
Research Article
A Novel (𝑡, 𝑛) Secret Sharing Scheme Based upon
Euler’s Theorem

Hefeng Chen 1 and Chin-Chen Chang 2

1Computer Engineering College, Jimei University, Xiamen 361021, China
2Department of Information Engineering and Computer Science, Feng Chia University, Taichung 407, Taiwan

Correspondence should be addressed to Chin-Chen Chang; alan3c@gmail.com

Received 13 August 2018; Accepted 13 March 2019; Published 1 April 2019

Academic Editor: Salvatore D’Antonio

Copyright © 2019 Hefeng Chen and Chin-Chen Chang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The (𝑡, 𝑛) secret sharing scheme is used to protect the privacy of information by distribution. More specifically, a dealer splits a
secret into n shares and distributes them privately to n participants, in such a way that any t or more participants can reconstruct
the secret, but no group of fewer than t participants who cooperate can determine it. Many schemes in literature are based on the
polynomial interpolation or the Chinese remainder theorem. In this paper, we propose a new solution to the system of congruences
different from Chinese remainder theorem and propose a new scheme for (𝑡, 𝑛) secret sharing; its secret reconstruction is based
upon Euler’s theorem. Furthermore, our generalized conclusion allows the dealer to refresh the shared secret without changing the
original share of the participants.

1. Introduction

Secret sharing is used as one of basic cryptographic primitives
in computer science including electronic voting [1], dis-
tributed cloud computing [2], key management [3], and data
hiding [4]. The (𝑡, 𝑛) secret sharing (SS) was first introduced
by Shamir [5] based on the Lagrange interpolating poly-
nomial and Blakley [6] based on the hyperplane geometry
in 1979, independently. In 1983, Mignotte’s scheme [7] and
Asmuth-Bloom’s scheme [8] were proposed based on the
Chinese remainder theorem (CRT). A perfect (𝑡, 𝑛) secret
sharing scheme [5] has two properties: (1) Any 𝑡 or more
shares can recover the secret. (2) Any 𝑡 − 1 or fewer shares
reveal no information about the secret.The research on secret
sharing has become the subject of many researchers; different
types of secret sharing scheme have been designed to address
different application requirements. For example, verifiable
secret sharing [9, 10] allows the participants to verify the
correctness of their share without leaking the confidentiality
of both shares and the secret; weighted secret sharing [11]
allows the participants with different privileges by holding
the shares with different weights; multi-secret sharing [12]
allowsmore than one secret to be shared. However, the major

techniques used can still be categorized in the above three
methods.

The CRT is to reconstruct a positive integer from its
remainders modulo a series of integer moduli. It is widely
used in the calculation of large integers, because it allows
replacing a calculation for which one knows a bound on
the size of the result by several similar computations on
small integers. The CRT has many applications in various
areas, like secret sharing [3, 4], the RSA decryption algorithm
[13], the discrete logarithm algorithm [14], and the radio
interferometric positioning system [15], etc.

The main contributions of our paper are summarized as
follows:

(a) Using Euler’s theorem to present a newmethod of the
solution to the system of congruence

(b) First proposing a new type of secret sharing scheme
based upon Euler’s theorem

(c) Using Euler’s theorem to present a new method of
the solution to the system of congruence in the
generalized CRT
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(d) Proposing a refreshable secret sharing scheme to
implement the secret refresh mechanism with the
same shares.

Based on the equivalence between the conclusion of this
paper and the CRT, our method is sufficient to be directly
applied with the CRT-based scheme to achieve the same goal.

The rest of this paper is organized as follows. In Section 2,
we describe some preliminaries on number theory and prove
that the system of congruence has another solution form
which is different from the CRT. In Section 3, we review the
Asmuth-Bloom’s scheme. In Section 4, we propose the secret
sharing scheme based upon Euler’s theorem. In Section 5, the
security and performance analysis are given. In Section 6,
we generalize the conclusion in Section 2 and propose a
refreshable secret sharing scheme. In Section 7, we conclude
the paper.

2. New Solution to the Congruence System

In this section, we describe the CRT and Euler’s theorem
firstly. Then we present another method to give the unique
solution of the congruent system, by utilizing the properties
of them.

The Chinese remainder theorem states that if the remain-
ders of the Euclidean division of an integer 𝑥 by several
integers are known, then the remainder of the division
of this integer 𝑥 by the product of these integers can be
uniquely determined, under the condition that the divisors
are pairwise coprime.

Lemma 1 (Chinese remainder theorem (CRT) [16]). Suppose𝑚1, 𝑚2, ⋅ ⋅ ⋅ , 𝑚𝑛 are pairwise relatively prime positive integers,
and suppose 𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑛 are integers. Then the system of 𝑛
congruences 𝑥 ≡ 𝑟𝑖(mod𝑚𝑖) (1 ≤ 𝑖 ≤ 𝑛) has a unique solution
modulo𝑀 = ∏𝑛𝑖=1𝑚𝑖, which is given by

𝑥 = 𝑛∑
𝑖=1

𝑟𝑖𝑀𝑖𝑦𝑖mod𝑀, (1)

where𝑀𝑖 = 𝑀/𝑚𝑖 and 𝑦𝑖 = 𝑀−1𝑖 mod𝑚𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
Euler’s theorem is a generalization of Fermat’s little

theorem and is further generalized by Carmichael’s theorem
[17].

Lemma 2 (Euler’s theorem [17]). If 𝑚 and 𝛽 are coprime
positive integers, then

𝛽𝜑(𝑚) ≡ 1 (mod𝑚) , (2)

where 𝜑(𝑚) called Euler’s phi function is the number of positive
integers less than𝑚 and relatively prime to𝑚.

An efficient way to calculate Euler’s phi function 𝜑(𝑏) is
the following Euler product formula [17]:

𝜑 (𝑚) = 𝑚∏
𝑝|𝑚

(1 − 1𝑝) , (3)

where the product is over the distinct prime numbers divid-
ing𝑚.

Now, we give another method of solving the systems of
congruence and prove its correctness.

Theorem 3. Suppose 𝑚1, 𝑚2, ⋅ ⋅ ⋅ , 𝑚𝑛 are pairwise relatively
prime positive integers (i.e., if 𝑖 ̸= 𝑗 then gcd(𝑚𝑖, 𝑚𝑗) = 1),
and suppose 𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑛 are integers. Then the system of 𝑛
congruences 𝑥 ≡ 𝑟1mod𝑚1𝑥 ≡ 𝑟2mod𝑚2...𝑥 ≡ 𝑟𝑛mod𝑚𝑛

(4)

has a unique solution modulo𝑀 = ∏𝑛𝑖=1𝑚𝑖, which is given by

𝑥 = 𝑛∑
𝑖=1

𝑟𝑖 (𝑀𝑖)𝜑(𝑚𝑖)mod𝑀, (5)

where𝑀𝑖 = 𝑀/𝑚𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
Proof. The Chinese remainder theorem shows that the func-
tion𝜒 : Z𝑀 → Z𝑚1 × Z𝑚2 × ⋅ ⋅ ⋅ × Z𝑚𝑛𝜒 (𝑥) = (𝑟1mod𝑚1, 𝑟2mod𝑚2, ⋅ ⋅ ⋅ , 𝑟𝑛mod𝑚𝑛) (6)

is a bijection.
Now, define a function 𝜌 : Z𝑚1 ×Z𝑚2 × ⋅ ⋅ ⋅ ×Z𝑚𝑛 → Z𝑀

as follows:

𝜌 (𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑛) = 𝑛∑
𝑖=1

𝑟𝑖 (𝑀𝑖)𝜑(𝑚𝑖)mod𝑀. (7)

It amounts to show that the function 𝜌 = 𝜒−1.
Denote 𝑥 = 𝜌(𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑛), and let 1 ≤ 𝑗 ≤ 𝑛. Consider

a term 𝑟𝑖(𝑀𝑖)𝜑(𝑚𝑖) in the above summation, reduced modulo𝑚𝑗.𝑚1, 𝑚2, ⋅ ⋅ ⋅ , 𝑚𝑛 are pairwise relatively prime positive
integers, and𝑀𝑖 = ∏1≤𝑡≤𝑛,𝑡 ̸=𝑖𝑚𝑡, for 1 ≤ 𝑖 ≤ 𝑛.

If 𝑖 = 𝑗, it is obvious that gcd(𝑀𝑖, 𝑚𝑖) = 1; by Euler’s
theorem, we have (𝑀𝑖)𝜑(𝑚𝑖)mod𝑚𝑖 = 1. (8)

On the other hand, if 𝑖 ̸= 𝑗, because𝑚𝑗 | 𝑀𝑖, we have(𝑀𝑖)𝜑(𝑚𝑖)mod𝑚𝑗 = 0. (9)

Then

𝑥 ≡ 𝑛∑
𝑖=1

𝑟𝑖 (𝑀𝑖)𝜑(𝑚𝑖)mod𝑚𝑗 = 𝑟𝑗mod𝑚𝑗. (10)

Since this is true for all 𝑗, 1 ≤ 𝑗 ≤ 𝑛, 𝑥 is a solution to the
system of congruences.
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Example 4. Suppose 𝑛 = 3, 𝑚1 = 7, 𝑚2 = 11, and 𝑚3 = 13.
Then 𝑀 = 1001, 𝜑(𝑚1) = 6, 𝜑(𝑚2) = 10, and 𝜑(𝑚3) = 12.
We compute𝑀1 = 143,𝑀2 = 91, and𝑀3 = 77, and then(𝑀1)𝜑(𝑚1)mod𝑀 = 1436mod 1001 = 715,

(𝑀2)𝜑(𝑚2)mod𝑀 = 9110mod 1001 = 364,
(𝑀3)𝜑(𝑚3)mod𝑀 = 7712mod 1001 = 924.

(11)

Then the function 𝜌 : Z7 × Z11 × Z13 → Z1001 is𝜌 (𝑟1, 𝑟2, 𝑟3) = (715𝑟1 + 364𝑟2 + 924𝑟3)mod 1001. (12)

For example, if 𝑥 ≡ 5mod 7, 𝑥 ≡ 3mod 11, and 𝑥 ≡10mod 13, then this formula tells us that𝑥 = (715 × 5 + 364 × 3 + 924 × 10)mod 1001= 13907mod 1001 = 894. (13)

This can be verified by reducing 894 modulo 7, 11, and 13.

3. Review of Asmuth-Bloom’s Secret Sharing

In 1983, Asmuth and Bloom [8] proposed a novel (𝑡, 𝑛) SS, in
which the shares are the congruence classes of the secret and
the correspondingmodulus is broadcasted as the participant’s
public key. The secret reconstruction is based on CRT.

3.1. Initialization. The 𝑛 + 1 distinct positive integers𝑚0, 𝑚1, ⋅ ⋅ ⋅ , 𝑚𝑛 are chosen subject to the following condi-
tions:

(1) 𝑚1 < 𝑚2 < ⋅ ⋅ ⋅ < 𝑚𝑛
(2) gcd(𝑚𝑖, 𝑚𝑗) = 1 for 0 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛
(3) ∏𝑡𝑖=1𝑚𝑖 > 𝑚0 ⋅ ∏𝑡−1𝑖=1𝑚𝑛−𝑡+𝑖+1

3.2. Secret Generation. Suppose the shared secret is the
integer 𝑠 ∈ [0,𝑚0). Let 𝑠 = 𝑠 + 𝛼𝑚0 where 𝛼 ∈ Z is
subject to the condition 𝑠 ∈ [0,𝑚1 ⋅ 𝑚2 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑚𝑡). Then let𝑠𝑖 ≡ 𝑠mod𝑚𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) be the private shares.
3.3. Secret Reconstruction. If 𝑠𝑖1 , 𝑠𝑖2 , ⋅ ⋅ ⋅ , 𝑠𝑖𝑡 are known, 𝑠 is
obtained by

𝑠 = 𝑡∑
𝑗=1

𝑠𝑖𝑗𝑁𝑖𝑗𝑦𝑖𝑗 mod𝑁, (14)

where 𝑁 = ∏𝑡𝑗=1𝑚𝑖𝑗 , 𝑁𝑖𝑗 = 𝑁/𝑚𝑖𝑗 , and 𝑦𝑖𝑗 = 𝑁−1𝑖𝑗 mod𝑚𝑖𝑗 .
Then the shared secret is𝑠 = 𝑠mod𝑚0. (15)

3.4. Security Analysis. However, Harn et al. [18] pointed out
that the value 𝑠 need be in the t-threshold range (𝑚𝑛−𝑡+2 ⋅𝑚𝑛−𝑡+3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑚𝑛, 𝑚1 ⋅ 𝑚2 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑚𝑡); otherwise, it could be
obtained by fewer than t participants. In the following, we
give an example to illustrate this vulnerability.

Example 5. Consider Asmuth-Bloom’s (2, 4) secret sharing
scheme.

We have a pairwise relatively prime integer
set {5, 7, 11, 12, 13}. The shared secret 𝑠 is 4. Let𝑠 = 𝑠 + 𝛼𝑚0 = 4 + 5 × 18 = 94. Then, four shares are
generated as (𝑚1, 𝑠1) = (7, 3) ,(𝑚2, 𝑠2) = (11, 6) ,(𝑚3, 𝑠3) = (12, 10) ,(𝑚4, 𝑠4) = (13, 3) .

(16)

It is easy to recover the shared secret 𝑠 by using two shares(𝑚3, 𝑠3) = (12, 10), (𝑚4, 𝑠4) = (13, 3) and the CRT, as shown
below.

By Euclidean Algorithm, we get𝑦3 = 13−1mod 12 = 1,𝑦4 = 12−1mod 13 = 12, (17)

and then 𝑠 = (13 × 1 × 10 + 12 × 12 × 3)mod 156= 562mod 156 = 94, (18)

and the secret 𝑠 = 94mod 5 = 4 is revealed.
Besides, Hwang and Chang [19] proposed a method to

generate a pairwise relative prime integer set which satisfies
the requirements of Asmuth-Bloom’s and our schemes, and
this specific integer set is not unique.

4. Proposed Secret Sharing Scheme

The traditional (𝑡, 𝑛) secret sharing scheme is composed of a
trusted dealerD and 𝑛 participants𝑈1, 𝑈2, ⋅ ⋅ ⋅ , 𝑈𝑛. Our secret
sharing scheme consists of three phases, that is, initialization
phase, share generation phase, and secret reconstruction
phase. In secret generation phase, we improve Asmuth-
Bloom’s scheme by considering the 𝑡-threshold range. We
do the secret reconstruction by Euler’s phi function, and the
correctness is based uponTheorem 3 in Section 2.

4.1. Initialization. ThedealerD chooses 𝑛+1 distinct positive
integers𝑚0, 𝑚1, 𝑚2, ⋅ ⋅ ⋅ , 𝑚𝑛 such that

(1) 𝑚1 < 𝑚2 < ⋅ ⋅ ⋅ < 𝑚𝑛
(2) gcd(𝑚𝑖, 𝑚𝑗) = 1 for 0 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛
(3) ∏𝑡𝑖=1𝑚𝑖 > (𝑚0 + 1) ⋅ ∏𝑡−1𝑖=1𝑚𝑛−𝑡+𝑖+1
The dealerD broadcasts the value𝑚0 and sends the value𝑚𝑖 to participant𝑈𝑖 as his/her public information, for 1 ≤ 𝑖 ≤𝑛.

4.2. Share Generation. Suppose the dealer D wants to share
the secret 𝑠 ∈ Z𝑚0 .
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The dealer D selects an integer 𝛼 ∈[⌈∏𝑡−1𝑖=1𝑚𝑛−𝑖+1/𝑚0⌉,∏𝑡𝑖=1𝑚𝑖/𝑚0 − 1); then let 𝑠𝑖 ≡(𝑠 + 𝛼𝑚0)mod𝑚𝑖 be the private share of the participant𝑈𝑖, for 1 ≤ 𝑖 ≤ 𝑛.
4.3. Secret Reconstruction. If 𝑡 participants pool their shares
and corresponding modulus, (𝑠𝑖1 , 𝑚𝑖1), (𝑠𝑖2 , 𝑚𝑖2), ⋅ ⋅ ⋅ , (𝑠𝑖𝑡 ,𝑚𝑖𝑡), the shared secret can be reconstructed as 𝑠 = 𝑠mod𝑚0,
where

𝑠 = 𝑡∑
𝑗=1

𝑠𝑖𝑗 ( ∏
1≤𝑘≤𝑡,𝑘 ̸=𝑗

𝑚𝑖𝑘)𝜑(𝑚𝑖𝑗 )mod( ∏
1≤𝑘≤𝑡

𝑚𝑖𝑗) . (19)

5. Security and Performance Analysis

In this section, we first give security analysis of the scheme
proposed in Section 4 and then compare the performance of
our proposed secret sharing with that of two types of classical
secret sharing.

5.1. Security Analysis. Now we analyze the fact that our
proposed (𝑡, 𝑛) secret sharing is perfect, secure as follows.
Theorem 6. Our proposed (𝑡, 𝑛) secret sharing scheme
described in Section 4 is perfect, that is, the following two
properties are satisfied:

(1) If any 𝑡 participants pool their shares, then they can
determine the value of 𝑠.

(2) If any 𝑡 − 1 participants pool their shares, then they can
determine nothing about the value of 𝑠.

Proof. Based on the conditions of our scheme,𝑠 = 𝑠 + 𝛼𝑚0, (20)

where ⌈∏𝑡−1𝑖=1𝑚𝑛−𝑖+1/𝑚0⌉ ≤ 𝛼 < ∏𝑡𝑖=1𝑚𝑖/𝑚0 − 1 and 0 ≤ 𝑠 <𝑚0.
Let𝑀 = ∏𝑡𝑖=1𝑚𝑖, we have

0 + ⌈∏𝑡−1𝑖=1𝑚𝑛−𝑖+1𝑚0 ⌉𝑚0 ≤ 𝑠 + 𝛼𝑚0 < 𝑚0 + (𝑀 − 𝑚0) ,
𝑡−1∏
𝑖=1

𝑚𝑛−𝑖+1 + 1 ≤ 𝑠 < 𝑀. (21)

(1) If any 𝑡 participants pool their shares 𝑠𝑖1 , 𝑠𝑖2 , ⋅ ⋅ ⋅ , 𝑠𝑖𝑡 , as
described inTheorem 3, the system of 𝑡 congruences𝑥 ≡ 𝑠𝑖1mod𝑚𝑖1𝑥 ≡ 𝑠𝑖2mod𝑚𝑖2...𝑥 ≡ 𝑠𝑖𝑡mod𝑚𝑖𝑡

(22)

has one unique solution as

𝑥 = 𝑡∑
𝑗=1

𝑠𝑖𝑗 ( 𝑁𝑚𝑖𝑗 )
𝜑(𝑚𝑖𝑗 )

mod𝑁, (23)

where𝑁 = ∏𝑡𝑗=1𝑚𝑖𝑗 .
As𝑁 ≥ 𝑀, this uniquely determines 𝑠 = 𝑥 and thus𝑠 = 𝑠mod𝑚0. (24)

(2) If only 𝑡 − 1 participants pool their shares,𝑠𝑙1 , 𝑠𝑙1 , ⋅ ⋅ ⋅ , 𝑠𝑙𝑡−1 , then all we have is 𝑠∗ = 𝑠mod𝑁, where𝑁 = ∏𝑡−1𝑗=1𝑚𝑙𝑗 . The real secret 𝑠 ∈ {𝑠∗, 𝑠∗ + 𝑁, ⋅ ⋅ ⋅ , 𝑠∗ +⌊𝑀/𝑁 − 1⌋𝑁}; since gcd(𝑁,𝑚0) = 1 and 𝑀/𝑁 > 𝑚0, the
set of possible values is greater than that of possible secret.
Hence, no useful information is compromised.

Example 7. Consider the proposed (2, 4) secret sharing
scheme.

In initialization phase, the dealer D chooses 5 distinct
positive integers, 𝑚0 = 5, 𝑚1 = 7, 𝑚2 = 11, 𝑚3 = 12, and𝑚4 = 13, which satisfies the conditions on initialization listed
in Section 4.1. The minimum value 𝑚0 = 5 is broadcasted.
And𝑚𝑖 (1 ≤ 𝑖 ≤ 4) is sent as the public key of 𝑈𝑖.

In sharing phase, suppose the shared secret 𝑠 = 4. Then
dealer D selects an integer 𝛼 = 18 ∈ [14, 183]. So the private
shares of 𝑈1, 𝑈2, 𝑈3, and 𝑈4, are generated as follows:𝑠1 = 4 + 18 × 5 (mod 7) = 3,𝑠2 = 4 + 18 × 5 (mod 11) = 6,𝑠3 = 4 + 18 × 5 (mod 12) = 10,𝑠4 = 4 + 18 × 5 (mod 13) = 3.

(25)

In reconstructing phase, suppose that 𝑈3 and 𝑈4 cooper-
ate; by (19) we have

𝑠 = 𝑠4𝑚3𝜑(𝑚4) + 𝑠3𝑚4𝜑(𝑚3)mod (𝑚4 ⋅ 𝑚3)= 3 × 12𝜑(13) + 10 × 13𝜑(12)mod (13 × 12) = 94, (26)

and, then, the secret can be reconstructed as𝑠 = 𝑠mod𝑚0 = 94mod 5 = 4. (27)

As in many literatures, we assume that all participants
pool the real shares when they collaborate to recover the
shared secret. To enhance the security, it can be combined
with other cheater detectionmechanisms to check the validity
of the shares before recovery of the secret.

5.2. Performance Analysis. In this section, we analyze the
computational cost of our proposed scheme and compare it
with the other two classic secret sharing schemes, as summa-
rized in Table 1. In Shamir’s (𝑡, 𝑛) scheme, the secret recovery
using the usual polynomial interpolation requires O(𝑡 log2𝑡)
operations. In the Asmuth-Bloom’s scheme, the modular
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Table 1: Comparison of computational cost.

Scheme Secret recovery
Shamir’s scheme [5] O (𝑡 log2𝑡)
Asmuth-Bloom’s scheme [8] O (𝑡)
Our scheme O (𝑡)
method of secret recovery requires only O(𝑡) operations. In
our scheme, the computation complexity of (𝑀𝑖)𝜑(𝑚𝑖)mod𝑀
requires at most O(log𝑚𝑛) operations. However, this can be
improved at the cost of storage room by keeping a table. Once
the value of (𝑀𝑖)𝜑(𝑚𝑖)mod𝑀 (1 ≤ 𝑖 ≤ 𝑛) is known, it requires
only O(𝑡) operations to recover the secret.
6. Renewable Secret Sharing Scheme

The generalized Chinese remainder theorem (GCRT) [9, 10]
is a variation of CRT with an additional integer 𝑘 introduced
as a common modulus. Inspired by GCRT, we have the
following result.

Theorem 8. Suppose 𝑚1, 𝑚2, ⋅ ⋅ ⋅ , 𝑚𝑛 are pairwise relatively
prime positive integers (i.e., if 𝑖 ̸= 𝑗 then gcd(𝑚𝑖, 𝑚𝑗) = 1),
and 𝑟1, 𝑟2, ⋅ ⋅ ⋅ , 𝑟𝑛 are integers. Suppose 𝑘 is an integer satisfying
max1≤𝑖≤𝑛{𝑟𝑖} < 𝑘 < min1≤𝑖≤𝑛{𝑚𝑖}. Let𝑀 = ∏𝑛𝑖=1𝑚𝑖. Then the
system of 𝑛 congruences

⌊ 𝑥𝑚1 ⌋ ≡ 𝑟1mod 𝑘
⌊ 𝑥𝑚2 ⌋ ≡ 𝑟2mod 𝑘

...
⌊ 𝑥𝑚𝑛 ⌋ ≡ 𝑟𝑛mod 𝑘

(28)

has a unique solution modulo 𝑘𝑀, which is given by

𝑥 = 𝑛∑
𝑖=1

𝑅𝑖𝑘 (𝑀𝑖)𝜑(𝑚𝑖)mod 𝑘𝑀, (29)

where𝑀𝑖 = 𝑀/𝑚𝑖 and 𝑅𝑖 = ⌈𝑟𝑖 ⋅ 𝑚𝑖/𝑘⌉ for 1 ≤ 𝑖 ≤ 𝑛.
Proof. It amounts to showing that 𝑥 in (28) is a solution to the
systemof congruences (19).Theproof of uniqueness is similar
to Theorem 3.

For 1 ≤ 𝑗 ≤ 𝑛, consider a term 𝑅𝑖𝑘(𝑀𝑖)𝜑(𝑚𝑖) in the above
summation, reduced modulo𝑚𝑗.

If 𝑖 = 𝑗, it is obvious that gcd(𝑀𝑖, 𝑚𝑖) = 1, by Euler’s
theorem; then we have (𝑀𝑖)𝜑(𝑚𝑖)mod𝑚𝑖 = 1; i.e., there is an
integer𝜆 such that (𝑀𝑖)𝜑(𝑚𝑖) + 𝜆𝑚𝑖 = 1; then

𝑘 (𝑀𝑖)𝜑(𝑚𝑖)mod 𝑘𝑚𝑖 = 𝑘, (30)

because 𝑘(𝑀𝑖)𝜑(𝑚𝑖) + 𝑘𝜆𝑚𝑖 = 𝑘. On the other hand, if 𝑖 ̸= 𝑗,
because𝑚𝑗 | 𝑀𝑖, we have(𝑀𝑖)𝜑(𝑚𝑖)mod𝑚𝑗 = 0, (31)

i.e., 𝑅𝑖𝑘(𝑀𝑖)𝜑(𝑚𝑖)mod 𝑘𝑚𝑗 = 0. Therefore,

⌊ 𝑥𝑚𝑗⌋mod 𝑘 = ⌊∑𝑛𝑖=1 𝑅𝑖𝑘 (𝑀𝑖)𝜑(𝑚𝑖)𝑚𝑗 ⌋mod 𝑘
= [[[[

𝑅𝑗𝑘 (𝑀𝑗)𝜑(𝑚𝑗)𝑚𝑗
]]]]mod 𝑘, (32)

because 𝑅𝑖𝑘(𝑀𝑖)𝜑(𝑚𝑖)/𝑚𝑗mod 𝑘 = 0 for 𝑖 ̸= 𝑗.
Since 𝑘(𝑀𝑖)𝜑(𝑚𝑖)mod 𝑘𝑚𝑖 = 𝑘 and 𝑘 < 𝑚𝑖, we have𝑘(𝑀𝑖)𝜑(𝑚𝑖)/𝑚𝑖mod 𝑘 = 𝑘/𝑚𝑖.
If 𝑟𝑗𝑚𝑗 is a multiple of 𝑘, then

𝑅𝑗 = ⌈𝑟𝑗 ⋅ 𝑚𝑗𝑘 ⌉ = 𝑟𝑗 ⋅ 𝑚𝑗𝑘 , (33)

and we have

⌊ 𝑥𝑚𝑗⌋mod 𝑘 = 𝑟𝑗 (𝑀𝑗)𝜑(𝑚𝑗)mod 𝑘 = 𝑟𝑗. (34)

If 𝑟𝑗𝑚𝑗 is not a multiple of 𝑘, then
⌊ 𝑥𝑚𝑗⌋mod 𝑘 = ⌊⌈𝑟𝑗 ⋅ 𝑚𝑗/𝑘⌉ 𝑘 (1 + 𝛽𝑚𝑗)𝑚𝑗 ⌋mod 𝑘
= ⌊⌈𝑟𝑗 ⋅ 𝑚𝑗/𝑘⌉ 𝑘𝑚𝑗 ⌋mod 𝑘
= ⌊𝑟𝑗 + (1 − ((𝑟𝑗 ⋅ 𝑚𝑗mod 𝑘) /𝑘)) 𝑘𝑚𝑗 ⌋mod 𝑘
= 𝑟𝑗,

(35)

because (1 − ((𝑟𝑗 ⋅ 𝑚𝑗mod 𝑘)/𝑘))𝑘/𝑚𝑗 < 1 and 𝑟𝑗 < 𝑘.
Although more computation is required, more flexible

performance can be achieved. In the traditional secret sharing
scheme, if we want to refresh the secret, the corresponding
congruences system should be modified. However, based
upon Theorem 8, we can refresh the shared secret without
changing the share and the public information of the partici-
pants.

Compared with the previous scheme, the refreshable
secret sharing scheme adds a secret refresh phase. In share
generation phase, the dealer needs to broadcast an additional
parameter as follows.

6.1. Initialization. ThedealerD chooses 𝑛+1 distinct positive
integers𝑚0, 𝑚1, ⋅ ⋅ ⋅ , 𝑚𝑛 such that

(1) 𝑚1 < 𝑚2 < ⋅ ⋅ ⋅ < 𝑚𝑛
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(2) gcd(𝑚𝑖, 𝑚𝑗) = 1 for 0 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛
(3) ∏𝑡𝑖=1𝑚𝑖 > (𝑚0 + 1) ⋅ ∏𝑡−1𝑖=1𝑚𝑛−𝑡+𝑖+1
The dealerD broadcasts the value𝑚0 and sends the value𝑚𝑖 to participant𝑈𝑖 as his/her public information, for 1 ≤ 𝑖 ≤𝑛.

6.2. Share Generation. Suppose the dealer D wants to share
the secret 𝑠 ∈ Z𝑚0 . The dealer D firstly selects and broadcasts
an integer 𝑘 ∈ (0,min1≤𝑖≤𝑛{𝑚𝑖}). Secondly, the dealer D
chooses a random integer

𝛼 ∈ [⌈∏𝑡−1𝑖=1𝑚𝑛−𝑖+1𝑚0 ⌉ , ∏𝑡𝑖=1𝑚𝑖𝑚0 − 1) , (36)

then generating 𝑠𝑖 ≡ ⌊𝑠+𝛼𝑚0/𝑚𝑖⌋mod 𝑘, which is the private
share of the participant 𝑈𝑖, for 1 ≤ 𝑖 ≤ 𝑛.
6.3. Secret Refreshment. Suppose the dealer D wants to
refresh the shared secret without changing the share and
the public modulus of the participants which has been
sent. The dealer D selects and broadcasts new integer �̂� ∈(max1≤𝑖≤𝑛{𝑟𝑖},min1≤𝑖≤𝑛{𝑚𝑖}); then the secret 𝑠 = 𝑠mod𝑚0
can be shared by 𝑛 participants with their original share and
public modulus (𝑠𝑖, 𝑚𝑖), where

𝑠 = 𝑛∑
𝑖=1

⌈𝑟𝑖 ⋅ 𝑚𝑖�̂� ⌉ �̂� (𝑀𝑖)𝜑(𝑚𝑖)mod �̂�𝑀. (37)

6.4. Secret Reconstruction. If 𝑡 participants pool their shares
and public modulus, (𝑠𝑖1 , 𝑚𝑖1), (𝑠𝑖2 , 𝑚𝑖2), ⋅ ⋅ ⋅ , (𝑠𝑖𝑡 , 𝑚𝑖𝑡), with
the corresponding parameter 𝑘, the shared secret can be
reconstructed as 𝑠 = 𝑠mod𝑚0, where𝑠

= 𝑡∑
𝑗=1

⌈𝑟𝑖𝑗 ⋅ 𝑚𝑖𝑗𝑘 ⌉ 𝑘( ∏
1≤𝑘≤𝑡
𝑘 ̸=𝑗

𝑚𝑖𝑘)
𝜑(𝑚𝑖𝑗 )

mod(𝑘 𝑡∏
𝑗=1

𝑚𝑖𝑗) . (38)

7. Conclusions

In this paper, we first show a new method to reconstruct the
secret by the system of congruences utilizing Euler’s theorem
and propose a new type of perfect secret sharing scheme
based on modular arithmetic. Furthermore, inspired by [20],
we introduce an extra integer to help us to refresh the secret
without changing the information the participant holds; only
one public broadcasting parameter needs to be updated.
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