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In order to more effectively eliminate the disturbance of vibration signal to ensure the security monitoring of stacker be more
accurate in Industrial Internet of Things (IIoT), a cooperative denoising algorithm with interactive dynamic adjustment function
was constructed and proposed. First, some basic theories such as EMD, EEMD, LMS, and VSLMS were introduced in detail
according the characteristics of stacker in IIoT. Meanwhile, the advantages and disadvantages of varieties of algorithms have been
analyzed. Secondly, based on the traditional VSLMS-EEMD, an improved VSLMS-EEMD was proposed. Thirdly, to guarantee
the denoising effect of security monitoring in IIoT, a cooperative denosing model and framework named as IDVSLMS-EEMDwas
designed and constructed based on the advantages of LMS,VSLMS, and improvedVSLMS-EEMD. In addition, the assignment rules
andmodels of the correspondingweight coefficientswere also set up according to the features of the error signal of denoising process
in IIoT. At the same time, we have designed a cooperative denoising algorithm with interactive dynamic adjustment function. And
some evaluated indexes such as NSR and SDRwere selected and introduced to evaluate the effectiveness of the different algorithms.
Thirdly, some simulation examples and real experiment examples of stacker running signals under abnormal condition, which has
been developed and applied in Power Grid of China, was used to verify and simulate the effectiveness of our presented algorithm.
The experiment comparison results have shown that our algorithm can improve the denosing effect. Finally, some conclusions were
discussed and the directions for future engineering application were also pointed out.

1. Introduction

With the development and evolution of society, the Industrial
Internet of Things (IIoT) plays a significant role in guiding
the process of intelligent manufacturing for global industry
[1–3]. So, the IIoT has been embedded in various industry
systems, especially in the ASRS system. As we all know, the
main function of ASRS is to grab, move, and stack goods
from one piece of equipment to another. Therefore, stacker
is the most important element in ASRS. In practice scene of
ASRS, one point of the stacker running which cannot reach
the design requirement can be deemed as an accident. As
an indispensable device of IIoT, this accident is related not

only to the security of ASRS but also to the data acquisition
and the data exchange of IIoT [4–6]. For example, because
of the long-term wear and tear of the stacker track, the weld
seam of the track is enlarged or pits appear which leads to the
decrease of positioning accuracy, thus seriously affecting the
data acquisition of the whole IIoT. So, how to use monitoring
data to ensure the security of stacker is very important in
IIoT [6–8]. Notice, in practice, as the primary data resource
for security monitoring and maintenance of the systems,
mechanical vibration signals are always influenced by any
strong interferences of surrounding environment. However,
the strong noise always conceals the abnormal characteristic
information or forms false characteristics, which has greatly
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affected the further abnormal detection of stackers in IIoT
[9–11]. Hereby, denosing the noise of vibration data for
stacker under the abnormal condition is not only the primary
premise to ensure the further effective detection of the
abnormity, but also the necessary measure to ensure the
security of the IIoT. Moreover, along with the continuous
improvement of operation speed, to find the algorithm and
model to denoise has become more and more urgent for
vibration signals in IIoT.

At present, how to effectively eliminate and filter the
disturbance noise from measured signals is the prerequisite
for health monitoring of industrial systems [12]. So, domestic
and foreign researchers have made a lot of progress from
various aspects. For instance, some researchers have con-
structed some data denoising models by combining with the
Kalman filter and machine learning to separate the noise and
useful stationary signals by high pass, low pass, band pass, or
band stop in several ways in [13, 14]. The simulation results
showed that the proposed model and algorithm have better
performance of separation for mixed signals with nonover-
lapping power spectrum. Unfortunately, the data resources
acquired in health monitoring for IIoT always contain lots of
noise.This perhaps leads to appearance of spectrum aliasing.
Obviously, the filter model and algorithm based on frequency
domain are not suitable. So, it is necessary to construct the
reasonable algorithm to improve the denoising effect for
mixed signal with nonoverlapping spectrum.

To overcome the shortage, the multipoint mean smooth-
ing denosing method was constructed and simulated to
distinguish and separate useful signals from noise by the
frequency difference in [15]. However, the presented algo-
rithm may achieve the denoising effect for stationary signals.
Nevertheless, most of themechanical vibration signals, which
are measured from real IIoT, are nonstationary. Because
of this, some scholars have studied and established the
denoising method by combining with canonical correlation
analysis and empirical model decomposition (EMD) in [16].
In their experiments, this denoising model has improved the
denoising accuracy based on multipoint mean smoothing
denosing method to some extent, but there is the problem of
end effect onEMD.Thus, there are stillmany defectswhen the
above methods were used to implement noise-elimination in
the university.

Furthermore, the wavelet theory was introduced to depict
the characteristics according to the different amplitude of
signals and noise in [17–20]. In that case, the simulation
results showed that the presented algorithms and methods
were effectively for the nonstationary signals to a certain
extent. But, it is difficult to determine the threshold and set
up a reasonable order of the filter in real practical project. In
fact, to select the perfect threshold and set up the reasonable
order is the key step of wavelet denoising model for health
monitoring and safety maintenance of IIoT. Similarly, the
denoising model based on EMD algorithm also has the defect
of selection principle of the threshold and filter order [21]. In
order to solve this problem, some scholars has discussed and
analyzed some solutions in [22–25]. Although these solutions
have achieved certain improvement, EMD has end effect. For
improving the end effect of EMD, the Ensemble Empirical

Mode Decomposition (EEMD) has been introduced to solve
the shortage of denoising algorithm based on EMD in [26].
However, EEMD still faces the problem of threshold selec-
tion. Therefore, the adaptive equalizing algorithms without
threshold selection have been widely used for industry signal
denoising in [27, 28]. Their experiment had verified and
indicated that the denoising performance may be achieved
to a certain extent. But the denoising performance based
adaptive equalizing algorithm is not stable for wide-band
signals. So, the engineers need constantly to improve and
update the denoising algorithms to ensure the effectiveness
of health monitoring and safety maintenance in IIoT.

Based on this, many scholars and engineers have tried
to construct and establish the improved model combined
with EMMD and other methods such as LMS, Gath-Geva
clustering, and so on in [29–31]. And then the wide-band
signals may be transformed to the narrow band signal
by these improved models. The denoising effect of these
improved models may be guaranteed in processing data
of IIoT. Regrettably, the convergence speed is very slow
while the step size of LMS algorithm cannot be adaptive
adjusted. Therefore, considering that the step factor may be
adaptive adjusted, some scholars had presented an improved
algorithm based on LMS. The new model is named as
VSLMS. Based the thesis, Yu Xiao and his coauthors had
constructed the new denoising algorithm by combining with
VSLMS and EEMD to solve the accuracy of the denoising
performance in [32]. But, in [32], the adjustment of the step
factor for VSLMS is seriously affected by error signal at
the present time. To remedy this problem, another VSLMS
algorithm is introduced into combining with EEMD to
construct an improvedVSLMS-EEMDalgorithm.Notice that
the practical data acquired from IIoT will be influenced
by the different factors such as the fault of sensors, the
performance degradation of equipment, and so on. So, the
noise in the practical engineering is particularly complex.
For all points of the vibration signal, the above algorithm
cannot achieve the best performance for all points. Aiming
at each point of the vibration signal, different algorithms
have different denoising performance. Thus, based on the
fact that the improved VSLMS-EEMD algorithm is proposed,
to find a cooperative mechanism to maximize the denoising
performance at each point based on the above denosing
algorithms is very important to process the nonstationary
signal in IIoT.

Based on this thesis, a cooperative denoising algorithm
and model with interactive dynamic adjustment function
have been analyzed and discussed in further section. The
layout of this paper is arranged as follows. In Section 2, we
have introduced the basic theories and methods such as
EMD, EEMD, LMS, and VSLMS. In Section 3, an interactive
dynamic adjusted denoising algorithm has been designed
and analyzed. Meanwhile, some evaluated indexes were
selected and introduced to evaluate the effectiveness of the
different algorithms. In Section 4, to verify the effectiveness
of the proposed algorithm, some simulative examples were
implemented to compare the denoising performance of
LMS, VSLMS, VSLMS-EEMD, and presented algorithm. In
addition, to enlarge the applications, the practical denoising
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project of stacker running signals, which have been devel-
oped and applied in Power Grid of China, was used to
verify the effectiveness of our presented algorithm. Finally,
some conclusions and the directions for future engineering
application are discussed according to the real simulation
results in health monitoring and safety maintenance of IIoT.

2. Introduction and Analysis of Basic Theory
and Model in Health Monitoring of IIoT

In practical engineering of IIoT, as we all know, the mea-
surement signals are always typical and nonstationary, and
they are the direct information resource of actual sense for
IIoT, including running state, fault modes, and so on. Thus,
the measurement signals obtained in actual IIoT contain
inevitably strong background noise, which makes the useful
information submerged. Obviously, the information features
of health monitoring are not obvious for IIoT. Thus, how to
design and find an effective denoising algorithm with interac-
tive dynamic adjustment function is key step to guarantee the
performance of safety maintenance of IIoT. Meanwhile, the
denoising model and algorithm must achieve both timeliness
and stability in health monitoring of IIoT. Only then can
the work be of great theoretical and practical significance for
nonstationary signals of health monitoring in IIoT.

On this basis, some basic theoretical models will be intro-
duced and discussed for designing the cooperative denoising
algorithm with interactive dynamic adjustment function in
the next section.

2.1. Empirical Mode Decomposition Algorithm (EMD). For
simplicity of analysis in health monitoring of IIoT, the
measurement signal 𝑆(𝑡) including the useful signal and noise
may be simply described as follows:

𝑆 (𝑡) = 𝑠 (𝑡) + V (𝑡) (1)

where 𝑠(𝑡) represents the useful vibration signal and V(𝑡)
describes the disturbance noise.

According to the basic thesis, the detailed decomposition
process of measurement mixed signals is shown as follows.

Step 1. Suppose that the symbol 𝑆(𝑡) represents the original
signal of IIoT. If all local extremums can be found, the upper
envelope 𝑢(𝑡) and the lower envelope 𝑙(𝑡) may be computed
by using the cubic spine function. Meanwhile, the envelope
line should contain all the data.

Step 2. Combined with 𝑢(𝑡) and 𝑙(𝑡), the mean value of the
upper and lower envelopemay be used to process the original
envelope; i.e.

𝑚1 = 𝑢 (𝑡) + 𝑙 (𝑡)2 (2)

To separate first component from original signal, we have
introduced the computing formula as follows:

ℎ1 (𝑡) = 𝑆 (𝑡) − 𝑚1 (𝑡) (3)

If ℎ1(𝑡)meets IMF condition, it is the first component of 𝑆(𝑡).
Otherwise, go on the next step.

Step 3. Let ℎ1(𝑡) be the new original signal and repeat Step 2
again until the IMF condition can bemet.The corresponding
computed formula is as follows:

ℎ11 (𝑡) = ℎ1-𝑚11, . . . , ℎ𝑖𝑘 (𝑡) = ℎ1(𝑘−1)-𝑚1𝑘 (4)

where 𝑚1𝑘 indicates the mean value of the upper and lower
envelope of ℎ1(𝑘−1) and 𝑘 is the number of iterations.

In that case, ℎ1𝑘 should meet the IMF conditions. Then,
the first IMF component of original signal can be gotten; i.e.,𝑐1(𝑡) = ℎ1𝑘(𝑡).

Meanwhile, the new signal may be separated from the
original signal by the following formula:

𝑟1 (𝑡) = 𝑆 (𝑡) − 𝑐1 (𝑡) (5)

And go on to the next step.

Step 4. The filtering process in Step 2 is used to repeatedly
execute for 𝑟1(𝑡) until the IMF condition is met. In other
words, the second IMF component and the similar new
signal are denoted as 𝑐2 and 𝑟2(𝑡), respectively. Similarly, all
IMF components and new original signals are represented as
follows:

𝑟2 (𝑡) = 𝑟1 (𝑡) − 𝑐2 (𝑡) , . . . , 𝑟𝑛 (𝑡) = 𝑟𝑛−1 (𝑡 − 1) − 𝑐𝑛 (𝑡) (6)

Step 5. It is rewriting the original signal 𝑆(𝑡) by the following
mode:

𝑆 (𝑡) = 𝑁∑
𝑖=1

𝑐𝑖 (𝑡) + 𝑟𝑛 (𝑡) (7)

where 𝑟𝑛(𝑡) is the remainder which presents the monotonous
trend of 𝑆(𝑡). Obviously, the decomposition results
IMF 𝑠(𝑐1, ⋅ ⋅ ⋅ , 𝑐𝑛) indicate the different IMF components
which represent from high frequency to low frequency
distribution of the original signal.

If we use the EMD to decompose the nonstationary signal
in practice, there is one thing we have noticed: the EMD
method has serious end effect and mode mixing of different
time-scale IMF. Of course, the lacks caused by EMD signal
decomposition will affect the denoising effect of the original
signal in IIoT. So, how to improve the efficiency of noise
reduction is very important in practice engineering. Next,
we will introduce in depth the basic principles and related
situations to establish an improvement algorithm.

2.2. Ensemble Empirical Mode Decomposition (EEMD). To
overcome the influence of the end effect and mode mixing
in health monitoring of IIoT, an improved denoising algo-
rithm named as Ensemble Empirical Mode Decomposition
(EEMD) has been proposed based on EMD for signal
denoising. The decomposition steps of EEMD are shown as
follows.

Step 1. It is adding a Gaussian random white noise 𝑤(𝑡) to
original measurement signal of IIoT; i.e.,

𝑆1 (𝑡) = 𝑆 (𝑡) + 𝑤 (𝑡) (8)

where𝑤(𝑡) ∼ 𝑁(𝜇, 𝜎2).
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Step 2. It is decomposing the new original signal 𝑆1(𝑡) by
using EMD algorithm. And then each IMF component𝑐𝑖𝑗(𝑡), 𝑗 = 1, 2, ...𝐾 may be obtained and acquired in time,
where 𝑐𝑖𝑗(𝑡) presents the 𝑗th IMF component when the 𝑖th
white noise has been added into the original signal.

Step 3. It is repeating Steps 1–2 to decompose the renewal
signal with different Gaussian white noise again. And we may
obtain a set of new IMFs, which are quite different from the
original ones.

Step 4. It is computing the average value of the IMFs obtained
by decomposing the corresponding renewal signal with
different Gaussian white noise; i.e.,

𝑐𝑖 (𝑡) = 1𝑇
𝑇∑
𝑖=1

𝑐𝑖𝑗 (𝑡) (9)

where 𝑐𝑖(𝑡) is the 𝑖th IMF component.

So, the decomposition results IMF 𝑠(𝑐1, ⋅ ⋅ ⋅ , 𝑐𝑛) can be
selected to represent the different IMF components fromhigh
frequency to low frequency distribution of the original signal.

In fact, the highest advantage of EEMD is that IMFs
decomposed by the algorithm are independent and can
prevent IMFs from mode mixing. In that case, it is vital to
adaptively decompose the measurement signal of IIoT. But,
as we all know, the effect of signal processing is always greatly
influenced by choice of the decomposition threshold when
EEMD is used to denoise for the measurement signal in IIoT.

Therefore, to further guarantee the effect and accuracy
of selecting the decomposition threshold in processing the
mixed signal, many engineers and researchers have tried to
focus on finding out some helper methods to modify the
defect of EMMD. Based on this, the typical LMS algorithm
will be introduced to solve the problem of the decomposition
threshold in further section.

2.3. Least Mean Square (LMS) Algorithm. In the security
monitoring of IIoT, it is necessary to find an adaptive
algorithm to reduce or inhibit the correlative noise. So, to
get the more ideal signal, IMF 𝑠(𝑐1, ⋅ ⋅ ⋅ , 𝑐𝑛) or original signal
should be used as the training specimen to further process.
In that case, take the IMF 𝑠(𝑐1, ⋅ ⋅ ⋅ , 𝑐𝑛) as an example, so the
initial input vector of training is described as follows:

IMF𝑠 (𝑛) = [𝑐 (𝑛) , 𝑐 (𝑛 − 1) , . . . ., 𝑐 (𝑛 − 𝑀 − 1)]𝑇 (10)

where𝑀 represents the number of tap coefficients.
For the sake of simplicity, the equalized signal of the

training iteration is supposed as follows:

𝑦 (𝑛) = 𝑀−1∑
𝑖=0

𝑤𝑖 (𝑛) 𝑐 (𝑛 − 𝑖) (11)

where 𝑤𝑖(𝑛) is the weight coefficient of every component of
IMFs.

For the convenience of calculation, the above formula
may be simplified as follows:

𝑌 (𝑛) = 𝑊𝑇 (𝑛) ⋅ IMFs (𝑛) (12)

where𝑊(𝑛) is the weight coefficient matrix; i.e.,

𝑊(𝑛) = [𝑤0 (𝑛) , 𝑤1 (𝑛) , ⋅ ⋅ ⋅ , 𝑤𝑀−1 (𝑛)] . (13)

where𝑊(𝑛) is calculated as follows:

𝑊(𝑛 + 1) = 𝑊 (𝑛) + 2𝜇 ⋅ 𝑒 (𝑛) ⋅ IMFs (𝑛) (14)

where 𝜇 is the step factor and 𝑒(𝑛) is error signal which is
modeled as follows:

𝑒 (𝑛) = 𝑑 (𝑛) − 𝑦 (𝑛) = 𝑑 (𝑛) −𝑊𝑇 (𝑛) ⋅ IMFs (𝑛) (15)

where 𝑑(𝑛) represents the actual value of each iteration
training.

Although the algorithm may reduce the error accu-
mulation effect in fine processing of nonstationary signal
and improve the denoising accuracy, the convergence is
slow. From a practical situation, one reason might be that
the fixed step size cannot keep the insistency between the
fast convergence speed and steady residual error [33–35].
Therefore, we need to find a method to modify the shortage
according to the actual requirements.

2.4. LMS Algorithm with Variable Step Factor (VSLMS). As is
well known, the denoising accuracy of nonstationary signal
in IIoT is usually affected by varieties of factors, such as the
testing environment, test methods, and so on. Furthermore,
the training signals acquired by using LMS algorithm may
still contain the strong noise because of the fixed step size.
So, the amplitude of characteristic information cannot be
evidently separated from the noise information. In brief, the
residual noise has brought great obstacles for the denoising
performance of nonstationary signal in IIoT. To overcome the
problem, in this section, the variable step factor is inducted
to the denoising control to balance the insistency between
the fast convergence speed and steady residual error.The core
of the thesis is that the step size can be dynamically adjusted
according to the error signal of each training.

In formula (14), the updating of the fixed step size should
to be related to the current time error 𝑒(𝑛), which results in
the characteristic’s confusion. So, the computing method is
shown as follows.

𝜇 (𝑛) = ( 11 + exp (−𝛼 |𝑒 (𝑛)|𝑚) − 0.5) (16)

where 𝛼 is the control parameter. The value of parameter is
taken according to various concrete statuses.

In practical health monitoring of IIoT, we find the abnor-
mal phenomenon that the error signal has the cumulative
effect with experimental time. Further, the phenomenon
results in the serious overlapping interference of denoising
signal. So, to overcome the shortage, the error values at the
current time and the last time are inducted to the adjustment
of the step size. In other words, the step size may be gotten by
the following formula.

𝜇 (𝑛) = ( 11 + exp (−𝛼 |𝑒 (𝑛) ∗ 𝑒 (𝑛 − 1)|𝑚) − 0.5) (17)
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Thus, the weight coefficients may be rewritten as follows:

𝑊(𝑛 + 1) = 𝑊 (𝑛) + 2𝜇 (𝑛) ⋅ 𝑒 (𝑛) ⋅ IMFs (𝑛) (18)

In conclusion, the improved LMS with variable step
factor can not only decrease the noise sensitivity but also
improve the convergence performance. This is because of
the improvement mentioned above that the improved weight
coefficients can filter the influence of the cumulative effect
in the training. Therefore, we can make use of the improved
algorithm to denoise the nonstationary health monitoring of
IIoT.

Obviously, we can see from the above analysis that each
method has advantages and disadvantages in denoising pro-
cess of nonstationary signal. If wemay establish an integrated
strategy to exert the advantages of eachmethod andminimize
the influence to disadvantages, thus the denoising effect
of nonstationary signal may be vastly improved in health
monitoring of IIoT. Next, the work will be in detail depicted.

3. Design and Analysis of Cooperative
Denoising Algorithm and Model with
Interactive Dynamic Adjustment
Function (IDVSLMS-EEMD)

3.1. Analysis and Establishment of Cooperative Denoising
Model with Interactive Dynamic Adjustment Function. To
guarantee the denoising performance of nonstationary signal
in health monitoring of IIoT, we have tried to design some
cell modules to realize the task of the integration and con-
figurable controls. With this goal, we have designed the LMS
denoising module, VSLMS denoising module and proposed
the improved VSLMS-EEMD denoising module based on
the traditional VSLMS-EEMD, respectively. The denoising
module by using LMS or VSLMS is shown as Figure 1.

In addition, to overcome the shortage of the VSLMS-
EEMD proposed in [24], the step updating algorithm
is redesigned as (17) to construct an improved VSLMS-
EEMD denoising algorithm. The framework of the improved
VSLMS-EEMD is shown as Figure 2.

In fact, all these cell modules can be used to denoise of
nonstationary signal in IIoT, and then each module can be
used as a single denoising processor. However, the operations
staff of health monitoring always want to highlight the
advantages of these cell modules as large as possible. In
order to maximize the denoising performance at each point,
on the basis of the improved VSLMS-EEMD algorithm, a
cooperative denosing algorithm with interactive dynamic
adjustment function named as IDVSLMS-EEMD has been
designed and constructed by using the stackable technology
as Figure 3

Obviously, the framework can allow both those cell
denoising modules (i.e., conventional and complementary)
to exist in a framework that embarrasses neither. From an
application perspective, the IDVSLMS-EEMD algorithm is a
standardization of a set of denoising patterns based on a com-
mon set of denosing algorithm. So, one of the features of the
IDVSLMS-EEMD model is able to move applications from
one processor environment to another. From viewpoint of

practical operation, the outputs of three denoising algorithms
embedded in the IDVSLMS-EEMD framework are different,
the differences can make up for each other’s mutual limita-
tions. Therefore, the engineers can achieve the most optimal
elimination at every point of the vibration signal for IIoT.

For the sake of analysis, relevant definition and calcula-
tion of the proposed cooperative denoisingmodel IDVSLMS-
EEMD are set as follows.

Firstly, the 𝑖th output of the IDVSLMS-EEMD algorithm
may be defined as the following formula:

𝑆𝐹 (𝑖) = 𝑤𝑖 (1) × 𝑆1 (𝑖) + 𝑤𝑖 (2) × 𝑆2 (𝑖) + 𝑤𝑖 (3)
× 𝑆3 (𝑖) (19)

where 𝑆1(𝑖) is the 𝑖th output of the LMS denosing module,𝑆2(𝑖) is the 𝑖th output of the VSLMS denosing, 𝑆3(𝑖) is 𝑖th
output of the improved VSLMS-EEMD denosing module,
and 𝑤𝑖(𝑚) (𝑚 = 1, 2, 3) is the weight of output in every
denoising processor.

From this model, the hub of the cooperative denoising
framework is to determine the weights of denoising output
at different time. In fact, if the denoising module is more
suitable for nonstationary some point of signal in IIoT, the
weight is bigger. Otherwise, the weight is smaller. But, for
error signals, the opposite is true. So, it can be inferred that
the error signal is inversely related to the weight coefficient,
and the weight coefficient can be obtained by the error signal.

Define the error signal set at 𝑖th point as follows:

𝑒 (𝑖) = [𝑒1 (𝑖) , 𝑒2 (𝑖) , 𝑒3 (𝑖)] (20)

According to the errors, the dynamical assignment rule of
the weights is shown as follows.

Rule 1. The larger the error of single denoising processor is,
the smaller the weight is. That is, consider the following.

(1) If 𝑒𝑚(𝑖) (𝑚 = 1, 2, 3) is maximum value in 𝑒(𝑖) =[𝑒1(𝑖), 𝑒2(𝑖), 𝑒3(𝑖)], the weight 𝑤𝑖(𝑚) may be assigned by the
following formula:

𝜔𝑖 (𝑚) = min (𝑒1 (𝑖) 𝑒2 (𝑖) 𝑒3 (𝑖))𝑒1 (𝑖) + 𝑒2 (𝑖) + 𝑒3 (𝑖) (21)

(2) If 𝑒𝑚(𝑖) (𝑚 = 1, 2, 3) is minimum value in 𝑒(𝑖) =[𝑒1(𝑖), 𝑒2(𝑖), 𝑒3(𝑖)], the weight 𝑤𝑖(𝑚) may be assigned by the
following formula.

𝜔𝑖 (𝑚) = max (𝑒1 (𝑖) 𝑒2 (𝑖) 𝑒3 (𝑖))𝑒1 (𝑖) + 𝑒2 (𝑖) + 𝑒3 (𝑖) (22)

(3) If 𝑒𝑚(𝑖) (𝑚 = 1, 2, 3) is intermediate value in in 𝑒(𝑖) =[𝑒1(𝑖), 𝑒2(𝑖), 𝑒3(𝑖)], the weight 𝑤𝑖(𝑚) may be assigned by the
following formula.

𝜔𝑖 (𝑚) = 𝑒𝑚 (𝑖)𝑒1 (𝑖) + 𝑒2 (𝑖) + 𝑒3 (𝑖) (23)

Through the assignment rule, the weight of every denois-
ing module may be determined on each point according
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to the effect of denoising in IIoT. Obviously, the output of
the single denoising module is ensured when the weight
coefficient is dynamically adjusted in time. Of course, the
denoising performance of the integrated system may be
improved because each other makes use of mutual advantage
and make up own shortage.

3.2. Evaluation Indexes of Integrated Cooperative Denoising
Model. In the actual operation of integrated cooperative
denoising framework, the success of achieving the perfor-
mance goals depends on how well we develop the denoising
strategy in health monitoring of IIoT. So, it is necessary to
establish some scientific, systematic evaluation indexes of the
cooperative denoising algorithm as feedback [36, 37].

To evaluate the effectiveness of presented model, we have
constructed two indexes according to the actual situation of
health monitoring in IIoT.These evaluating indexes and rules
are set as follows.

(1) Absolute Value Error is

𝐶 = 𝑚𝑒𝑎𝑛 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∧𝑆 −𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (24)

where 𝑠 is the original signal and 𝑆 is the denoising output.
By formula (24), the evaluation rule is defined as follows.

Rule 2. The bigger the C is, the worse the denoising effect is
and vice versa.

(2) Normalized Cross Correlation (NCC) is

𝑁𝐶𝐶 = ∑𝑁𝑖=1 ∧𝑆 (𝑛) 𝑠 (𝑛)
√(∑𝑁𝑖=1 ∧𝑆2 (𝑛)) (∑𝑁𝑖=1 𝑠2 (𝑛)) (25)

where 𝑆(𝑛) and 𝑠(𝑛) are the denosing output and the real value
of the presented algorithm and n indicates the testing time.
NCC represents the curve similarity between the denoising
signal and the initial signal.

Similarity, the corresponding evaluation rule is designed
as follows.

Rule 3. The larger the value of NCC is, the better the
denoising effect is and vice versa.

So, the effect of the cooperative denoising model with
interactive dynamic adjustment functionmay be evaluated by
the above evaluation indexes.

3.3. Construction and Analysis of the Cooperative Denoising
Algorithm with Interactive Dynamic Adjustment Function.
Based on the above discussion, combining with the cooper-
ative denoising framework, the cooperative denoising algo-
rithm for nonstationary signal in IIoT may be designed in
detail as below.

Step 1. It is initialization of system. Load the original signal
of IIoT and determine the states of the algorithm switches to
be off or on.

Step 2. Calculate the number of the switches that are on. If the
number is equal to 3, step 3 is performed; otherwise Step 5 is
performed.

Step 3. Obtain three denoised signals by using LMS, VSLMS,
and VSLMS-EEMD denoising algorithms, respectively. The
denoising process is divided into training stage and equaling
stage.

(1) Training stage: for LMS denoising algorithm, the
optimal weight coefficient 𝑊 can be obtained by using (14)-
(15); for VSLMS andVSLMS-EEMDdenoising algorithm, the
optimal weight coefficient 𝑊 can be obtained by using (17)-
(18).

(2) Equalizing stage: the optimum weight coefficient 𝑊
obtained by the training stage is used to carry out equalization
and noise elimination for original signals of IIoT by using (12)
to obtain the denoised signals named 𝑆1(𝑖), 𝑆2(𝑖), and 𝑆3(𝑖),
respectively.

Step 4. Obtain the dynamic adjustments of weight coeffi-
cients 𝑤.

(1) Obtain the error signal 𝑒(𝑖) shown as (20) by using (14).
(2) Obtain weight coefficients 𝜔 based on error signal

obtained from a) by using Rule 1 that is shown as (21)-(23).

Step 5. Interactively denoising the IIoT signal by using (19).

Step 6. Repeat steps 1–5 until the number of processed signals
is equal to length of the original signal.

Step 7. Evaluate denoising algorithms by using Rules 2 and
3 that are shown as (24)-(25) based on the denoised signals
obtained from step 5.

The cooperative denoising flow chart is shown as
Figure 4.

4. Simulation Examples

To verify the effectiveness and rationality of the presented
algorithm, the simulation examples were first used to test
the denoising ability to the network data packet of health
monitoring in IIoT. In general, the simulation original signal𝑆(𝑡) was described as follows.

𝑆 (𝑡) = 𝑠 (𝑡) + V (26)

where 𝑠(𝑡) represents the useful signal and V(𝑡) indicates the
random noise.

In our simulation experiments, 𝑠(𝑡) and V(𝑡) were set up
as below.
𝑠 (𝑡) = 0.13 cos (2𝜋 × 20 × 𝑡) + 0.08 sin (2𝜋 × 10 × 𝑡)

+ 0.02 sin (2𝜋 × 40 × 𝑡)
V = 0.18wgn (𝐿, 0)

(27)

where 𝐿 represents signal length.
In our simulation examples, 𝐿 is set up as 2000.The com-

parison results between the original signal and compounded
signal with noise are shown as Figure 5.
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Figure 5: Comparison result between the original signal and noised signal.

Further, to prove the efficiency and superiority of the
improved VSLMS-EEMD and the proposed IDVSLMS-
EEMD algorithm, some comparative simulations were done,
including LMS, VSLMS, and wavelet with soft threshold
combined with EEMD (WTS-EEMD) denoising model in
[38, 39]. The corresponding denoising results were shown as
Figure 6.

Where, Figures 6(a), 6(c), 6(e), 6(g), and 6(i) illustrate
the whole effectiveness of these denoising algorithms. In
addition, Figures 6(b), 6(d), 6(f), 6(h), and 6(j) have shown
more clear and specific effectiveness by selecting anterior
200 signals. In that case, the effectiveness of the presented
algorithm may be better depicted.

To compare the effect of varieties of denoising algorithms,
we have selected the Noise Suppression Ratio (NSR) and
Signal Distortion Rate (SDR) to evaluate denoising effect,
which are defined as follows:

NSR = 1 − [∑
𝑁
𝑖=1 (∧𝑆 (𝑛) − 𝑠 (𝑛))2]

1/2

[∑𝑁𝑖=1 (∧𝑆 (𝑛) − 𝑠 (𝑛))2]
1/2

(28)

SDR = [∑
𝑁
𝑖=1 (∧𝑆 (𝑛) − 𝑠 (𝑛))2]

1/2

[∑𝑁𝑖=1 𝑠 (𝑛)2]1/2
(29)

where
∧𝑆 (𝑛) and 𝑠(𝑛) indicate the original signal with noise as

well as the denoised signal.
Without loss of the generality, the following rule needs to

be noticed.

Rule 4. The larger the NSR is, the smaller the SDR will be.
Meanwhile, this also means that the elimination effect of
noise is better.

Table 1: Denosing evaluations of LMS, VSLMS, WTS-EEMD,
VSLMS-EEMD, and IDVSLMS-EEMD.

Method/parameter NSR SDR
LMS 0.7011 0.6266
VSLMS 0.8369 0.3419
WTS-EEMD 0.8603 0.5896
VSLMS-EEMD 0.8644 0.2842
IDVSLMS-EEMD 0.8674 0.2779

Based on the rule, the comparison results are shown in
Table 1.

Combining with Figures 6(b), 6(d), 6(f), 6(h), and
6(j), we can know that the denoised curve of IDVSLMS-
EEMD algorithm is the smoothest and is closest to original
signal. The simulation results and the denoising method
parameters in Table 1 illustrated that the denoising effect
of LMS, VSLMS, WTS-EEMD, and VSLMS-EEMD is infe-
rior to proposed IDVSLMS-EEMD. Moreover, the improved
cooperative denosing algorithm may be provided with the
maximum NSR and the minimum SDR. Thus, the denoising
effect of the improved algorithm is the best.

In addition, to illustrate the influence of noise, the com-
parison result of SNR between noised signal and denoised
signal is also shown in Table 2.

As seen in Table 2, the effect of the cooperative denosing
algorithm is very good. So, after the function testing, this
integrated framework may be applied to actual project.

5. Real Experiment Examples

Denosing is the essential premise for further security analysis
of stacker in IIoT. To further verify the performance of
the proposed algorithm, the real-time simulation signal of
stacker under abnormal condition in ASRS, which has been
developed and applied in Power Grid of China, was selected
to test the denoising performance of the presented algorithm.
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Figure 6: Continued.
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Figure 6: Denosing simulation results of simulation signal by varieties of denoising algorithms (1-2000).

Figure 7: Simulate rigs of ASRS.

Table 2: SNR of the noised and denoised simulated signal.

Signal/parameter SNR
Noised signal -1.1238
Denoised signal 10.1160

The test rig of the prototype systems in IIoT is shown as
Figure 7.

The simulation rig of ASRS is constructed and developed
according to the real requirements of Power Grid in China.
Their main function is to grab, move, and stack goods from
one piece of equipment to another. As the crucial equipment
of ASRS, the security and the positioning accuracy of stacker
will directly affect the data acquisition and the data exchange
of the whole IIoT system. In addition, the stacker is driven by
motor, so the running state of stacker is directly reflected by
the driving vibration signal. In real engineering, the test rig
of stacker signal is shown as Figure 8.

In real application, the sampling time is from a.m. 9:03:51
to p.m. 15:04. The column of starting and stopping range
is from 0 to 23. The size of the detecting signal is 2000.
Then, the comparison results between the original signal and
compounded signal with noise measured were simulated by
the stacker’s running. The results were shown as Figure 9.

Table 3: Simulation results of Rule 1.

Signal/parameter C
Original signal 0
Noisy signal 0.1424
LMS 0.0823
VSLMS 0.0820
WST-EEMD 0.0810
VSLMS-EEMD 0.0726
IDVSLMS-EEMD 0.0589

Secondly, to further prove the efficiency and superiority
of the improvedVSLMS-EEMDand the proposed IDVSLMS-
EEMD algorithm, some comparative experiments were done.
The results of stacker’s running signal were simulated by
the above relevant denoising algorithms, respectively. The
denoising results were shown in Figure 10.

To see more clearly the performance of denoising algo-
rithm, we had selected the anterior 200 signals to refine
the display degree of the denoising effect. The results are
illustrated as Figure 11.

Figures 11(a)–11(e) highlight the refined display degree
and more clearly reveal the difference between the original
signal and denoising signal when the nonstationary signal
was denoised using different algorithms. As can be seen from
the refined illustration in Figure 11, the presented algorithm
with interactive dynamic adjustment function approaches
accurately high quality.

Moreover, to quantitatively illustrate and assess the differ-
ence of denoising effect, we have used the evaluation indexes
to compute the evaluated results. These values are listed in
Tables 3 and 4.

As measured in Table 3, the denoising absolute error
value is minimal when the proposed algorithm with inter-
active dynamic adjustment function was used to denoise for
the running signals of Stacker. Meanwhile, Table 4 shows
that NCC of the proposed algorithm is maximum. By the
evaluation of Rules 2-3, we know that the proposed algorithm



12 Security and Communication Networks

(a) Driven motor (b) Depression of lower track
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Figure 9: Comparison result between the original signal and noised
signal of the stacker running.

Table 4: Simulation results of Rule 2.

Method/parameter NCC
LMS 0.7500
VSLMS 0.7978
WST-EEMD 0.8005
VSLMS-EEMD 0.8429
IDVSLMS-EEMD 0.8658

with interactive dynamic adjustment function may achieve
the desired performance in real systems.

The overall idea here is the same as what we have
discussed in the previous simulation examples; the SNR
betweennoised signal and denoised signal was also computed
to illustrate the influence of noise for security analysis of
stacker in IIoT. The numerical results are shown in Table 5.

Obviously, the SNR is strengthened because the proposed
algorithm may obtain and integrate more abundant informa-
tion compared to traditional methods for security of stacker
in real health monitoring of IIoT. That means that the effect
of the cooperative denosing algorithm is very good.

Table 5: SNR of the noised and denoised signal for stacker.

Signal/parameter SNR
Noised signal -0.7437
Denoised signal 14.6039

The analysis results on the actual examples show that the
proposed denoising algorithm may improve the accuracy of
denosing to provide higher reliability for security monitoring
of stacker in IIoT. That means that our algorithm may be
applied to monitoring the security of the devices in the real
IIoT.

6. Conclusions

In this paper the cooperative denoising algorithm with
interactive dynamic adjustment function was depicted and
analyzed based on LMS, VSLMS, and VSLMS–EEMD via
the integrated optimization strategies.Meanwhile, somebasic
theories and corresponding evaluated indexes were also
selected and established. The simulation examples and actual
examples show the validity and rationality of the proposed
algorithm inmonitoring the security of real IIoT devices.The
main conclusions of our work are listed as follows:

(1) In IIoT system, the original signal is seriously inter-
fered by the surroundings resulting in low SNR. Because of
this phenomenon, it is difficult to obtain accurate and reliable
features from the confused signals, which has seriously
hindered the security analysis, health detection, and the
maintenance of IIoT system. Therefore, it is necessary to
denoise the nonstationary signal of IIoT.

(2) The shortcomings of traditional EMD algorithm
and traditional LMS algorithm with fixed step are consid-
ered. To maximize the advantages of LMS, VSLMS, and
EEMD, the VSLMS-EEMD denoising algorithm has been
constructed. On this basis, a cooperative denoising algorithm
with interactive dynamic adjustment function is proposed to
further improve the denoising accuracy of VSLMS-EEMD.
Meanwhile, the evaluated indexes and rules were designed
according to the features of the information for IIoT devices.
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(e) IDVSLMS-EEMD denoised results of stacker’s running signal

Figure 10: Denosing simulation results of stacker’s running signal by using varieties of denoising algorithms (1-2000).

(3) Simulation examples and real data examples were
used to implement and verify the efficiency of the proposed
algorithm. Moreover, the comparison results were computed
via the denoising evaluating indictors (i.e., model and rule).

The simulation results show that the new algorithm has a
better synchronous precision and security. Compared with
the traditional method, the presented method can greatly
reduce the noise ratio of security monitoring of IIoT devices.
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(d) VSLMS-EEMD refined denoised effect of stacker’s signal
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Figure 11: Denosing refined simulation chart of stacker’s running signal by varieties of denoising algorithms (1-200).
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Unfortunately, this cooperative denoising algorithm is
only for one or three kinds of denoising algorithms, and
no specific design is made for the cooperation of the two
algorithms; the weight coefficients 𝜔 is calculated by error
signal, so its calculation can be further optimized. Due to the
limited space, this work will be given in another paper.
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