Hindawi

Security and Communication Networks
Volume 2019, Article ID 3093809, 11 pages
https://doi.org/10.1155/2019/3093809

Research Article

WILEY

Hindawi

Session-Based Webshell Detection Using Machine Learning in

Web Logs

Yixin Wu,' Yuqiang Sun,' Cheng Huang ®," Peng Jia,” and Luping Liu®

College of Cybersecurity, Sichuan University, Chengdu, China
2College of Electronics and Information Engineering, Sichuan University, Chengdu, China

Correspondence should be addressed to Cheng Huang; opcodesec@gmail.com

Received 2 April 2019; Revised 14 July 2019; Accepted 24 July 2019; Published 22 November 2019

Guest Editor: Sebastian Schrittwieser

Copyright © 2019 Yixin Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Attackers upload webshell into a web server to achieve the purpose of stealing data, launching a DDoS attack, modifying files with
malicious intentions, etc. Once these objects are accomplished, it will bring huge losses to website managers. With the gradual
development of encryption and confusion technology, the most common detection approach using taint analysis and feature
matching might become less useful. Instead of applying source file codes, POST contents, or all received traffic, this paper
demonstrated an intelligent and efficient framework that employs precise sessions derived from the web logs to detect webshell
communication. Features were extracted from the raw sequence data in web logs while a statistical method based on time interval
was proposed to identify sessions specifically. Besides, the paper leveraged long short-term memory and hidden Markov model to
constitute the framework, respectively. Finally, the framework was evaluated with real data. The experiment shows that the LSTM-
based model can achieve a higher accuracy rate of 95.97% with a recall rate of 96.15%, which has a much better performance than
the HMM-based model. Moreover, the experiment demonstrated the high efficiency of the proposed approach in terms of the
quick detection without source code, especially when it only considers detecting for a period of time, as it takes 98.5% less time
than the cited related approach to get the result. As long as the webshell behavior is detected, we can pinpoint the anomaly session

and utilize the statistical method to find the webshell file accurately.

1. Introduction

Webshells have become the main threat challenges for pro-
tecting the security of websites. According to the weekly safety
report issued by National Computer Network Emergency
Response Technical Team/Coordination Center of China
(CNCERT/CC) in 2019, the number of websites with back-
doors is growing almost every week [1]. As a web service-
based backdoor program, webshell is installed through vul-
nerabilities in web applications or weak server security
configuration such as SQL injection, the file including and
uploading. Webshells with encryption and obfuscation are
often used in attacks mostly because they are difficult to detect
by WAF and other antivirus software. A hacker can initiate
attacks using webshell tools such as Chinese Chopper [2] and
achieve quite a few large malicious attacks like data theft,
DDoS attacks, and watering hole attacks [3].

When a malicious webshell attack occurs, there are some
exceptions as alertness for admin such as files with an ab-
normal timestamp, high traffic for a user in very short period
time, and files including malicious codes. Attackers can also
hide webshell logins in fake error pages.

Due to the high usage of webshell in cyberattacks, there
has been much previous research in this field. But most
researchers focus on the contents of suspicious files [4-6] or
POST contents in HTTP requests [7] and thus ignore fea-
tures in a sequence of web server logs. With the development
of encryption and obfuscation technology [8, 9], it is quite
difficult to detect webshell in thousands of website source
files, but when we only need to deal with the sequence of
several fields in the web logs without considering complex
text processing, the problem becomes much simpler. This
paper focuses on providing a new webshell detection method
based on user’s sessions in web logs to improve the accuracy

mailto:opcodesec@gmail.com
https://orcid.org/0000-0002-5871-946X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3093809

of webshell detection simply and effectively. Moreover, if the
website defenders can identify malicious webshell imme-
diately, they can prevent related cyber threats.

This paper presents a comprehensive framework including
log data collection, feature extraction, session identification,
and comparison of two machine learning methods. The main
innovations of this paper can be summarized as follows:

(i) The presented model utilized a session-based
method to detect webshell which is simpler and
more efficient than existing methods. Session
identification can be more precise using a statistical
method which roughly calculates the time interval
of each entry in each session at first and then set the
threshold by the quantile in the statistics to divide
the session more detailed. The experiment indicates
that the model obtained the highest accuracy and
recall rate when the threshold was 70% quantile.

(ii) The paper compared the long short-term memory
with the hidden Markov model which are com-
monly used to process sequence data, and it sug-
gested that the long short-term memory model
which can provide a high accuracy rate of 95.97%
with a recall rate of 96.15% has much better per-
formance than the latter one.

(iii) The proposed model could only need access log files
to check the malicious behavior of webshell without
any web application source files. The results show
that the LSTM-based model takes 98.5% less time
than previous related approach to detect whether a
website has a webshell attack in a period of time.

As a remainder, related work is briefly discussed in
Section 2. A complete framework is explained in Section 3.
Section 4 presents the entire experiment and evaluation
process in detail. At last, the conclusion is in Section 5.

2. Related Work

2.1. Outline of Webshell. Webshell is a kind of software which
usually assists the administrator to manipulate the server. But
in some cases, attackers will use some malicious webshells to
control the server to achieve malicious purposes. For at-
tackers, webshell is a kind of backdoor, generally written in
some scripting language like ASP, PHP, or JSP. These kinds of
web scripts are able to create dynamic interactive sites, so the
attacker is able to control the web server through web pages.
These behaviors will be recorded in the access log [10].

2.1.1. Principle of Webshell. Webshell can work by sending
HTTP requests to the specific page and use some functions
to execute the instruction sent by the attacker. The results of
these instructions will be sent to the attacker as the response
of these HTTP requests [11].

2.1.2. Classification of Webshell. According to the function
and size of scripting language, webshell can be roughly
divided into three categories as follows:

Security and Communication Networks

(i) Big Trojan. It has a large size and comprehensive
functions for command execution, database oper-
ations, and other malicious intentions. Besides, a
friendly graphical interface is applied to the big
Trojan.

(ii) One Word Trojan. It is a Trojan with only one line of
code. Due to its shortness, it is often embedded in
normal files or pictures. It can perform many
functions like the big Trojan when connected to the
initial attack tools such as Chinese Chopper.

(iii) Small Trojan. It is small and easy to hide but
generally only has an upload function. Since most
websites have size restrictions when uploading files,
attackers generally first obtain upload permission
through the small Trojan and then upload the big
Trojan to the website to perform key functions.

2.1.3. Escape of Webshell. In order not to be discovered by
the administrator of the website, webshells usually undergo a
lot of distortion. Some escape methods are as follows:

(i) Pass parameters with less common fields: while
websites generally use request field to pass pa-
rameters, this method uses some unusual fields such
as HTTP referrer and user agent.

(ii) Encrypt sensitive features: attackers use some
common encryption algorithms such as base64 [12]
and rot 13 to encrypt some key functions. For a
greater probability of escape, some tools even
customize encryption algorithms.

(iii) Multiple encoding and compression: hackers
change the original static features of the code by
multiple encoding combined with compression
technology to reduce the possibility of detection.

2.2. Method of Webshell Detection. We did some research on
the previous detection of webshell. At the earliest, webshell
detection takes a manual identification method. This is the
oldest and most traditional way to detect webshells, which
places high demands on the administrators of the website.
Administrators are supposed to have a comprehensive grasp
of the website files and have a high recognition ability for
some newly added exception files [13], such as some naming
files, passby.php, pass.asp, and a.jsp. Besides, these small files
should be treated carefully because there are probably one
word Trojans. After finding suspicious files, we need to
analyze the contents of the file. The most thorough way is to
take a look at the entire file carefully, but it will take a bunch
of time. A better way is to search for some sensitive functions
such as exec (), shell_exec (), and system () and check their
parameters carefully [14].

Static feature webshell detection is the hot trend of re-
search. It is an upgraded version of manual identification,
but they are almost identical. This method focuses on the
features of file contents. Due to numerous features, it often
uses machine learning to improve effectiveness and accu-
racy. For example, in [15], an approach based on optimal

Security and Communication Networks

thresholds was proposed to identify files containing mali-
cious codes from web applications. The detection system will
scan and find malicious codes in each file of the web ap-
plication, analyzing the features including keywords, file
permissions, and owner. Instead of the source file codes,
Tian et al. [16] divided the POST contents in the HTTP
request into several words, which were represented in the
form of vectors using the Word2vec model [17] and then
were input into the CNN in a fixed-size matrix. Experiments
have shown that such a method can achieve high accuracy,
which was also the first time that CNN [18] applied to
webshell detection. However, if we just detect by signature
matching, we can only do well in detecting webshells that
have known features, and it does not apply to detect un-
known webshells. In the literature [19], an approach that can
be used to predict unknown webshells was proposed. Su-
pervised machine learning and matrix decomposition were
used to generate original and unknown webshell features by
analyzing different features of known pages. The paper [20]
focuses on the detection of PHP webshell, which used the
text classifier fastText [21] developed by Facebook and the
random forest algorithm to build the model. As a compiled
intermediate language of PHP scripts, PHP opcode sequence
was regarded as an important feature of webshell detection.
This paper can be a good inspiration because it starts to
break away from the webshell file itself.

There are also some detection methods based on other
features. For example, dynamic feature detection uses the
system commands, network traffic, and state exceptions used
by webshell to determine the threat level of the action.
Webshell is usually confused and encrypted to avoid de-
tection of static features. When the webshell is running,
system commands must be sent to the system to reach the
purpose of operating the database or even the system. This
method monitors and even intercepts system commands by
detecting system calls and deeply detects the security of the
script from the behavior mode. Zhang et al. [22] proposed a
character-level content feature transformation method, which
combined the features of CNN and LSTM to construct a new
webshell traffic detection model. This model preserves the
sequential features in network traffic and reduces the feature
dimension. Experiments have shown that this model can be
used to detect unknown webshells while running on large
websites. Besides, Shi et al. [23] proposed a log-based method
for webshell detection, which uses features such as text
features, statistical features, and page association about the
degree of graph theory. But the session simply uses the IP field
and the user-agent field for a rough distinction, which treats
all access by a user as a session. The request field is used for
machine learning, and it is a text processing problem like the
static detection we mentioned earlier in essence.

Among the methods we mentioned above, the defenders
need to scan and look for malicious codes inside every file of
the web application or every POST content in the web logs
[24]. The drawbacks of these methods are the heavy
workload. What is worse, with the development of en-
cryption and obfuscation techniques, webshell detection
accuracy will be much lower because webshell detection
tools are mostly based on signature matching. As we

mentioned before, webshell mainly works by sending HTTP
requests. Based on this theory, a new direction for webshell
detection is proposed which focuses on using the raw se-
quence data without POST contents in web logs.

3. Framework

3.1. Architecture. The purpose of this paper is to detect
webshell according to the sessions extracted from web server
logs without POST contents or source file codes. It is
composed of several components, as illustrated in Figure 1.
Firstly, we use normal log files on a large website and collect
honeypot logs with webshell communication for experi-
mental data collection. In the second part, instead of
extracting the fields directly from the web logs, we use the IP
field and the user-agent field to roughly divide the collected
logs into different sessions, count the time interval in every
session, and set the threshold to identify the session in more
detail first. Then, we use the hidden Markov model and long
short-term memory to build our model, respectively, and
compare which one has better performance.

3.2. Raw Data Collection. In the process of generating data,
we use different kinds of webshells including big Trojans,
small Trojans, and one word Trojans, which differ in size and
function. Besides, these webshells are placed in different
depths of the website we built, and different webshell tools
such as Chinese Chopper and WeBaCoo are used to initialize
the attack. In this paper, the log format of the website we use
is Apache, but our framework can be applied to other
common server log formats such as Nginx.

3.3. Data Processing

3.3.1. Data Extraction. All the logs we collected are in the
common Apache2 format. There are close to 10 fields in this
format, but there is no need to use all of them. Therefore,
some fields were extracted from the web logs. The whole
process is shown in Figure 2. Feature sequence consists of
source IP address, timestamps, user agent, status code, bytes,
referrer, and request, in which the request field is subdivided
into method field and path field.

The IP field and user-agent field are used to identify
sessions. Because there may be multiple visitors under the
same IP, it is necessary to combine user agent to make
judgments. At the same time, we roughly regard a visitor as a
session for the time being. The status code field and byte field
can be utilized to construct feature vectors without any
changes. In the method field, the GET method is represented
by 1, POST method is represented by 2, and other methods
are represented by 0. Meanwhile, in the referrer field, “-” is
represented by 0, while 1 for the website, 2 for the web
crawler, and 3 for the external websites. In the timestamps
field, we calculate the time difference between entries in
every session and fill 0 in the last vector of every session.

The path field is encoded with the degree of relevance of
each entry access path in the session. The first entry of each
session is coded as —1 because there is no access in front of it,

Data collection

5

Precise division

Security and Communication Networks

Sequence

Statistical
analysis

Time interval

@ IP address
User agent

|| Feature
extraction dataset

~ - ~

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: Rough division
\

\
! |
! |
! |
! 1
! 1
! |
g g
: |

1
! 1
! |
Normal
: Abnormal:
! |
! 1
! 1
! |
! |
! |
! |
! T
! 1
| |
\ /

Train/test

N~

L

FiGURE 1: The architecture of the proposed method.

119.39.3.195 -- [24/Mar/2018:06:25:53 — 0400] “GET /img/rss.gif HTTP/1.1” 200 1036 “https://www.example.com/”

“Mozilla/5.0(Windows N'T 10.0; Win64; x64)”

—b[Host 119.39.3.195]
—»[Path /img/rss.gif]
—b[Time 24/Mar/2018:06:25:53]
—»[Method GET]
—b[Referrer http://www.example.com/]
4{ Status 200]
4{ Bytes 1036]
4{ User agent Moxzilla/5.0 (Windows NT 10.0; Win64; x64)]

FIGURE 2: Feature extraction based on log entry.

and the relative relationship cannot be discriminated; from
the second file, the access to the same file is marked as 0, and
when accessing different files, the distance between different
files is calculated by the number of directory switches plus
one to encode. The process of encoding all paths for a session
is shown in Figure 3. When all the feature fields are pro-
cessed, a session will transform into a sequence of features as
illustrated in Table 1. Finally, the feature vector we get will be
six-dimensional including byte field, method field, path field,
referrer field, status code field, and time interval.

3.3.2. Session Identification. In the previous section, we just
made a rough distinction between the sessions in every log file,
treating a visitor as a session. But more often, a visitor can access
at different times and generate multiple sessions. Thus, we use a
more scientific statistical method for session identification.
We calculate and count the time interval between entries
in every session, which is roughly generated in the previous
section. After counting the time intervals in all sessions, we

sort all of them and explore the most appropriate quantile as
a threshold. We compare every time interval to a threshold,
and if the time interval is greater than the threshold, the
session will be subdivided into two smaller sessions, and so
forth. The whole process is illustrated in Figure 4.

When all the data have been processed, the framework will
check all the sessions and delete those sessions that contain
only one entry, as it assumes that if a user has only one access, it
is highly unlikely that there is a webshell communication.

3.4. Classification Model. Webshell detection is a two-class
task, and because of variable length serialization in the log
sequence, we choose long short-term memory and the
hidden Markov model to construct the classification model,
respectively.

3.4.1. Long Short-Term Memory. Long short-term memory
networks are well suited to classify and process based on

Security and Communication Networks

Raw data

119.39.3.195 -- [24/Mar/2018:06:25:52 - 0400] “GET /
HTTP/1.1” 200 13108 “-” “Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36”

119.39.3.195 -- [24/Mar/2018:06:25:53 - 0400] “GET
/photo/no.png HTTP/1.1” 200 4898 “https:// example.com/”
“Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36”

119.39.3.195--[24/Mar/2018:06:25:55 - 0400] “GET
/img/rss.gif HTTP/1.1” 200 1036 “https://example.com/”
“Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/65.0.3325.181 Safari/537.36”

119.39.3.195 -- [24/Mar/2018:10:11:29 - 0400] “GET
/book HTTP/1.1” 200 13125 “-” “Mozilla/5.0 (Windows
NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/65.0.3325.181 Safari/537.36”

| oo

Path Encoded path
/ -1
/photo/no.png 2
/img/rss.gif] 3
/book 2

FIGURE 3: The process of encoding all paths for a session.

TaBLE 1: Session transformation.

Log messages

Feature vector

Log entry0
Log entryl
Log entry2

Log entryn

[bytesy, method,, pathy, re ferrer,, statuscodey, t| —t,]
[bytes,, method,, path,,re ferrer,, statuscode,,t, —t]
[bytes,, method,, path,,re ferrer,, statuscode,,t; —t,]

[bytes,, method,, path,,referrer,, statuscode,, 0]

Origin
sequence

user-agent

|:IP addressi|

Statistical analysis
of time interval

Division

Precise sessions

Session 1

Rough sessions I

Session 2
Division

Session 3

Session 4

FIGURE 4: Schematic diagram of session identification.

sequence data with its faster convergence and the ability to

detect long-

term dependencies in data. The concept was

originally proposed in 1997 by Hochreiter and Schmidhuber
[25]. The emergence of LSTM is mainly to solve the problem
of gradient disappearance and gradient explosion in long
sequence training. Compared with traditional RNN where
there is only one delivery state, the LSTM has two delivery
states, namely, the long-term state o and the short-term
state h ;. Besides, it introduces three “gates” to control the
long-term state, as illustrated in Figure 5.

LSTM block

Main layer for analyzing
the current input x, and
the previous short-term

state h,_y)

F1GUre 5: The core of LSTM.

(i) Forget gate f ,: control which of the long-term

states of last moment c(,_;) should be discarded

(ii) Input gate i,: control which parts of the current

time input x) and the last short-term state h,_,,
will be added to the long-term state

(iii) Output gate o0(,: control which parts of the current

long-term state ¢, should be output as h,

The model which called SB-LSTM (session-based long
short-term memory) consists of four LSTM layers, each of
which has sixteen neurons, and a dense layer. The LSTM
layer will learn the feature of variable length sequences
which are activated by tanh function and logistic function.
The dense layer acts as a “classifier” throughout the LSTM,
which can map the learned “distributed feature represen-
tation” to the sample tag space. At last, the detection model
used categorical cross entropy as the loss function, and the
optimizer is Adam.

In more detail, the input data size is m x n x 6, m is the
number of sessions, and n is the maximum length of all
sessions. Current long-term state) and output Y are
computed as follows:

T T
g(t) = tanh(Wxg . x(t) + Whg . h(tfl) + b}])’
¢ty =Fw®Cun+in®Iau» (1)
Y = b = 0@y ® tanh(c(,),

where W, denotes the weight matrix of the main layer
connected to the input vector x ;) of size 1x6, while W,
denotes the weight matrix of the main layer connected to the
previous short-term state h,_,,. b, represents the coefficient
of variation for the main layer.

The architecture of this model for a session is depicted in
Figure 6.

3.4.2. Hidden Markov Model. The hidden Markov model
(HMM) is a statistical Markov model, a highly effective
means of modeling a family of unaligned sequences [26, 27],
which describes a hidden Markov chain stochastically
generating unobservable state sequences and then gener-
ating a stochastical observation sequence from each state. As
its most remarkable features, the state at any time f depends
only on the state of the previous moment, while it is in-
dependent of the time t, the state, and the observation at
other times. Besides, it also assumes that observations at any
time depend only on the state at that moment, independent
of other observations and states.

In this paper, we mainly focus on supervised learning
method of the hidden Markov chain. The train data include
observation sequences O and corresponding state sequences
I, which can be written as

{01, 1), (05, 1), ..., (O, 1)} (2)

We can use the maximum likelihood estimation method
to estimate the parameters of the hidden Markov model:

(1) We assume that the sample is in the state i at time ¢
and the frequency of transition to state j at time + i
is A;j, and then the probability estimate of the
transition state is computed as follows:

A..

— ij

a;; = ,
j N
Zj:lAij

N3 j=12...,N. (3)

(2) We assume that the sample state is j and the fre-
quency of observation k is Bj, and then the

Security and Communication Networks

probability of observation k when the state is j can be

written as

o DR Nik=12.. M (4)

jk_ M > = 1 4.0 3 = L, 4000 .
2=1Bji

(3) The initial state probability 7 is estimated as the
frequency of the initial state of i in the S samples. The
architecture of this model is illustrated in Figure 7.

In more detail, the input data size is x X 6 and x is the
number of entries in all sessions.

4. Experiment and Evaluation

In this section, we will introduce the detailed composition of
the dataset, the experiment details, and the results.

4.1. Dataset. There are two datasets for our experiments,
one for the model training and the other for the model test.
As for the first dataset, a honeypot [28, 29] was built to
capture and analyze webshell attacks. Tens of testers were
invited to attack this honeypot. One word Trojans, small
Trojans, and big Trojans which were coded in different
program languages were provided to these testers. We
collected a total of 13,986 log entries from the honeypot as
negative samples, while 57,160 logs entries were collected
from real-world websites as positive samples. In the process
of training, we also used a 10-folder cross validation to
perform a simple verification of the model. As for the latter
one, a real-world website which contains a total of 2324 files
and 248k lines of log entries in total was utilized to test.
Since the log entries with webshell communication in the
real environment may only account for a few percents or
even a few thousandths in the log file, we control the
positive and negative sample ratio of the dataset to be
around 6:1 in experiments. After feature vector extraction
and session identification, all log entries become in-
dependent sessions. Every session consists of six sequences,
which are the byte sequence of the HTTP response, the
method sequence, the path sequence that is encoded by the
degree of association, the referrer sequence that is divided
into different cases for encoding, the status code sequence,
and the time interval sequence. Figure 8 is an overview of
our model.

4.2. Experiment Design. To evaluate the performance of our
model, we first explored the effects of different quantiles as
thresholds and selected the best values for next experiments.
Then, we validated the effectiveness of the session identi-
fication method based on the time interval and quantile. In
addition, we compare long short-term memory with the
hidden Markov models, which are commonly used in se-
quence data processing, and find the one with better per-
formance. Finally, we leverage a real-world website to test
the SB-LSTM model and compare it with results from other
research.

Security and Communication Networks

Next X2

Predict Y1l

)

D G g B S vy B
- |
LST™MIayer3] [) wliermiaoeral | . :
M‘]—m—’ LSTM layer 3 hy, ;
A
:
hyy LSTM layer 2 hy, LSTM layer 2 hy, [———P»
A

Input data

—» Forward
» Dropout
Backward

(Possibility 1, possibility 2)

FiGURE 6: The architecture of LSTM.

/‘ﬂlz\

Webshell

b21 h2n
b
‘/h22 ’ w

1)2 Yn

Normal

bll b12

Ficure 7: The architecture of HMM.

All the experiments were performed in a PC machine
with an i7-7700HQ processor, 16 GB of memory, and a
GeForce GTX 1060 GPU which has 6 GB of memory. The
SB-LSTM model is implemented by Tensorflow [30], and the
HHM is implemented by seqlearn [31].

Before using the raw data to build the model, we did a
standardization to make all the data appropriate for the
neural network. Data were processed according to the fol-
lowing steps:

(i) Since we need to input a 3-dimensional matrix when
constructing the SB-LSTM model, we chose Max-
Min scaling normalization to reduce the effect of
padding 0 when normalizing. After scaling, all data

are between 0 and 1. The function of doing Max-
Min scaling normalization is
N X — min

X = (5)
max — min

(ii) The label of all the training data is stored in a list, 0
for normal access and 1 for webshell access.

(iii) When we used long short-term memory to build
our model, we must make all data to become a
matrix, so we padded the length of the sequence to z,
which is the maximum session length. Besides, we
held a list to show all the valid length (original
length) of the data to ensure the number of itera-
tions in LSTM.

(iv) When we used the hidden Markov model to build
our model, we only need to put all the vectors into a
sequence because of the input data size of the
hidden Markov model.

We use 10-folder cross validation [32]. The dataset is
equally divided into 10 subsets, each of which is tested once
and the rest as a training set. The cross validation is repeated
10 times, one subset is selected each time as a test set, and the
average cross validation recognition accuracy rate of 10
times is taken as a result. The dataset used for the experiment
is unbalanced, so we choose accuracy, recall, precision, F1
score [33], the receiver operating characteristics (ROC)
curves [34], and area under curve (AUC) measure for
evaluating the proposed method. Besides, we can visualize
the relation between TPR and FPR of a classifier. These
indicators can be expressed as

Security and Communication Networks

Session
data Model
Train
Train
[
I
I
B, B, By B,
M, M, M, .. M,
Session content Py P, P, ... P, Test Trained
R, R, R, ... R, model
So S S, Sy
T, T, T, . T,
B: bytes R: referrer
M: method S: status code

P: path

T: time interval

Figure 8: Overview of webshell detection with our model.

A <l TP, + TN;
ccuracy = —)
Y= ICl &P, + TN, + FP, + FN,
1 g TP
Recall = — Z —
ICl & TP, + FN,
Il
TP, 6
Precision = — 27’, (6)
ICl & TP, + FP,
Fl) precision x recall
score=2——————,
precision + recall
AUC = Ziepositiveclassranki - (M(1+M)/2)

M x N

where M is the number of positive samples and N is the
number of negative samples. The score indicates the
probability that each test sample belongs to a positive
sample, while rank is a positive sample set sorted in the
descending order based on score.

4.3. Experiment Results. First, we explored the influence of
different thresholds in session identification. The thresholds
were set to 55%, 60%, 65%, 70%, 75%, 80%, 85%, and 90%
quantile, respectively. The comparison results are shown in
Table 2.

As is shown in Table 2, performance is improved with an
increasing threshold in a certain range and reaches the
highest value when the threshold is 70%. Moreover, when
the performance reaches the highest, it will continuously
decrease with a rising threshold. Excessive thresholds can
decrease the performance of the model because two accesses

TaBLe 2: The influence of different thresholds in session
identification.

Threshold (%) Accuracy Recall Precision ~ F1 score
55 0.932 0.8624 0.8757 0.8690
60 0.9364 0.869 0.8958 0.8822
65 0.9598 0.9568 0.8977 0.9263
70 0.9597 0.9615 0.9036 0.9317
75 0.9696 0.9368 0.9009 0.9185
80 0.9376 0.9401 0.8518 0.8937
85 0.8974 0.7228 0.6932 0.7077
90 0.8779 0.7186 0.6418 0.6780

that were not originally part of the same session are placed in
the same session. In comparison with the threshold of 55%
to 90%, we find the appropriate threshold is 70%, and we use
it for the next experiments.

Then, we validated the effectiveness of session identifi-
cation based on the time interval and the quantile. We
counted the number of access sessions for every user, where
the user is identified by the IP field and the user-agent field.
The top 100 users with the largest number of sessions are
shown in Figure 9.

As is illustrated in Figure 9, most users have multiple
sessions, up to a maximum of 166. Therefore, it is quite
necessary for us to conduct a more detailed session
identification.

In addition, we compare the performance of two ma-
chine learning models. The comparisons are presented in
Table 3.

As is shown in Table 3, SB-LSTM has a much better
performance than the HHM-based model. The recall rate of
the HMM-based model under such dataset training is close
to 0. The reason that the HMM assumes that the state at any

Security and Communication Networks

180
160
140
120
100

80

60

40

Userl
User7
User25

=)

User67
User73
User79

FIGURE 9: The top 100 users with the largest number of sessions.

TaBLE 3: Comparison of two machine learning methods.

Model name Accuracy (%) Recall (%)

SB-LSTM
HMM-based model [31]

95.97
68.27

96.15
0.00

time depends only on the state of the previous moment
might lead to the low recall. Besides, the HMM-based model
also has a much lower accuracy than SB-LSTM. The ROC is
shown in Figure 10. The curve shows the SB-LSTM model
could achieve an effective and accurate result in which the
true positive rate could reach 0.8 when the false positive rate
only reaches 0.01.

Afterwards, we found the webshell communication, and
we can easily find the webshell by counting all the access
paths of the session. Besides, if the administrator is familiar
with the files included in website dictionary, he may not need
to perform statistics to find the webshell.

At last, we leverage a real-world website to test the SB-
LSTM model and compare it with results from other re-
search. We first explored the influence of the different sizes
oflogs on the model’s runtime. The experiment used two log
files including a recent one and the largest one the website
can provide. Besides, we ran this experiment three times and
got the average as results. The results are presented in Ta-
ble 4. Then, we compared these to the result of the cited
related work. We downloaded all the source files of the
website and reproduced a cited related work, which is a file-
based detection method. For the purpose of maximizing the
experimental results, we used the largest log the website can
provide which records all access to the website for nearly a
year and a half to compare. We do the same things in terms

of the final results, and the comparison results are shown in
Table 5.

1.0

0.8 4

0.6 4

0.4 4

0.2 4

0.0
0.000 0025 0050 0075 0100 0125 0150 0175 0.200

Ficure 10: ROC curve based on SB-LSTM.

TaBLE 4: The influence of the different sizes of logs.

Model name Time
0.5897 s

28.7127 s

Entries

908
248433

Sizes

177 kB
46.6 MB

SB-LSTM

TaBLE 5: Comparison of different detection methods.

Time
28.7127 s
39.8415s

Sizes/amount

46.6 MB
2324

Model name

SB-LSTM
FRE-WD [20]

As is illustrated in Table 4, when the size of the log is
quite small, SB-LSTM can get the result of detection very
quickly, which is efficient for detecting whether there is
webshell communication for a certain period of time.

10

As revealed in Table 5, even if we use all the log entries
since the website was built, the runtime required for ana-
lyzing is 27.9% less than the result of the cited related work.

Compared with the results of the first experiment, it
demonstrated that the SB-LSTM model is efficient for
detecting whether there is webshell communication for a
certain period of time, as it requires to scan all the source
files in the common approach while the only input for the
SB-LSTM model is the recent log.

5. Conclusion

In the previous studies, a huge number of features were
extracted from webshell, and these features were regarded as
keywords to judge whether there is a webshell or not.
However, it is almost certain that these approaches would be
less useful with the gradual development of encryption and
confusion technology. This paper mainly focuses on the
challenge that detects webshell out of itself. Instead of
leveraging POST contents, source file codes, or receiving
traffic, the framework we proposed uses sessions generated
from the website’s logs, which highly reduces the cost of time
and space but maintains a high recall rate and accuracy.
Features were extracted in raw sequence data in the web logs,
and a statistical method was applied to identify sessions
precisely. The results of experiments show that 70% quantile
can be the right threshold that makes the model obtain the
highest accuracy and recall rate, and the long short-term
memory which can achieve a high accuracy rate of 95.97%
with a recall rate of 96.15% has much better performance
than the hidden Markov model on webshell detection.
Moreover, the experiment demonstrated the high efficiency
of the proposed approach in terms of the runtime, as it takes
98.5% less time than the cited related approach to get the
results. In order to be closer to the real-world application,
the model can be employed to identify webshell files after the
webshell communication is detected by using a statistical
method.

Data Availability

The Web logs data used to support the findings of this study
have not been made available because it was extracted from
real websites, and contains many sensitive information.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the Fundamental Research
Funds for the Central Universities and the Sichuan University
Postdoc Research Foundation under Grant 19XJ0002.

References

[1] CNCERT weekly report,” 2019, http://www.cert.org.cn/publish/
english/upload/File/Weekly%20Report%200f%20CNCERT-
Issue%207%202019.pdf.

Security and Communication Networks

[2] D.H. Tony Lee and I. Ahl, “Breaking down the China chopper
web shell-part I,” 2019, https://www.fireeye.com/blog/threat-
research/2013/08/breaking-down-the-china-chopper-web-shell-
part-i.html.

B. Yong, X. Liu, Y. Liu, H. Yin, L. Huang, and Q. Zhou, “Web

behavior detection based on deep neural network,” in Pro-

ceedings of the IEEE SmartWorld, Ubiquitous Intelligence ¢

Computing, Advanced & Trusted Computing, Scalable Com-

puting & Communications, Cloud & Big Data Computing,

Internet of People and Smart City Innovation (SmartWorld/

SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1911-1916,

Hong Kong, China, July 2018.

L. Y. Deng, D. L. Lee, Y.-H. Chen, and L. X. Yann, “Lexical

analysis for the webshell attacks,” in Proceedings of the 2016

International Symposium on Computer, Consumer and Con-

trol (IS3C), pp. 579-582, Xi’an, China, July 2016.

[5] V.-G. Le, H.-T. Nguyen, D.-N. Lu, and N.-H. Nguyen, “A
solution for automatically malicious web shell and web ap-
plication vulnerability detection,” in Proceedings of the In-
ternational ~ Conference on Computational — Collective
Intelligence, pp. 367-378, Halkidiki, Greece, September 2016.

[6] J. Wang, Z. Zhou, and J. Chen, “Evaluating CNN and LSTM
for web attack detection,” in Proceedings of the 2018 10th
International Conference on Machine Learning and Com-
puting, pp. 283-287, Macau, China, February 2018.

[7] W. Yang, B. Sun, and B. Cui, “A webshell detection tech-
nology based on http traffic analysis,” Innovative Mobile and
Internet Services in Ubiquitous Computing, in Proceedings of
the International Conference on Innovative Mobile and In-
ternet Services in Ubiquitous Computing, pp. 336-342, Matsue,
Japan, July 2018.

[8] J. Kim, D.-H. Yoo, H. Jang, and K. Jeong, “Webshark 1.0: a
benchmark collection for malicious web shell detection,” JIPS,
vol. 11, no. 2, pp. 229-238, 2015.

[9] P. M. Wrench and B. V. Irwin, “Towards a php webshell
taxonomy using deobfuscation-assisted similarity analysis,” in
Proceedings of the 2015 Information Security for South Africa
(ISSA), pp. 1-8, Johannesburg, South Africa, July 2015.

[10] Z.Meng, R. Mei, T. Zhang, and W.-P. Wen, “Research of linux
webshell detection based on SVM classifier,” Netinfo Security,
vol. 5, pp. 5-9, 2014.

[11] O. Starov, J. Dahse, S. S. Ahmad, T. Holz, and N. Nikiforakis,
“No honor among thieves: a large-scale analysis of malicious
web shells,” in Proceedings of the 25th International Confer-
ence on World Wide Web, pp. 1021-1032, Montreal, Canada,
April 2016.

[12] S.Josefsson, “The basel6, base32, and base64 data encodings,”
2009, http://www.hjp.at/doc/rfc/rfc3548 html.

[13] Z.-H. Lv, H.-B. Yan, and R. Mei, “Automatic and accurate
detection of webshell based on convolutional neural net-
work,” in Proceedings of the China Cyber Security Annual
Conference, pp. 73-85, Beijing, China, August 2018.

[14] Compromised web servers and web shells-threat awareness
and guidance,” 2017, https://www.us-cert.gov/ncas/alerts/
TA15-314A.

[15] T. D. Tu, C. Guang, G. Xiaojun, and P. Wubin, “Webshell
detection techniques in web applications,” in Proceedings of the
Fifth International Conference on Computing, Communications
and Networking Technologies (ICCCNT), pp. 1-7, Hefei, China,
2014.

[16] Y. Tian, J. Wang, Z. Zhou, and S. Zhou, “CNN-webshell:
malicious web shell detection with convolutional neural
network,” in Proceedings of the 2017 VI International

[3

[4

http://www.cert.org.cn/publish/english/upload/File/Weekly%20Report%20of%20CNCERT-Issue%207%202019.pdf
http://www.cert.org.cn/publish/english/upload/File/Weekly%20Report%20of%20CNCERT-Issue%207%202019.pdf
http://www.cert.org.cn/publish/english/upload/File/Weekly%20Report%20of%20CNCERT-Issue%207%202019.pdf
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html
https://www.fireeye.com/blog/threat-research/2013/08/breaking-down-the-china-chopper-web-shell-part-i.html
http://www.hjp.at/doc/rfc/rfc3548.html
https://www.us-cert.gov/ncas/alerts/TA15-314A
https://www.us-cert.gov/ncas/alerts/TA15-314A

Security and Communication Networks

Conference on Network, Communication and Computing,

pp- 75-79, Kunming, China, December 2017.

T. Walkowiak, S. Datko, and H. Maciejewski, “Bag-of-words,

bag-of-topics and word-to-vec based subject classification of

text documents in polish-a comparative study,” Contempo-

rary Complex Systems and Their Dependability, pp. 526-535,

2018.

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional

architecture of monkey striate cortex,” The Journal of Phys-

iology, vol. 195, no. 1, pp. 215-243, 1968.

[19] X. Sun, X. Lu, and H. Dai, “A matrix decomposition based

webshell detection method,” in Proceedings of the 2017 In-

ternational Conference on Cryptography, Security and Privacy,

pp- 66-70, Wuhan, China, March 2017.

Y. Fang, Y. Qiu, L. Liu, and C. Huang, “Detecting webshell

based on random forest with fasttext,” in Proceedings of the

2018 International Conference on Computing and Artificial

Intelligence, pp. 52-56, Chengdu, China, March 2018.

Package Information [eb/ol], 2019, https://pecl.php.net/

package/vld.

[22] H. Zhang, H. Guan, H. Yan et al., “Webshell traffic detection
with character-level features based on deep learning,” IEEE
Access, vol. 6, pp. 75268-75277, 2018.

[23] L. Shi and Y. Fang, “Webshell detection method research
based on web log,” Journal of Information Security Research,
vol. 1, p. 11, 2016.

[24] R. Sasi, “Web backdoors-attack, evasion and detection,” in
Proceedings of the COCON Sec Conference, pp. 989-1003,
Cochin, India, 2011.

[25] J. Schmidhuber and S. Hochreiter, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[26] R. Hughey and A. Krogh, “Hidden markov models for se-

quence analysis: extension and analysis of the basic method,”

Bioinformatics, vol. 12, no. 2, pp. 95-107, 1996.

B. Schuller, G. Rigoll, and M. Lang, “Hidden markov model-

based speech emotion recognition,” in Proceedings of the 2003

IEEE International Conference on Acoustics, Speech, and

Signal Processing, Atlanta, GA, USA, April 2003.

I. Kuwatly, M. Sraj, Z. Al Masri, and H. Artail, “A dynamic

honeypot design for intrusion detection,” in Proceedings of the

IEEE/ACS International Conference on Pervasive Services,

Lebanon, July 2004.

[29] C. Kreibich and J. Crowcroft, “Honeycomb,” ACM SIG-
COMM Computer Communication Review, vol. 34, no. 1,
pp. 51-56, 2004.

[30] TensorFlow,” 2019, https://www.tensorflow.org/.

[31] L. larsmans, “seqlearn,” 2016, https://github.com/larsmans/
seglearn.

[32] R.Kohavi et al.,, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” IJCAI, vol. 14,
no. 2, pp. 11371145, 1995.

[33] C. Goutte and E. Gaussier, “A probabilistic interpretation of

precision, recall and f-score, with implication for evaluation,

Lecture Notes in Computer Science,” in Proceedings of the

European Conference on Information Retrieval, pp. 345-359,

Santiago de Compostela, Spain, March 2005.

T. Fawcett, “An introduction to ROC analysis,” Pattern

Recognition Letters, vol. 27, no. 8, pp. 861-874, 2006.

[17

[18

[20

[21

[27

[28

(34

11

https://pecl.php.net/package/vld
https://pecl.php.net/package/vld
https://www.tensorflow.org/
https://github.com/larsmans/seqlearn
https://github.com/larsmans/seqlearn

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

