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Homomorphic encryption (HE) is considered as one of the most powerful solutions to securely protect clients’ data from
malicious users and even severs in the cloud computing. However, though it is known that HE can protect the data in theory, it has
not been well utilized because many operations of HE are too slow, especially multiplication. In addition, existing data mining
research studies using encrypted data focus on implementing only speci�c algorithms without addressing the fundamental
problem of HE. In this paper, we propose a fundamental design and implementation of data mining algorithm through logical
gates. In order to do this, we design various logic of atomic operations in encrypted domain and �nally apply these logic to well-
known data mining algorithms. We also analyze the execution time of atomic and advanced algorithms.

1. Introduction

With the progress of storage in the cloud server, advanced
data process and analysis using machine learning and data
mining techniques are developed to extract valuable in-
formation. However, the concern about the data privacy and
security issues has occurred in storing and managing in-
formation in cloud servers. �is is because the server must
decrypt the data in order to process the data encrypted in
conventional cryptosystems such as AES and DES, even
though the client transmits the data to the server in
encrypted form. Eventually, users must share the decryption
key with the cloud, which can lead to data infringement by a
malicious server.

Homomorphic encryption (HE) [1, 2] is mentioned as
one of the most powerful solutions to the data security
problem in the cloud, since the data can be processed in the
encrypted domain without decryption. However, data
analysis with HE is not so popular in real world although it is
highly recommended for providing the proper security to
the cloud. �e major reason is the fact that it is di�cult to
link HE and machine learning. As known, HE is a new
cryptosystem which uses profound, mathematical property

with lattice, which makes it di�cult for the data scientists to
understand and use.

In addition, a few well-known HE algorithms support
only very simple operations such as addition and multi-
plication between integers. Although Gentry [3] presented
fully homomorphic encryption (FHE) which allows all
operations on the ciphertext to be theoretically unlimited, it
had many limitations in adapting to the real cloudmodel [4].
Since the implementation and development of the en-
cryption algorithm are not main interest to theoretical
cryptographers, the practical usage and implementation are
rarely developed compared to the theoretical progress in
FHE. �erefore, to date, FHE has been limited to be applied
only to speci�c algorithms without solving the fundamental
problems of FHE [5–11].

From this point of view, we propose a FHE computation
method that can be applied more generally by using bitwise
logical circuits, rather than algorithms that operate only
under certain conditions. By designing the basic operations
necessary for machine learning, we make a universal link
between HE and machine learning. People who are studying
FHE can easily apply machine learning with homomorphic
operations. Furthermore, machine learning researchers will
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be able to run data-driven data analysis algorithms with
encrypted data although they do not have the knowledge
about FHE at all.

Our contribution of this paper is threefold:

(i) In order to build simple data mining techniques
with FHE, we design various atomic operations
including absolute value operation, multiplication,
comparison, and sorting through the gate operation
provided by the TFHE library

(ii) In contrast to the integer-based FHE scheme in
which possible operations are limited, all the op-
erations including division and log can be designed
in the bit-based FHE scheme

(iii) We finally demonstrate the applicability of the
several well-known data mining techniques using
our proposed bitwise FHE schemes: the linear re-
gression, the logistic regression, k-NN classifier, and
k-means clustering

2. Background

2.1. Homomorphic Encryption. Homomorphic encryption
(HE) [1, 2] is a cryptosystem in which the result of oper-
ations between ciphertexts is equal to the result of operations
between plaintexts when decrypted. -e operations on
the ciphertexts of a and b can be expressed as a ∘ b �

D[E[a] •E[b]] where E[·] and D[·] denote encryption and
decryption, respectively.

-e concept of HE was first presented in 1978 by Rivest
et al. [12]. Many HE schemes have been introduced since
then, and the most popular one was the Paillier crypto-
system, proposed by Paillier [13] in 1999. However, they
were partial HE with a limited number of operations since
the encryption noise is amplified each time the operation is
performed.-e solution to this noise accumulation problem
was the fully homomorphic encryption (FHE) of Gentry [3]
in 2009. Gentry [3] proposed a bootstrapping algorithm that
removes accumulated noise, thereby eliminating the limit on
the number of operations. However, this Gentry [3] tech-
nique had to encrypt each plaintext bit by bit. It was a heavy
burden on memory because the size of the ciphertext was so
large. In addition, the bootstrapping operation was per-
formed with a very complicated algorithm, so it took dozens
of minutes to bootstrap a bit. For these reasons, many FHE
libraries now use integer-based schemes, but this also has the
disadvantage that the possible operations are very limited.

2.1.1. TFHE Library for FHE. In 2017, Ilaria Chillotti,
Nicolas Gama, Mariya Georgieva, and Malika Izabachène
proposed TFHE [14] library which is an improved version of
FHEW [15] library. It has the bit-by-bit encryption scheme
similar to Gentry’s initial FHE [3]. However, unlike [3],
TFHE has constructed operations in a more fundamental
way than addition and multiplication between ciphertexts. It
is the binary circuit that was used for the encrypted bits
operation. In other words, TFHE supports NOT, AND, OR,
NAND, NOR, XOR, and XNOR gate operations between

encrypted bits, allowing users to construct encrypted circuits
using these logical operations. Another advantage of TFHE
is that it efficiently solves the bootstrapping problem, which
was the biggest obstacle to using FHE. -is is designed to
perform a bootstrapping function automatically whenever a
single operation is performed, unlike the conventional FHE,
in which a direct bootstrapping must be performed to
remove noise each time a certain number of operations are
performed. In other words, it is possible to perform com-
putation without limitations. Here, the bootstrapping al-
gorithm is performed with a time of less than one 0.1 second
and has the fastest performance among all of the preceding
FHE schemes.

In addition, through supporting the multiplexer func-
tion, convenience of implementation and speed of circuit are
more improved. In the below function, a is a multiplexer
factor and outputs either b or c depending on the value:

MUX(a, b, c) �
b, (if a � 0),

c, (if a � 1).
􏼨 (1)

2.2. Data Mining and Machine Learning Algorithms

2.2.1. Linear Regression. Linear regression is the most
popular model for predicting target value of y. It is the
method that estimates the coefficients of the linear equation,
involving one or more independent variables. Several types
of process exist to optimize the values of the coefficients. We
focus on gradient descent, iteratively minimizing the error of
the training data.

2.2.2. Logistic Regression. Logistic regression is a special case
of generalized linear model in which the target variable is
binary such as pass or fail, live or death, etc. In general,
logistic regression makes an inference on parameters of
sigmoid function which determines classification of mod-
eling binary or categorical dependent variables.

2.2.3. k-Nearest Neighbors (kNN) Classification. In data
mining, the k-nearest neighbors algorithm is one of the most
well-known and useful supervised methods for classifying a
dataset. Given the classified data with several classes, the
kNN determines the class of new input data based on its
neighbors. At this time, the label of the input data is set to the
largest number of labels of the closest k data. In addition,
there are many ways to calculate the distance between data,
typically Euclidean distance. Depending on which distance
measurement method is used, different results may be
obtained.

2.2.4. k-Means Clustering. Unlike kNN, the k-means clus-
tering algorithm grasps the relationship of unlabeled data
and clusters them into k clusters.-e k-means clustering sets
the representative value of each cluster and assigns each data
to the cluster with the closest representative value. After
forming clusters for k representative values initially set ar-
bitrarily, the mean of each cluster is newly representative of
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each cluster. -is process is repeated until the cluster
converges, and finally, the data are clustered into k clusters.
-e result of the k-means is affected by the distance mea-
surement method as well as the kNN.

3. Problems

3.1. FHE for Machine Learning. Although machine learning
and FHE have long history, their research has been con-
ducted separately for a long time. Recently, as the era of
cloud computing comes, privacy-preserving machine
learning and data mining have been introduced as a hot
topic. -ere have been several studies on connecting FHE
and machine learning [6, 7, 9, 10, 16].

However, as mentioned in Section 2, there is a limitation
that it is difficult to apply FHE to machine learning algo-
rithms because it is only possible to perform limited op-
erations such as addition and multiplication in most
libraries. Accordingly, existing machine learning studies
using encrypted data have focused on implementing specific
algorithms such as Näıve Bayes classifier [9] or linear re-
gression [16]. In addition, since FHE requires complex
theoretical knowledge, it is difficult for general machine
learning engineers to understand its concept. Worse, in
order to use the FHE scheme, we need a technique to replace
all operations on plaintext with homomorphic operations.

In this paper, we focused on how to efficiently imple-
ment basic atomic operations and universal application to
various machine learning algorithms. -ese studies will be a
good mediator between FHE and machine learning.

3.2. Integer-Level Encryption vs. Bitwise Encryption. -e
FHE, which operates in integer space, takes scalar integers or
polynomials with integer coefficients as input and then
performs an operation on an integer basis. -erefore, ad-
ditional integer encoding is required for real data that are not
integers. Previous research studies about FHE application
have used the rounding function to convert real numbers to
integers for the encoding and decoding processes. Most of
them used the scaling constant k before rounding to preserve
the original number. In order to recover the encoded value, k
must be divided from the decrypted result as follows:

(1) Encoding: ⌊k × a⌉ for a plaintext a ∈ R
(2) Encryption: c � E[⌊k × a⌉]
(3) Decryption and decoding: a ≈ (1/k) · D[c]

However, there is a problem with this method, which is
to use an approximation rather than an accurate data. -e
approximation accuracy of the data is determined by the
scaling constant, and the user must also determine this
constant.

On the other hand, bitwise encryption does not require
encoding process to an integer because all real-valued data
can be represented in bits. In addition, since the computer
stores and processes data on a bit-by-bit basis, a generalized
encryption scheme can be easily applied to any data.

In this paper, we introduce the logic of various opera-
tions for the bitwise encryption scheme using the TFHE

library. We present a method for constructing atomic op-
erations using the circuit operation for each bit after con-
verting integer data into bits. Table 1 shows the logical
operators used in this study and their notation.

4. Designing Homomorphic Atomic Operations

Our method uses the TFHE library, so we perform all op-
erations on a bit-by-bit basis. -is is similar to the way that
binary data in a plaintext are processed by a computer using
AND/OR/NAND/NOR/XOR/XNOR/NOT gates. However,
since we do not know actual values to be computed, the
operations should be differently designed from algorithms in
the plaintext, such as using ciphertext in if-statement (for
example, “If ciphertext� E[0], then follow below com-
mand”; in this case, we cannot compare ciphertext and E[0]

typically). Considering these characteristics, we introduce a
new design of the atomic operations in this section. -e
atomic operations include Addition, 2’s Complement,
Subtraction, Equivalent Comparison, Large and Small
Comparison, Shift, Absolute, Multiplication, and Division.
Note that Addition, Subtraction, and Multiplication among
these atomic operations have already been introduced in the
literature [14, 17]. However, other atomic operations have
rarely been studied although they are highly significant for
numerical computation. We demonstrate the description
and algorithms of both already and rarely studied atomic
operations in this section because they are separately clas-
sified as homomorphic atomic operations from the ad-
vanced homomorphic data mining algorithms in Section 4.

All algorithms introduced in this paper are implemented
and evaluated with Intel i7-7700 3.60GHz, 8.0GB RAM, and
Ubuntu 16.04.4 LTS.

4.1. Addition Operation. Addition is one of the most basic
operations. -ere are many ways to implement full adder
circuit with basic gates such as 9 NAND gates and 7 NOR
and 5NOTgates. However, since the number of basic gates is
relative to speed of the circuit in the TFHE library, addition
can be more efficiently designed by using only 2 XOR, 2
AND, and 1 OR gates. More details are described in Figure 1.

In the circuit diagram of Figure 1, the least significant bit
(lsb) of a and b is input to the upper bit input, and c0, which
is the lsb of the carry, is initialized to E[0]. si passing through
the circuit is the sum of the corresponding bits, and ci+1 is the
carry of the next bit.

4.2. 2’s Complement Operation. It is necessary to express a
negative number in order to perform an integer binary data
operation.-ere are two ways to represent negative numbers
in a computer, mainly the 1’s complement method and 2’s
complement method. -e 1’s complement method has a
simpler advantage than the 2’s complement method when
representing a negative number. -e desired number is
operated through a XOR gate with a single bit 1. -e process
can be replaced to taking the NOT gate for every bit of the
desired number.-is is because the NOTgate is significantly
faster than the XOR gate. However, the 1’s complement

Security and Communication Networks 3



method has two ways of representing 0, and it is necessary to
use a logic different from the plaintext to perform operations
such as addition and subtraction. -e method of improving
this is the 2’s complement method, which is represented by
adding the integer 1 in the 1’s complement method. Since,
when 1 is represented by a binary number, it is filled with
zeros except for lsb, the carry can be added to the next bit of 1
to perform addition.-erefore, when adding, it is possible to
reduce the speed by adding the NOT gate to the half adder
which does not need carry, without using the previous full
adder: bi+1 � ai ∧ bi and si � ai ⊕ bi. -is is expressed by a
circuit as shown in Figure 2.

Set the number a and b� [00 . . . 01] to take the 2’s
complement operation and input from each lsb. -e output
si from the above circuit is the result of the corresponding
bits; the carry is bi+1, which is the next input.

4.3. Subtraction Operation. In a typical computer environ-
ment, you can implement subtraction using the 2’s com-
plement method and addition, so subtraction logic is not
implemented separately. However, subtraction can be
processed using the 2’s complement method and addition as
in plaintext, but it can be newly implemented with 2 XOR, 2
AND, 1 OR, and 2 NOTgates. -e detailed circuit diagrams
are demonstrated in Figure 3.

Subtraction enters the input from lsb of a and b. di

passed through the circuit is the result of the subtraction of
that bit, and ci+1 is the carry of the next bit. di and ci+1 are
defined according to their value after defining D as shown in
the following equation: D � ai − bi − ci. In this equation, if
D � 1, then di � 1 and ci+1 � 0. If D � 0, then di � 0 and
ci+1 � 0. If D � − 1, then di � 1 and ci+1 � 1. And if D � − 2,
then di � 0 and ci+1 � 1.

4.4. Comparison Operation

4.4.1. Equivalent Comparison. Equivalent comparison in
plaintext compares each bit for two input values and outputs
1 if all are equal and 0 if there are other values. However, in
encrypted data, it is possible to determine whether each bit is

the same through an XOR gate, but since it comes out
encrypted, it does not know what the value is. -erefore, to
get the results we want, all the results of the XNOR gate of
each bit are operated with the AND gate as shown in Fig-
ure 4. -en, E[0] is output when there are different bits in
two inputs, and E[1] is output if each bit is the same value.
-en, if the input values are different, E[0] is returned for
the output and E[1] for the same input values.

4.4.2. Large and Small Comparison. We will explain this as a
large comparison because the large comparison and the
small comparison are logically similar. In a computer, large
comparison is a system that outputs results when bits with
different values are compared while comparing from upper
bit to lower bit. However, since it is not known whether the
value of the comparison of each bit is ciphertext of 1 or
ciphertext of 0, it does not know which bit has a different
value and which of the two numbers is larger. -us, we have
to use the new logic.

First, let us consider the sign bit of the result of sub-
tracting the preceding number from the latter number of two
inputs. If the preceding number is less than or equal to the
latter number, E[0] is output and larger E[1] is output.
-erefore, we will use this subtraction to make a large
comparison. However, considering the speed of the circuit,
we will use a method that uses a multiplexer function and
XNOR gate. -e detailed circuit diagrams are demonstrated
in Figure 5. -e result of the comparison is the result of
repeating the circuit by the length of the data.

Larger than or equivalent comparison or smaller than or
equivalent comparison can take a NOTgate as the result of a
small comparison or a large comparison, respectively.

4.5. Shift Operation. Since the ciphertext is encrypted bit-
wise, it can be shifted in the same way as for the shift in
plaintext. Shift the k bits to the left and fill the empty right k
bits with E[0]. Shifting k bits has the effect of multiplying 2k

as shown in Algorithm 1.
In this algorithm, “HomCONSTANT” is a function that

produces one bit ciphertext corresponding to the input value

ai
bi

si

bi+1

Figure 2: -e circuit design for 2’s complement in the FHE
scheme.

ai
bi

ci

di

ci+1

Figure 3: -e circuit design for subtraction.

Table 1: -e notations of the logical operators.

Operator NOT AND OR NAND NOR XOR XNOR
Notation ∧ ∨ ∧ ∨ ⊕ ⊙

ai
si

ci+1

bi
ci

Figure 1: -e circuit design for the binary full adder in the FHE
scheme.
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and “HomCOPY” is a function that produces the same one
bit ciphertext as the result of the decryption, but different
ciphertexts.

-e right shift can be divided into a general shift, which
is a method of shifting the upper k bits to E[0] after shifting
like a left shift, and an arithmetic shift which shifts the upper
k bits to the same value as the sign bit. An arithmetic shift is
mainly used, and shifting k bits has the effect of dividing by
2k.

4.6. Absolute Value Operation. In the plaintext, the absolute
value algorithm outputs as it is if the most significant bit is 0
and takes the complement of 2 if the most significant bit is 1.
Since the value of the most significant bit is not known in a
ciphertext, a new algorithm must be designed. Let the
original value be a and the value obtained by taking the
complement of 2 to a be b; then, one is positive and the other
is negative (except for 0). Now, let sign bit of a be a mul-
tiplexer factor, which returns a or b depending on the value:

|a| � HomMUX(msb(a), a, b). (2)

4.7. Multiplication Operation. In general multiplication,
multiplyingm bits by n bits results in (m + n) bits. When the
two numbers to be multiplied are positive, the multiplicand
is multiplied from the lsb of the multiplier to the upper bit as
if it were calculated by hand. -en, the result of multipli-
cation is the sum of all the left shifted values as the bit
position of the multiplier increases.-us, the smaller 1-bit of
the multiplicand is, the more efficient it is. -erefore, we
divide the multiplier by addition or subtraction to reduce the
number of 1-bit as much as possible. However, as mentioned
earlier, this is an algorithm that can be applied only to
positive numbers, so a more advanced form of algorithm is
needed to consider negative numbers. -is is because, in the
case of the unencrypted plaintext data, the sign of the data
can be inspected by checking the msb, but in the case of the
encrypted data, the value of the msb cannot be confirmed.
-at is, a new algorithm should be designed to output the
correct result regardless of the sign of the given data. To solve
this problem, we can calculate the product of positive
numbers through an absolute value operation and then
perform a 2’s complement operation on the result according
to the sign. -at is, for multiplication of a and b, we follow
the below way:

msb(a)⊕msb(b) � p,

M � |a| ×|b|,

M′ � 2’s complement of M,

a × b � HomMUX p, M′, M( 􏼁.

(3)

-erefore, our algorithm adopts the latter method, and
its circuit diagram is shown in Figure 6.

4.8. Division Operation. Binary division algorithms can be
thought of as dividing input into positive cases and negative

0
MUX

0
MUX

ai
bi

ci

ai
bi

cici+1 ci+1

<Large comparison> <Small comparison>

Figure 5: -e circuit design for comparison.

1 0 1 1

1 1 0 0

1 ^ ^ ^ ^ ^ ^0 0 0

0

Num 1 :

Num 2 :

Result :

1 0 1 1

1 0 1 1

1 1 1 1

1

Num 1 :

Num 2 :

Result :

<Different number> <Same number>

Figure 4: Example of equivalent comparison.

Input: a � [al− 1, al− 2, . . . , a0], k
Output: LSHIFT(a, k)

(1) for i � 0 : (k − 1) do
(2) ai � HomCONSTANT(0)

(3) end for
(4) for i � k : (n − 1) do
(5) ai � HomCOPY(ai− k)

(6) end for
(7) return [al− 1− k, . . . , a0,E[0], . . . ,E[0]]

ALGORITHM 1: Pseudocode of left shift.
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cases. First, let us consider the case where both the divisor
and the dividend are positive. Let the arrayM,Q, and A have
the same length of l, and initialize M to divisor, Q to div-
idend, and A to zero. -e count value is the dividend length,
l. And let AQ�[A||Q] with a length of 2l and start the main
part of the algorithm.

If the divisor or dividend is negative, we need to use a
slightly different algorithm. First, we can implement nega-
tive binary division algorithm by modifying Algorithm 2
slightly. However, since the sign of the input value cannot be
known, when the negative binary division algorithm is
implemented with a new algorithm, both algorithmsmust be
performed and a single result should be output according to
the sign of the input value. -is is inefficient because it takes
time to perform Algorithm 2 twice. -erefore, we will
implement the signed binary division algorithm using a
second method that uses absolute values and multiplexer
function as in multiplication. -at is, for signed binary
division M and Q, we follow the following way:

msb(M)⊕msb(Q) � p,

D � positive binary division(|M|, |Q|),

D′ � 2’s complement of D,

Q

M
� HomMUX p, D′, D( 􏼁.

(4)

5. Experiments

5.1. Basic Gate Experiment. We implemented the operations
of Section 4 based on the basic gates and checked the speed
of 1-bit basic gate operation in TFHE 1000 times.

As shown in Table 2, the basic gates except the NOTgate
have the same speed, and the speed of the NOT gate is
significantly lower than that of the other gates. Also, the
multiplexer function is implemented differently from the
basic gates so that there is a difference in speed. It can be seen
that the speed of the multiplexer function is faster than the
speed of computing basic gate about two times.

5.2. Number of Gates Used in Designed Homomorphic Atomic
Operations. Since all gates except NOT gate and MUX gate
have the same speed, we will denote execution time of these
gates as TG. Time of the MUX gate is represented by TM, and
the NOTgate is omitted because the speed converges to zero.

Table 3 shows the number of gates used when performing
designed homomorphic operations with l-bit input values
for each operation.

Most of the operations listed in Table 3 are linear for data
length. In shift operation, the position of bit is shifted
without using a gate operation, and the number of gates in
multiplication and division operations is proportional to the
square of the data length.

5.3. Execution Time of the Homomorphic Atomic Operations.
In Table 4, we measure the speed of the operations based on
16 bits. -e speed of the shift operation is not measured
because gate is not used; for nonlinear operations, we
measured 8, 16, and 32 bits to see the change in speed.

Looking at the measured values, the doubling of the
length of the data increases the speed of both algorithms by
about four times. -is is because the speed of addition,
subtraction, and comparison operations constituting the
multiplication and division is linearly increased with respect
to the data length, and the number of iterations of the al-
gorithm is also proportional to the length of the data.

6. Applications

6.1. Linear Regression. Given a d-dimensional input variable
x(i) ∈ R d and its corresponding target variable y(i) ∈ R for
i � 1, 2, . . . , n, an inference on parameters of the linear
function within hypotheses is defined as

hθ x(i)
􏼐 􏼑 � θTx(i)

� θ0 + θ1x
(i)
1 + θ2x

(i)
2 + · · · + θdx

(i)
d , (5)

for x(i) � [1, x
(i)
1 , x

(i)
2 , . . . , x

(i)
d ]T, parameters θ � [θ0, θ1,

θ2, . . . , θd]T, and number of features, d + 1. -is regression
describes a hyperplane in the d-dimensional space of the
independent variables x.

In general, the linear regression can be easily estimated
by using least square estimation as follows:

􏽢θ � XXT
􏼐 􏼑

− 1
XYT

, (6)

where Y� [y(1),y(2), . . . ,y(n)], X� [x(1),x(2), . . . ,x(n)]. How-
ever, in FHE, it is rather difficult to design and implement
the inversion matrix of equation (6). -erefore, instead of
the exact solution, we choose an approximation estimation
which is based on the gradient descent update in order to
avoid the calculation of inverse matrix.

-e approximation estimation uses error function to
optimize the parameters of both simple and multiple linear
regression as follows:

Absolute
value

Absolute
value

Unsigned
binary

multiplication

2’s
complement

a

b

Sign (a)
Sign (b)

Result
0
MUX

Figure 6: -e circuit design for signed multiplication.
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J(θ) �
1
2

􏽘

n

i�1
hθ x(i)

􏼐 􏼑 − y(i)
􏼐 􏼑

2
. (7)

-e main goal of linear regression is to fit a straight line
through the data, so we minimize the error function J(θ).
Gradient descent is achieved by an algorithm that starts with
an initial θ and repeatedly performs the update:

θj :� θj −
α
n

􏽘

n

i�1

z

zθj

J(θ), (8)

where α is denoted by a learning rate. -e parameters θj are
updated concurrently for every iterations till convergence.
Our algorithm of linear regression is given in Algorithm 3.

-emethod of implementing the linear regression is very
similar to operation in the plaintext. However, it is calculated
in an encrypted state; therefore, in an encrypted domain, we
can calculate all operations in gradient descent algorithm
which includes multiplication, addition, and subtraction
operations. We initialized parameters θ to 0 and updated our
parameters using linear regression function with FHE
operations.

Input: divisor M, dividend Q
(1) Shift the AQ to the left by one bit and let the upper l bit of AQ at A.
(2) Calculate A − M and put it in A.
(3) If A is negative, the last bit of AQ becomes 0 and A+M is calculated and put it in A to return to the value before step 2.
(4) If A is positive or zero, the last bit of AQ is 0.
(5) -e count value is decremented by 1.
(6) If the count is not 0, the algorithm goes to step 1 and the algorithm is progressed.
(7) If the count value is 0, the result of algorithm is output (the lower l bit of AQ becomes the quotient and the upper l bit becomes the

remainder).

ALGORITHM 2: Positive binary division operation.

Table 2: Execution time of basic gates (s).

AND OR NAND NOR XOR XNOR NOT MUX
11.9 11.9 11.9 11.9 11.9 11.9 0.000162 22.4

Table 3: Time complexity of designed homomorphic atomic operation with l-bit input values.

Operation Time complexity of designed operations
Addition (5l − 3)TG
2’s complement (2l − 3)TG
Subtraction (5l − 3)TG
Equivalent comparison (2l − 1)TG
Large (small) comparison lTG + lTM
Shift ≈0
Absolute value 2lTG + lTM
Multiplication (6l2 + 4)TG + 4lTM
Division (8l2 − 4l + 4)TG + (l2 + 2l)TM

Table 4: Execution time of designed homomorphic atomic operation.

Operation Estimation (s) Execution (s) Error (%)
Addition 0.916 0.917 0.10
2’s complement 0.345 0.351 1.73
Subtraction 0.916 0.919 0.32
Equivalent comparison 0.369 0.375 1.62
Large (small) comparison 0.548 0.548 0
Absolute value 0.703 0.712 1.28
Multiplication_8 5.334 5.396 1.11
Multiplication_16 19.759 19.898 0.70
Multiplication_32 76.028 77.413 1.82
Division_8 7.551 7.772 2.92
Division_16 30.108 30.553 1.47
Division_32 120.38 121.781 1.16
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6.1.1. Performance Evaluation of FHE Linear Regression.
We performed two experiments with varying d, the simple
linear regression (d � 1) and the multiple linear regression
(d> 1). We set the number of data (N), the number of di-
mensions (d), the length of data (l), and the number of
iterations of the algorithm (p) as factors for the linear re-
gression algorithm. -en, the number of gates (T) can be
expressed as follows:

T(N, d, l, p) � 2Np􏼔 d 6l
2

+ 4􏼐 􏼑TG + 4lTM􏽮 􏽯

+(d + 1)(5l − 3)TG􏼕 + 2(d + 1)􏼚 6l
2

+ 4􏼐 􏼑TG

+ 4lTM􏼛 +(d + 1)(5l − 3)TG.

(9)

For the simple linear regression, we set the initial values to
(N, d, l, p) � (10, 1, 16, 1) for the experiment. -e dataset
consists of a feature vector x � [2, 4, 5, 6, 8, 10, 13, 16, 17, 19]

and a target variable y � [5, 9, 12, 14, 15, 18, 24, 26, 30, 32]

with 10 data created artificially, and it takes 554 seconds with
0.01 running rate. -e iteration proceeded 100 steps to
converge θ � (3.404, 1.484) with threshold value, ε � 0.1.

For the multiple linear regression (d> 1), we set the
initial values to (N, d, l, p)� (10, 2, 16, 1) for the experiment.
-e dataset consists of feature vectors x1 � [2, 4, 5, 6, 8,

10, 13, 16, 17, 19], x2 � [3, 5, 6, 7, 8, 11, 14, 15, 18, 20], and a
target variable y � [5, 9, 12, 14, 15, 18, 24, 26, 30, 32] with 10
data created artificially, and it takes 1047 seconds with 0.01
running rate. -e iteration proceeded 50 steps to converge
θ � (− 0.952, 1.094, 3.331) with threshold value, ε � 0.1.

6.2. Logistic Regression. Implementation of various algo-
rithms such as linear regression can be easily facilitated by
our FHE arithmetic operations. However, logistic regression
is an algorithm that holds a nonlinear function which re-
quires variation in the equation to be calculated. -erefore,
the key point of deriving FHE logistic regression lies in
designing a nonlinear sigmoid function. We initially elab-
orate a brief derivation and structure of FHE logistic re-
gression followed by explaining two ways of constructing
logistic function.

Given an input variable x(i) ∈ R d and its corresponding
target variable y(i) ∈ Z2 for i � 1, 2, . . . , n, an inference on
parameters of the logistic function g(z) within hypotheses is
defined as

g(z) �
1

1 + e− z
, z � θTx

(i)
, (10)

where θTx(i) � θ0 + θ1x
(i)
1 + θ2x

(i)
2 + · · · + θdx

(i)
d for x(i) �

[1, x
(i)
1 , x

(i)
2 , . . . , x

(i)
d ]T, θ � [θ0, θ1, θ2, . . . , θd]T, and number

of features, d + 1. We also denote x
(i)
j as an element of a

matrix in the i-th row and j-th column position.
-e logistic regression uses likelihood function to make an

estimate on weight θ. If we let p(y(i) � 1 | x(i); θ) � hθ(x(i))

and p(y(i) � 0 | x(i); θ) � 1 − hθ(x(i)), the likelihood for a
single data x(i) is. p(y(i) | x(i); θ) � (hθ(x(i)))y(i)

(1 − hθ
(x(i)))1− y(i)

.
Finally, the likelihood function for the whole data,

x(i)􏼈 􏼉
n

i�1, is to multiply likelihood of each data. Next, log
operation is performed to enumerate log likelihoods in a
linear combination as the follows:

L(θ) � 􏽘
n

i�1
y

(i)log hθ x
(i)

􏼐 􏼑 + 1 − y
(i)

􏼐 􏼑log 1 − hθ x
(i)

􏼐 􏼑􏼐 􏼑.

(11)

In order to maximize the likelihood, L(θ), we chose to
perform gradient descent algorithm that iteratively updates
cost function, J(θ), where J(θ) � − L(θ). -erefore, θ is
updated with the following equation:

θj :� θj −
α
n

􏽘

n

i�1
hθ x

(i)
􏼐 􏼑 − y

(i)
􏼐 􏼑x

(i)
j . (12)

Existing literature [18] designed a nonlinear logistic
function by two approximation techniques, namely, the
Taylor series method and least square approximation. In this
paper, we show feasibility of constructing two different
approximation techniques based on our proposed bitwise
FHE operations to perform the logistic regression.

6.2.1. Taylor Series Method. It is well-known that Taylor
expansion enables a differentiable real-valued function f(x)

to be expanded in a series at x � a such that
f(x) � 􏽐

∞
r�1f

(r)(a)/r!(x − a)r � f(a) + (f′(a)/1!)(x − a) +

(f″(a)/2!)(x − a)2 + · · · where f(r) is denoted by r-th de-
rivative of f.

Bos et al. applied Taylor series expansion to logistic
function which facilitates calculation of the nonlinear
function since the altered equation incorporates only the
four fundamental operations [18]. -erefore, Taylor series
polynomial of degree 9 for sigmoid function can be derived
as

Input: data X ∈ RD×N, Y ∈ RN, learning rate α, number of iteration
Output: Parameter θ ∈ R D

(1) Initialize parameter θ to FX
(2) Gradient descent part 1: calculate partial derivative of cost function J(θ)

(3) Gradient descent part 2: multiply α with the value of part 1
(4) Gradient descent part 3: update θ until iteration times
(5) return each of θ’s

ALGORITHM 3: -e algorithm of linear regression.
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g(x) �
1

1 + e− x

≈
1
2

+
1
4

x −
1
48

x
3

+
1
480

x
5

−
17

80640
x
7

+
31

1451520
x
9
.

(13)
Using our basic bitwise FHE operations that are pre-

sented in the previous section, we can construct approximate
logistic function by Algorithm 4. In addition, we refer ci

to coefficients of g(x) where c0 � 1/2, c1 � 1/4 ,· · ·, c5 �

31/1451520.
Figure 7 illustrates approximated logistic function with

respect to Taylor series expansion. Our approach guarantees
a boundary of (− 1, 1) while (− 2, 2) for the existing literature
[18]. -is is due to the 4th and 5th coefficients that are 0 for
the length of the input designated by 32 bit. -is can be
solved by assigning larger length to represent the coefficient
numbers.

6.2.2. Least Square Approximation. Kim and Cheon et al.
proposed a least square polynomial that broadens bounded
domain of Taylor series expansion to (− 8, 8) [19, 20]. -e
underlying principle is to derive a function g(x) that
minimizes mean squared error (MSE) such that 1/|I|

􏽒
I
(g(x) − f(x))2dx where |I| is denoted by the length of an

interval.
We omit an algorithm for implementing the least square

approximation with respect to our scheme since the algo-
rithm follows a similar procedure as in Algorithm 4. -e
visualized comparison of the real sigmoid function with our
approach and that of the existing literature [18] can be seen
in Figure 8 to verify that our FHE scheme can approximate
the desired function equal to the current literature.

6.2.3. FHE Gradient Descent Algorithm. When the logistic
function is designed either by the Taylor series or the least
square approximation technique, we are able to perform the
gradient descent algorithm for parameter estimate. -e
process of logistic regression is indicated in Algorithm 5.

6.2.4. Performance Evaluation of the FHE Logistic Regression.
We implemented logistic regression with two of the strat-
egies mentioned previously. From Algorithm 4, we claim
that number of data (N), length of data (l), dimension (d),
and iteration (p) are the principal factors of time complexity
(T) for both methods. We deliver their time performances in
a precise manner, where TTaylor and Tls are time complexity
of the Taylor series and least square approximation,
respectively:

Ttaylor(N, l, d, p) � Ndp 13 6l
2

+ 4􏼐 􏼑TG + 4lTM􏽮 􏽯􏽨

+ 6(5l − 3)TG􏼃 + 6(5l − 3)TGdp,

Tls(N, l, d, p) � Ndp 10 6l
2

+ 4􏼐 􏼑TG + 4lTM􏽮 􏽯􏽨

+ 5(5l − 3)TG􏼃 + 6(5l − 3)TGdp.

(14)

Since the time for experiment requires fairly significant
amount of time, we set number of data, dimension, and
iteration to be 10, 2, and 1, respectively. -e summary of
time performance with respect to 16 bit is elaborated in
Table 5.

6.3. kNN Classifier. -e bitwise FHE method of imple-
menting the kNN algorithm in Algorithm 6 is almost
similar to that of the plaintext, except the sorting operation
which is described in the next section. -e conventional
kNN algorithm uses Euclidean distance between data, but
our algorithm replaced the distance as the sum of the
absolute value for speed efficiency. Also, when sorting the
calculated distances, we searched for only the k smallest
values to reduce the computation time. As shown in Al-
gorithm 6, we need to design two additional homomorphic
operations for the homomorphic kNN classifier: sort of
Algorithm 7 and conditional swap of Algorithm 8.

When sorting is completed, we check the labels of the
nearest k data and output the major labels. Since the label is
also encrypted, it is not possible to know which label is the
most major.In order to attain the most frequently used label,
we first counted number of data with the same label. Since the
counting numbers are encrypted, we perform equivalent
compare operation of a label to the other labels. Lastly, we add
all the output numbers and sort out in descending order to
pick the largest number, which is our desired label. Algo-
rithm 9 represents the pseudocode that finds the most major
label among the labels of k-nearest data in our kNN algorithm.

6.3.1. Sorting for kNN Algorithm. -e kNN algorithm on
encrypted domain requires sorting algorithm to find the
nearest neighbors, so we design a new sort algorithm for
ciphertext. Algorithm 7 represents the pseudocode to sort
the numbers in arr[n] by the selection sort algorithm.

A swap operation that simply exchanges a location in a
ciphertext should only change its position as in plaintext, but to
apply the selection sort algorithm to ciphertext, wemust decide
whether to relocate it through a large or small comparison. So,
we have to input the factor to determine whether to swap or
not, and we call this swap operation conditional swap.

6.3.2. Conditional Swap. Conditional swap operation runs
swapping if a determining factor is E[1]. Otherwise, data are
not swapped. In the selection sort algorithm, if arr[i] is
bigger than arr[j], it has to be swapped. -erefore, it outputs
E[1] through a large comparison operation and puts it into
the factor to decide whether to swap or not. If arr[i] is less
than or equal to arr[j], swap will not occur because it outputs
E[0] through the large comparison operation. Algorithm 8
represents the conditional swap pseudocode that takes this
situation into consideration.

When S is E[1], arr[i]�NS arr[i] + S arr[j] is arr[j] and
arr[j]� S arr[i] +NS arr[j] is arr[i]. -us, swap operation has
occurred. -e other way, in case S� E[0], arr[i]�NS arr
[i] + S arr[j] is arr[i] and arr[j]� S arr[i] +NS arr[j] is arr[j].
-us, swap operation has not occurred.

Security and Communication Networks 9



6.3.3. Performance Evaluation of the FHE kNN Classifier.
We set the number of data (N), the dimension of data (d), the
length of data (l), the number of near neighbors (k), and the
length of label (L) as factors of the kNN algorithm.-en, the
time complexity of kNN algorithm (T) can be expressed as
follows:

T(N, d, l, k, L) � N d(12l − 6) − 5l + 3{ }TG􏼂

+ dTM􏼃 +
k2 + k(2N − 3)

2
lTG􏼈

+(3l + 2L)TM􏼉

+
(k − 1)(k − 2)

2
(7L − 4)TG

+(k − 1) LTG + 5LTM( 􏼁.

(15)

We set the initial values to (N, d, l, k, L)� (64, 1, 10, 3, 1)
for the experiment. When conducting experiment with the
initial value, it took 226 seconds. -en, we performed the
experiment by changing the value of each factor one by one.
As a result, because the algorithm consists solely of linear

operations except k, we confirmed that the speed of the
algorithm is almost proportional to the value of each factors.

6.4. k-Means Algorithm for Image Segmentation. We also
performed gray color image segmentation using the k-means
algorithm. -e target image for the homomorphic segmen-
tation has the 8-bit gray color of each pixel in the image, and
the k-means algorithm is used to input the encrypted color
value of all the pixels. In order to do this, the cloud server first
obtains encrypted values of the pixels at N random locations
rather than all encrypted pixels for efficient computation.
Afterwards, the k-means algorithm is applied to partition N
encrypted pixels into k clusters. As a result, the cloud server
calculates the representative values of k clusters in a homo-
morphic way. After deciphering the representative values in
the client’s side, the colors of all the pixels in the image are
compared with the representative values, and image seg-
mentation is performed by replacing the color with the
representative value of the near cluster. Our algorithm of
k-means is given in Algorithm 10; we performed the algo-
rithm by expanding the total data size to 10 bits considering
8-bit original data, the sign bit, and addition operation.

In general, use the Euclidean distance when calculating
the distance between two points. In this experiment, how-
ever, another method can be used because the dimension of

Input: a training data x(i)

Output: logistic value of x(i) w.r.t the Taylor expansion method
(1) Convert coefficient ci into arrays
(2) Construct power series of x to 9th power
(3) Multiply ci with corresponding power of x
(4) Add all the derived terms in step 3

ALGORITHM 4: FHE sigmoid function by Taylor expansion.
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Figure 7: Comparison of real sigmoid with our approach and
Taylor series approximation from existing literature [18].
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Figure 8: Comparison of real sigmoid with our approach and least
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the data is one-dimensional. After calculating the center
point of each representative value of each cluster, labeling is
performed without calculating the distance through com-
parison of the data with the values.

Since the values of the data are not known in the
encrypted state, when the representative values of the cluster
are given, it is not known which value is closest to the

representative value. However, we can set the label to dis-
tinguish the nearest value from the representative value of
each cluster. Let E[1] and E[0] denote each label. -rough an
AND operation of each data and its label, we can divide all
data into 0 of which all bits are set to E[0] and non-0 values
(if a data’s label is E[0], the result of AND operation is 0
value; otherwise, the result is non-0 value). Now, we can

Input: training data X,Y
Output: parameter θ

(1) Set parameter θ to 0
(2) Assign learning rate α and iteration number p, respectively
(3) Calculate partial derivative of cost function J(θ) for the training data X,Y
(4) Multiply α/n by the previous outcome
(5) Update θ by the result of step 4
(6) Repeat steps 3 to 5 for p times to obtain θ

ALGORITHM 5: -e algorithm of logistic regression.

Table 5: Execution time of logistic regression w.r.t two different strategies (16-bit inputs).

Strategy Taylor expansion series Least square approximation
Time (s) 12961 11315

Input: training data (X, Y, l), test data (x, y), and the number of neighbors, k
Output: test label lt

(1) Calculate distance with training data (X, Y) and test data (x, y) with absolute value operation.
(2) Sort the smallest k distance using conditional swap operation on selection sort algorithm.
(3) Output most major label among the labels of nearest k data.

ALGORITHM 6: -e algorithm of kNN classification.

Input: arr[n] � [a1, a2, . . . , an]

Output: SORT(arr[n])
(1) for i � 1 : (n − 1) do
(2) for j � (i + 1) : (n − 1) do
(3) COND_SWAP(arr[i], arr[j], S)
(4) end for
(5) end for
(6) return arr[n]

ALGORITHM 7: Pseudocode of sorting.

Input: arr[i], arr[j], S
Output: COND_SWAP(arr[i], arr[j], S)

(1) S � L_COMP(arr[i], arr[j]): large comparison
(2) NS � S

(3) arr[i] � NS∧ arr[i] + S∧ arr[j]

(4) arr[j] � S∧ arr[i] + NS∧ arr[j]

(5) return arr[i], arr[j]

ALGORITHM 8: Pseudocode of conditional swap.
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obtain the average of the clusters by dividing sum of data
with sum of labels.

6.4.1. Performance Evaluation of the FHE k-Means Clustering
Algorithm. We set the number of data (N), the length of
data (l), the number of clusters (k), and the number of
iterations of the algorithm (p) as factors for the k-means
algorithm. -en, the number of gates (T) can be expressed
as follows:

T(N, l, k, p) � p (k − 1)(5l − 3)TG􏼂

+ N(k − 1) TG + TM( 􏼁

+ k NlTG +(N − 1)(5l + 5 logN − 6)TG􏼈 􏼉

+ k 8l
2

− 4l + 4􏼐 􏼑TG + l
2

+ 2l􏼐 􏼑TM􏽮 􏽯

+ NlkTG􏼃.

(16)

-e algorithm took 148 seconds given the initial value,
(N, l, k, p)� (64, 10, 3, 1). -e experiment was set up with an

Input: l1, l2, · · · , lk
Output: lp

(1) for i � 1 : (k − 1) do
(2) si � 1
(3) for j � (i + 1) : k do
(4) if li � lj then
(5) c � 1
(6) else
(7) c � 0
(8) end if
(9) si � si + c

(10) end for
(11) end for
(12) p � argi max(si) for i � 1 : k

(13) return lp

ALGORITHM 9: -e pseudocode to find a label with majority.

Input: data X, the number of neighbors k, and the initial value of clusters uk

Output: labeled data (X, l)
(1) Obtain the distance between each cluster uk and the data X.
(2) For each data, label closest clusters.
(3) Initialize the cluster uk by averaging the data with the same cluster value.
(4) Repeat steps 1 to 3 to obtain converged clusters and return the labeled data.

ALGORITHM 10: -e algorithm of k-means.
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Figure 9: (a) An original image and (b) its segmented image on the encrypted domain.
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input of an image in Figure 9(a), where the parameters are
given as 64, 10, 3, and 10. -e representative value for each
cluster is recorded as 23, 56, and 170, respectively. -e
experiment took approximately 1,500 seconds, and the result
of segmentation can be checked in Figure 9(b).

7. Discussion

In this section, we describe the limitation of our proposed
approach in usage. Our proposed approach has a concern:
it has extremely slow computation with large memory
space.

Currently, it is true that bit-based schemes are inefficient
in terms of speed and memory compared to integer-based
schemes. However, integer-based schemes have a fatal
disadvantage that their possible operations are limited and
can only be used for specific algorithms. -is is a funda-
mental problem and hard to improve. On the other hand, the
speed of computation, which is a disadvantage of bit-based
schemes, can be improved more flexibly.

Our current approach is not optimized yet, so each
operation on encrypted domain is extremely time con-
suming. However, this problem may be addressed by ac-
celerating the computation with a lot of state-of-the-art
techniques. For instance, the atomic operations can be
implemented in a hardware level rather than in a software
level. FPGA and ASIC would be the good candidates for the
implementation. Additionally, we can reduce the compu-
tation time by optimizing the logic and programming codes
in a software level. We can also save the computation time
using a graphical processing unit (GPU) and parallel
computing scheme.

8. Conclusion

In this paper, we have proposed basic homomorphic
arithmetic operations using bitwise homomorphic gates. We
applied these bitwise homomorphic operations to several
well-known data mining techniques: the linear regression,
logistic regression, k-NN classifier, and k-means clustering.
To implement the algorithms, we introduced advanced
bitwise operations such as sorting and conditional swap,
which are specific to bitwise homomorphic operations. With
our proposed bitwise homomorphic atomic and additional
operations, even data scientists without any knowledge of
FHE can easily analyze and process data on encrypted
domain.
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