
Research Article
PDRCNN: Precise Phishing Detection with Recurrent
Convolutional Neural Networks

Weiping Wang,1 Feng Zhang,1 Xi Luo ,2 and Shigeng Zhang 1,3

1School of Computer Science and Engineering, Central South University, Changsha, China
2Hunan Provincial Key Laboratory of Network Investigational Technology and Department of Information Technology,
Hunan Police Academy, Changsha, China
3State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

Correspondence should be addressed to Xi Luo; 9075111@qq.com and Shigeng Zhang; sgzhang@csu.edu.cn

Received 7 May 2019; Accepted 29 August 2019; Published 29 October 2019

Academic Editor: Angel M. Del Rey

Copyright © 2019WeipingWang et al.�is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�rough well-designed counterfeit websites, phishing induces online users to visit forged web pages to obtain their private
sensitive information, e.g., account number and password. Existing antiphishing approaches are mostly based on page-related
features, which require to crawl content of web pages as well as accessing third-party search engines or DNS services.�is not only
leads to their low e�ciency in detecting phishing but also makes them rely on network environment and third-party services
heavily. In this paper, we propose a fast phishing website detection approach called PDRCNN that relies only on the URL of the
website. PDRCNN neither needs to retrieve content of the target website nor uses any third-party services as previous approaches
do. It encodes the information of an URL into a two-dimensional tensor and feeds the tensor into a novelly designed deep learning
neural network to classify the original URL.We �rst use a bidirectional LSTM network to extract global features of the constructed
tensor and give all string information to each character in the URL. After that, we use a CNN to automatically judge which
characters play key roles in phishing detection, capture the key components of the URL, and compress the extracted features into a
�xed length vector space. By combining the two types of networks, PDRCNN achieves better performance than just using either
one of them. We built a dataset containing nearly 500,000 URLs which are obtained through Alexa and PhishTank. Experimental
results show that PDRCNN achieves a detection accuracy of 97% and an AUC value of 99%, which is much better than state-of-
the-art approaches. Furthermore, the recognition process is very fast: on the trained PDRCNN model, the average per URL
detection time only cost 0.4ms.

1. Introduction

With the rapid development of the Internet in the past
decade, some attackers have forged phishing websites to
imitate real enterprise websites in order to induce normal
users to disclose personal information, e.g., bank accounts,
mail accounts, and passwords. �is kind of phishing attacks
is now very common and growing rapidly. In the report
recently released by the Antiphishing Working Group
(APWG) [1], it mentions that APWG members have been
detecting more than 250,000 phishing attacks using 195,475
di¢erent domains from 2015 to 2016. Both numbers are the

highest record since APWG began reporting phishing sta-
tistics in 2007.

Phishing detection has received much research attention
in recent years. Existing phishing detection approaches
mainly falls into three di¢erent categories: approaches based
on black- and whitelist, approaches based on web page visual
similarity, and approaches based on URL and website
content features.

�e black- and whitelist-based approaches detect whether
a given URL is phishing by matching it with a list of known
phishing sites that have been identi�ed by the third party.
Such approaches are usually used in industrial engineering to

Hindawi
Security and Communication Networks
Volume 2019, Article ID 2595794, 15 pages
https://doi.org/10.1155/2019/2595794

mailto:9075111@qq.com
mailto:sgzhang@csu.edu.cn
https://orcid.org/0000-0001-9068-0879
https://orcid.org/0000-0001-5351-7239
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/2595794

intercept URLs [2, 3] located in a given list. ,e limitation of
this method is that on the one hand, they rely on the detection
results provided by third parties like Google Safe Browsing
API, which has a certain lag and cannot defend against 0-day
phishing attacks, and on the other hand, not all the whitelisted
pages are irrationally labeled as suspicious, which is unfair to
most benign sites.

,e visual similarity-based method is to extract visual
features from phishing websites, and then use these features
to identify phishing web pages. ,e disadvantages of these
methods are that they need to retrieve the visual content of
the web page, and any distortion of the web page content will
lead to misclassification. And the extraction and matching
process of visual features will consume computational re-
sources [4–7].

,e method of distinguishing between phishing and
benign pages based on URL and web content features is the
most important method for phishing detection. Such
methods need to obtain relevant information of URL cor-
responding pages, such as obtaining page keywords and page
forms, and always need relevant features, such as ranking
and IP, of the page are obtained by means of a search engine
service or a DNS service.

Most current phishing detection approaches exploit
the URL and web content features to distinguish between
phishing and benign pages [8–13]. ,ese approaches find
features that are different in phishing benign pages, and
use experimental heuristics to detect phishing pages.
,ey need the information which is related to page
content of the URL, including page keywords and page
forms. Moreover, they also need relevant features such as
ranking of the target website and its IP address, which
need to access third-party services such as search engine
and DNS.

Machine learning techniques have also been integrated
with this kind of approaches to improve detection perfor-
mance [14–23]. ,ese phishing website features identified
through artificial feature engineering can effectively transfer
the knowledge of security experts to computers and turn
security issues into computational problems. ,en, through
feature extraction and sample training, it has achieved good
detection results. ,ese methods, based on URL and web
content features, require not only local computing resources
but also network access and third-party services. ,e de-
tection efficiency is low, and when phishing attacks continue
to change and escalate, the effectiveness of these features is
waning.

In this paper, we propose a new phishing website de-
tection method PDRCNN, which only uses the URL to
detect phishing and does not need third-party services such
as search engine or DNS services. PDRCNN extracts the
structural and semantic features in the phishing website URL
through the deep learning model for the detection of
phishing website. Our approach is independent to external
information bases and is very fast with detection time less
than 0.4ms per URL. To our knowledge, PDRCNN is the
first that can perform precise and fast phishing detection
only with URL information. Our main contributions are
summarized as follows:

(i) We first proposed a phishing detection model with
deep learning, and it can detect phishing sites
quickly and accurately not relying on third-party
data and search engine results.

(ii) We combine the advantages of RNN and CNN in
processing text data. At first, we use the RNN to
extract the global features from the URL, and then
use the CNN to extract the local features.

(iii) We build a large-scale data set through Alexa and
PhishTank websites, which contains nearly 500,000
experimental samples. ,e accuracy of the experi-
mental results reached 97%, and the AUC value
reached 99%.

(iv) We design four baseline models, and the experi-
mental results indicate that PDRCNN can better
detect phishing website URLs than existing machine
learning-based methods and general n-gram
methods.

,e remainder of this paper is structured as follows: ,e
second section reviews related works. ,e third section
introduces the basic idea of PDRCNN. ,e fourth section
introduces the design of the PDRCNNmethod in detail. ,e
fifth section describes the experimental results and the
analysis of the experimental results, while the summary of
this article discussed in Section 6.

2. Related Works

2.1. Blacklist/Whitelist-Based Approaches. ,e blacklist- and
whitelist-based detection method needs to maintain a list of
information of a known phishing website in order to check
the currently visited. ,is list, which needs to be constantly
updated, contains information such as known phishing
URLs, IP addresses, and domain names. It determines
whether a website is a phishing page by verifying whether it
is in a black or whitelist.

Google Safe Browsing API [2] is an interface provided by
Google to query whether a given URL address exists on
Google’s phishing website blacklist. In 2008, Han et al. [3]
proposed a whitelist-based phishing website detection
method that records the LUI (login user interface) in-
formation and IP address of each URL accessed by the user.
When a user visits a website included in the whitelist and
submits account information, an alarm will be generated, if
the website information does not match the information of
the white list. ,e disadvantage of this method is that it will
alert the user when visiting the normal website for the first
time.

2.2. Visual Similarity-Based Approaches. ,e detection
method based on page visual similarity needs to take a
snapshot of the web page, requires large calculation and
storage resources, and mainly detects the phishing website
with similar page visuality. Liu et al. [4] proposed a method
for judging the website type by comparing the visual sim-
ilarity between phishing websites and nonphishing websites.
,e method utilizes the HTML DOM tree to segment the

2 Security and Communication Networks

page based on “visual cues” and then uses three evaluation
metrics to assess the visual similarity between the site to be
tested and the legitimate site: block level similarity, layout
similarity, and overall style similarity of web pages. ,e
method can detect phishing with a low false detection rate,
but it is time-consuming. Moreover, it depends largely on
the results of web page segmentation. Different from this,
Mao et al. [5] proposed a method to detect phishing websites
by detecting the key element similarity method related to
CSS files.

Shekokar et al. [6] proposed a detectionmethod based on
the URL and web page similarity. ,ey proposed the
LinkGuard algorithm to determine whether a URL is sus-
picious and used an image-based page matching approach to
obtain similarity between the target pages and pages in
phishing websits. ,en, a threshold is used to detect whether
the target page is a phishing page. Chiew et al. [7] proposed
Phishdentity that uses favicon extracted from the website
and uses Google as the image search engine to discover
potential phishing attempts. Phishdentity does not require
intensive analysis of text-based or image-based content, and
thus increases detection speed.

2.3. Heuristic-Based Approaches. ,e heuristic detection
methods [8–13] are based on the similarity between phishing
pages, the statistical characteristics of phishing, or the prior
knowledge of experts. It extracts multiple features from the
detected phishing pages and generalizes them into a set of
heuristic features. Phishing attack detection is then imple-
mented based on these characteristics.

Zhang et al. [8] proposed a heuristic-based phishing
detection method named CANTINA. It uses a Google
search engine to retrieve keywords and domain names in a
web page and determines whether the page is legitimate
based on the results returned by the search and other
heuristic features. Prakash et al. [9] proposed PhishNet,
which enumerates the simple phishing website URL based
on five heuristic rules. Shahriar and Zulkernine [10] tested
the credibility of suspicious websites to determine whether
the site was a phishing site. ,ey proposed a finite state
machine (FSM) method that tracks web page forms and
corresponding responses to evaluate web page behavior.
Ramesh et al. [11] proposed a method to detect phishing
websites by reviewing web pages and determining all direct
or indirect links related to the web pages. ,e method
achieves high detection accuracy, but it is time-consuming
because it relies on search engines and third-party services
such as the DNS query. Jain and Gupta [13] proposed the
phishing detection algorithm (PDA) to determine whether
a suspicious URL is a phishing website. PDA mainly de-
termines whether a URL is legal by calculating the number
of hyperlinks in the suspicious web page. ,e paper gives a
result of testing true positive of 86.07% and false negative of
1.48% on 1120 phishing pages (from PhishTank) and 405
legal pages.

2.4. Machine Learning-Based Approaches. ,e phishing
detection, based on machine learning, regards the phishing

detection problem as a text classification or clustering
problem and uses various classification and clustering al-
gorithms (e.g., K-nearest neighbor, C4.5, support vector
machine, and random forest) to detect phishing attacks.

Aburrous et al. [14] proposed a system to detect
phishing pages in e-banking. ,ey applied 27 features to
assess the risk of phishing attacks on e-banking pages.
Xiang et al. [15] proposed CANTINA+, an improved
version of CANTINA. ,is method contains three stages:
First, it uses HTML DOM, search engine, and third-party
services to extract eight novel features that reveal the
characteristics of phishing attacks. Second, it uses the
heuristic rules to filter out pages that do not have a login
box before performing the classification process. ,ird, it
selects 15 highly expressing phishing features and uses
machine learning algorithms to perform phishing page
detection. He et al. [16] proposed a system based on page
content, HTTP transactions, and search engine results.
,ey use the SVM algorithm to identify phishing pages and
achieve a detection accuracy of 0.97. Mohammad et al. [17]
proposed a model based on conventional features and
summarized the prediction error rate generated by a set of
association classification (AC) algorithms. Abdelhamid
et al. [18] used the multilabel classifier-based classification
algorithm (MCAC) to extract its rules from the training
data.

Zhang et al. [19] proposed a new model with five novel
features and a sequence minimum optimization (SMO)
algorithm for classifying and detecting Chinese phishing
websites. Moghimi et al. [20] proposed a phish detector,
which first uses SVM to train the phishing detection model,
and then uses the SVM_DT to extract the hidden phishing.
,e proposed approach achieves true positive of 0.99 and
false negative of 0.001 in a large dataset. However, this
method assumes that the pages of the phishing website only
use the content of the legitimate page, which does not hold
in practice. Shirazi et al. [21] proposed a method that relies
on only domain name based features for detection of
phishing websites. Babagoli et al. [22] proposed a phishing
website detection method that utilizes a metaheuristic-
based nonlinear regression algorithm together with a
feature selection approach. Recently, Chiew et al. [23]
proposed a feature selection framework for machine
learning-based phishing detection system called hybrid
ensemble feature selection (HEFS). HEFS uses a cumulative
distribution function gradient (CDF-g) algorithm to pro-
duce primary feature subsets and uses data perturbation
ensemble to yield secondary feature subsets. HEFS per-
forms well when it is integrated with the Random Forest
classifier.

2.5. Deep Learning-Based Approaches. ,e method of
detecting phishing websites based on the deep learning
model is to design a reasonable deep learning model,
construct the input required by the model, and extract the
features through the deep learning model to complete the
detection of the phishing website URL. In this type of ap-
proaches, the selection and the construction of the model

Security and Communication Networks 3

input will directly affect whether the model is effective.
Currently, the commonly used models for detecting
phishing websites are CNN and RNN.

Correa Bahnsen et al. [24] proposed using the LSTM
model to detect phishing URLs. ,is method first encodes
the URL string using the one-hot encoding method, and
then inputs each encoded character vector into the LSTM
neurons for training and testing. ,e method achieved an
accuracy of 0.935 on the Common Crawl and PhishTank
datasets. Chen et al. [25] also proposed an LSTM-based
phishing page detection approach. Nivaashini and Soun-
dariya [26] proposed to use the autoencoder to extract the
representation of the phishing website URL. It requires
third-party services such as PageRank and DNS query.
Hung et al. [27] proposed the URLNet method for malicious
website URL detection. ,ey extract char-level and word-
level features based on URL strings and use CNN network
for training and testing.

2.6. Summary of Existing Approaches. We survey most
current existing phishing detection approaches in Table 1.
We mainly focus on four different aspects of these phishing
detection approaches: (1) the approach’s dependence on
the search engine, (2) the approach’s dependence on third-
party organizations’ data; (3) whether the approach de-
pends on a specific language, and (4) the number of benign
samples and phishing samples used to evaluate the ap-
proach. From the table, we can find that most existing
approaches are based on page-related features. ,e ac-
quisition of these features requires crawling web pages and
accessing third-party search engine services or DNS ser-
vices. ,is causes inefficient detection of phishing websites
and relies heavily on the network environment and the
third-party services.

3. Overview of PDRCNN

3.1. Motivation. Although the URL itself has already been
used as a feature in existing phishing website identifi-
cation approaches [15, 28–30], e.g., the length of the URL,
whether the URL contains a nested domain name, and
whether a special character such as “@” or “-” appears in
the URL, it is however generally believed that the ac-
curacy of recognition by relying solely on URL features
and machine learning methods is not high. Table 2 shows
the list of nine artificial phishing website character
features.

We use statistical knowledge to perform statistics on
these 9 URL character-level features, as shown in Figure 1.
,e yellow bar indicates that the corresponding feature in
the normal website URL data is “1.” ,e height of blue bars
indicates the number of corresponding features in the
phishing website URL data of “1.”

In Figure 1, we can clearly see that the phishing website
URL and the normal website URL have significant differ-
ences in these 9 features. Among the features 3, 4, 5, 7, 8, and
9, the number of phishing website feature values is signif-
icantly larger than the benign website.

We are also concerned that some research supports a
certain correlation between phishing website URLs. In 2010,
Prakash et al. [9] proposed that phishing website attackers
would build a new phishing website by modifying a part of
the URL on the basis of the existing phishing website URL.
In other words, the phishing website URLs generated by the
same phishing attacker or phishing attack organization are
similar in structure or semantics. PhishNet proposes to
divide the known phishing URL into five parts: domain, top-
level domain, directory, file name, and query string, i.e.,
http://domain.TLD/directory/filename?query_string. Some
new phishing website URLs can be exhaustively combined
according to certain rules.

For example, two phishing URLs, http://www.xyz.com/
online/signin/ebay.htm and http://www.abc.com/online/
signin/paypal.htm, are known to combine new phishing
URLs, http://www.xyz.com/Online/signin/paypal.htm and
http://www.abc.com/online/signin/ebay.htm. ,is finding
indicates that there is a certain correlation between the texts
contained in the phishing URL.

At the same time, deep learning has a good performance
in the field of machine learning such as image recognition,
speech recognition, and natural language processing. ,e
biggest difference between deep learning and machine
learning lies in feature engineering. Feature engineering is to
express expert knowledge in professional fields in specific
features, to reduce the complexity of data, and to generate
data patterns that algorithms can handle. In machine
learning, most applications require manual feature engi-
neering, which requires a large amount of expert knowledge
to encode the original data into characteristic data formats,
such as the length of the URL, and whether certain keywords
are included in the URL. Deep learning does not require
such artificial feature engineering. ,e model directly ac-
quires deep features from the data. ,is is the biggest dif-
ference between deep learning and traditional machine
learning methods. ,erefore, we are concerned about
whether we can use the appropriate deep learning model to
automatically extract the structure and semantics features in
the phishing website URL, and then use these features to
distinguish phishing website URLs from benign website
URLs.

3.2. Basic Idea of PDRCNN

3.2.1. Problem Definition. We treat the phishing URL as a
string, and the phishing website detection problem is equiv-
alent to the text categorization problem. In our proposed
method, we follow the machine learning method to detect the
phishing website, and regard the phishing website detection
problem as a classification problem. With the deep learning
method, in the training process of the model, the neural
network can extract the intrinsic feature expression in the URL
data, and then classify the website into phishing websites.

3.2.2. 8e Structure of PDRCNN. Figure 2 shows the
structure of the PDRCNN method. ,e input of PDRCNN is
a URL string, and the output is whether the URL belongs to a

4 Security and Communication Networks

http://domain.TLD/directory/filename?query_string
http://www.xyz.com/online/signin/ebay.htm
http://www.xyz.com/online/signin/ebay.htm
http://www.abc.com/online/signin/paypal.htm
http://www.abc.com/online/signin/paypal.htm
http://www.xyz.com/Online/signin/paypal.htm
http://www.abc.com/online/signin/ebay.htm

phishing website. After receiving a URL string, PDRCNN first
encodes the URL as a string into the two-dimensional tensor
of the fixed space and then passes the encoded tensor into the
designed deep learning neural network. ,e model extracts
the structural and semantic features in the URL, and then uses
the Sigmod function to classify the extracted features and
finally outputs the classification result of the URL.

3.3.3. Choice of Deep Learning Model. Typical deep learning
models include CNN, RNN, autoencoders, and DBN (deep
belief networks).

Among them, the RNN is good at processing sequence
data, such as a consequent speech or a consequent text, and
can well handle the problem of the connection between the
data before and after the sequence. RNNs memorize the
previous information and then apply it to the current cal-
culation, that is, the nodes between the hidden layers are
connected. And the input of the hidden layer includes the
input, and the output of the layer includes the data of the
hidden layer at the previous moment. Considering that we
need to extract the structural and semantic features in the
sequence of URL strings, we choose the bidirectional LSTM
model in RNNs [31, 32].

For text information, in addition to semantics from front
to back, semantic information is also included from the back
to the front. ,e basic idea of bidirectional recurrent neural
network (BRNN) is that each training sequence consists of
two recurrent neural networks, and the result provides

complete past and future context information for each point
in the output layer sequence. ,e basic idea is that each
training sequence has two cyclic neural networks: forward
and backward. ,is result provides complete past and future
context information for each point in the output layer
sequence.

,e CNN is another representative network structure in
the deep learning method. It can extract the local features of
the data well, and not only has great success in the field of
image processing but also can deal with text classification
problems. In 2014, Kim [33] proposed using CNN to deal
with text classification. In 2015, Lai et al. proposed
TextRCNN [34] to deal with the problem of text categori-
zation and achieved very good classification results. ,e
method proposed by them combines the RNNs and CNN.
,ey use RNNs to replace the convolutional layer in the
CNN model; that is, they use RNNS to extract the word
representation of each character in the sequence, and then
use the pooling layer to extract the entire text representation,
and finally, it is classified by the classifier.

In the PDRCNN method, we combine RNNs and CNN
to extract the intrinsic features in the URL string. Firstly, the
recurrent structure in the PDRCNN method fills in the
global features of the URL string to each of the characters,
and the tensor passed into the convolutional structure no
longer contains the original URL data. ,en, we get the
characteristics of the entire URL string through the con-
volutional layer and the pooling layer through three types of
convolution kernels of different sizes.

Table 1: Comparison of PDRCNN with related works.

Type Work Search engine
dependence

,ird-party
dependence

Language
dependence

Number of experimental
samples

Blacklist/
whitelist-based

Google Safe Browsing API [2] No Yes No –/–
AIWL [3] No No No 16/18

Visual similarity-
based

Doom Tree similarity [4] No No No 8/320
BaitAlarm [5] Yes Yes No 0/300
LinkGuard [6] No Yes No 0/8
Phishdentity [7] Yes Yes No 5000/5000

Heuristic-based

CANTINA [8] Yes Yes Yes (English) 100/100
PhishNet [9] No Yes No 0/6000

Finite state machine [10] Yes No No 99/25
New approach [11] Yes Yes Yes (English) 1200/3374
PhishShield [12] No Yes No 250/1600

PDA [13] No Yes No 405/1120

Machine
learning-based

Fuzzy logic [14] Yes Yes No 0/606
CANTINA+ [15] Yes Yes Yes (English) 4883/8118

Page classification [16] Yes No No 200/325
AC [17] No Yes No 450/2500

MCAC [18] No Yes No 1350 (All)
SMO [19] No Yes Yes (Chinese) 1462/1416

Phish detector [20] Yes Yes No 1271/3066
Know thy domain name [21] No Yes No 2000/4013
Metaheuristic algorithm [22] Yes Yes No 8599/2456

HEFS [23] No No No 5000/5000

Deep learning-
based

Classifying phishing URLs using
RNN [24] No No No 1000000/1000000

Stacked autoencoder [26] Yes Yes No 20000/17000
Phishing detection with LSTM

[25] No Yes No 2000/2000

Security and Communication Networks 5

4. PDRCNN Design

4.1. Data Preprocessing. Data preprocessing is based on
word embedding, which encodes the URL string into a two-
dimensional tensor that can be received by the deep learning
model. After data preprocessing, each character is encoded
to a fixed length vector consisting of 0 and 1. ,is is because
the neural network needs to ensure that the input data is
a vector of numbers when performing mathematical
operations.

First, we process the length of the URL string. ,ere is a
limit on the length of the URL in the HTTP standard
protocol RFC2616 document: “Servers ought to be cautious
about depending on URL lengths above 255 bytes because
some older client or proxy implementations might not
properly support these lengths.” So, we set the length of URL
to 255 characters, which means that if the length of the URL
exceeds 255 characters, only the first 255 characters are
intercepted. If the length of the URL is shorter than 255, add
0 to the end of the URL string to a length of 255 characters.

At the same time, we counted the frequency of occur-
rences of characters in all URLs in the dataset and selected
the first 59 characters with the highest frequency as valid
characters. It contains 26 English letters, 10 Arabic nu-
merals, and 23 special characters including “@/:� #-.” Other
characters that are not in the list are all “special characters,”
and each URL is treated as a sequence of only 60 different
characters. As shown in Figure 3, each character is encoded
into a 60-bit 01 string where one in the interface value row
and zero in the rest. ,en, we use the word2vec method in
natural language processing to encode the previously pro-
cessed 60-bit 01 string into a 64-bit word vector. ,us, each
URL is processed into a two-dimensional matrix of length
255∗ 64, which then passes to the input of PDRCNN.

4.2. Recurrent Convolutional Neural Network. As shown in
Figure 4, in PDRCNN, we combine the RNN and the CNN
to extract the intrinsic structural and semantic features of the
preprocessed URL.

,e input of the deep learning model in the PDRCNN
method is a two-dimensional tensor X � x1, x2, x3, . . . , x255􏼈 􏼉,
where xi is a vector consisting of 64 zeros or ones. yr(x) is the
output of the recurrent structure and is also the input to the
convolutional structure. yc(x) is the output of the convolu-
tional structure.

Recurrent structure extracts the features in the URL by
bidirectional LSTM neural network, including forward pass
and backward pass. y

f
r (x) and yb

r(x) are obtained after X

Table 2: Nine artificial phishing website character features.

Features Description

F1 [15]

Embedded domain: some phishing URLs will insert
the benign website domain name into the domain
name to hide the real domain name. For example, the
following phishing link nests the domain name of
eBay.com to confuse the user. http://cgi.ebay.com.
ebaymotors.732issapidll.private99dll.qqmotorsqq.

ebmdata.com

F2 [15] IP address: this feature checks if a page â€™s domain
is an IP address.

F3 [15]

Number of dots in the URL: this feature counts the
number of dots in the URL. Phishing pages tend to

use more than 5 dots in their URLs than the
legitimate sites.

F4 [15]

Suspicious URL: the phishing link will confuse the
user by inserting a special character in the URL. ,e
commonly used special characters include “@,” “-,”
etc., and “@” hides the phishing URL by commenting
out the domain name that appears before its position.
Benign links will not perform similar operations.

F5 [15]

Number of sensitive words in the URL: phishing
websites add sensitive words to pretend to be

legitimate websites. Sensitive words like “login” and
“registered” can increase the similarity of phishing
sites, allowing users to submit forms with private

information.

F6 [15]

Out-of-position top-level domain (TLD): some
phishing websites often have strange top-level

domains in their domain names. ,is is because the
links contain “edu, cn, com” etc, whichmakes it easier
to obtain the trust of users. Phishing attackers insert
common top-level domains in domain names or
paths. For example, http://www.inc-paypal-id.com.
apps-web.cf/ uses a separator to insert a com in the

domain name.

F7 [28]

Length of the URL: the URL of a phishing website is
different in length from that of a legitimate websites.
We set the threshold to 54, and the URL length is
greater than 54. It is more likely to be a phishing

website.

F8 [29]

Number of “/” s in the URL: this feature counts the
number of dots in the URL. Phishing pages tend to
use more than 5 “/” in their URLs than the legitimate

sites.

F9 [30]

Number of sensitive domain in the URL: paypal.com,
apple.com, google.com, eBay.com, eBay.it,

maybank2u.com, aol.com, yahoo.com, nab.com,
natwest.com, amazon.com, bt.com, Alibaba.com,

facebook.com, key.com

F1 F2 F3 F4 F5 F6 F7 F8 F9
Feature

0

2500

5000

7500

10000

12500

15000

Be
ni

gn

Benign
Phishing

Figure 1: 9 URL feature statistics.

6 Security and Communication Networks

http://ebay.com
http://cgi.ebay.com.ebaymotors.732issapidll.private99dll.qqmotorsqq.ebmdata.com
http://cgi.ebay.com.ebaymotors.732issapidll.private99dll.qqmotorsqq.ebmdata.com
http://cgi.ebay.com.ebaymotors.732issapidll.private99dll.qqmotorsqq.ebmdata.com
http://www.inc-paypal-id.com.apps-web.cf/
http://www.inc-paypal-id.com.apps-web.cf/
http://paypal.com
http://apple.com
http://google.com
http://ebay.com
http://eBay.it
http://maybank2u.com
http://aol.com
http://yahoo.com
http://nab.com
http://natwest.com
http://amazon.com
http://bt.com
http://Alibaba.com
http://facebook.com
http://key.com

treatment. ,e recurrent structure output is yr(x) �

Concat(y
f
r (x), yb

r(x)), which is a 255∗128 tensor. Among
them,

y
f
r xi(􏼁 � σf · tanh W

(f)
rnny

f
r xi− 1(􏼁 + W

(sf)
rnn xi􏼐 􏼑, (1)

y
b
r xi(􏼁 � σb · tanh W

(b)
rnny

b
r xi+1(􏼁 + W

(sb)
rnn xi􏼐 􏼑. (2)

,e calculation process of the character y
f
r (x) from front

to back is as shown in equation (1), where W(f)
rnn represents the

parameter matrix in the neural network, corresponding to the
forget gate in the LSTMmodel, and the tensor in the network
is transferred from the hidden layer to the next hidden layer.
W(sf)

rnn is used to combine the semantic features of the current
character into the feature vector, corresponding to the input
gate in the LSTM. xi and y

f
r (xi− 1), respectively, represent the

semantic features of the current character and the previous
character.,e first character of all URLs only contains its own
feature information. tanh is a nonlinear activation function
that provides RNN with the ability to handle nonlinear
problems. σf represents the output of each cell when passing

features from front to back. ,e feature yb
r(x) from the back

to the front is similar to the feature calculation process from
the front to the back, as in equation (2), where the last
character of all URLs contains only its own feature
information.

Convolutional structure can be divided into two stages:
In the first step, the local features in the tensor are extracted
by the multilayer convolution layer. Here, we select three
types of convolution kernels Wk

cnn of different sizes, each of
which contains 32 convolution kernels of the same size.,e
sizes of these three types of convolution kernels are 5∗ 120,
6∗ 120, and 7∗ 120. ,e second step uses maxi-pooling to
activate the features generated by the convolutional layer,
extracts the most representative features of the URL, and
splices the results of the convolution and pooling of the
three types of convolution kernels together to form the final
feature vector yk

c(x), as in equation (3). Finally, the results
of the three-layer convolution and pooling layer processing
are connected as a one-dimensional tensor yc(x) , as in
equation (4).

yc(x) � Concat y
k
c(x)􏼐 􏼑k ∈ 5, 6, 7{ }, (3)

y
k
c(x) � MaxPooling relu Conv W

k
cnn, yr(x)􏼐 􏼑 + bcnn􏼐 􏼑􏼐 􏼑.

(4)

4.3. Classifier. Once we extract the feature vector yc(x) in
the URL, we use the fully connection layer and the sigmoid
function to distinguish the URL into the benign and the
phishing website, as in equation (5). Logit indicates the
probability that the URL calculated by the PDRCNNmethod
belongs to the phishing website. We set 0.5 to determine the
threshold of positive and negative samples. ,e output
probability is less than 0.5, indicating that the URL belongs
to the benign website. If the output probability is greater
than or equal to 0.5, the URL belongs to the phishing
website.

Preprocessing Deep learning Classifier

Length
processing

Character
processing

word2vec

Recurrent
structure

Convolutional
structure

Benign

Phishing

Figure 2: Workflow of PDRCNN.

h [1.3, 1.1, –0.5, …, 1.2, …, –2.1]
t [0.7, 0.0, 1.7, …, –1.1, …, 1.0]

t [0.7, 0.0, 1.7, …, –1.1, …, 1.0]

p [0.5, 3.1, 0.6, …, –1.6, …, 1.9]

: [8.3, 0.9, –7.6, …, 1.9, …, 2.4]
e [0.9, –1.0, –0.3, …, 1.8, …, –0.1]
b [0.6, 1.2, 0.0, … , –1.5, …, 0.2]

a [1.8, 0.3, 0.5, …, –1.4, …, –1.1]
y [1.5, –1.3, 0.1, …, –0.1, …, –0.5]

word2vec

255

64

······

Figure 3: Data preprocessing.

Security and Communication Networks 7

logit � Wlogit · yc(x) + blogit. (5)

4.4. Training. We define all of the parameters to be trained
as θ � W(f)

rnn, W(sf)
rnn , W(b)

rnn, W(sb)
rnn , Wk

cnn, bcnn, Wlogit, blogit􏽮 􏽯 we
chose cross entropy as the loss function and trained the
model parameters by minimizing the cross entropy. First,
use the nonlinearization approach sigmoid to study logit, as
in equation (5), and then calculate the loss between the
PDRCNN output and the actual label, as in the following
equation:

pi � sigmoid logiti(􏼁 �
1

1 + e− logiti
,

loss ylabel, pi(􏼁 � −
1
N

􏽘
i

N

· ylabel · lnpi + 1 − ylabel(􏼁 · ln 1 − pi(􏼁􏼂 􏼃.

(6)

Finally, the Adam (adaptive moment estimation) opti-
mizer is chosen to minimize the loss and make the model
converge. ,e Adam algorithm dynamically adjusts the
learning rate for each parameter based on the first-order
moment estimate and the second-order moment estimate of

the gradient of each parameter based on the loss function.
We chose Adam because the learning step size of each it-
eration parameter has a certain range, and will not cause a
large learning step because of a large gradient and the pa-
rameter value is relatively stable. We set the learning rate to
0.01. After each optimizer performs gradient descent opti-
mization, the parameters in PDRCNN are updated. When
the loss value is reduced enough, the model converges and
the training ends.

5. Experiment

5.1. Dataset. We obtained the URL data of all phishing
websites published from August 2006 to March 2018 from
the PhishTank website, with a total of 5,118,727 URL data.
We use the crawler program to determine whether these
URLs are valid, remove URLs that are not surviving or have
errors in the content of the web page and finally get 245,385
valid phishing URLs.

For the data of the benign website URL, we first obtain
the top 1 million domain of the Alexa website domain name
ranking. Since these domains are normal website homepage
domains, in order to be more general, we use search engines
to search for these domain names and obtain the URLs of the
top 10 links for each search, retain the surviving links, and
perform de-reprocessing to get 245023 benign URLs.

yr(x) = Concat (yr
f(x), yr

b(x)) Concatenate forward pass features and backward pass features 255 ∗ 128

xi–2

xi–1

xi

xi+1

xi+2

xi–2

xi–1

xi

xi+1

xi+2

Forward pass Backward pass

yr
f(xi–2) yr

b(xi–2)

yr
b(xi–1)

yr
b(xi)

yr
b(xi+1)

yr
b(xi+2)

yr
f(xi–1)

yr
f(xi)

yr
f(xi+1)

yr
f(xi+2)

y r
f(x) Forward pass feature 255 ∗ 64 yr

b(x) Backward pass feature 255 ∗ 64

32 5 ∗ 128 convolutions
(relu)

32 6 ∗ 128 convolutions
(relu)

32 7 ∗ 128 convolutions
(relu)

Max pooling Max pooling Max pooling

Dropout (0.9) Dropout (0.9) Dropout (0.9)

yc
5(x) features when k = 5 32 ∗ 1 yc

6(x) features when k = 6 32 ∗ 1 yc
7(x) features when k = 7 32 ∗ 1

yc(x) = Concat (yc
k(x)) k ∈ {5, 6, 7} Concatenate features into 96-length vector 96 ∗ 1

Co
nv

ol
ut

io
na

l s
tr

uc
tu

re
Re

cu
rr

en
t s

tr
uc

tu
re

Figure 4: PDRCNN deep learning model structure.

8 Security and Communication Networks

,ere are two points to note about the processing of data:

(1) In order to improve the quality of the benign URL
data, we use the search engine to make the data more
generalized, instead of directly using the homepage
URL of the top-ranked domain on Alexa as the
benign website data set. ,e homepage URL cor-
responding to the domain name is relatively short in
length and generally has only one level directory. In
contrast, phishing website URLs are basically mul-
tilevel directories in structure and are relatively long
in length. If the URL of the homepage corresponding
to the top-ranked domain of Alexa is directly used as
the benign website data set, the phishing website and
the benign website can be accurately distinguished in
the number of directories and the length of the URL.

(2) In the comparison experiment, the CANTINA+
method needs to rely on the content of the web page.
In order to ensure the consistency of the experi-
mental data, we use the crawler to crawl the website
corresponding to the collected URL and remove the
URL and web page that are not surviving or have
errors in the html content.

We divide the data set into a training set, a validation set,
and a testing set in a ratio of 8 :1 :1, that is, we use 4/5 of the
data as the training set to train the hyperparameters of the
PDRCNN model, including the weightsand biases of each
unit. Offset, 1/8 of the data is used as a validation set to adjust
hyperparameters in the neural network, such as the number
of hidden layers and unit size of the RNN, and the rest of the
data is used as a testing set to predict the classification
results. ,e sample size of each set is detailed in Table 3.

5.2. Evaluation Indicators. We use the Python 3.6 and
tensorflow to implement the PDRCNN, and use the third-
party module scikit-learn in python to calculate the fol-
lowing eight data indicators to evaluate the advantages and
disadvantages of PDRCNN and other methods: accuracy,
precision, recall, F-measure, ROC curve, AUC value,
training time, and test time.

5.2.1. Accuracy. Accuracy is the ratio of the total number of
correctly classified samples in the test set to the total number
of samples. In our experiments, it refers to the ratio of the
benign website URL being correctly judged to be benign and
the phishing website URL being correctly judged as the total
number of phishing and the total number of test sets.

5.2.2. Precision. ,e ratio of the number of phishing website
URLs correctly judged by the model to the number of
phishing website URLs.

5.2.3. Recall. ,e ratio of the URL of the test phishing
website is correctly judged as the phishing website ac-
counting for the URL of all phishing websites.

5.2.4. F-Measure. ,ere are sometimes contradictions in the
precision rate and the recall rate, and it is necessary to
consider them comprehensively. ,e F- measure is a
weighted harmonic average of the precision rate and the
recall rate. ,e higher the F- measure, the more effective the
method.

,ese metrics are calculated as follows:

accuracy �
TP + TN

TP + FN + FP + TN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F �
2 · precision · recall
precision + recall

.

(7)

Among them, TN indicates that the benign website URL is
correctly marked as a benign website, TP indicates that the
phishing website URL is correctlymarked as a phishing website,
FN indicates that the phishing website URL is incorrectly
marked as a benign website, and FP indicates that the benign
website URL is incorrectly marked as a phishing website.

,e ROC (receiver operating characteristic) curve and
AUC are often used to evaluate the merits of a binary
classifier. ,e horizontal coordinate of the ROC curve is
FPR, indicating the probability that the normal website URL
is incorrectly tagged as a phishing website; the ordinate is
TPR, which indicates the probability that the phishing
website URL is correctly labeled as a phishing website. ,eir
definitions are as follows:

FPR �
FP

FP + TN
,

TPR �
TP

FP + TN
.

(8)

It can be known from the formula that the closer the
ROC curve is to the upper left corner, the better the per-
formance of the classifier. ,e AUC value refers to the area
under the ROC curve, and the AUC value ranges between 0.5
and 1. As an image, the ROC curve does not very clearly
indicate which classifier is better in many cases, and as a
numerical value, a larger AUC value can directly indicate
that the classifier is better.

Training time is the time required for PDRCNN to
extract features and determine optimal neuron parameters
on the training set. For machine learning methods, the
training time includes the time for feature extraction of
training set samples and training of machine learning
algorithms.

Table 3: Dataset statistics.

Label Name Training set Validation set Testing set
1 Phishing 196308 24538 24539
0 Benign 196019 24502 24502
All 392327 49040 49041

Security and Communication Networks 9

,e test time refers to the time required for the classi-
fication result to be detected for each sample on the test set
after the PDRCNN training is completed. For the machine
learning method, the test time also includes the time of
feature extraction of the test set sample and the classification
of the machine learning algorithm.

5.3. PDRCNN Parameters Optimization. In the neural net-
work structure, the setting of some hyperparameter values is
crucial. ,e number of hidden layer in RNN and the con-
volution kernel size of CNN play an important role in the
classification accuracy. ,e number of hidden layer was
chosen from the set {8, 16, 32, 64, 128}, and we set the size of
the convolution kernel in the range of 2 to 7, and then sort
and combine the convolution kernel according to the ac-
curacy and loss. ,e size of epoch and batch are also im-
portant if epoch is too small, as PDRCNN cannot achieve the
highest accuracy and there may be overfitting. We set the
epoch from 1 to 40, and choose the batch size from the set
{64, 128, 256, 512, 1024, 2048, 4096}. After hyperparameters
training in the training phase and verification set adjust-
ment, the optimal hyperparameters of the PDRCNNmethod
are follows: the number of hidden layer units in RNN is 64,
the convolution kernel size of CNN is {5, 6, 7}, and the epoch
size is 32 and batch size is 2048.

First, we tested the effects of different number of
hidden layers in RNN on the validation set. ,e loss and
accuracy are shown in Table 4. It can be seen from the table
that when the number of units increases from 8 to the next,
the correct rate is continuously increased, but after more
than 64, the correct rate is reduced, and the loss is
increased.

Next, by fixing the number of hidden layers to 64, we
tested the influence of the size of the convolution kernel. We
first use a single convolution kernel and sort the effects of
convolution kernels of different sizes, and then combine
them in turn. As shown in Table 5, when a single convolution
kernel is used, the classification effect of the verification set is
sorted from high to low, and the convolution kernel size
sorting result is: 6, 5, 7, 4, 3, and 2. After combining, it can be
found that the best results are obtained when the convo-
lution kernel size is {5, 6, 7}.

,en, we compare the effect of different batch sizes on
the correct rate and loss of the model. As shown in Table 6,
when the batch size is set to 2048, the model has the highest
accuracy and the least loss.

Finally, we set the number of hidden layers in RNN to 64,
the convolution kernel size to {5, 6, 7}, and the batch size to
2048, comparing the effects of different epoch sizes on the
accuracy of the method. As shown in Figure 5, when the
epoch is 32, the model obtains the minimum loss, and when
the epoch is increased, the loss does not decrease, and it is in
a stable equilibrium state.

5.4. BaselineModels. To verify PDRCNN’s ability to identify
phishing websites, we implemented four baseline models for
comparison:

(1) Replace the deep learning model in the PDRCNN
method with a separate RNN and CNN, where the
hyperparameter value of the model is the same as
PDRCNN.

(2) CANTINA+ [14], is a machine learning method
proposed by Stanford for identifying phishing
websites. ,ey have proposed 15 features, including
6 URL character-level features, 4 html page features

Table 4: Effect of the number of hidden layers in RNN.

Hidden layers Accuracy (%) Loss
8 93.48 2.25
16 94.53 1.89
32 95.0 1.73
64 95.61 1.52
128 95.12 1.68

Table 5: Effect of convolution kernel size in CNN.

,e convolution kernel Accuracy (%) Loss
2 94.56 1.88
3 94.68 1.84
4 94.87 1.80
5 95.09 1.69
6 95.12 1.68
7 95.03 1.72
5, 6 94.99 1.73
5, 6, 7 95.61 1.52
4, 5, 6, 7 95.13 1.68
3, 4, 5, 6, 7 95.2 1.66
2, 3, 4, 5, 6, 7 95.27 1.64

Table 6: Effect of the number of batch size.

Batch size Accuracy (%) Loss
64 92.41 2.62
128 93.72 2.17
256 94.52 1.89
1024 95.28 1.63
2048 95.61 1.52
4096 95.15 1.67

0 5 10 15 20 25 30 35 40
Epoch

1.5

2.0

2.5

3.0

3.5

Lo
ss

32, 1.52

Figure 5: Effect of the number of epoch size.

10 Security and Communication Networks

and 5 other features provided by third-party orga-
nizations and search engines.

(3) Standard n-gram feature vector extraction method:
In the embedding process of the PDRCNN method,
we encode the URL into a string consisting of 60
different characters. We have chosen the 2-bit
BiGram method (two sized n-grams).

(4) Finally, based on the character-level features of the
nine URLs proposed by researchers in the existing
research, these features include statistical knowledge
and whether sensitive words appear in the URL.

After extracting the BiGram method and 9 URL char-
acter-level features, the test set is performed using three
standard machine learning classification algorithms, the
Naive Bayesian algorithm (GaussianNB), the Logistic Re-
gression Algorithm (LG), and the Gradient Boosting De-
cision Tree (GBDT).

5.5. Experiment Results. In order to evaluate the perfor-
mance of the PDRCNN, we used a 10-fold cross-validation
strategy. ,is process consists of splitting data in 10 folds.
,en, train the data using two folds while the remaining one
is used for model validation. ,is process is repeated 10
times, only using each fold for validation once. Table 7 shows
the results of the 10-fold cross-validation.

We used the established training set and test set to test
the comparison of the PDRCNN method with the four
baseline models. Table 8 lists the test results of PDRCNN on
the test set. According to the confusion matrix, we can find
that in all the phishing website URL test sets, there are
23,013 phishing website URLs correctly classified as
phishing, and only 632 normal website URLs are in-
correctly judged as phishing website URLs, and FPR is only
2.6%.

Using the statistics in Figure 1, we analyzed the reasons
why the 632 benign websites were misjudged as phishing
websites. When a sensitive word such as “login” or “regis-
tered” appears in the URL, our detection engine is more
likely to prefer the benign website URL to the phishing
website URL. In the benign website URL test data set, there
are 126 URLs containing these sensitive words, of which
19.8% of the URLs are misjudged as phishing websites, and
only 2.5% of the URLs that do not contain these sensitive
words are misjudged as a phishing website. ,e same is true
for the other eight features mentioned in 3.1. When the URL
feature is 0, about 2.5% of the data is misjudged as a phishing
website.

We also analyzed the reasons why 1,525 phishing
websites were missed as benign websites. ,at is, when the
URL is short, the detection engine is more likely to miss the
judgment. As shown in Figure 1, the number of benign
website F7 features is only 48,532, while the statistic data in
the phishing website data set is 145,384. ,e URL of the
benign website is indeed shorter, and the phishing website
URL may need to be the URL containing the brand name of
the benign website that you want to model, such as “apple,”
“microsoft,” and “google,” so the length of the URL will be

longer, which is also a limitation of the method of detecting
the phishing website by the URL.

Figure 6 shows the comparison result between the
PDRCNN method and the simple RNN and CNN, Figure 7
shows the comparison result between the PDRCNN model
and the CANTINA+ method, and Figure 8 shows the
comparison result between the PDRCNN model and the
BiGram and 9-bit URL character-level features result. From
the ROC curve, it can be found that PDRCNN is closer to the
upper left of the coordinate axis than the other four baseline
models, which means that it can have a higher true positive
rate while ensuring a lower false positive rate. ,is shows
that the dominant performance of PDRCNN is more ob-
vious on the AUC value. ,e AUC value of the PDRCNN
model is as high as 99%, followed by the RNN and CNN
models.,is shows that the PDRCNNmodel combined with
RNN and CNN can effectively combine the advantages of the
two deep learning models. On the other hand, it also shows
that the deep learning model can make good use of the URL
string of the website to detect phishing websites. ,is is
followed by the BiGram method and the CANTINA+
method. After the BiGram method extracts the feature
vector, different machine learning methods have different
performance, which indicates that the naive Bayesian al-
gorithm (GaussianNB) and the gradient lifting decision tree
algorithm (GBDT) are compared to the logic.,e regression
algorithm (LG) is able to better learn the features in the
vector.

Finally, we calculate the performance of PDRCNN and
the four baseline models in terms of accuracy, precision,
recall, F-measure, AUC value, training time, and test time, as
shown in Table 9. In training time, the PDRCNN model
takes longer than the separate RNN and CNN, 9-bit URL
character-level feature methods. ,is is because our method
needs to train more parameters, and CANTINA+ relies on
the results of third-party organizations and search engines,
so it consumes a lot of time in feature extraction, so it takes a
long training time and testing time. ,e feature vector of
each URL extracted by the BiGram method has 3600 di-
mensions. Because the dimension is too large, it takes a lot of
time to use the machine learning method for training. In
terms of test time, PDRCNN has obvious advantages over
the other four baseline models. ,is is because our method
does not rely on the results of third-party organizations and
search engines, and the feature dimensions extracted by the
model are compressed into 96-dimensional, so the test time
is short.

5.6. 8e Effect of 9 URL Features. In the experiment, we
considered whether to incorporate the 9 URL character-level
features into the deep learning model to help improve the
accuracy of PDRCNN in detecting the phishing website
URL, so we did the corresponding experiment.

First, after receiving the URL data, we extract the 9
character features of the data, enter a fully connected layer,
and expand the 9 features into a 32-bit vector. ,e 36-bit
vector is then concatenated to the 96-bit vector extracted
from the neural network in PDRCNN, and then input to the

Security and Communication Networks 11

Table 7: Results of the 10-fold cross-validation.

Fold Accuracy (%) Precision (%) Recall (%) F-measure (%) AUC (%)
1 95.86 97.15 94.49 95.8 99.09
2 95.93 97.41 94.38 95.87 99.04
3 95.69 96.53 94.78 95.65 98.99
4 96.01 97.26 94.7 95.96 99.07
5 95.62 97.36 93.78 95.54 98.99
6 95.81 97.03 94.52 95.76 98.99
7 95.86 97.12 94.54 95.81 99.06
8 95.64 97.48 93.7 95.55 98.98
9 95.83 98.07 93.51 95.74 99.1
10 95.69 97.29 94.01 95.62 98.97
Average 95.79 97.27 94.24 95.73 99.03

Table 8: Confusion matrix of experimental results.

Predicted as phishing Predicted as benign Total
Phishing 23,014 1,525 24,539
Benign 632 23,870 24,502
Total 23,646 25,395 49,041

PDRCNN ROC (area = 0.99)
RNN ROC curve (area = 0.98)
CNN ROC curve (area = 0.98)

0.80

0.85

0.90

0.95

1.00

1.05

TP
R

0.2 0.4 0.6 0.8 1.00.0
FPR

Figure 6: PDRCNN compared with RNN and CNN.

PDRCNN ROC (area = 0.99)
CATINA+ ROC curve (area = 0.85)

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

0.4 1.00.80.60.20.0
FPR

Figure 7: PDRCNN compared with CANTINA+.

12 Security and Communication Networks

final classifier. As shown in Table 10, even if the 9 URL
character-level features is added to the model in PDRCNN,
the F-value and AUC value of the model on the test set are
not improved.,is explains to a certain extent that the 96-bit
feature extracted by PDRCNN already contains the 9-bit
URL character-level feature, so even increasing the char-
acter-level features proposed by the researchers does not
help improve the accuracy of the deep learning model.

5.7. Robustness. In addition to the comparison of the
PDRCNN method with the four baseline models in the
evaluation indicators, we also tested the robustness of the
PDRCNN method. First, the phishing website URL is

divided according to the publication time on the PhishTank
website, and the benign website URL is randomly divided
according to the amount of data published by the phishing
website every year. ,en, use the URL published a year ago
as the training set, and the URL published in the year is
tested as a test set. For example, use the phishing website
URL published before 2014 and the same number of benign
website URLs as the training set, that is, a total of 72,232
effective phishing website URLs published by PhishTank in
2006, 2007, 2008, 2009, 2010, 2011, 2012, and 2013. ,e
website URL and 70,000 benign website URLs are used as
training sets. In 2014, a total of 24,501 phishing website
URLs and 24,000 benign websites were published as test sets.
PhishTank has published phishing website data since 2006,

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

0.4 1.00.6 0.80.20.0
FPR

PDRCNN ROC
(area = 0.99)
9 features LG ROC
(area = 0.77)
9 features NB ROC
(area = 0.77)
9 features GBDT ROC
(area = 0.78)

BiGram LG ROC
(area = 0.95)
BiGram NB ROC
(area = 0.69)
BiGram GBDT ROC
(area = 0.92)

Figure 8: PDRCNN compared with BiGram and 9 features.

Table 9: Performance comparison with 4 baseline.

Method Accuracy (%) Precision (%) Recall (%) F-measure (%) AUC (%) Training time (s) Test time (s)
PDRCNN 95.6 97.33 93.78 95.52 98.96 4426.15 40.66
RNN 94.24 95.14 93.26 94.19 98.33 2033.92 17.85
CNN 94.46 95.52 93.31 94.4 98.48 442.79 4.47
CANTINA+ 76.43 78.24 76.98 76.44 85.43 133h 30h
9 features with GaussianNB 64.91 94.24 31.81 47.57 77.93 108.5 20.64
9 features with LG 71.2 75.37 63.05 68.66 78.21 107.1 20.81
9 features with GBDT 71.51 75.38 63.94 69.19 78.51 148.21 21.13
BiGram with GaussianNB 68.69 92.3 40.82 56.61 69.71 2985.94 638.52
BiGram with LG 88.68 90.96 85.91 88.36 95.68 2982.34 652.74
BiGram with GBDT 84.55 88.32 79.65 83.76 92.55 26420.99 639.12
,en, we use the ROC curve and the AUC value to evaluate the PDRCNN model and the four baseline models.

Table 10: Performance comparison with 9 URL features added.

Method Accuracy (%) Precision (%) Recall (%) F-measure (%) AUC (%) Training time (s) Test time (s)
PDRCNN 95.6 97.33 93.78 95.52 98.96 4426.15 40.66
PDRCNN and 9 artificial features 95.48 97.39 93.46 95.39 98.92 4415.23 40.97

Security and Communication Networks 13

so our robustness test includes 12 test results from 2007 to
2018. As shown in Figure 9, with the increase of the amount
of data in the training concentration every year, the F value
and AUC value of PDRCNN show an increasing trend year
by year, which shows that our method is robust.

6. Conclusion

To the best of our knowledge, we are the first one who use the
deep learning model to detect phishing in the context of
cybersecurity issues, and the first who use hundreds of
thousands of phishing URLs and normal website URLs for
training and testing. ,e experimental results showed that
compared with the existing research, PDRCNN can detect
the URL of the phishing website without relying on third-
party data and search engines, with a highest classification
accuracy among other models.

In our experiments, the main problem was that the
training time was too long, but the trained PDRCNN model
was far ahead of the existing research in terms of test time
and accuracy. ,ere are some other potential drawbacks to
the classifier. One obvious disadvantage is that when the
phishing website URL itself does not have relevant se-
mantics, PDRCNN will not be able to classify correctly, and
PDRCNN does not care whether the website corresponding
to the URL is alive and if there is an error. ,erefore, when
applying PDRCNN to the actual detection scenario, it is
necessary to verify the validity of the URL in advance.

Data Availability

,e experiment data reported in the paper can be acquired
from the corresponding author through emails.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work is partially supported by the National Natural
Science Foundation of China under Grant nos. 61672543
and 61772559 and the Open Research Fund of Hunan
Provincial Key Laboratory of Network Investigational
Technology under Grant nos. 2017WLZC002 and
2017WLZC003.

References

[1] APWG, “Anti phishing work group,” 2019, https://www.
antiphishing.org/.

[2] Google, “Google safe browsing API,” 2019, https://developers.
google.com/safe-browsing/v4/.

[3] Y. Cao, W. Han, and Y. Le, “Anti-phishing based on auto-
mated individual white-list,” in Proceedings of the 4th ACM
Workshop on Digital Identity Management, pp. 51–60, ACM,
Alexandria, VA, USA, October 2008.

[4] W. Liu, G. Huang, X. Liu, M. Zhang, and X. Deng, “Detection
of phishing webpages based on visual similarity,” in Pro-
ceedings of the Special Interest Tracks and Posters of the 14th
International Cconference onWorldWideWeb, pp. 1060-1061,
ACM, Chiba, Japan, May 2005.

[5] J. Mao, L. Pei, K. Li, W. Tao, and Z. Liang, “Baitalarm:
detecting phishing sites using similarity in fundamental visual
features,” in Proceedings of the 5th International Conference on
Intelligent Networking and Collaborative Systems (INCoS),
pp. 790–795, IEEE, Xi’an, China, September 2013.

[6] N.M. Shekokar, C. Shah,M.Mahajan, and S. Rachh, “An ideal
approach for detection and prevention of phishing attacks,”
Procedia Computer Science, vol. 49, pp. 82–91, 2015.

[7] K. L. Chiew, J. S.-F. Choo, S. N. Sze, and K. S. C. Yong,
“Leverage website favicon to detect phishing websites,” Se-
curity and Communication Networks, vol. 2018, Article ID
7251750, 11 pages, 2018.

[8] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-
based approach to detecting phishing web sites,” in Pro-
ceedings of the 16th International Conference on World Wide
Web (WWW), pp. 639–648, ACM, Banff, Canada, May 2007.

[9] P. Prakash, M. Kumar, R. Rao Kompella, and M. Gupta,
“Phishnet: predictive blacklisting to setect phishing attacks,”
in Proceedings of 29th IEEE Conference on Computer Com-
munications (Infocom), pp. 1–5, Citeseer, San Diego, CA,
USA, March 2010.

[10] H. Shahriar and M. Zulkernine, “Trustworthiness testing of
phishing websites: a behavior model-based approach,” Future
Generation Computer Systems, vol. 28, no. 8, pp. 1258–1271,
2012.

[11] G. Ramesh, I. Krishnamurthi, and K. S. S. Kumar, “An effi-
cacious method for detecting phishing webpages through
target domain identification,” Decision Support Systems,
vol. 61, pp. 12–22, 2014.

[12] R. S. Rao and S. T. Ali, “Phishshield: a desktop application to
detect phishing webpages through heuristic approach,” Pro-
cedia Computer Science, vol. 54, pp. 147–156, 2015.

[13] A. K. Jain and B. B. Gupta, “A novel approach to protect
against phishing attacks at client side using auto-updated
white-list,” EURASIP Journal on Information Security,
vol. 2016, no. 1, p. 9, 2016.

[14] M. Aburrous, M. A. Hossain, K. Dahal, and F. ,abtah,
“Intelligent phishing detection system for e-banking using
fuzzy data mining,” Expert Systems with Applications, vol. 37,
no. 12, pp. 7913–7921, 2010.

2007 20092008 2010 20122011 2013 2014 2015 2016 2017 2018

100000

200000

300000

400000

500000

0

N
um

be
r

0.5

0.6

0.8

0.7

0.9

1.0

TrainSetNum
TestSetNum

F-measure
AUC

Year

Figure 9: Result of robust experiment.

14 Security and Communication Networks

https://www.antiphishing.org/
https://www.antiphishing.org/
https://developers.google.com/safe-browsing/v4/
https://developers.google.com/safe-browsing/v4/

[15] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+: a
feature-rich machine learning framework for detecting
phishing websites,” ACM Transactions on Information and
System Security (TISSEC), vol. 14, no. 2, pp. 1–28, 2011.

[16] M. He, S.-J. Horng, P. Fan et al., “An efficient phishing
webpage detector,” Expert Systems with Applications, vol. 38,
no. 10, pp. 12018–12027, 2011.

[17] R. M. Mohammad, L. McCluskey, and F.,abtah, “Intelligent
rule-based phishing websites classification,” IET Information
Security, vol. 8, no. 3, pp. 153–160, 2014.

[18] N. Abdelhamid, A. Ayesh, and F. ,abtah, “Phishing de-
tection based associative classification data mining,” Expert
Systems with Applications, vol. 41, no. 13, pp. 5948–5959,
2014.

[19] D. Zhang, Z. Yan, H. Jiang, and T. Kim, “A domain-feature
enhanced classification model for the detection of Chinese
phishing e-Business websites,” Information & Management,
vol. 51, no. 7, pp. 845–853, 2014.

[20] M. Moghimi and A. Y. Varjani, “New rule-based phishing
detection method,” Expert Systems with Applications, vol. 53,
pp. 231–242, 2016.

[21] H. Shirazi, Unbiased phishing detection using domain name
based features, Ph.D. thesis, Colorado State University, Fort
Collins, CO, USA, 2018.

[22] M. Babagoli, M. P. Aghababa, and V. Solouk, “Heuristic
nonlinear regression strategy for detecting phishing websites,”
Soft Computing, vol. 23, no. 12, pp. 4315–4327, 2018.

[23] K. L. Chiew, C. L. Tan, K. S. Wong, S. C. Y. Kelvin, and
K. T. Wei, “A new hybrid ensemble feature selection
framework for machine learning-based phishing de-
tection system,” Information Sciences, vol. 484, pp. 153–
166, 2019.

[24] A. Correa Bahnsen, E. Contreras Bohorquez, S. Villegas,
J. Vargas, and F. A. González, “Classifying phishing URLs
using recurrent neural networks,” in Proceedings of APWG
Symposium on Electronic Crime Research (eCrime), pp. 1–8,
IEEE, Scottsdale, AZ, USA, April 2017.

[25] W. Chen, W. Zhang, and Y. Su, “Phishing detection research
based on LSTM recurrent neural network,” in Proceedings of
International Conference of Pioneering Computer Scientists,
Engineers and Educators, pp. 638–645, Springer, Zhengzhou,
China, September 2018.

[26] M. Nivaashini and R. S. Soundariya, “Deep stacked auto-
encoder based feature repsentation for phishing URLs de-
tection,” Journal of Advanced Research in Dynamical and
Control Systems, vol. 9, no. 6, pp. 904–916, 2017.

[27] L. Hung, Q. Pham, D. Sahoo, and S. C. H. Hoi, “Urlnet:
learning a URL representation with deep learning for
malicious URL detection,” 2018, https://arxiv.org/abs/
1802.03162.

[28] A. Le, A. Markopoulou, and M. Faloutsos, “PhishDef:
URL names say it all,” 2010, https://arxiv.org/pdf/1009.
2275.pdf.

[29] V. S. Lakshmi and M. S. Vijaya, “Efficient prediction of
phishing websites using supervised learning algorithms,”
Procedia Engineering, vol. 30, pp. 798–805, 2012.

[30] H. Huang, L. Qian, and Y. Wang, “A SVM-based technique to
detect phishing URLs,” Information Technology Journal,
vol. 11, no. 7, pp. 921–925, 2012.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[32] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for
text classification with multi-task learning,” 2016, https://
arxiv.org/abs/1605.05101.

[33] Y. Kim, “Convolutional neural networks for sentence clas-
sification,” 2014, https://arxiv.org/abs/1408.5882.

[34] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional
neural networks for text classification,” in Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI), vol. 333, pp. 2267–2273, Austin, TX, USA, January
2015.

Security and Communication Networks 15

https://arxiv.org/abs/1802.03162
https://arxiv.org/abs/1802.03162
https://arxiv.org/pdf/1009.2275.pdf
https://arxiv.org/pdf/1009.2275.pdf
https://arxiv.org/abs/1605.05101
https://arxiv.org/abs/1605.05101
https://arxiv.org/abs/1408.5882

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

