
Research Article
Evaluation of Deep Learning Methods Efficiency for Malicious
and Benign System Calls Classification on the AWSCTD

Dainius Čeponis and Nikolaj Goranin

Department of Information Systems, Vilnius Gediminas Technical University, Saulėtekio al. 11, LT-10223, Vilnius, Lithuania

Correspondence should be addressed to Dainius Čeponis; dainius.ceponis@vgtu.lt

Received 1 April 2019; Revised 24 July 2019; Accepted 16 August 2019; Published 11 November 2019

Guest Editor: Hyoungshick Kim

Copyright © 2019 Dainius Čeponis and Nikolaj Goranin. ­is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

­e increasing amount of malware and cyberattacks on a host level increases the need for a reliable anomaly-based host IDS
(HIDS) that would be able to deal with zero-day attacks and would ensure low false alarm rate (FAR), which is critical for the
detection of such activity. Deep learning methods such as convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) are considered to be highly suitable for solving data-driven security solutions. ­erefore, it is necessary to perform the
comparative analysis of such methods in order to evaluate their e�ciency in attack classi�cation as well as their ability to
distinguish malicious and benign activity. In this article, we present the results achieved with the AWSCTD (attack-caused
Windows OS system calls traces dataset), which can be considered as the most exhaustive set of host-level anomalies at the
moment, including 112.56 million system calls from 12110 executable malware samples and 3145 benign software samples with
16.3 million system calls. ­e best results were obtained with CNNs with up to 90.0% accuracy for family classi�cation and 95.0%
accuracy for malicious/benign determination. RNNs demonstrated slightly inferior results. Furthermore, CNN tuning via an
increase in the number of layers should make them practically applicable for host-level anomaly detection.

1. Introduction

­e best method to detect unsanctioned or malicious usage
of a company’s system is to use an intrusion detection system
(IDS). IDSs are classi�ed into two main types: network-
based IDS (NIDS) and host-based IDS (HIDS) [1]. NIDSs
work on the network level and are capable of detecting any
malicious activity that can be observed on a company’s local
network. ­e HIDSs monitor the activities on end-user
machines. ­ey can collect and analyze information such as
machine parameters (CPU and RAM usage), modi�ed �les,
modi�ed registry items (Windows operating system), system
calls, etc. While research on NIDS has reached a relatively
advanced level and a number of anomaly-based solutions are
available on the market [2], HIDSs are stuck in signature-
based or �le-integrity monitoring approach, making them
immune to zero-day attacks [3]. ­e importance of HIDS
becomes critical [4, 5] and requires development of
anomaly-based solutions. ­e earlier approaches based on
threshold parameters were not successful because of high

false alarm rate (FAR), but recent advances in deep learning
(DL) techniques demonstrate the potential of convolutional
neural networks (CNNs) and recurrent neural networks
(RNNs) in activity classi�cation. ­erefore, comparative
analysis of such methods is necessary to evaluate their ef-
�ciency in malicious activity classi�cation and ability to
distinguish malicious and benign activity [6]. ­e evaluation
of these methods allows the selection of themost appropriate
and accurate method for anomaly-based HIDS develop-
ment. Accuracy plays a crucial role because the high false-
positives rate would lead to distrust in the system and ig-
norance of alerts.

Many researchers use machine learning (ML) methods
to achieve proper IDS accuracy in detecting intrusive ac-
tions. Training and testing data are required to apply ML
methods. Most of the recent research was conducted with
the old datasets generated in 1998-1999 [7, 8] named
DARPA and KDD Cup 99, respectively. Overall, 42% and
20% of the researchers used DARPA dataset and KDD Cup
99, respectively [9]. Both databases focused on NIDS-related

Hindawi
Security and Communication Networks
Volume 2019, Article ID 2317976, 12 pages
https://doi.org/10.1155/2019/2317976

mailto:dainius.ceponis@vgtu.lt
https://orcid.org/0000-0002-2796-9001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2317976

data and lacked the information required to train HIDS-
suitable methods.

Some attempts [10] have been made to fulfill the growing
need for Windows-oriented HIDS datasets. According to
statcounter.com, Windows operating systems were still used
by more than 70% of the desktop users in 2018 (see Figure 1)
[11].

One of the latest HIDS-related datasets for Windows OS
is ADFA-IDS [12]. It has a collection of system calls pro-
duced on Linux and Windows operating systems. However,
ADFA family datasets only have minimal data required for
intrusion detection, as they contain only system call iden-
tification—system dynamic link library (dll) file name and
the called function name. Even the authors of the ADFA-IDS
agree that the dataset is incomplete: only basic information
was collected, and an insufficient number of vulnerabilities
were used to generate malicious activity [13].

We have previously generated AWCSTD to fulfill the
demand for a more extended dataset for Windows operating
system [12]. It uses more malware samples (12110) and
collects more system calls sequences (112.56 million) than
any similar public dataset. Most importantly, it also contains
16.3 million systems calls generated by 3145 benign software
samples at present. ,e same method has been used to
generate benign system calls sequences as the one previously
used in [12] for malignant ones. In total, six virtual machines
with Windows 7 operating system preinstalled were utilized.
,e virtual machines had tools such as Notepad++, 7zip, and
data logging tools installed. ,is allows using the dataset not
only for training neural networks on classifying malicious
activities but also for training them in distinguishing be-
tween malicious and legal activity in general.

In this paper, we present the results of efficiency eval-
uation for RNNs and CNNs achieved with AWSCTD with
different initial data parameters. ,e remainder of the paper
is organized as follows: the Introduction gives a general view
on the importance of datasets for HIDS training and the
need for evaluating the efficiency of different DL methods;
the Related Work section presents results achieved by other
research teams; the Materials and Methods part of the article
describes the dataset preparation and methods used; the
Results and Discussion present the results with comments
on their reasons and applicability; Conclusions summarize
the results and define future work.

1.1. RelatedWork. Attackers often use various techniques to
transform and hide malicious activity from the signature-
based IDS [14]. Anomaly-based techniques are used to tackle
such problems. ,ey have not only introduced a better
detection rate of unknown attacks but also increased the
number of false-positives [15] because of primitive ap-
proaches applied. Advances in deep learning methods
combined with extensive training datasets are required to
build a benign behavior profile and decrease the FAR.

Several ML classification and clustering methods such as
neural networks, support vector machines, k-means clus-
tering, k-nearest neighbors, and decision trees [16–18] have
been used to improve anomaly-based IDS. ,e authors of

ADFA-WD (Windows-based) have achieved a 72% de-
tection rate with Näıve Bayes method, and the data were
based on transforming system call traces into frequency
vectors [13]. Later, the authors of [18] achieved a 61.2%
detection rate with ADFA-LD (Linux-based) when CNNs
were used. In [19], the authors claim 86.4% accuracy in
malicious activity classification with the help of the hybrid
neural network, but the dataset was not published, thereby
offering no chance to check the accuracy of the results.
Similar classification was performed by us on AWSCTD
using SVM, and an accuracy of 92.4% was achieved [17]. In
addition, the tested decision trees method, which is lighter in
terms of training and testing times, has shown comparable
results of 92.1% accuracy. ,is is an essential point, as fast
model training is a critical factor in cybersecurity, where new
attack samples are introduced very often. Hence, the results
in [13, 18] demonstrate very high FAR, whereas the results in
[17, 19] do not solve the malicious/benign classification task.

Since 2006, deep-structured learning, commonly called
deep learning or hierarchical learning, has emerged as a new
area of machine learning research [20]. ,e architecture of
deep neural networks is based on many layers of neural
networks (NNs). Artificial NNs (ANNs) were naturally
developed from biological neural networks. ,e first paper
on neural networks was produced in 1943; professors
McCulloch and Pitts published a paper titled “A Logical
Calculus of the Ideas Immanent in Nervous Activity” that
logically explained the human neural network and con-
ceptualized the ANNs for the first time in history [21]. An
artificial neural network consists of a group of processing
elements that are interconnected and convert a set of inputs
to a set of preferred outputs.,e result of the transformation
is determined by the characteristics of the elements and the
weights associated with the interconnections among them.
,e network can adapt to the desired outputs by modifying
the connections between the nodes [22]. A fundamental
property of neural networks is the concept of programming
by example. A large number of weights makes it difficult to
fix them and obtain the desired result. Instead, the network is
programmed by example and repetition. It is trained by

0
10
20
30
40
50
60
70
80
90

D
ec

 1
7

Ja
n

18

Fe
b

18

M
ar

 1
8

Ap
r 1

8

M
ay

 1
8

Ju
n

18

Ju
l 1

8

Au
g

18

Se
p

18

O
ct

 1
8

N
ov

 1
8

D
ec

 1
8

Windows

OS X
Linux Unknown

Chrome OS

Other

Figure 1: Desktop operating systems market share in 2018.

2 Security and Communication Networks

presenting input-output pairs repeatedly. Each time an input
is presented, the network guesses the output.,e output part
of the input-output pair is used to determine whether the
network is right or wrong. If wrong, the network is corrected
by a learning algorithm using a gradient method on the
output error to modify the weights. After each modification,
the network gets closer to the desired transfer function as
represented by the sample base [23].

,e most significant disadvantage of applying neural
networks to intrusion detection is the “black box” nature of
the neural network. ,e “Black Box Problem” has over-
whelmed neural networks in many applications [24]. ,is
Black Box neural networks feature does not allow the re-
searchers to clearly see and analyze learning results.,is also
makes the network tinkering process more diffi-
cult—researchers cannot analyze and modify networks for
better outcomes. DNNs and new hardware capabilities have
revived the current state of the ANN research. Two powerful
DNN designs were introduced: convolutional neural net-
work (CNN) and recurrent neural network (RNN). CNNs,
or ConvNet, are mainly applied for the image recognition
tasks because they can scale adequately on large images.,ey
are based on several convolutions and pooling layers
combinations that lead to the last, simple ANN layer for final
classification. ,e usage of convolution and pooling layers
allows reduction of the feature maps size [25, 26]. RNN is
capable of working with time series-based data. ,e de-
velopment of RNNs began in 1997 when long short-term
memory (LSTM) networks were introduced [27]. ,e nat-
ural capability to accept and work with sequences has
allowed to show outstanding performance in speech rec-
ognition and machine translation [28]. In 2014, the gated
recurrent unit (GRU) was introduced for RNN [29]. It is
similar to LSTM but has fewer parameters because it lacks an
output gate. GRU is mainly applied in natural language
analysis and translation.

Primary DNN applicability for anomaly detection still
concentrates on NIDS and the use of KDD dataset [30–32].
,e most popular method is RNN with LSTM that provides
up to 96% accuracy. However, CNN has also demonstrated
applicability for such tasks [19]. ,is encouraged us to
evaluate both CNN and RNN with AWSCTD for anomaly
detection (malicious/benign classification) on the end-user
machine level.

2. Materials and Methods

2.1. Dataset. For our experiment, AWSCTD containing
system calls sequences from Windows OS was used [12]. It
was generated using publicly available malware files from
Virus Share [33] and publicly available information about
any malware found from Virus Total [34]. Later, the col-
lected database was updated with the additional information
provided by the Virus Total that included scan results and
behavioral information.

For experiments described in this article, AWSCTD was
appended with 16.3 million system calls generated by a set of
3145 benign applications (samples were taken from Virus
Share and carefully filtered to contain only samples with zero

detection rate). ,e system call collection method for the
benign application was the same as for malware system call
collection described in [12]. ,is was done to train CNNs
and RNNs for malicious/benign activity classification. It is
expected that the number of benign applications with related
system calls will increase in the future.

,e disproportion of system calls versus the number of
applications in case of malicious (16.3/3145) and benign
programs (112.56/12110) can be explained by the fact of
more “aggressive” and “active” malware behavior compared
with legal applications.

2.2. Feature Processing. ,e data generated by the malware
and benign samples were stored in an SQLite database. ,e
system calls sequences were stored in the format provided by
Dr. Memory DrSTrace tool (see Figure 2). To evaluate the
influence of a number of system calls on classification/de-
tection rate, eight files in csv format were generated with 10,
20, 40, 60, 80, 100, 200, 400, 600, 800, and 1000 of the first
system calls in every line in a file, respectively (see Figure 3).

Every system call was assigned with the unique
number—a sequence of these numbers represents a system
calls sequence produced by the specific malware or benign
sample. A special tool was developed by the authors to
extract the required number of system calls from the SQLite
database.

System calls by benign applications were added to two
sets:

(1) Set of six classes (five malicious and one benign)—to
be used in the classification accuracy test, i.e.,
assigning the activity to legal or to one of the five
classes of malware programs.

(2) Set of two classes (malware and benign)—to be used
in the anomaly detection test, i.e., determining if the
activity is malicious or not.

For both of these sets, additional subsets were generated,
in which sequences of repeated system calls longer than 3
were replaced with a maximum of 2 repeated system calls
(e.g., sequence “4655532” was transformed into “465532”)
according to the recommendation in [19].

Consequently, 66 sets (files) in total for training and
testing were generated. ,e labelling of sets is presented in
Table 1. It is necessary to mention that sets with removed
repeated sequences had fewer samples. ,e main reason is
that almost all system calls were identical (e.g., one of the
malware samples contained only calls to NtCreateFile).

Datasets AllMalware and AllMalware2 were selected to
test if there is any difference in the accuracy as compared
with simple ML methods performed earlier [17]. Com-
mercially applicable accuracy of 92.4% was achieved with the
Support VectorMachines method, and comparable accuracy
of 92.1%. was achieved by the decision tree method.

In this research, deep learning methods were applied to
check if they can provide higher accuracy using the same
datasets.

Five malware families were selected from AWSCTD for
our experiment, each family with at least 100 samples of

Security and Communication Networks 3

unique family representatives. A family descriptor provided
by Kaspersky was used. Table 2 shows the number of unique
samples in each training set (family names according to
Kaspersky).

SQLite database-based data were converted into easily
readable CSV files. ,e sample data of 10 system calls long
sequences file is presented in Figure 3.

,e first ten numbers represent a unique system call
number followed by the label for the malware family
name or legal program (“Benign” label) if it is a benign
sample.

2.3. Machine Learning Models Used. ,e experiment was
designed and executed on Keras [35], and Tensorflow [36]
library was used as the backend.,e following hardware was
used in the experiment environment:

(i) CPU: Intel(R) Core (TM) i5-3570 3.80GHz (4
Cores, 4 ,reads)

(ii) GPU: GTX 1070 (1920 Cuda Cores)
(iii) RAM: 16GB (DDR3)
(iv) OS: Ubuntu 18.04

RNN and CNN methods were used in the experiment.
,e configuration for the ten system calls can be seen in
Figure 4. RNN configuration with LSTM and GRU had three
layers: Input, CuDNNLSTM or CuDNNGRU, and Dense.
CNN had Input, Convolution1D (with sliding window value
of 6), GlobalMaxPooling1D, and Dense layers. ,e SVM
model was also used to compare the results with previous
research [17].

Despite relatively straightforward configuration, the
models achieved more than 90% classification accuracy with
almost all data samples. ,e classifiers were trained and

Figure 2: DrsTrace generated system call sample.

7, 10, 10, 9, 3, 3, 3, 9, 10, 10, AdWare
20, 20, 20, 10, 10, 9, 9, 9, 18, 11, Trojan
39, 39, 9, 9, 44, 45, 2, 15, 32, 32, WebToolbar
10, 20, 48, 9, 9, 9, 36, 11, 11, 11, Downloader
9, 18, 21, 22, 9, 9, 26, 9, 18, 23, DangerousObject
10, 40, 26, 26, 29, 29, 13, 9, 16, 41, Clean

Figure 3: CSV file sample with all possible classes.

Table 1: Training and testing sets labelling.

Set label Sequence variations Comments
AllMalware 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000 Only malware samples

AllMalware2 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000 Only malware samples with no more than two
identical sequences in repetition

AllMalwarePlusClean 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000 Malware samples plus and benign samples as
additional class

AllMalwarePlusClean2 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000
Malware samples and benign samples as an additional
class with no more than two identical sequences in

repetition
MalwarePlusClean 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000 Only two classes to train: malware and benign

MalwarePlusClean2 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000
Only two classes to train: malware and benign

samples with nomore than two identical sequences in
repetition

Table 2: Data samples count by class.

Class label Samples count
Trojan 1755
AdWare 4333
WebToolbar 618
Downloader 710
DangerousObject∗ 105
Benign 2350
Total 9871
∗DangerousObject is a malicious software that was detected by KL Cloud
Technologies but was not classified exactly.

4 Security and Communication Networks

tested using a 5-fold cross-validation technique. Cross-
validation is a technique for evaluating predictive models by
partitioning the original sample into a training set to train
the model and a test set to evaluate it. ,e callback of
EarlyStopping was used to stop the training process when it
did not improve for six epochs. Furthermore, we used one-
hot encoding to provide data for the training models. Ten
system calls samples had unique 173 system calls (see Fig-
ure 4 for the value of input shape dimensions). Larger data
samples had more unique system calls: for example, 400 had
unique 488 system calls. In comparison, the data samples of
Kolosnjaji et al. [19] had only 60 unique system calls, which
means that our dataset is more diverse.

3. Results and Discussion

,is section will cover the results of the following tests:
malware classification task, family classification task, and
anomaly detection task.

3.1. Results of Malware Classification Task. As stated earlier,
the results achieved with DL methods were compared with
those achieved through classical ML methods in [17]. ,e
data labelled AllMalware were used in that test. Although the
original results [17] have shown that SVM method can
achieve 92.4% accuracy with the 100 first malicious system
calls sequences, it can be seen that DL methods demonstrate
significantly better results with the same dataset (see

Table 3). ,e accuracy is calculated as follows: the method of
machine learning is trained with a portion of the dataset
(80%), whilst another portion of the dataset is used for
testing with the trained model, i.e., data used for testing had
not been used for training. ,erefore, the percentage of
correctly classified records is defined as the accuracy.

CNN achieved 92.8% accuracy on the same length of 100
sequence calls. It has also shown better accuracy for 200, 400,
600, 800, and 1000 system calls sequences than SVM (92.7%
vs. 89.6%, 93.0% vs. 87.3%, 93.1% vs. 86.1%, 93.0% vs. 84.7%,
and 93.1% vs. 83.2%, respectively). ,is implies that a
practically applicable accuracy (>90%) can be maintained
even with larger datasets by applying CNN.

Sequence-based DL methods (LSTM and GRU) dem-
onstrated worse results than SVM—the achieved accuracy
was equal to 88.1% and 88.3% on the first ten system calls,
respectively. CNN not only demonstrated better accuracy
but also achieved a somewhat similar classification time
compared with the much simpler SVMmodel. Similar times
were maintained even with a larger data sample. In terms of
accuracy, SVM demonstrates degrading results in com-
parison with CNNs.

3.2. Results of Family Classification Task. Benign samples
were introduced next in the training process. As described
earlier, two sets were used in tests: with repetitive system
calls (AllMalwarePlusClean) and without repetitive calls
(AllMalwarePlusClean2). ,e introduction of a new family

InputLayer
Input:

Output:
(None, 10, 173)
(None, 10, 173)

CuDNNLSTM
Input:

Output:
(None, 10, 173)

(None, 10)

Dense
Input:

Output:
(None, 10)
(None, 1)

(a)

InputLayer
Input:

Output:
(None, 10, 173)
(None, 10, 173)

CuDNNGRU
Input:

Output:
(None, 10, 173)

(None, 10)

Dense
Input:

Output:
(None, 10)
(None, 1)

(b)

InputLayer
Input:

Output:
(None, 10, 173)
(None, 10, 173)

Conv1D
Input:

Output:
(None, 10, 173)
(None, 10, 10)

GlobalMaxPooling1D
Input:

Output:
(None, 10, 10)

(None, 10)

Dense
Input:

Output:
(None, 10)
(None, 1)

(c)

Figure 4: Configuration of training (a) LSTM, (b) GRU, and (c) CNN models for MalwarePlusClean data sample.

Security and Communication Networks 5

to the training set resulted in a decrease in the accuracy (see
Table 4).

,e removal of repetitive system calls increased the
accuracy of the results. ,e best accuracy of 93.9% was
achieved with CNN and 1000 of the first system calls
(AllMalwarePlusClean2 data sample). However, a relatively
similar outcome of 93.5% was obtained with only 600 of
systems calls, which required much less time for training. As
results for 600 and 1000 system calls differ only in the error
rate, it can be said that a set of 600 system calls is more
preferable for practical applications. On smaller sets, the
results by CNN were low (86.9%) but still higher than those
by LSTN and GRU (85.8% and 85.6%, respectively).

Figure 5 presents the family classification task results by
family in case of a set of 100 system calls.

It can be clearly seen that the number of samples in the
training data has a huge impact on the correct classification.
WebToolbar, Downloader, and DangerousObject labelled
samples have more incorrect label assignments than
AdWare, Benign, and Trojan. ,e lowest classification score
has a DangerousObject class—zero. ,at outcome was ex-
pected because Kaspersky itself is not sure about the label,
and in our prior research, even the best performing SVM
model also generated zero correct classification results for
this class [17]. Both models of GRU and CNN classified this
family as belonging to the Trojan class. Even CNN model,
which generates the best performance (90.0% for that
specific data collection), shows that DangerousObject class
should be labelled as Trojan.

3.3. Results of the Intrusion Detection Test. Finally, the in-
trusion detection test was performed, i.e., the applicability of
DL methods for determining if an activity is malicious or
benign was evaluated (see Table 5). All malicious system calls
were merged into one family, and the second family con-
tained only benign system calls. As in previous case, sets
both with repetitive system calls (MalwarePlusClean) and
with removed repetitive system calls (MalwarePlusClean2)
were used.

In this case, the set without repetitive system calls
produced comparable results with the full set. ,is implies
that the system calls minimization technique is effective and
can be used to achieve better accuracy in family classification

and intrusion detection tasks whilst minimizing the model
training time.

Accuracies of 94.5%, 94.8%, and 99.3% were obtained by
CNN for the 100, 400, and 1000 first system calls, re-
spectively (MalwarePlusClean2). CNN has also shown the
best results for all data samples in the two-class classification
task (i.e., intrusion detection) of all MLmethods used: usable
accuracy of 93.2% was obtained even for the 20 first system
calls.

In the two-class confusion matrices (see Figure 6), it can
be seen that fewer Malware samples are assigned to Benign
by CNN as compared with GRU results.

,is characteristic is essential in the target field; ma-
lignant actions classification as benign must be minimal for
the IDS. Benign samples decision is somewhat comparable
for the GRU and CNN models.

GRU and CNN models demonstrate outstanding results
in the means of the receiver operating characteristic curve
(ROC) and area under the curve (AUC) [37]. In Figures 7
and 8, the ROC diagrams with the combination of the AUC
values are represented for the MalwarePlusClean samples
with the 100 system calls. ROC and AUC are displayed for
every fold. Mean ROC and AUC are represented with the
blue line.

,e best mean AUC value of 0.98 is generated by the
CNN model for both classes, i.e., there is a 98% chance that
the model will be able to distinguish between Malware class
and Benign class. ,e comparable result of 0.97 is achieved
by GRU. High AUC value indicates that both models (GRU
and CNN) have good class separation capacity.

3.4. Evaluation of System Call Sequence Size on the Model
Training Time and the Number of Epochs Needed to Reach the
Saturation. ,e evaluation of system call sequence size on
the model training time was performed on the AllMal-
warePlusClean set. Figure 9 presents the training time for
LSTN, GRU, and CNN with sequences of 10, 100, 200, and
400 system calls, respectively. It can be seen that the increase
in sequence length results in the exponential increase of
training time, making extremely long sequences not ap-
plicable for everyday use.

GRU training time was equal to 57.7 minutes with the
sequence of 400 system calls. ,e best performing CNN

Table 3: Malware-type classification with the help of DL and SVM methods (AllMalware set).

Count
Accuracy (percent) Classification time (seconds)

LSTM GRU CNN SVM LSTM GRU CNN SVM
10 88.1 88.3 87.3 89.4 0.0000926 0.0000840 0.0000401 0.0000440
20 88.8 88.1 89.0 89.4 0.0001043 0.0000994 0.0000510 0.0000583
40 89.1 90.6 91.2 91.6 0.0001327 0.0001377 0.0000618 0.0000842
60 88.2 90.5 91.2 91.9 0.0001786 0.0001704 0.0000890 0.0000848
80 91.8 91.6 92.3 92.7 0.0002194 0.0002221 0.0001157 0.0000937
100 91.6 91.9 92.8 92.4 0.0002559 0.0002566 0.0001290 0.0001165
200 90.4 91.5 92.7 89.6 0.0004440 0.0004363 0.0003019 0.0002392
400 87.6 90.3 93.0 87.3 0.0009840 0.0008142 0.0006222 0.0006739
600 87.4 91.4 93.1 86.1 0.0023443 0.0023052 0.0016681 0.0015564
800 82.1 88.5 93.0 84.7 0.0043159 0.0037894 0.0023929 0.0022612
1000 75.5 89.6 93.1 83.2 0.0068075 0.0056159 0.0033276 0.0032245

6 Security and Communication Networks

Table 4: All malware plus clean samples accuracy results. ,e total of six classes was classified.

Count
AllMalwarePlusClean AllMalwarePlusClean2

LSTM GRU CNN SVM LSTM GRU CNN SVM
10 77.2 78.3 78.7 79.9 80.1 79.4 80.1 81.2
20 83.0 82.3 83.4 83.6 85.8 85.6 86.9 86.7
40 84.1 84.1 85.1 85.3 87.3 87.6 88.8 88.0
60 85.0 85.8 86.1 86.2 87.5 86.4 88.5 88.2
80 87.1 86.8 88.5 87.7 87.5 88.0 89.2 87.9
100 87.1 86.5 88.2 87.4 87.7 87.9 88.8 87.6
200 85.8 87.5 89.4 86.5 86.2 87.3 89.6 86.3
400 80.9 88.1 89.9 81.9 80.3 87.3 89.6 78.1
600 79.8 89.1 93.2 75.5 77.6 89.4 93.5 74.8
800 68.3 85.3 93.5 73.9 41.5 92.3 93.6 73.3
1000 77.1 89.1 93.6 72.9 64.0 84.1 93.9 72.3

a b c d e f
Predicted label

a

b

c

d

e

f

Tr
ue

 la
be

l

3958 178 0 85 101 8

284 1755 0 15 63 4

3 3 0 1 98 0

92 53 0 548 17 0

92 162 0 23 1414 7

13 10 0 3 0 592

(a)

a b c d e f
Predicted label

a

b

c

d

e

f

Tr
ue

 la
be

l
4004 147 0 82 91 6

278 1792 0 4 47 0

2 2 0 1 100 0

68 28 0 594 16 4

71 80 0 21 1526 0

13 9 0 3 2 591

(b)

Figure 5: Confusionmatrix of the GRU and CNNmethods for the 100 system calls sequence of the AllMalwarePlusClean data sample. Class
labels: AdWare (a); Benign (b); DangerousObject (c); Downloader (d); Trojan (e); WebToolbar (f).

Table 5: Malicious and benign samples (malware or clean) classification accuracy.

Count
MalwarePlusClean MalwarePlusClean2

LSTM GRU CNN SVM LSTM GRU CNN SVM
10 87.0 87.4 87.4 87.4 88.6 88.6 88.9 88.4
20 90.0 90.2 91.1 90.2 92.0 92.4 93.0 91.8
40 91.2 90.6 91.8 90.5 92.9 92.4 94.1 92.0
60 91.2 91.1 93.3 91.1 93.2 93.0 93.5 91.9
80 92.7 92.0 94.2 91.5 93.0 93.2 94.5 91.7
100 92.7 92.5 94.3 91.5 93.0 92.1 94.5 91.2
200 90.7 90.8 94.3 88.6 92.4 91.8 94.9 88.9
400 87.0 90.9 94.8 88.4 89.2 92.0 94.8 88.7
600 86.4 88.7 98.5 87.2 85.8 90.1 98.6 87.1
800 84.2 84.7 98.8 86.9 85.1 82.8 98.9 87.0
1000 84.2 70.3 98.9 87.2 83.8 72.4 99.3 87.0

Security and Communication Networks 7

model training took 29.6 minutes with the same dataset. In
comparison, 100 system calls sequences training time is
much faster. For GRU and CNN, it took 4.6 and 3.9 minutes,
respectively.

,e evaluation of data model size impact on training
time leads to the conclusion that using the first 100 system
calls sequences is an optimal solution in terms of time and
accuracy balance.

,e classification accuracy vs. the number of epochs
needed to reach the saturation measurement is presented in
Figure 10.

As it can be seen, there is a reverse dependency of the
number of epochs before saturation on the system call se-
quence length, e.g., for the top-performing CNN model, 75
epochs are required to train 10 system calls, and only 30
epochs are required for 400 system calls.

,e computed equal error rate (EER) [18] values for the
DLmethods (LSTM, GRU, and CNN) can be seen in Table 6.
When comparing models, lower EER means better perfor-
mance of the model. In our case, CNN shows best values of
9.7% and 4.8% for the Benign and Malware classes,
respectively.

a b
Predicted label

a

b

Tr
ue

 la
be

l

1602 519

195 7266

(a)

a b
Predicted label

a

b

Tr
ue

 la
be

l

1714 407

124 7337

(b)

Figure 6: Confusion matrix of the GRU and CNN methods for the 100 system calls sequence of the MalwarePlusClean data sample. Class
labels: benign (a); malware (b).

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC of malware

ROC fold 1 (AUC = 0.97)
ROC fold 2 (AUC = 0.98)
ROC fold 3 (AUC = 0.97)
ROC fold 4 (AUC = 0.97)

ROC fold 5 (AUC = 0.97)
Mean ROC (AUC = 0.97 ± 0.00)
±1 std. dev.

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC of malware

ROC fold 1 (AUC = 0.99)
ROC fold 2 (AUC = 0.99)
ROC fold 3 (AUC = 0.99)
ROC fold 4 (AUC = 0.99)

ROC fold 5 (AUC = 0.99)
Mean ROC (AUC = 0.98 ± 0.00)
±1 std. dev.

(b)

Figure 7: ROC diagrams of the malware class for the 100 system calls of MalwarePlusClean data. (a) GRU. (b) CNN.

8 Security and Communication Networks

4. Conclusions

A comparative analysis of DL methods, including LSTN,
GRU, and CNN was performed in order to evaluate their
efficiency for attack classification as well as their ability to
distinguish malicious and benign activity. ,e analysis was
performed on an exhaustive AWSCTD, which includes
112.56 million system calls from 12110 executable malware
samples and 3145 benign software samples with 16.3 million
system calls. ,e application of such a set increases the
classification and intrusion identification accuracy even with
vanilla models by 13–38%, compared with the results
achieved by other researchers. Furthermore, model tuning

should decrease the FAR even more. In general, the achieved
accuracy of over 90% allows the application of DL tech-
niques in hybrid or enterprise-oriented security solutions
that combine automatic detection of major part of anom-
alies, leaving unclear cases for human-expert analysis.

All three LSTM, GRU, and CNN models have reached
higher than 90% accuracy while solving amalware classification
task with a sequence of 80 system calls. All three models
generated improved results over simple NN and SVM models
on larger data samples, while the latter demonstrates consid-
erably better training times. ,e best results were obtained with
CNNs with up to 90.0% accuracy while performing family
classification task and 99.3% rate while solving intrusion

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC of benign

ROC fold 1 (AUC = 0.97)
ROC fold 2 (AUC = 0.98)
ROC fold 3 (AUC = 0.97)
ROC fold 4 (AUC = 0.97)

ROC fold 5 (AUC = 0.97)
Mean ROC (AUC = 0.97 ± 0.00)
±1 std. dev.

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC of benign

ROC fold 1 (AUC = 0.99)
ROC fold 2 (AUC = 0.99)
ROC fold 3 (AUC = 0.99)
ROC fold 4 (AUC = 0.99)

ROC fold 5 (AUC = 0.99)
Mean ROC (AUC = 0.98 ± 0.00)
±1 std. dev.

(b)

Figure 8: ROC diagrams of the benign class for the 100 system calls of MalwarePlusClean data. (a) GRU. (b) CNN.

LSTM GRU CNN SVM
10 122.32 137.17 126.69 5.31
100 346.50 277.37 238.05 16.18
200 836.68 1075.62 876.75 32.87
400 1942.37 3462.47 1776.72 78.12

0

500

1000

1500

2000

2500

3000

3500

4000

Se
co

nd
s

Training time

Figure 9: Training time comparison of the AllMalwarePlusClean data collection. 10, 100, 200, and 400 sequence calls as data points.

Security and Communication Networks 9

detection task. CNN outperforms sequence-based LSTM and
GRUmodels in all the cases. CNN also shows the best results as
compared with EER values of DL methods used. A system calls
minimization technique, when repetitive system calls were
removed, had a positive influence on all results.

,e increase of sequence length resulted in an expo-
nential increase of the model training time, making ex-
tremely long sequences not applicable for everyday use. One

of the best performing CNN models training took 29.6
minutes, which can be explained by a limited amount of
resources on the machine used for the experiments. A re-
verse dependency of the number of epochs before saturation
on the system call sequence length was determined, e.g.,
for the top-performing CNN model, 75 epochs are re-
quired to train 10 system calls and only 30 epochs for the
400 system calls.

0.76

0.78

0.80

0.82

0.86

0.84

0.88

0.90

Accuracy vs epochs

Fold 1
Fold 2
Fold 3

Fold 4
Fold 5

0 10 20 30 40 50 60 70

(a)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Accuracy vs epochs

Fold 1
Fold 2
Fold 3

Fold 4
Fold 5

0 10 20 30 40 50 60

(b)

Fold 1
Fold 2
Fold 3

Fold 4
Fold 5

0 10 20 30 40 50 60

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Accuracy vs epochs

(c)

Fold 1
Fold 2
Fold 3

Fold 4
Fold 5

0 5 10 15 20 25 30
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Accuracy vs epochs

(d)

Figure 10: Accuracy vs. epochs needed to reach the saturation while training for the intrusion detection task. Compared CNN models for
the 10, 100, 200, and 400 system calls sequences. (a) CNN 10. (b) CNN 100. (c) CNN 200. (d) CNN 400.

Table 6: EER values in percent of the DL methods generated for the MalwarePlusClean of 100 system calls dataset.

DL method Benign Malware
LSTM 10.9 7.5
GRU 11.0 8.0
CNN 9.7 4.8

10 Security and Communication Networks

Data Availability

,e data used to support the findings of this study will be
available from the corresponding author upon request after
six months from paper publication.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “Network
anomaly detection: methods, systems and tools,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 303–336, 2014.

[2] P. Garćıa-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection:
techniques, systems and challenges,” Computers & Security,
vol. 28, no. 1-2, pp. 18–28, 2009.

[3] J. Hu, “Host-based anomaly intrusion detection,” in Hand-
book of Information and Communication Security, pp. 235–
255, Springer, Berlin, Germany, 2010.

[4] R. Bace and P. Mell, NIST Special Publication on Intrusion
Detection Systems, NIST, Gaithersburg, MD, USA, 2001.

[5] A. Hay, D. Cid, R. Bary, and S. Northcutt, OSSEC Host-Based
Intrusion Detection Guide, Syngress, Burlington MA, USA,
2008.

[6] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach
for intrusion detection using recurrent neural networks,”
IEEE Access, vol. 5, pp. 21954–21961, 2017.

[7] R. P. Lippmann, D. J. Fried, I. Graf et al., “Evaluating intrusion
detection systems without attacking your friends: the 1998
DARPA intrusion detection evaluation,” in Proceedings of the
DARPA Information Survivability Conference and Exposition.
DISCEX’00, vol. 2, pp. 12–26, Hilton Head, SC, USA, January
2000.

[8] T. Brugger, “KDD cup’99 dataset (network intrusion) con-
sidered harmful,” KDnuggets Newsletter, vol. 7, no. 18, p. 15,
2007.

[9] C. Azad and V. K. Jha, “Data mining in intrusion detection: a
comparative study of methods, types and data sets,” In-
ternational Journal of Information Technology and Computer
Science, vol. 5, no. 8, pp. 75–90, 2013.

[10] K. Berlin, D. Slater, and J. Saxe, “Malicious behavior detection
using windows audit logs,” in Proceedings of the 8th ACM
Workshop on Artificial Intelligence and Security—AISec ‘15,
pp. 35–44, Denver, CO, USA, October 2015.

[11] StatCounter Global Stats, “Desktop operating system market
share worldwide,” January 2019, http://gs.statcounter.com/os-
market-share/desktop/worldwide/2018.

[12] D. Čeponis and N. Goranin, “Towards a robust method of
dataset generation of malicious activity for anomaly-based
HIDS training and presentation of AWSCTD dataset,” Baltic
Journal of Modern Computing, vol. 6, no. 3, 2018.

[13] W. Haider, G. Creech, Y. Xie, and J. Hu, “Windows based data
sets for evaluation of robustness of host based intrusion
detection systems (IDS) to zero-day and stealth attacks,”
Future Internet, vol. 8, no. 3, p. 29, 2016.

[14] M. Xie and J. Hu, “Evaluating host-based anomaly detection
systems: a preliminary analysis of ADFA-LD,” in Proceedings
of the 2013 6th International Congress on Image and Signal

Processing (CISP), vol. 3, pp. 1711–1716, Hangzhou, China,
December 2013.

[15] M. A. Aydin, A. H. Zaim, and K. G. Ceylan, “A hybrid in-
trusion detection system design for computer network se-
curity,” Computers and Electrical Engineering, vol. 35, no. 3,
pp. 517–526, 2009.

[16] S. Agrawal and J. Agrawal, “Survey on anomaly detection
using data mining techniques,” Procedia Computer Science,
vol. 60, pp. 708–713, 2015.

[17] N. Goranin and D. Čeponis, “Investigation of AWSCTD
dataset applicability for malware type classification,” In-
ternational Scientific Journals Security & Future, vol. 2, no. 4,
pp. 83–86, 2018.

[18] N. N. Tran, R. Sarker, and J. Hu, “An approach for host-based
intrusion detection system design using convolutional neural
network,” inMobile Networks and Management, pp. 116–126,
Springer, Cham, Switzerland, 2018.

[19] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep
learning for classification of malware system call sequences,”
in AI 2016: Advances in Artificial Intelligence, LNAI, vol. 9992,
pp. 137–149, Springer, Cham, Switzerland, 2016.

[20] L. Deng and D. Yu, “Deep learning: methods and applica-
tions,” Foundations and Trends® in Signal Processing, vol. 7,
no. 3-4, pp. 197–387, 2013.

[21] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, “Method of intrusion
detection using deep neural network,” in Proceedings of the
2017 IEEE International Conference on Big Data and Smart
Computing (BigComp), pp. 313–316, Jeju, Korea, February
2017.

[22] S. Pervez, I. Ahmad, A. Akram, and S. U. Swati, “A com-
parative analysis of artificial neural network technologies in
intrusion detection systems,” in Proceedings of the 6th WSEAS
International Conference on Multimedia, Internet & Video
Technologies, pp. 84–89, Lisbon, Portugal, September 2015.

[23] H. Debar and B. Dorizzi, “An application of a recurrent
network to an intrusion detection system,” in Proceedings of
the IJCNN International Joint Conference on Neural Networks,
vol. 2, pp. 478–483, Baltimore, MD, USA, June 1992.

[24] I. Ahmad, A. B. Abdullah, A. S. Alghamdi, N. A. Baykara, and
N. E. Mastorakis, “Artificial neural network approaches to
intrusion detection: a review,” in Proceedings of the 8th Wseas
International Conference on Telecommunications and In-
formatics (TELE-INFO’09), pp. 200–205, World Scientific and
Engineering Academy and Society (WSEAS), Istanbul, Tur-
key, 2009.

[25] V. Dumoulin and F. Visin, “A guide to convolution arithmetic
for deep learning,” pp. 1–28, 2016, https://arxiv.org/abs/1603.
07285.

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learningwith neural networks,” inAdvances inNeural Information
Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, Eds., pp. 3104–3112,
Curran Associates, Inc., Red Hook, NY, USA, 2014.

[29] K. Cho, B. vanMerrienboer, D. Bahdanau, and Y. Bengio, “On
the properties of neural machine translation: encoder-decoder
approaches,” in Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation,
Doha, Qatar, October 2014.

Security and Communication Networks 11

http://gs.statcounter.com/os-market-share/desktop/worldwide/2018
http://gs.statcounter.com/os-market-share/desktop/worldwide/2018
https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285

[30] J. J. Kim, J. J. Kim, H. L. T.,u, and H. Kim, “Long short term
memory recurrent neural network classifier for intrusion
detection,” in Proceedings of the 2016 International Conference
on Platform Technology and Service (PlatCon), pp. 1–5, Jeju,
Korea, February 2016.

[31] M. Z. Alom, V. Bontupalli, and T. M. Taha, “Intrusion de-
tection using deep belief networks,” in Proceedings of the 2015
National Aerospace and Electronics Conference (NAECON),
pp. 339–344, Dayton, OH, USA, March 2016.

[32] Z. Wang, “Deep learning-based intrusion detection with
adversaries,” IEEE Access, vol. 6, pp. 38367–38384, 2018.

[33] VirusShare.com, December 2017, https://virusshare.com/.
[34] VirusTotal, V. T., December 2017, https://virustotal.com/.
[35] F. Chollet, “Keras,” 2015, http://github.com/fchollet/keras.
[36] M. Abadi, P. Barham, J. Chen et al., “Tensorflow: a system for

large-scale machine learning,” in Proceedings of the OSDI,
vol. 16, pp. 265–283, Savannah, GA, USA, November 2016.

[37] T. Fawcett, “An introduction to ROC analysis Tom,” IRBM,
vol. 35, no. 6, pp. 299–309, 2005.

12 Security and Communication Networks

https://virusshare.com/
https://virustotal.com/
http://github.com/fchollet/keras

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

