to update their
browsers or install a new add-on to make their browsers
WebMTD-enabled. WebMTD relies on built-in features of
modern browsers to enforce its validation logic before exe-
cution of any JavaScript code on the browsers. In other
approaches, the users need to configure their environments
by adding a new add-on, updating their browsers, or using
a web proxy. All investigated approaches in the literature,
except WebMTD, require browser code modification.

10 Security and Communication Networks
TABLE I: Inline/external JavaScript block usage.
Website No. of elm. with handlers No. of iframes No. of inline script blocks No. of external script blocks Ratio of inline blocks
google.com 3 0 10 2.9 0.78
youtube.com 0 3 11.3 6.4 0.64
facebook.com 6 2 13.8 11.75 0.54
baidu.com 1 0 12.3 5.1 0.71
yahoo.com 5 0 11.2 19.7 0.36
Top 100 sites (avg) 3 1 14.9 10.1 0.60
osCommerce 2 0 8.8 4.6 0.65
TABLE 2: Types of XSS exploit codes and examples.
Type Sub-type Example codes Defense
External <script sre=http://.../XSS.js></script> Viable on all browsers
Script block Blocked by WebMTD
Inline <script>alert("XSS’)</script> Viable on all browsers
Blocked by WebMTD
Elements w/ Now, only viable for iframe.
javascript: URL Blocked by WebMTD

<div style="background-image: url(javascript:alert(’XSS"))" >

Viable on all browsers

as source
<bgsound src="javascript:alert(XSS');" >
<link rel="stylesheet" href="javascript:alert(’XSS');" >
Inline script " . \ N
code <IFRAME SRC="javascript:alert(XSS'");" ></IFRAME>
Elements

w/ event attributes

Blocked by WebMTD

<body onload="alert(’XSS)" >

Developer Involvement. Web developers do not need to
follow a restrictive coding practice to make their application
WebMTD-enabled. In contrast, to make web applications
ready for other approaches, developers must follow very
restrictive rules, which can make the web development
process more costly. For example, to use BEEP, developers
must not generate JavaScript code blocks in their server-side
code. To use CSP 1.0, users must not use inline JavaScript
code blocks or on-event handler attributes. In CSP 2.0,
users are not still allowed to have event attributes and must
explicitly whitelist legitimate inline script code blocks. To use
Noncespaces, developers must avoid using XML namespaces
for XHTML element names. These requirements mean these
approaches cannot be applied to the legacy Web application
without requiring code refactoring by developers.

5.5. Backward Compatibility. WebMTD relies on a few
internal features of modern web browsers such as
beforescriptexecute and MutationObserver to
prevent the execution of XSS attacks. However, some users
may browse a WebMTD-enabled Website with a browser
that lacks those features. In that case, our event handler
beforescriptexecuteand MutationObserver are never
called. These functions are responsible for validating the

token IDs for script blocks; thus our approach is deactivated
in such cases. Still these users can interact with the web
application as the scripts on the web application can be
directly executed by the JavaScript engines. We only added a
new attribute to script blocks and HTML elements without
changing the script codes.

Legacy web applications can be transformed with
WebMTD rewriter without developers’ involvement as we
do not impose any special coding practices.

5.6. Comparison with Other Techniques. In this section, we
compare the state-of-the-art solutions against Web code
injection attacks including BEEP, CSP 1.0, CSP 2.0, ISR, xJS,
and Noncespaces with WebMTD.

BEEP overhead on a Web browser is not negligible. A
client browser must compute the hashes of all script blocks
in a Web page. This will cause a delay in loading of the
page which can be significant on less powerful devices like
smartphones or tablets. In addition, as mentioned by other
authors [29], BEEP requires the hash value of a script block
to be computed statically. As a result, BEEP does not allow
execution of legitimate script blocks which are dynamically
generated by the server-side program.

Security and Communication Networks 1
TaBLE 3: Comparison of WebMTD vs. existing techniques against client-side code injections.

Criteria BEEP xJS Noncespaces ISR CSP 1.0 CSP2.0 WebMTD
External blocks yes yes yes - yes yes yes
Effectiveness Inline blocks yes yes yes - prohibited yes yes
Elements with event attributes yes yes yes - prohibited prohibited yes
Elements with JavaScript: URL ~ no yes yes - prohibited prohibited yes
Deployment overhead low low low low high high low
Overhead Round-trip latency low medium medium high low low low
Execution overhead on browser high medium medium high low low low
Space overhead low low low low low low low

ification?

Transparency Browser modification? yes yes yes yes yes yes no
Developer involved? no no yes no yes yes no
Backward Compatibility Web browser yes no yes no yes yes yes
Web application no yes no yes no no yes

CSP 1.0 is not widely used [39] in modern Web appli-
cations because it needs the involvement of the developers
of the system. They need to define the policies. In addition,
it dictates several restrictions on the code; for example, no
inline JavaScript block can be used in the Web application.
These restrictions can significantly affect the performance of
large Web applications [29] and make it harder to implement
CSP for legacy Web applications. We have examined ten pages
from each of Alexa top 100 Websites to see how prevalent
the use of inline script block is among popular Web sites.
As it is shown in Table 1, 0.60 percent of scripts in these
Websites are inline and hence solutions such as CSP 1.0
that require abandoning of inline scripts cannot be used in
practice.

CSP 2.0 is the current successor of CSP. The main
change in CSP 2.0 is allowing developers to use inline scripts
by adding nonce or hash sources to script-src policy
[40]. To do so, developers must either (1) manually add a
nonce attribute to all inline scripts and specify the nonce
value in Content-Security-Policy at runtime or (2) compute
the hashes of all inline scripts and add them to Content-
Security-Policy. Although the nonce approach is similar to
our approach, still CSP 2.0 does not allow usage of JavaScript
code as event attributes or JavaScript: URL. The only way
to do so in CSP 2.0 is to specify ’unsafe-inline’ as a
script-src policy, which essentially allows execution of
inline scripts, event handlers, or JavaScript: URLs, with-
out validating them. Therefore, CSP 2.0 either disallows usage
of event handlers or JavaScript: URLs, which makes it
prohibitive and violates backward compatibility (see Table 1),
or allows them in an insecure manner, thus making the Web
application susceptible to XSS attacks.

ISR could be used to defeat XSS attacks, by randomizing
the JavaScript instruction set. However, this approach is very
expensive as it requires encryption of JavaScript statements
on the server-side and decryption on the browser side. These
encryption/decryption operations are costly. In addition, a
Web server needs to have a JavaScript parser on its side
and this parser must parse all the JavaScript code blocks
in the requested page. Therefore, implementing ISR can be
costly with regard to execution time. ISR also needs a key

management protocol and both parties must be aware of the
randomization.

xJS is an adaptation of ISR for Web applications in which
JavaScript blocks are transformed by XORing with a key.
However, its prototype only transforms HTML documents
which are only vulnerable to a few types of XSS attacks.
Modern Web applications use server-side programming
languages such as PHP and JSP to dynamically generate
HTML documents on the fly. If we use xJS to transform
dynamically generated HTML documents, it will not be able
to prevent persistent or reflected XSS attacks, because xJS
cannot differentiate between a legitimate script block and an
injected script block in a generated HTML document and
hence encrypts both of them with the secret key, and those
blocks will again be encrypted on the client’s browser.

Noncespaces can interrupt normal operation of a Web
application. One of the advantages of using namespaces
in XHTML documents is that XHTML documents can be
extended by including fragments from other XML-based
languages such as MathML [41] or SVG [42]. Altering the
namespace prefixes of tags in an XHTML document can
change the interpretation of the corresponding elements in
that document and hence can hinder normal operation of a
Web application.

Table 3 summarizes our results on comparing these tech-
niques with WebMTD.

6. Conclusion

In this paper, we present WebMTD, a light-weight defense
mechanism for Web applications that is capable of thwarting
various types of cross-site scripting (XSS) attacks. Through
rigorous evaluation, we show that deploying WebMTD does
not affect the overall performance of a Web application,
mainly due to its low overhead regarding processing time on
both the Web server and the browser, and exchanged HTTP
traffic.

In addition to its high performance, WebMTD deploy-
ment is affordable and straightforward. It does not require
any involvement or knowledge on the developer’s side. The

12

code changes required for deploying WebMTD are applied
automatically and in postdevelopment stage. Therefore, it can
be applied to both legacy and new Web applications. More-
over, WebMTD does not require Web browsers’ modification,
because it only relies on the built-in capabilities of modern
Web browsers; hence Websites can deploy WebMTD without
requiring users to adopt WebMTD-aware Web browsers or
install any additional add-on.

Appendix

We have uploaded two versions of osCommerce v2.3.3.4,
one unmodified version and one WebMTD-enabled version
at

http://149.56.12.232/0oscommerce-2.3.3.4/cat-
alog

and

http://149.56.12.232/0oscommerce-webmtd/cat-
alog

respectively.

In addition to the inherent vulnerabilities, we added 3
XSS vulnerabilities in

product_info.php

page. Avid readers are encouraged to investigate our
implementation and evaluate its effectiveness.

Data Availability

The evaluation data used to support the findings of this study
are available from the corresponding author upon request.

Disclosure

This submission is an extension of our peer-reviewed confer-
ence paper titled “WebMTD: Defeating Web Code Injection
Attacks using Web Element Attribute Mutation” which was
published in the Proceedings of the 2017 Workshop on
Moving Target Defense, CCS 2017. This publication could
be accessed online at: https://dl.acm.org/citation.cfm?doid=
3140549.3140559.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] P. Bisht and V. Venkatakrishnan, “Xss-guard: precise dynamic
prevention of cross-site scripting attacks,” in Proceedings of
the International Conference on Detection of Intrusions and
Malware, pp. 23-43, Springer, 2008.

[2] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis
tool for detecting web application vulnerabilities,” in Proceed-
ings of the 2006 IEEE Symposium on Security and Privacy, p. 6,
IEEE, 2006.

[3] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection
attacks with browser-enforced embedded policies,” in Proceed-
ings of the 16th International Conference on World Wide Web, pp.
601-610, ACM, 2007.

Security and Communication Networks

[4] S.Stamm, B. Sterne,and G. Markham, “Reining in the web with
content security policy,” in Proceedings of the 19th International
Conference on World Wide Web, pp. 921-930, ACM, 2010.

[5] M. Van Gundy and H. Chen, “Noncespaces: Using randomiza-
tion to defeat cross-site scripting attacks,” Computers & Security,
vol. 31, no. 4, pp. 612-628, 2012.

[6] E. Athanasopoulos, V. Pappas, A. Krithinakis, S. Ligouras, E.
P. Markatos, and T. Karagiannis, “xjs: practical xss prevention
for web application development,” in Proceedings of the 2010
USENIX Conference on Web Application Development, pp. 13-13,
USENIX Association, 2010.

[7] Binishala, amazon.com Security Vulnerability, 2016, https://
www.openbugbounty.org/incidents/152371/.

[8] Brute, ebay.com security vulnerability, 2016, https://www
.openbugbounty.org/incidents/121171/.

[9] Persistent dom-based xss in https://help.twitter.com via localstor-
age, 2018, https://hackerone.com/reports/297968.

[10] L. O’Donnell, https://hackerone.com/reports/297968, 2018.

[11] T. Adams, Reflected xss in Tooltipy (Tooltips for Wp) Could
Allow Anybody to Do Almost Anything an Admin Can, 2018,
https://advisories.dxw.com/advisories/xss-in-tooltipy/.

[12] Akamai, State of The Internet: Security - Web Attack Report
Infographic, 2018, https://www.akamai.com/us/en/multimedia/
documents/state-of-the-internet/soti-summer-2018-web-at-
tack-infographic.pdf.

[13] T. Scholte, D. Balzarotti, and E. Kirda, “Quo vadis? A study of
the evolution of input validation vulnerabilities in web appli-
cations,” in International Conference on Financial Cryptography
and Data Security, pp. 284-298, Springer, 2011.

[14] G. S. K¢, A. D. Keromytis, and V. Prevelakis, “Countering
code-injection attacks with instruction-set randomization,” in
Proceedings of the 10th ACM Conference on Computer And
Communications Security, pp. 272-280, 2003.

[15] W3C, Content Security Policy Level 2, 2016, https://www.w3
.org/TR/CSP2/.

[16] M. Bishop, M. Dilger et al., “Checking for race conditions in file
accesses,” Computing Systems, vol. 2, no. 2, pp. 131-152, 1996.

[17] MITRE, “Cwe-367: Time-of-check time-of-use (toctou) race
condition,” https://cwe.mitre.org/data/definitions/367html.

S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang,
Moving Target Defense: Creating Asymmetric Uncertainty for
Cyber Threats, vol. 54, Springer Science & Business Media, 2011.

[19] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “An effective address
mutation approach for disrupting reconnaissance attacks,” IEEE
Transactions on Information Forensics and Security, vol. 10, no.
12, pp. 2562-2577, 2015.

[20] P. Team, Pax Address Space Layout Randomization (aslr), 2003.

[21] A. Klein, “Dom based cross site scripting or xss of the third
kind,” Web Application Security Consortium, Articles, vol. 4, pp.
365-372, 2005.

[22] T. Pietraszek and C. V. Berghe, “Defending against injection
attacks through context-sensitive string evaluation,” in Pro-
ceedings of the International Workshop on Recent Advances in
Intrusion Detection, pp. 124-145, Springer, Berlin, Germany,
2005.

[23] 1. Papagiannis, M. Migliavacca, and P. Pietzuch, “Php aspis:
using partial taint tracking to protect against injection attacks,”
in WebApps’ 11: Proceedings of the 2nd USENIX Conference on
Web Application Development, pp. 13-24, USENIX Association,
2011.

(18

http://149.56.12.232/oscommerce-2.3.3.4/catalog
http://149.56.12.232/oscommerce-2.3.3.4/catalog
http://149.56.12.232/oscommerce-webmtd/catalog
http://149.56.12.232/oscommerce-webmtd/catalog
https://dl.acm.org/citation.cfm?doid=3140549.3140559
https://dl.acm.org/citation.cfm?doid=3140549.3140559
https://www.openbugbounty.org/incidents/152371/
https://www.openbugbounty.org/incidents/152371/
https://www.openbugbounty.org/incidents/121171/
https://www.openbugbounty.org/incidents/121171/
https://hackerone.com/reports/297968
https://hackerone.com/reports/297968
https://advisories.dxw.com/advisories/xss-in-tooltipy/
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-summer-2018-web-attack-infographic.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-summer-2018-web-attack-infographic.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/soti-summer-2018-web-attack-infographic.pdf
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP2/
https://cwe.mitre.org/data/definitions/367.html

Security and Communication Networks

[24] P. Vogt, E. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Cross site scripting prevention with dynamic data
tainting and static analysis,” in Proceedings of the NDSS, vol.
2007, p. 12, 2007.

[25] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel,
“SWAP: Mitigating XSS attacks using a reverse proxy, in
Proceedings of the 2009 ICSE Workshop on Software Engineering
for Secure Systems, SESS 2009, pp. 33-39, Canada, May 2009.

[26] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A
client-side solution for mitigating cross-site scripting attacks,”
in Proceedings of the 2006 ACM Symposium on Applied Com-
puting, pp. 330-337, France, April 2006.

[27] G. Wassermann and Z. Su, “Static detection of cross-site
scripting vulnerabilities,” in Proceedings of the 30th International
Conference on Software Engineering, pp. 171-180, ACM, 2008.

[28] M. Ter Louw and V. Venkatakrishnan, “Blueprint: Robust
prevention of cross-site scripting attacks for existing browsers,”
in Proceedings of the 2009 30th IEEE Symposium on Security and
Privacy, pp. 331-346, IEEE, 2009.

[29] J. Weinberger, A. Barth, and D. Song, “Towards client-side
HTML security policies,” in HotSec, 2011.

[30] S. W. Boyd, G. S. K¢, M. E. Locasto, A. D. Keromytis, and
V. Prevelakis, “On the general applicability of instruction-set
randomization,” IEEE Transactions on Dependable and Secure
Computing, vol. 7, no. 3, pp. 255-270, 2010.

[31] W. W. W. C. (W3C), Html5 a vocabulary and associated apis for
html and xhtml. W3C recommendation 28 october 2014, 2014,
https://www.w3.org/TR/html5/scripting-1.html.

[32] Enhancesoft, Osticket - Support Ticket System, 2016, http://
osticket.com/.

[33] osCommerce, oscommerce, 2016, http://oscommerce.com/.

[34] I. Automattic, Wordpress, 2016, http://wordpress.com/.

[35] Rochen, Joomla!, 2016, http://joomla.com/.

[36] R. Hansen, Xss filter evasion cheat sheet, 2018, https://www
.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet.

[37] Akamai, Akamais [State of the Internet] - q3 2016 Report, 2017,

https://www.akamai.com/us/en/multimedia/documents/state-

of-the-internet/q3-2016-state-of-the-internet-connectivity-re-
port.pdf.

Pylo, Reloadmatic add-on, 2018, https://addons.mozilla.org/

en-US/firefox/addon/reloadmatic/.

[39] M. Weissbacher, T. Lauinger, and W. Robertson, “Why is CSP
failing? Trends and challenges in CSP adoption,” in Proceedings
of the International Workshop on Recent Advances in Intrusion
Detection, vol. 8688, pp. 212-233, Springer, Berlin, Germany,
2014.

[40] Binishala, amazon.com Security Vulnerability, 2016, https://de-
veloper.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-
Security-Policy/script-src.

[41] R. Ausbrooks, S. Buswell, D. Carlisle et al., “Mathematical
markup language (mathml) version 2.0. w3c recommendation,’
in Proceedings of the World Wide Web Consortium, vol. 2003,
2003.

[42] J. Ferraiolo, E Jun, and D. Jackson, Scalable Vector Graphics
(SVG) 1.0 Specification, Iuniverse, 2000.

(38

13

https://www.w3.org/TR/html5/scripting-1.html
http://osticket.com/
http://osticket.com/
http://oscommerce.com/
http://wordpress.com/
http://joomla.com/
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q3-2016-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q3-2016-state-of-the-internet-connectivity-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q3-2016-state-of-the-internet-connectivity-report.pdf
https://addons.mozilla.org/en-US/firefox/addon/reloadmatic/
https://addons.mozilla.org/en-US/firefox/addon/reloadmatic/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/script-src

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

