
Research Article
Using XGBoost to Discover Infected Hosts Based onHTTP Traffic

Weina Niu ,1 Ting Li,1 Xiaosong Zhang ,1,2 Teng Hu ,1,3 Tianyu Jiang,1 and HengWu4

1School of Computer Science and Engineering, Institute for Cyber Security,
University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
2Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, Guangdong 518040, China
3Institute of Computer Application, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
4Glasgow College, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Correspondence should be addressed to Teng Hu; mailhuteng@gmail.com

Received 26 April 2019; Revised 27 September 2019; Accepted 9 October 2019; Published 6 November 2019

Guest Editor: Mehdi Hussain

Copyright © 2019 Weina Niu et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, the number of malware and infected hosts has increased exponentially, which causes great losses to governments,
enterprises, and individuals. However, traditional technologies are di�cult to timely detect malware that has been deformed,
confused, or modi�ed since they usually detect hosts before being infected by malware. Host detection during malware infection
can make up for their de�ciency. Moreover, the infected host usually sends a connection request to the command and control
(C&C) server using the HTTP protocol, which generates malicious external tra�c. �us, if the host is found to have malicious
external tra�c, the host may be a host infected by malware. Based on the background, this paper uses HTTP tra�c combined with
eXtreme Gradient Boosting (XGBoost) algorithm to detect infected hosts in order to improve detection e�ciency and accuracy.
�e proposed approach uses a template automatic generation algorithm to generate feature templates for HTTP headers and uses
XGBoost algorithm to distinguish between malicious tra�c and normal tra�c. We conduct a performance analysis to dem-
onstrate that our approach is e�cient using dataset, which includes malware tra�c fromMALWARE-TRAFFIC-ANALYSIS.NET
and normal tra�c from UNSW-NB 15. Experimental results show that the detection speed is about 1859 HTTP tra�c per second,
and the detection accuracy reaches 98.72%, and the false positive rate is less than 1%.

1. Introduction

With the booming of the Internet and the popularity of
computers, today’s computers are facing serious security
problems, whose biggest cause is the explosive growth of
malicious code. �e malicious code refers to a computer
code that is intentionally written by individuals or organi-
zations to pose a security risk to a computer or network. It
usually contains malicious sharing software, adware Trojans,
viruses, worms, etc., each of which has di¢erent kinds of
variants [1–5]. In the �rst half of 2018, China Internet Se-
curity News from 360 Internet Security Center shows that a
total of 140 million new malicious programs were inter-
cepted and an average of 795,000 new malicious programs
were intercepted every day. Among them, the number of
malicious programs on the PC side was 14,098,000, and an

average of 779,000 newmalicious programs were intercepted
every day [6]. In the fourth quarter of 2017, McAfee Labs
detected the highest number of newmalware in history, with
a total of 63.4 million new samples. McAfee Labs records an
average of eight new malware samples per second, a sig-
ni�cant increase from the four new samples recorded in the
third quarter [7]. �e malware not only brings huge eco-
nomic losses to users, but also rapid changes have brought
great trouble and pressure to the antikilling technology of
malicious programs. �e current technology has been dif-
�cult to detect malware before the host is infected.

Based on this background, detecting malware-infected
hosts in network tra�c can make up for the shortcoming [8]
because most malware will communicate with externally
hosted command and control (C&C) servers using the
HTTP protocol after infecting the device. �e C&C server is

Hindawi
Security and Communication Networks
Volume 2019, Article ID 2182615, 11 pages
https://doi.org/10.1155/2019/2182615

mailto:mailhuteng@gmail.com
https://orcid.org/0000-0002-3235-3463
https://orcid.org/0000-0001-9886-1412
https://orcid.org/0000-0002-8624-0210
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2182615

the control center that sends malware execution commands,
and it is where malware collects data. After an attacker
attacks the host with malware, the controlled host sends a
connection request to the C&C server. +e traffic generated
by the connection is malicious external traffic. Currently,
there are two main ways to detect malicious external traffic.
One is to filter malicious domain names based on blacklists,
and the other is to use rules to match malicious external
traffic. Both of these solutions have certain limitations. +e
blacklist-based filtering scheme can only identify malicious
external traffic when connecting to a known malicious
website and has no perception of domain name changes.
However, based on the feature detection scheme, it is
necessary for the security practitioner to analyze the samples
one by one, which consumes large manpower and is difficult
to detect the malicious external connection traffic of the
variant.

As a supplement to the prior art, malicious traffic can be
detected through machine learning. Using machine learning
to discover the commonality between malicious traffic and
use it as a basis to detect malicious traffic, a good algorithm
can greatly reduce the workload of security practitioners.
Specifically, the contributions of this work are specified as
follows:

(1) We propose an approach-combined machine
learning and HTTP header template to discover
traffic involved in malware infection and develop it
into the MalDetector system.

(2) We use the statistical technique to aggregate similar
features of HTTP header fields, which is also called
HTTP header template, from large-scale network
traffic.

(3) We use the GridSearchCV function to coordinate the
eXtreme Gradient Boosting (XGBoost) algorithm
and verify their effectiveness in the dataset consisting
of malicious external traffic generated from mali-
cious samples from MALWARE-TRAFFIC-ANA-
LYSIS.NET [9] running in the sandbox and the
UNSW-NB 15 dataset [10].

+e structure of this paper is arranged as follows. We
introduce the related work in Section 2. Section 3 presents an
overview of the proposed approach. +e process of template
automatic generation from the HTTP header is described in
Section 4. Section 5 completes the experimental evaluation
metrics and illustrates the experimental results. We make a
conclusion of the paper in Section 6.

2. Related Work

At present, the malware traffic identification approach based
on HTTP traffic mainly focuses on two aspects [11–24]; one
is based on the request and response statistical features
[11–16] and the other is based on the content of the HTTP
packet [17–26].

2.1. /e Request and Response Statistical Features. +e ap-
proachmainly analyzes the behavior characteristics of HTTP

request/response time interval, quantity, and packet size to
model malicious behavior and identify malware traffic.
Perdisci et al. [11] developed a novel network-level behav-
ioral malware clustering system. +ey performed coarse-
grained clustering through statistical features, such as the
total number of HTTP requests, the number of GET re-
quests, the number of POST requests, the average length of
the URLs, the average number of parameters in the request,
the average amount of data sent by POST requests, and the
average response length. +en, they performed fine-grained
clustering by calculating the difference in URL structure
between two malware samples. At last, they merged together
fine-grained clusters of malware variants that behave sim-
ilarly enough. +eir work can be able to unveil similarities
among malware samples that may not be captured by
current system-level behavioral clustering systems. Ogawa
et al. [12] extracted new features such as HTTP request
interval, body size, and header bag-of-words from HTTP
request/response pairs and calculated cluster appearance
ratio per communication host pairs and identified malware
originated communication host pairs. However, the iden-
tification approach based on the request and response sta-
tistical features is limited to malware samples that perform
some interesting actions (i.e., malicious activities) during the
execution time T. +e identification approach based on the
content of HTTP requests and responses can overcome this
limitation.

2.2. /e Content of HTTP Packets. +e approach performs
an analysis of the content of HTTP requests and responses,
extracts relevant field information to process it, and com-
bines machine learning algorithm to identify malware traffic.
Zhang et al. [17, 18] used a learning-based approach to
discover dependencies of network with the help of HTTP
request features and thus detect malicious traffic. Srivastava
et al. [19] developed a system called ExecScent that is closest
to this work. +ey used all the HTTP header fields to detect
botnet traffic. +ey manually created templates by them-
selves, such as URL-Path, Query, and User-Agent, and
formatted them using regular expressions. Zhang et al. [20]
proposed a method that used the User-Agent field to detect
malicious external traffic generated by malware. +ey used
regular expressions to format HTTP header information and
used the operating system’s fingerprint technology to
identify whether it was a fake user agent domain to infer if
there was a malware infection. Grill and Rehak [21] also used
the User-Agent field to detect the presence of malicious
external traffic. +ey found that all User-Agent field in-
formation can be divided into five categories: legitimate user
browser information, null, specific, spoofed, and in-
consistent. According to their findings, some malware de-
liberately forged requests that were sent from a web browser,
making it difficult to detect malicious outbound traffic from
the User-Agent field. Li et al. [22] proposed MalHunter
based on behavior-related statistical characteristics. +ey
detected malware communication patterns from three types
of features: character distribution of the URL, HTTP header
fields, and HTTP header sequence. However, these

2 Security and Communication Networks

approaches are either based on a single field or based on all
fields, and their feature validity is low.

Moreover, Zhang et al. [23] presented a system SMASH
that uses unsupervised data mining methods to detect
various attack activities and malicious communication ac-
tivities, focusing on detecting malicious HTTP activity from
the perspective of server-side communication. Mekky et al.
[24] put forward a method for identifying HTTP redirected
malicious links. +ey built per-user chains from passively
collected traffic and extracted new statistical features from
them to capture the inherent characteristics of malicious
redirect cases. +e supervised decision tree classifier is then
applied to identify malicious links. Liu et al. [25] proposed
an identification approach by analyzing HTTP connections
established by clients in a monitored network and com-
bining stream classification with graph-based fractional
propagation methods to identify previously undetected
Internet Service Provider (ISP) networks.

3. HTTP-Based Infected Host
Detection Approach

+e proposed HTTP-based infected host detection system
includes four modules: HTTP traffic filtering, header feature
extraction, template automatic generation, and infected host
detection. Figure 1 gives an overview of the framework of
our proposed infected host detection approach using HTTP
traffic.

3.1. HTTP Traffic Filtering and Header Feature Extraction.
We save the HTTP header to reduce the amount of stored
traffic. We also select the important information from the
HTTP header for further analysis. +e number of distinct
HTTP header fields could be roughly 10K. Moreover, some
unrelated features may expose the machine learning model
to the risk of overfitting. Rare fields are nonversatile, so the
selection criteria are that we do not extract fields that appear
less than 10 times or never appear in training data.

In addition, we mainly focus on the detection of malware
that leverages the HTTP as the primary channel to com-
municate with the C&C server or to launch attack activities.
+us, our approach mainly focuses on HTTP requests rather
than responses. If the C&C server is temporarily offline or
changes its response content, there is little impact on our
detection capabilities. +erefore, the selected fields are URI,
Host, User-Agent, Request-Method, Request-Version, Ac-
cept, Accept-Encoding, Connection, Content-type, Cache-
Control, Content-length, and some identification fields like
Frame-time, srcIP (source IP), srcPort (source port), dstIP
(destination IP), and dstPort (destination port).

Table 1 lists the description of the selected fields. +e
reason for selecting them is that they are often used in HTTP
traffic and may be helpful in distinguishing legitimate traffic
and malicious traffic.

3.2. Template Automatic Generation. When malware com-
municates with externally hosted C&C servers, malware
developers typically use custom formats to construct

packets. +e network traffic generated by the malware be-
longing to the same family usually has a similarity. +ere-
fore, we use statistical techniques to aggregate similar
features of the HTTP header fields, that is, to generate
similar templates for malicious traffic, and then use the
template to detect new malicious traffic. A template is a
series of strings, the character part represents the same part
of the value of an HTTP header field, and ∗ represents the
different parts of the value of the header field. Templates are
generated to display the variability of words constituting the
HTTP header fields and aim to compress their information.
+e template automatic generate module consists of three
steps: scoring, clustering, and generating templates [27],
which is explained in detail in Section 4.

3.3. Infected Host Detection. Many winners in Kaggle’s
competitions like to use XGBoost [28] due to Parallelization,
Distributed Computing, Out-of-Core Computing, and
Cache Optimization of data structures and algorithms.+us,
we use the XGBoost algorithm to classify malicious traffic
and normal traffic in this work.

4. Template Automatic Generation

+is section introduces focuses on how template automatic
generation algorithm works.

4.1. Scoring. We first calculate the score for each value of the
selected HTTP header fields by using the score calculation
method, and then sort each selected HTTP header field’s
values according to their scores. Each field in the HTTP
header is divided by the following four separators: space, “/”,
“�”, and “,”. +us, the score calculation method is that we
split each selected HTTP header field by separator and then
calculate the percentage of their values’ scores. For a value w

in the field F, its score is S(w; F), which can be calculated
using

S(w; F) � P(w ∣ pos(w, F), len(F))

�
n(w, pos(w, F), len(F))

n(pos(w, F), len(F))
,

(1)

where pos(w, F) is the position of the value in the field F,
len(F) is the number of values in the field F. For example,
F � {foo, bar, baz, quz}, w � bar, pos(w, F) � 2, and len
(F) � 4. n(X) is the number of times that X appears in all the
HTTP header, n(w, pos(w, F), len(F)) represents the
number of times that w appears in all the pos field of all
data, and n(pos(w, F), len(F)) indicates the number of
times that the pos field appears in all the HTTP header. As
shown in Figure 2, the score of “rv: 19.0” is 0.33
(S(w, F) � 1/3 � 0.33).

4.2. Clustering. We use the idea of the DBSCAN [29, 30]
algorithm to cluster the values of the selected HTTP header
fields. In the selected HTTP header field, when the score of
the next value differs from the score of the previous value by

Security and Communication Networks 3

less than δ, the next value is added as the current cluster;
otherwise, the next value is added to the other clusters.
Repeat the above process until all values have been added to
the cluster. Here, the DBSCAN algorithm requires two
parameters: scan radius (eps) andminimum inclusion points
(minPts). +e working process of the DBSCAN algorithm is
as follows.

Starting with an unvisited point and finding all nearby
points within the eps (including eps). If the number of nearby
points is not smaller than minPts, the current point forms a
cluster with its nearby points, and the starting point is
marked as visited. +en recursively, all the points in the
cluster that are not marked as visited are processed in the
same way, thereby expanding the cluster. If the number of
nearby points is smaller than minPts, the point is tempo-
rarily marked as a noise point. If the cluster is fully extended,
i.e., all points within the cluster are marked as accessed, then
the same algorithm is used to process the unvisited points.

Finally, we descript our clustering approach with the
scoring method and DBCSAN algorithm in the following.

First, we need to introduce the following two parameters:
(δ ≥ 0) and β (0< β< 1), δ is the minimum distance between
two clusters, β× len(F) for the minimum number of points
in the cluster, and len(F) refers to the number of value in a
field. In this work, the δ is set to 0.1 and β is set to 0.5.

+en, we sorted each word in descending score. When
the score of the next word differs from the mean score of a
cluster by less than δ, the next word is added to the current
cluster. Otherwise, the next word is assigned to a new
current cluster. +is process is repeated until all words are
included in either cluster.

4.3. Generating Templates. +e results of the clustering are
filtered to preserve only the clusters whose values are larger
than β× len(F) and the remaining clusters are replaced with
“∗”, where ä is the minimum distance between two clusters,
whose value is not smaller than 0; β× len(F)(0< β< 1) is the
minimum number of points in the cluster, and len(F) is the
number of values of the field. +e overall generation process
is shown in Figure 2.

HTTP
headers

HTTP traffic
filtering

Template automatic generation

List of
infected host

Traffic collector

Clustering

Infected host
detection

Sorting

Generating templates

Templates

Header feature
extraction

Figure 1: +e framework of our proposed approach.

Table 1: +e description of the selected fields in HTTP request
header.

+e selected fields
name Description

URI

URI is uniform resource identifier, a
reference for resources available on the

Internet such as HTML documents, images,
or videos, and the URI field plays an

important role in detection for malicious
traffic [19, 22]

Host
+eHost field recorded the domain name of

the server and the TCP port number
monitored by the server

User-Agent

+e User-Agent field is still an effective
indicator of compromised hosts because
malware may carry the fake browser-like

information or its own unique
identification

Request-Method Request type
Request-Version HTTP protocol version

Accept +is field contains media type information
and relative priority of media type

Accept-Encoding

+e information in Accept-Encoding field
is an encoding method of the content

received by the client, and it is usually some
kind of compression algorithm

Connection +e Connection field represents a
connection state of the client and the server

Content-type

+e value of the Content-type could help
our model filter some legal traffic. +e

HTTP protocol carries data transmission of
various types, such as text, pictures, sounds,
videos, and others. Legal traffic tends to
vary significantly. In contrast, most

malware chooses text-related values such as
textl/html; charset�UTF-8

Cache-Control
Cache-Control message indicating a request

caching mechanisms need to be
implemented

Content-length +is field indicates the size of the entity-
body

4 Security and Communication Networks

+e generated HTTP header field information and
HTTP template are shown in Table 2.

We also performed statistics on the templates generated
by the training data. +e statistical results are shown in
Figure 3.

As can be seen from Figure 3, the number of templates
for malicious traffic is generally several times larger than the
number of templates for normal traffic. +e maximum
number of templates generated is the URI and User-Agent
fields. It can be inferred that malicious traffic may be dis-
tinguished mainly based on templates of these several fields.
It has been observed that some fields do not even have the
generation of malicious traffic templates. It can be inferred
that the HTTP request information of malicious traffic may
be short, including only information of several fields.
Probably because normal HTTP request traffic is usually a
connection made through a browser, the browser logs in-
formation for many fields. Malicious traffic is a connection
made to the C&C server through malware, and the data
format is usually constructed by a malware developer, so the
HTTP request message is shorter.

5. Experiments and Results

+is section introduces the dataset, the experimental setup,
the performance metrics, and the obtained results.

5.1. Dataset. +e malware traffic used in this work is from
MALWARE-TRAFFIC-ANALYSIS.NET [9]. We collect
malicious external traffic by running malicious samples
collected from June 2013 to December 2017 in the sandbox
and use SecurityOnion (a tool for network security
monitoring) to detect traffic and get the result. +e normal
traffic samples are from the UNSW-NB 15 dataset shared

by the Cyber Range Lab of the Australian Cyber Security
Center (ACCS) in 2015 [10]. +ey used the tcpdump tool
to capture 100 GB of raw traffic (PCAP files) for evaluating
network intrusion detection systems and gave a labeled
dataset. +e labeled file contains the time period, the
source port, the source IP address, the destination port,
the destination IP address, the protocol type, and other
information of the threat traffic, which is shown in Table 3.
+ere are 373864 HTTP request records and only 6401
malicious traffic records in the 100G raw traffic data. We
remove malicious HTTP traffic based on source IP, des-
tination IP, source port, destination port, and the time
period (from the start time to the last time) in the given
labeled file. When the protocol type is HTTP and the time
period, source port, source IP, destination port and
destination IP address are matched successfully, the traffic
is labeled as malicious traffic.

We set the ratio of the training set to the testing data as
7 : 3. +us, the dataset in the experiment is shown in Ta-
ble 4, which consists of 34,239 malicious HTTP requests
and 35,481 normal HTTP requests.

5.2. Experimental Setup. +e system had been imple-
mented in Python 3.5, and all experiments were per-
formed using an off-the-shelf server with 64 GB of RAM
memory and 6-core processor. In order to evaluate the
true positive rates and false positive rates of our detection
approach, we tune the model parameters on the training
set. +e initial key parameters of the XGBoost model are
shown in Table 5.

Table 5 shows that the accuracy of cross-validation of the
training set with the initial parameters is 99.5%, but the
accuracy of the testing set is only 92.89% due to over-fitting.

pos1 pos2

pos Score

pos3
5.0; rv: 19.0

rv19.0

Firefox
Firefox
Firefox

Firefox

Firefox

19.0

19.0

35.0
43.0

rv: 35.0
rv: 43.0

5.0;

5.0;

5.0; NULL NULL

5.0;

pos4 pos5 pos6

pos1 pos2 pos3 pos4 pos5 pos6

User-Agent

User-Agent

User-Agent

1 1.0
1.0
1.0
1.0

0.33
0.33

2
3
5
4
6

Mozilla
Mozilla

Mozilla

Mozilla

Mozilla

Word

User-Agent
User-Agent

User-Agent: Mozilla 5.0;∗Firefox∗

Figure 2: Template generation process.

Security and Communication Networks 5

In order to further improve the accuracy of the prediction,
we further adjust the parameters of the XGBoost algorithm.

We use the GirdSerachCV function in the SCIKIT-learn
[31] package to adjust the parameters, which traverses the
value range of parameters. We adjust three of the key pa-
rameters, and the adjustment steps are as follows:

(1) We first adjust two parameters max_depth and min_
child_weight that play a decisive role in the model. +e
value range of max_depth is set to [4, 6, 8, 10, 12]. +e
value range of min_child_weight is very large and se-
riously affects the experimental results. If min_child_
weight is over-fitting, the value of min_child_weight

should be increased.+us, its value range is set to [1, 10,
100, 1000]. +e results of the parameter adjustment are
shown inTable 6.+e experimental results show that the
model performs optimally when max_depth� 10 and
min_child_weight� 1.

(2) Based on the adjusted max_depth and min_child_
weight parameters, we adjust the parameter gamma,
which participates in the pruning of the decision tree.
+e larger the value of the parameter is, the less the
impact on the model is. Here, we set the value range
of gamma to [0∼8]. +e results of the parameter
adjustment are shown in Table 7. +e experimental
results show that the model with the best perfor-
mance when gamma� 0.

(3) We adjust the two parameters subsample and col-
sample_bytree at last, which is related to the pro-
portion of samples used. If the sampling setting ratio
is too small, the accuracy may be reduced. Here, the
value range of the subsample is set to [0.7∼1], and the
value range of colsample_bytree is also to [0.7∼1].+e

Table 2: HTTP header field information and template comparison.

HTTP header field information Generated templates
Accept: Text json Accept: Text ∗
Accept-Encoding: Gzip deflate Accept-Encoding: Gzip ∗
Connection: Keep-Alive Connection: ∗
User-Agent: Mozilla 4.0
(compatible; MSIE 6.0; Windows NT 5.1)

User-Agent: Mozilla ∗ (compatible; MSIE ∗
Windows NT ∗

0

U
RI

H
os

t

U
se

r-
A

ge
nt

Re
qu

es
t-M

et
ho

d

Re
qu

es
t-V

er
sio

n

A
cc

ep
t

A
cc

ep
t-E

nc
od

in
g

Co
nn

ec
tio

n

Co
nt

en
t-t

yp
e

Ca
ch

e-
Co

nt
ro

l

200
400
600
800

1000
1200
1400
1600
1800

Template
Malicious

Normal
Repeat

Figure 3: Template statistical histogram.

Table 3: +e labeled file of UNSW-NB 15.

Start time Last time Attack category Attack subcategory Protocol Src IP Src port Dst IP Dst port
1421927415 1421927415 Exploits Unix‘r’ Service udp 175.45.176.3 21223 149.171.126.18 32780
1421927416 1421927415 Exploits Brower tcp 175.45.176.2 23357 149.171.126.16 80
1421927418 1421927415 Exploits Cisco IOS tcp 175.45.176.4 26939 149.171.126.10 80
1421927420 1421927415 DoS IXIA tcp 175.45.176.1 23910 149.171.126.15 80
1421927421 1421927415 Generic Brower tcp 175.45.176.2 23909 149.171.126.14 3000

Table 4: Dataset in the experiment.

Dataset Traffic type +e number of HTTP request

Training set Malicious traffic 27789
Normal traffic 28915

Testing data Malicious traffic 6450
Normal traffic 6566

6 Security and Communication Networks

results of the parameter adjustment are shown in
Table 8. +e experimental results show that the
model performs best when subsample� 0.8 and
colsample_bytree� 0.8.

5.3. Evaluation Metrics. +e evaluation metrics of our
proposed infected host detection approach using malicious
external HTTP traffic are expressed as follows: TP refers to
the number of malicious HTTP requests that are recognized
as malware HTTP requests, TN indicates that the number of
normal HTTP requests that are recognized as normal HTTP
requests, FP refers to the number of normal HTTP requests
that have been mistaken for malware HTTP requests, and

FN indicates that the number of normal HTTP requests that
are incorrectly identified as malware HTTP requests. +e
higher the value of precision, recall, and F1, the better the
recognition effect of the infected host detection approach.

(1) ACC � (TP + TN)/(TP + TN + FP + FN)

(2) ROC curve whose horizontal axis is FRP and vertical
axis is TRP, where FPR � FP/(TN + FP) and
TPR � TP/(TP + FN)

(3) PRC curve whose vertical axis is precision and
horizontal axis is recall, where precision
(P) � TP/(TP + FP) and recall(R) � TP/(TP + FN)

(4) F1 � (2∗P∗R)/(P + R)

5.4. Experimental Results. When the ratio of the number of
HTTP requests in the training set and testing set is 7 : 3, the
experimental results are shown in Table 9.

+e accuracy of the testing set is 98.72%, and the false
positive rate is less than 1%. +e total testing time is about
7 s. +erefore, the proposed approach can quickly detect the
network traffic and conclude whether the host is infected by
malware so that the user can respond to the action as soon as
possible. +e PRC curve matching the threshold is shown in
Figure 4. It can be seen that the algorithm has maintained a
high precision with the increase of the recall rate. Finally, 0.8
is selected as the matching threshold. At this time, the ac-
curacy of the algorithm is 93.56%, the recall rate is 97.14%,
and the F-value is 0.9532.

Table 5: Experimental parameters settings.

Parameter Description Value
booster Tree model gbtree
gamma For pruning 1
max_depth Depth of decision tree 12
scale_pos_weight Balance positive and negative sample weights 1
subsample, colsample_bytree Proportion of random collected samples each time 1
min_child_weight Number of leaf nodes in the decision tree 1000
eta Learning rate 0.1

Table 6: Tuning results of max_depth and min_child_weight.

max_depth min_child_weight Auc
4 1 0.99826
4 10 0.99770
4 100 0.99667
4 1000 0.99535
6 1 0.99830
6 10 0.99782
6 100 0.99726
6 1000 0.99561
8 1 0.99838
8 10 0.99799
8 100 0.99780
8 1000 0.99574
10 1 0.99854
10 10 0.99827
10 100 0.99798
10 1000 0.99576
12 1 0.99852
12 10 0.99818
12 100 0.99806
12 1000 0.99576

Table 7: Tuning results of gamma.

gamma Auc
0 0.99925
1 0.99854
2 0.99820
3 0.99793
4 0.99776
5 0.99771
6 0.99702
7 0.99689
8 0.99656

Table 8: Tuning results of subsample and colsample_bytree.

colsample_bytree subsample Auc
0.7 0.7 0.99793
0.7 0.8 0.99799
0.7 0.9 0.99782
0.7 1 0.99774
0.8 0.7 0.99912
0.8 0.8 0.99926
0.8 0.9 0.99891
0.8 1 0.99857
0.9 0.7 0.99802
0.9 0.8 0.99840
0.9 0.9 0.99846
0.9 1 0.99793
1 0.7 0.99789
1 0.8 0.99821
1 0.9 0.99844
1 1 0.99817

Security and Communication Networks 7

To better validate our proposed approach, we also
compare our approach to the other two methods of Ogawa
et al. [12] and Li et al. [22]. We reproduced these two
comparison experiments using our own data set. +e ex-
perimental results are shown in Table 10.

Table 10 shows that the ACC, P, R, and F1 of our
proposed approach are the largest, and they are 0.9827,
0.9356, 0.9714, and 0.9532, respectively. +erefore, our
proposed approach using XGBoost and HTTP header sta-
tistical template is better to detect HTTP malware traffic
than the method that uses HTTP header combined machine
learning. +e main reason is that Ogawa et al.’s approach
and Li et al.’s approach are either based on a single field or
based on all fields, their feature validity is low. Our proposed
approach uses statistical techniques to aggregate similar
features of the malicious HTTP header fields. +us, our
approach can more effectively characterize malware traffic
characteristics, which can further improve the accuracy of
malware HTTP traffic recognition.

In addition, we select 10%, 20%, 30%, . . . , 90% of the
samples as the training set and set the matching threshold to
0.8 to test other sample data. +e correct rate and false
positive rate of malicious traffic and normal traffic are
separately measured, whose results are shown in Figure 5. It
can be seen that the detection rate of the normal HTTP
requests has been maintained above 99%. For malicious
samples, the detection accuracy rate is based on the diversity
of the model. In the case that the training set is only 10% and
the model data is insufficient, the algorithm can still detect
77.65% of malicious traffic, indicating that the algorithm has
better generalization ability for malicious traffic variants.

We also change the malicious traffic and normal traffic
ratio in our training set and testing set. +e experimental
results are shown in Table 11.

+e accuracy rates under different malware traffic
ratios all remained above 90%. However, the model has
high precision but a low recall rate when malicious traffic
accounted for 10% and 20%, respectively. +e main reason
is that the proportion of malicious traffic is too small,
resulting in insufficient training of the model. +e results
show that if we want to build a machine learning model
which can correctly identify malicious traffic, the pro-
portion of malicious traffic and the normal flow ratio
needs to be maintained at a relative balance. Malicious
traffic accounts for less than 1% of the data in real-world
samples. +us, it is necessary to further process the
sample, such as subsampling or oversampling, to increase
the proportion of malicious traffic, thereby improving
detection accuracy.

5.5. MalDetector System Testing. We also use the malicious
traffic samples that do not exist in the training data and
testing data to verify if the system has the ability to detect
new malware and its variants. +e selected malicious traffic

Table 9: +e experimental results when the ratio of the number of
HTTP requests in the training set and testing set is 7 : 3.
Best iteration 218
Train-auc 99.8944%
Cross-validation-auc 99.8599%
Test-auc 98.726487%
Cost time 7.28223S

Recall

Pr
ec
isi
on

0.0
0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

PR

Figure 4: PRC curve of the detection approach.

Table 10: +e experimental result of comparative testing.

Approach ACC (%) P (%) R (%) F1 (%)
Our approach 98.72 93.56 97.14 95.32
Ogawa et al.’s approach 96.25 92.84 94.99 93.9
Li et al.’s approach 97.17 93.25 96.19 94.7

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2

Normal traffic detection rate
Malware traffic detection rate

0.4 0.6 0.8 1.0
Training set ratio

D
et

ec
tio

n
ra

te
Figure 5: +e impact of different ratios between the training set
and the testing set.

Table 11: +e experimental result under different malware traffic
ratios.

Malicious traffic ratio in
dataset (%) ACC (%) P (%) R (%) F1 (%)

40 94.81 94.58 92.90 93.57
30 91.99 87.41 92.11 89.70
20 97.16 95.87 87.03 92.02
10 97.52 94.04 78.14 85.36

8 Security and Communication Networks

(a)

(b)

Figure 6: Loki-Bot traffic and the detection result of MalDetector.

(a)

(b)

Figure 7: Emotet traffic and the detection result of MalDetector.

Security and Communication Networks 9

samples have the same source as the training data, both of
which are MALWARE-TRAFFIC-ANALYSIS.NET.

5.5.1. Loki-Bot. Loki-Bot [32] uses a malicious website to
push fake “Adobe Flash Player,” “APK Installer,” “System
Update,” “Adblock,” “Security Certificate,” and other ap-
plication updates to induce user installation. +e Loki-Bot
malware is a bank hijacking Trojan, a variant of the BankBot
Trojan. +e traffic sample of running Loki-Bot and the
testing result using MalDetector are shown in Figure 6. +e
experimental results show that MalDetector detects all the
malicious HTTP traffic of Loki-Bot.

5.5.2. Emotet. Emotet [33] is a new type of banking Trojan
in Germany.+e sample flow is a new variant of Emotet that
appeared in September 2017. It has its own ability to evade
safety detection and cannot be recognized by antivirus
software. +e traffic sample of running Emotet and the
testing result using MalDetector are shown in Figure 7. +e
experimental results show that MalDetector detects all the
malicious HTTP traffic of Emotet.

6. Conclusion

+e diversification of malware and the complication of its
technologies have brought new challenges to cybersecurity.
Unfortunately, rule-based traditional malware traffic de-
tection methods are unable to detect malware variants.
Machine learning-based methods can make up for this
defect, and most malware uses the HTTP protocol to send
malicious external traffic to the C&C server. +us, we
propose an approach to detect infected hosts using HTTP
traffic combined with a machine learning algorithm. We
mainly extract the common templates for the HTTP traffic
header, so it still works for the traffic generated by the
confusing malware. We also use the most popular XGBoost
algorithm to detect infected hosts, which has the advantages
of high efficiency and high accuracy. +e experimental re-
sults show that the accuracy of the method reaches 98.72%
and the false positive rate is less than 1%, where the ex-
perimental data is from MALWARE-TRAFFIC-ANA-
LYSIS.NET and UNSW-NB 15. We also used two real
samples that are Loki-Bot and Emotet to verify the effec-
tiveness of the MalDetector system. We plan to combine the
approach with malware dynamic analysis to further improve
its detection accuracy in the future. Furthermore, some
malware utilizes HTTPS to hide its content from the ana-
lyzer so that it further reduces detection possibility. Because
the header information of HTTPS traffic has been encrypted,
our method cannot be applied. We will consider new fields
and combine with DNS traffic to refine the templates to
detect anomaly-based malware infection in the future.

Data Availability

+e experimental data were collected and synthesized by
ourselves. It has not been published online yet.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

+is work was supported by the National Key Research and
Development Project (Grant no. 2016QY04W0800), the
National Defense Innovation Special Zone Program of
Science and Technology (Grant no. JG2019055), and the
National Natural Science Foundation of China (Grant nos.
61902262 and 61572115).

References

[1] D. Zhao, I. Traore, B. Sayed et al., “Botnet detection based on
traffic behavior analysis and flow intervals,” Computers &
Security, vol. 39, pp. 2–16, 2013.

[2] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli,
“MADAM: effective and efficient behavior-based android
malware detection and prevention,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 1, pp. 83–97,
2016.

[3] Y. Yu, J. Long, and Z. Cai, “Network intrusion detection
through stacking dilated convolutional autoencoders,” Secu-
rity and Communication Networks, vol. 2017, Article ID
4184196, 10 pages, 2017.

[4] G. Zhao, K. Xu, L. Xu, and B. Wu, “Detecting APT malware
infections based on malicious DNS and traffic analysis,” IEEE
Access, vol. 3, pp. 1132–1142, 2015.

[5] A. Souri and R. Hosseini, “A state-of-the-art survey of mal-
ware detection approaches using data mining techniques,”
Human-Centric Computing and Information Sciences, vol. 8,
no. 1, p. 3, 2018.

[6] 360 Internet Security Center, China Internet Security Report
for the +ird Quarter of 2017, 2017.

[7] McAfee Labs, McAfee Labs +reats Report: December 2017,
McAfee, Santa Clara, CA, USA, 2017.

[8] X. Hu, J. Jang, M. P. Stoecklin et al., “BAYWATCH: robust
beaconing detection to identify infected hosts in large-scale
enterprise networks,” in Proceedings of the 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 479–490, Toulouse, France, June
2016.

[9] Malware-Traffic-Analysis.net, http://malware-traffic-analysis.
net/.

[10] +e UNSW-NB15 Data Set, https://www.unsw.adfa.edu.au/
unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/.

[11] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of
HTTP-based malware and signature generation using mali-
cious network traces,” in Proceedings of the 7th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’10), vol. 10, p. 14, San Jose, CA, USA, April 2010.

[12] H. Ogawa, Y. Yamaguchi, H. Shimada et al., “Malware
originated http traffic detection utilizing cluster appearance
ratio,” in Proceedings of the 2017 International Conference on
Information Networking (ICOIN), pp. 248–253, IEEE, Da
Nang, Vietnam, January 2017.

[13] M. Piskozub, R. Spolaor, and I. Martinovic, “MalAlert:
detecting malware in large-scale network traffic using sta-
tistical features,” ACM Sigmetrics Performance Evaluation
Review, vol. 46, no. 3, pp. 151–154, 2019.

10 Security and Communication Networks

http://malware-traffic-analysis.net/
http://malware-traffic-analysis.net/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-NB15-Datasets/

[14] N. Moustafa, B. Turnbull, and K. K. R. Choo, “An ensemble
intrusion detection technique based on proposed statistical
flow features for protecting network traffic of internet of
things,” IEEE Internet of /ings Journal, vol. 6, no. 3,
pp. 4815–4830, 2019.

[15] A. Liu, Z. Chen, S. Wang, L. Peng, C. Zhao, and Y. Shi, “A fast
and effective detection of mobile malware behavior using
network traffic,” in Proceedings of the International Confer-
ence on Algorithms and Architectures for Parallel Processing,
pp. 109–120, Springer, Guangzhou, China, November 2018.

[16] M. Yeo, Y. Koo, Y. Yoon et al., “Flow-basedmalware detection
using convolutional neural network,” in Proceedings of the
2018 International Conference on Information Networking
(ICOIN), pp. 910–913, IEEE, Chiang Mai, +ailand, January
2018.

[17] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Detection of
stealthy malware activities with traffic causality and scalable
triggering relation discovery,” in Proceedings of the 9th ACM
Symposium on Information, Computer and Communications
Security (ASIA CCS ’14), pp. 39–50, Kyoto, Japan, June 2014.

[18] H. Zhang, D. D. Yao, and N. Ramakrishnan, “Causality-based
sensemaking of network traffic for android application se-
curity,” in Proceedings of the 2016 ACM Workshop on Arti-
ficial Intelligence and Security (ALSec ‘16), pp. 47–58, Madrid,
Spain, April 2016.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” /e Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[20] Y. Zhang, H. Mekky, Z.-L. Zhang et al., “Detecting malicious
activities with user-agent-based profiles,” International
Journal of Network Management, vol. 25, no. 5, pp. 306–319,
2015.

[21] M. Grill and M. Rehak, “Malware detection using http user-
agent discrepancy identification,” in Proceedings of the IEEE
InternationalWorkshop on Information Forensics and Security
(WIFS), pp. 221–226, Atlanta, Georgia, December 2014.

[22] K. Li, R. Chen, L. Gu et al., “A method based on statistical
characteristics for detection malware requests in network
traffic,” in Proceedings of the 2018 IEEE /ird International
Conference on Data Science in Cyberspace (DSC), pp. 527–532,
Guangzhou, China, June 2018.

[23] J. Zhang, S. Saha, G. Gu et al., “Systematic mining of asso-
ciated server herds for malware campaign discovery,” in
Proceedings of the 2015 IEEE 35th International Conference on
Distributed Computing Systems, pp. 630–641, Columbus, OH,
USA, June 2015.

[24] H. Mekky, R. Torres, Z. L. Zhang et al., “Detecting malicious
http redirections using trees of user browsing activity,” in
Proceedings of the IEEE Conference on Computer Communi-
cations (IEEE INFOCOM 2014), pp. 1159–1167, Toronto,
Canada, April 2014.

[25] L. Liu, S. Saha, R. Torres et al., “Detecting malicious clients in
isp networks using http connectivity graph and flow in-
formation,” in Proceedings of the 2014 IEEE/ACM In-
ternational Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2014), pp. 150–157, Beijing,
China, August 2014.

[26] K. Cabaj, M. Gregorczyk, and W. Mazurczyk, “Software-
defined networking-based crypto ransomware detection using
HTTP traffic characteristics,” Computers & Electrical Engi-
neering, vol. 66, pp. 353–368, 2018.

[27] S. Mizuno, M. Hatada, T. Mori, and S. Goto, “Botdetector: a
robust and scalable approach toward detecting malware-

infected devices,” in Proceedings of the 2017 IEEE In-
ternational Conference on Communications (ICC), pp. 1–7,
IEEE, Paris, France, May 2017.

[28] T. Chen and C. Guestrin, “XGBoost: a scalable tree boosting
system,” in Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, pp. 785–794, New York, NY, USA, August 2016.

[29] K. M. Kumar and A. R. M. Reddy, “A fast DBSCAN clustering
algorithm by accelerating neighbor searching using Groups
method,” Pattern Recognition, vol. 58, pp. 39–48, 2016.

[30] A. Malhotra and K. Bajaj, “A hybrid pattern based text mining
approach for malware detection using DBScan,” CSI Trans-
actions on ICT, vol. 4, no. 2–4, pp. 141–149, 2016.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort et al., “SCIKIT-
learn: machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[32] D. Rendell, “Understanding the evolution of malware,”
Computer Fraud & Security, vol. 2019, no. 1, pp. 17–19, 2019.

[33] H. Huang, H. Deng, J. Chen, L. Han, and W Wang, “Auto-
matic multi-task learning system for abnormal network traffic
detection,” International Journal of Emerging Technologies in
Learning (iJET), vol. 13, no. 4, 2018.

Security and Communication Networks 11

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

