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In recent years, Multi-Processor System-on-Chips (MPSoCs) are widely deployed in safety-critical embedded systems.The Cloud-
of-Chips (CoC) is a scalable MPSoC architecture comprised of a large number of interconnected Integrated Circuits (IC) and
Processing Clusters (PC) destined for critical systems. While many researches have focused on addressing the hardware issues of
MPSoCs, the communication over them has not been very well explored. Following the SDN concept, we propose a new protocol
in order to secure the communication and efficiently manage the routing within the CoC. The SSPSoC includes a private key
derivation phase, a group key agreement (GKA) phase, and a data exchange phase in order to ensure that basic security primitives
are preserved and provide secure communication. Furthermore, a network of 1-30 nodes is set in order to validate the proposed
protocol and measure the network performance and memory consumption of the proposed protocol.

1. Introduction

Since the late 1990s the rise of System-on-Chips (SoCs)
has caused a huge technological progress with a dramatic
involvement not only on the field of electronics but also on
Internet of Things (IoT) and Internet of Everything (IoE)
field [1]. IoT and IoE brought into the surface a wide variety
of applications, able to satisfy our needs in transportation,
health-care, manufacturing, and energy management with
diverse requirements, which traditional SoCs are not always
able to support. Hence, the creation of a flexible, technology
aware SoC design is vital.

A new scalable MPSoC architecture, called Cloud-of-
Chips (CoC) (Figure 1), could be a possible solution, which
consists of a combination of multiple Integrated Circuits
(ICs) and IC building blocks interconnected together with
different communication speeds and hierarchy levels. The
CoC design contains a Printed Circuit Board (PCB) of
multiple ICs where each IC contains scalable Processing
Clusters (PCs). Each PC comprises a combination of High
Performances (HP) and Low Power (LP) cores and thus
enables a heterogeneous system architecture [2].The on-chip
data communication is managed by Network on Chip (NoC)

[3], which supports regular interconnected topologies, such
as MESH, TORUS, etc. [4].

In order to manage the routing on CoC with multiple
ICs, the size of routing tables will be large enough not to
be accommodated on ordinary NoC routers. The memory
overhead for routing tables will grow by 𝑛2 ∗ 𝑘 units where
𝑛2 is the number of PCs on each IC and k is the number
of IC on each PCB. Therefore, in order to achieve secure
communication among PCs and ICs on CoC but also to
manage the trafficof the networkwith an efficientmanner, the
Software DefinedNetworking (SDN) technology [5] could be
adopted. Hence the design of a secure networking approach
of SDN technology and its integration into hardware by
moving network intelligence and services from complex and
expensive physical switches and routers and placing them
into software that runs on the top of the underlying hardware
need to be addressed.

The SDN-based networking strategy enables the commu-
nication between any two PCs on CoC. There is no exist-
ing literature for CoC. However, there is limited literature
available in NoC-based MPSoC which includes SDN as a
packet routing approach. SDNoC is a NoC communication
paradigm rather than a specific design and implementation,
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Figure 1: CoC architecture.

presented for first time in 2014 [6]. Specifically Cong et al.
propose a SDNoC architecture where the control plane is
deployed as a distributed unity at each router; however this is
contrary to SDN philosophy because both planes are placed
inside the router. Afterwards Sandoval et al. [7, 8] propose an
SDNoC architecture which consists of three layers: Operating
System, Network Operating System, and Infrastructure. In
this research the authorsmade an assumption that the routers
need configuration data by the SDN controller. However
flows, that are not managed by the SDN controller, use the
XY routing algorithm. Thereafter Scionti et al. [9] use the
SDN architecture in order to explore dynamic changes in the
network topology; each Processing Element (PE) has specific
instructions to control the network topology by software,
including switch off the links which are not used. Another
interesting approach is proposed by Berestizshevsky et al.
[10], in which an SDNoC strategy by implementing a network
manager is introduced, acting as controller with global view
of the network, which controls the network in adaptive
manner. However in order to be deployed on chip, a detailed
API implementation and standardization between control
plane and data forwarding plane need to be considered.

In CoC, the network is separated into two main abstrac-
tion hardware levels: IC and PCB. On the IC level the
hardware routers on Network on Chip (NoC) are functional
as SDN switches and the routing on individual IC is managed
by an IC level controller. For the inter IC communication,
a SDN switch is placed at the boundary of each IC and it
is connected to a PCB level controller [11] through physical

links. The controller consists of a 𝑆𝑒𝑐𝑢𝑟𝑒 𝐶ℎ𝑎𝑛𝑛𝑒𝑙, where the
private and public keys are stored for the communication
between SDN switches, 𝑅𝑢𝑙𝑒𝑠 where the applicable rules to
the switches are included, 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 where the sup-
ported communication protocols are included, and 𝐿𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠
and 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠, where the network interface
(NI) informs the controller about the traffic of the network
and according to that field the𝑅𝑢𝑙𝑒𝑠 is constructed (Figure 1).

There are several SDN-based communication protocols
seen in literature but themost used is theOpenFlow (OF). OF
establishes a unicast communication channel between each
individual switch and the controller. It allows the controller
to discover OF-compatible switches, create rules for the
switching hardware, and also collects statistics [12]. This
protocol has several security flaws that can be exploited to
compromise the network. Unfortunately, the SDN paradigm
is susceptible to several security breaches [13, 14]. However, in
this paper, the main concern is the communication security
among SDN switches (on each IC) and controller. In addition
to the switch controller unicast communication, multicast
communication is also needed to address the issue of secure
transfer of routing updates to all/some of the switches [15, 16].

The existing security solution such as the Transport
Layer Security (TLS) protocol is not well enforced in the
current version of the OF standard [17]. The specification
mentioned that “the switch initiates a standard TLS or TCP
connection to the controller” which means that using TLS is
completely optional. Moreover, the Public Key Infrastructure
(PKI) overhead includes generation and signing of digital
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certificates for switches and controller. This makes PKI
based solution less acceptable for and MPSoC architecture.
Therefore, we propose a more suitable solution that fits to
unique characteristics of the CoC architecture.

In SDN concept, multiple vulnerability analyses have
been performed [3, 5, 7–9, 12, 13, 18–22]; however, none of
them attempts to extensively analyze the security issues of the
SDN architecture. In the latest version of OpenFlow, in order
to provide authentication and encryption of the connection
between switch and controller, TLS is suggested security
mechanism [23]. However, the latest OpenFow Switch spec-
ification [17], presented by Open Networking Foundation
(ONF), does not provide enough information about security
features and the implementation of TLS. The lack of TLS use
could lead to fraudulent data insertion and DoS attacks [24].
Under the umbrella of Public Key Cryptography (PKC), TLS
protocol requires a Certificate Authority (CA) to generate the
CA’s key, certificates for the controllers, switches, and then
the signing of these certificates with the CA’s key. Afterwards
the certificates and the keys of the network entities will be
deployed to the respective devices.

1.1. Group Key Agreement. The existing literature on SDN
security refers to point-to-point communication between
switches and controller. However, running different appli-
cations on CoC architecture creates multiple routing paths
among ICs and therefore, multiple switches interacting with
SDN controller quite frequently. Generally, the application
based logical subsystems will be created which may involve
multiple ICs (with different components such as GPU, crypto
processor, etc.). Our idea is to create a secure point-to-
multipoint communication between controller and group
of switches, i.e., secure multicast. Therefore, two group key
agreement (GKA) protocols are chosen for our architec-
ture: the Sharma et al. approach [25] and the Teng et al.
approach [26]. The protocols that we chose are balanced
and imbalanced group key agreement (GKA) protocols. In
balancedGKAprotocols, all the participating nodes share the
same computation burdenwhile, in imbalanced, the powerful
node (in our case, the controller) is majorly responsible for
expensive computations. Sharma’s protocol comes with the
benefit of achieving mutual authentication using signature
and of course the assurance that every participant at the
end is in possession of the valid group key. However, the
Teng protocol does not provide mutual authentication, thus
trading security for efficiency.

1.2. Contribution. The need of secure communication
between different hierarchy layers on MPSoC architecture in
conjunction with the necessity of low power computation,
scalability, and flexibility not only between the network
nodes but also in the network as a whole leads us to the
structure of a new communication protocol. This protocol
will provide authenticity to network entities, low power
consumption for the system, and a new message stack in
order to have a quick secure communication among switches
and controller.

The contribution of this paper can be summarized as
follows:

(i) The design of new SDN-based protocol, which has
three main functionalities: the derivation of keys for
every node in our network through private key gen-
erator (PKG), the establishment of a secure group of
participants, and the secure communication between
the participants.

(ii) The validation of the proposed protocol, which is
based on the SDN concept (by using switches and
controller as network entities).

(iii) The performance analysis of two GKA protocols in
order to verifywhich ismore suitable in order to cover
the second functionality of the proposed protocol in
the view of running time and memory consumption.

The rest of the paper is organized as follows: in Section 2
the security requirements are presented; based on them it
follows Section 3, where the group key agreement approach
is analyzed. Afterwards, in Section 4, the SSPSoC commu-
nication protocol for an SDN-CoC network is described,
where the architecture, the packet format, the proposed
network messages, and the three different phases of the
SSPSoC protocol, Private Key Extraction, Group Formation,
and Switch Controller Communication, are presented. It
follows the validation and the performance analysis of the
proposed protocol in Section 5. Last but not least our research
is summarized in the last section.

2. Security Requirements

TheCoC architecture contains multiple switches and a single
controller to manage the overall communication among ICs.
The infrastructure to implement identity based cryptography
requires an on-board PKG. The overall communication
security on this layer (switch controller) can be investigated
from two viewpoints. The first view is to securely deliver
the private keys to switches and controller. The second view
covers the secure communication among all the switches and
the controller.We achieve this security using an authenticated
group key agreement protocol.

2.1. Phase 1. The foremost issue to address is to transport
the private key and required security parameters to all the
switches and the controller. The PKG generates the private
key for all switches and the controller and delivers it securely.
The literature refers to using a secure channel but they
do not specify exactly what this channel could be and its
security requirements. The possible threats and solutions are
as follows:

(i) In order to ensure that the only legitimate nodes can
receive identity ID and private key, node authentica-
tion must be performed by the 𝑃𝐾𝐺.

(ii) A counterfeit PKGwith differentmaster key generates
private keys and IDs for the nodes. This 𝑃𝐾𝐺 is able
to decrypt all the traffic between nodes and controller.
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In this case, authentication of the PKG by the nodes
is also needed.

(iii) An attacker can eavesdrop on the response of the PKG
and steal the private key of a node. A solutionmust be
there to ensure the confidentiality of communication
between a node and the PKG.

(iv) An attacker can sniff the packets exchanged between
a node and the PKG and replay them later to obtain a
private key.

(v) An attacker can manage to compromise the integrity
of the packets between node and PKG.

2.2. Phase 2. This phase refers to switch controller group
communication where we adopted a GKA protocol to secure
it.The common threats are spoofing, tampering, repudiation,
information disclosure, denial of service, and elevation of
privileges.The authenticated GKA protocol provides authen-
tication of all participants. As the session key is derived, rest
of the communication is encrypted using AES-GCM with
session key. Therefore, confidentiality, authenticity, integrity,
and nonrepudiation are maintained. To address denial of
service and authorization issues, separate precautions need
to be enabled.

3. Group Key Agreement

3.1. Assumptions. Before the design of the protocol some
assumptions were vital to be made:

(i) The network consists of multiple nodes, which can be
either a controller or SDN switches or the PKG, which
derives the private keys to the network entities.

(ii) The private ID-based keys are provided to the partic-
ipants of the group by PKG, which is the private key
generator. Suppose that 𝑚𝑠𝑘 is the master secret key
of the PKG and 𝐾𝑃𝑢𝑏𝑃𝐾𝐺 is the public key.

(iii) Given that there are 𝑛 entities in the network,
𝑈1, 𝑈2, . . . , 𝑈𝑛 is a group of participants in a GKA
session for establishing a group key. Assuming that𝑈𝑛
will be the controller of every group, there are 𝑛 − 1
nodes (SDN switches) in this group.

3.2. GKA Protocols. By taking into account the above
assumptions and the security requirements, we present the
two GKA protocols that we based on and we constructed
our protocol. The two protocols consist of 3 major phases:
The 𝑆𝑒𝑡𝑢𝑝 phase (hash functions, group generators, and
pairing), the 𝐾𝑒𝑦 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 phase (nodes and controller
obtain their private keys fromPKG), and the𝐾𝑒𝑦 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
phase (establishment of a group session key for participants).

The Teng protocol [26]:

Setup
(i) The PKG chooses two groups G1 and G2 of prime

order 𝑞, a bilinear pairing 𝑒 : G1 × G1 󳨀→ G2.
(ii) The PKG selects two random generators 𝑃 and 𝑄 of

G1.

(iii) The PKG selects 𝑠 ∈ Z∗𝑞 as the 𝑚𝑠𝑘 and sets
𝐾𝑃𝑢𝑏𝑃𝐾𝐺 = 𝑠𝑃.

Private Key Extraction. Defining as input parameters, 𝑚𝑠𝑘
and 𝐼𝐷𝑖 ∈ {0, 1}

∗ with 𝐼𝐷𝑖 being the ID of the node,

(i) The PKG computes 𝐾𝑃𝑟𝑖V𝑖 as 𝑆𝑖 = (𝑞𝑖 + 𝑠)
−1𝑄 where

𝑞𝑖 = 𝐻(𝐼𝐷𝑖).
(ii) The PKG communicates secretly 𝐾𝑃𝑟𝑖V𝑖 to node 𝑖.
(iii) The public key of node 𝑖 is 𝑇𝑖 = 𝑞𝑖𝑃 + 𝐾𝑃𝑢𝑏𝑃𝐾𝐺 =

(𝑞𝑖 + 𝑠)𝑃.

Key Agreement Round 1. Each participant

(i) 𝑈𝑖 selects a random 𝑟𝑖 ∈ 𝑍
∗
𝑞 .

(ii) 𝑈𝑖 precomputes 𝑃𝑖 = 𝑟𝑖𝑇𝑖.
(iii) 𝑈𝑖 (1 ≤ 𝑖 ≤ 𝑛) sends 𝑃𝑖 to the controller 𝑆.

Key Agreement Round 2. Upon receiving 𝑃𝑖 from all nodes,
each participant

(i) 𝑈𝑖 (1 ≤ 𝑖 ≤ 𝑛), 𝑆 chooses random 𝑟 ∈ 𝑍∗𝑞 .
(ii) 𝑈𝑖 computes 𝑄𝑖 = 𝑟𝑃𝑖.
(iii) 𝑈𝑖 broadcasts 𝑄𝑖 (1 ≤ 𝑖 ≤ 𝑛), keeping 𝑟 secret.

Key Computation. On receiving 𝑄𝑗 (1 ≤ 𝑖 ≤ 𝑛),

(i) 𝑈𝑖 computes the final session key as

𝑠𝑘 = 𝑒 (𝑄𝑖, 𝑆𝑖)
𝑟−1
𝑖 𝑒 (𝑄1 + 𝑄2 + ⋅ ⋅ ⋅ + 𝑄𝑛, 𝑄)

= 𝑒 (𝑃, 𝑄)𝑟+𝑟𝑟1(𝑠+𝑞1)+⋅⋅⋅+𝑟𝑟𝑛(𝑠+𝑞𝑛) .
(1)

Precomputation. The following tuples (𝑟𝑖, 𝑟
−1
𝑖 , 𝑃𝑖) should be

created and stored in the memory storage of the nodes
before the execution of the GKA.This essentially reduces the
computation cost of the first round for the nodes and also
improves the speed of key computation phase.

The Sharma protocol [25]:

Assumption. Let 𝑝𝑖𝑑 be the set of the identities of the
participants in one session of the protocol and 𝑠𝑖𝑑 the session
identifier.

Setup

(i) The PKG selects an EC group 𝐺 of prime order 𝑞. Let
𝑃 be a generator of group 𝐺.

(ii) The PKG computes the system’s public key as
𝐾𝑃𝑢𝑏𝑃𝐾𝐺 = 𝑠𝑃 by choosing a master secret 𝑠 ∈ Z∗𝑞 .

(iii) The PKG chooses cryptographic hash functions 𝐻1 :
{0, 1}∗ × 𝐺 󳨀→ Z∗𝑞 , 𝐻2 : {0, 1} × 𝐺 × 𝐺 󳨀→ Z∗𝑞 and
𝐻 : {0, 1}∗ 󳨀→ {0, 1}𝑘.

Key Extraction. Defying the system parameters 𝑃𝑎𝑟𝑎𝑚𝑠 =
{𝐺, 𝑞,𝐻1, 𝐻2, 𝐻3, 𝐻,𝐾𝑃𝑢𝑏𝑃𝐾𝐺} and by keeping the master
key secret,
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(i) The PKG selects 𝑟𝑖
$
←󳨀 Z∗𝑞 and computes 𝑅𝑖 = 𝑟𝑖𝑃.

(ii) The PKG computes the private key for the user 𝑈𝑖 as
𝐾𝑃𝑟𝑖V𝑖 = 𝑟𝑖 + 𝑠𝐻1(𝐼𝐷𝑖, 𝑅𝑖).

(iii) Each participant 𝑈𝑖 can verify the private key as
𝐾𝑃𝑟𝑖V𝑖𝑃 = 𝑅𝑖 + 𝐻1(𝐼𝐷𝑖, 𝑅𝑖)𝐾𝑃𝑢𝑏𝑃𝐾𝐺.

Key Agreement Round 1. Each participant

(i) 𝑈𝑖 (1 ≤ 𝑖 ≤ 𝑛) chooses 𝑒𝑝ℎ𝑖
$
←󳨀 Z∗𝑞 and computes

𝑙𝑖 = 𝐻3(𝑒𝑝ℎ𝑖, 𝐾𝑃𝑟𝑖V𝑖) and 𝐿 𝑖 = 𝑙𝑖𝑃.

(ii) 𝑈𝑖 (1 ≤ 𝑖 ≤ 𝑛) selects a random string 𝑘𝑖 ∈ {0, 1}𝑘.
Each user, except 𝑈𝑛 computes 𝐻(𝑘𝑖). The user 𝑈𝑛
masks the randomness as 𝑘̃𝑛 = 𝐻(𝑘𝑛, 𝑥𝑛) where 𝑥𝑛
is the long-term secret of 𝑈𝑛.

(iii) 𝑈𝑖 (1 ≤ 𝑖 ≤ 𝑛) computes𝐻(𝑘̃𝑛).
(iv) 𝑈𝑖 (1 ≤ 𝑖 ≤ 𝑛) broadcasts the tuple

⟨𝐿 𝑖, 𝐻(𝑘𝑖),𝐻(𝑘̃𝑛), 𝑅𝑖⟩ to all 𝑛 − 1members.

Key Agreement Round 2. Upon receiving the message
⟨𝐿𝑗, 𝐻(𝑘𝑗),𝐻(𝑘̃𝑛), 𝑅𝑗⟩, each participant

(i) 𝑈𝑖 computes 𝑈𝑖𝑗 = 𝑙𝑖𝐿𝑗 and 𝐿 = 𝐿1 ‖ 𝐿2 ‖ .. ‖ 𝐿𝑛.
(ii) 𝑈𝑖, except𝑈𝑛, computes𝐾𝑖𝑗 = 𝐻(𝑈𝑖𝑗)⊕𝑘𝑖. the user𝑈𝑛

computes𝑚𝑎𝑠𝑘 = 𝐻(𝑈𝑖𝑗) ⊕ 𝑘̃𝑛.

(iii) 𝑈𝑖 chooses another random number 𝑡𝑖 ∈ Z∗𝑞 and
computes 𝑇𝑖 = 𝑡𝑖𝑙𝑖𝑃. Also computes the signature on
⟨𝐿, 𝑇𝑖⟩ as 𝜎𝑖 = 𝑡𝑖𝑙𝑖 + 𝐾𝑃𝑟𝑖V𝑖𝐻2(𝐼𝐷𝑖, 𝐿, 𝑇𝑖, 𝑝𝑖𝑑).

(iv) 𝑈𝑖 broadcasts ⟨𝐾𝑖𝑗 (1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖), 𝑚𝑎𝑠𝑘, 𝜎𝑖, 𝑇𝑖⟩ to
all 𝑛 − 1members.

Key Computation. Upon receiving ⟨𝐾𝑗𝑖, 𝑚𝑎𝑠𝑘, 𝜎𝑖, 𝑇𝑖⟩, each
participant

(i) 𝑈𝑖 verifies the received signature as 𝜎𝑖𝑃 = 𝑇𝑖 + (𝑅𝑖 +
𝐻1(𝐼𝐷𝑖, 𝑅𝑖)𝐾𝑃𝑢𝑏𝑃𝐾𝐺)𝐻2(𝐼𝐷𝑖, 𝐿, 𝑇𝑖, 𝑝𝑖𝑑).

(ii) 𝑈𝑖 computes 𝑘̃𝑗 = 𝐻(𝑈𝑗𝑖) ⊕ 𝐾𝑗𝑖. (Similarly, 𝑘̃𝑛 can be
computed using mask.)

(iii) Note that 𝑈𝑖𝑗 = 𝑙𝑖𝐿𝑗 = 𝑙𝑖𝑙𝑗𝑃 = 𝑙𝑗𝑙𝑖𝑃 = 𝑙𝑗𝐿 𝑖 = 𝑈𝑗𝑖.

(iv) 𝑈𝑖 checks the 𝑘𝑖 as𝐻(𝑘𝑗) = 𝐻(𝑘̃𝑗) for (1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸=
𝑖).

(v) 𝑈𝑖 computes the session identity 𝑠𝑖𝑑 = 𝐻(𝑘𝑖) ‖
𝐻(𝑘2) ‖ . . . ‖ 𝐻(𝑘̃𝑛).

(vi) The session key is computed as 𝑠𝑘 = 𝐻(𝑘1 ‖ 𝑘2 ‖ . . . ‖
𝑘̃𝑛 ‖ 𝑠𝑖𝑑 ‖ 𝑝𝑖𝑑).

4. Communication Protocol

In this section, the network architecture following the packet
format, the networkmessages that are broadcastedwithin our
network, and the three phases of the proposed protocol are
introduced.

4.1. Architecture. Theproposed architecture of the full system
is presented on Figure 1. However our network architecture
consists of 3 main network entities:

(i) A PKG, which is considered as a trusted third party
and generates the corresponding private key to the
rest of the nodes (switches and controller).

(ii) A centralized controller with a broader network view
to manage the routing of the packets within the
network.

(iii) Multiple switches which are responsible to route the
packets between the PC

The communication between controller and switches is man-
aged through a virtual network running on the top of the
CoC.

4.2. Packet Format. The packet format is the core of the
protocol stack. Every packet consists of a header structure,
which is 32-bit long (Figure 2) [11]. The header message
format consists of three main fields. Firstly, the version field
indicates the version of communication protocol to which
this message belongs. Secondly, the length field indicates
where this message will end in the byte stream starting
from the first byte of the header. Thirdly, the xid, or trans-
action identifier, is a unique value used to match requests
to responses. The type field which indicates what type of
message is present and how to interpret the payload is
version dependent and we can see the messages that it is
including above. Furthermore every message that travels
across the network consists of the same header of 32 bits.
However the payload size depends on the length field that is
provided through header message and it can vary according
to the type of the message. Afterwards it included the source
and destination ID following the addressing format that
we previously presented. Another field is the type of the
packet; for example, it could be opcodes for a given processor,
followed by somepadding and the data. As far as themessages
of the type field, a specific message stack is designed, which is
presented afterwards.

4.3. Network Messages. The different types of messages,
which were designed and integrated into packet format,
are depicted in Table 1. The SSPSoC protocol includes 8
types of messages with different content. These messages are
flowing through the links between the network entities. In
addition the type value of the messages is used to distinguish
GKA protocol messages from other messages that might be
circulating on the network and one byte is used to encode the
message type.

4.4. SSPSoC Network Initialization

Phase 1 (obtain private key). During the first phase, the
switches and the controller communicate with the PKG, in
order to obtain their long-term private keys. One of the
major issues of concern on this phase was the security level
of the communication between the nodes and the 𝑃𝐾𝐺, by
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Figure 2: Packet format [11].

Table 1: Designed network messages.

Type Type Value Description Contents
KEY REQUEST 0x06 Sent by nodes to the PKG Enc(timestamp), 𝐼𝑉, 𝑡𝑎𝑔

KEY REPLY 0x07
Sent by PKG to nodes as a
reply to KEY REQUEST

message

Enc(System Parameters,
node 𝐼𝐷, private key),

𝐼𝑉, 𝑡𝑎𝑔

JOIN 0x01 Broadcasted by nodes who
wants to join a group

node 𝐼𝐷, timestamp, JOIN
token

INVITE 0x02
Broadcasted by controller
for inviting nodes to form a

group

(participant 𝐼𝐷1, node
𝐼𝐷1, . . ., participant 𝐼𝐷𝑛,

𝑁𝑜𝑑𝑒 𝐼𝐷𝑛)

READY 0x03 Broadcasted by nodes as a
reply to INVITEmessage

participant 𝐼𝐷, timestamp,
READY token

ROUND 1 0x04
Contains cryptographic

material for the first round
of the GKA

sender 𝐼𝐷, Crypto R1

ROUND 2 0x05
Contains cryptographic
material for the second
round of the GKA

sender 𝐼𝐷,
receiver 𝐼𝐷,
Crypto R2

DATA 0x08 Contains encrypted data
with the group key

sender 𝐼𝐷,
receiver 𝐼𝐷,

Enc(data), 𝐼𝑉, 𝑡𝑎𝑔

tackling the problem of establishing a secure channel for
the private key transmission. However, keeping the private
key confidential is not the only security consideration; we
should also take into account the authentication of the nodes.
The authentication will ensure that only legitimate nodes
can obtain a private key from the 𝑃𝐾𝐺. For this reason, the
implementation of authenticated KEY REQUEST messages is
mainly used.

A node first determines a timestamp (𝑡𝑠) to prevent the
replay attacks [27]. Afterwards it generates the random part
of the Initialization Vector (𝐼𝑉) and it encrypts 𝑡𝑠 using
the Preshared Symmetric Secret Key (𝑃𝑆𝐾) and AES in
Galois Counter Mode (AES-GCM) [28]. AES-GCM out-
puts the ciphertext 𝑐 and the authentication tag: 𝑐, 𝑡𝑎𝑔 =
𝐴𝐸𝑆𝑃𝑆𝐾,𝐼𝑉(𝑡𝑠). Thereafter the node sends a KEY REQUEST

message to the PKG, which contains the 𝐼𝑉, the ciphertext,
and the authentication tag. It follows a process where the
𝑃𝐾𝐺 decrypts the ciphertext and checks the authentication
tag. If the tags are matching, it will check that the decrypted
timestamp is within a given threshold. In case the timestamp
is valid, it will generate a random node ID and it will extract
the associated private key,𝐾𝑃𝑟𝑖V(𝑖). Thereupon it generates a
random 𝐼𝑉 and encrypts them using the𝑃𝑆𝐾 and AES-GCM
and sends the 𝐼𝑉, ciphertext, and the authentication tag to the
node.The steps of the this procedure are depicted on Figure 3.

Phase 2 (form a group). On this phase each switch commu-
nicates with the controller in order to show interest to join a
group. The controller decides upon the group members and
invites them to join the group.
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Figure 3: Private key exchange.

Firstly we are assuming that Phase 1 has been already
performed and that the switches and controller have securely
obtained their private keys. The controller has the power to
decide which participants to invite to join a group, according
the 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 and 𝑅𝑢𝑙𝑒𝑠 that includes (Fig-
ure 1). However when a switch wants to join an already
existed group, it broadcasts a JOIN message with its node
ID, without knowing the ID of controller. The controller is
waiting for JOINmessages in order to start forming a group of
switches. The behavior of the controller when receives JOIN
message depends on the characteristics and requirements of
the running applications which are translated and stored on
the 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 and 𝑅𝑢𝑙𝑒𝑠 of the controller. As
soon as the controller receives a number of JOIN messages
and a group has been created, it broadcasts an INVITE
message to all participated switches of the group, including
a given session participant 𝐼𝐷 and node 𝐼𝐷 of all members of
the group. The switches afterwards verify that they received
the invitation and it follows the group key agreement process,
where they are performing two rounds of messages. The two
rounds are described in Section 3.

Phase 3 (switch controller communication). Once the group
has been formed, we move into the last phase which is used
for data exchange. In this phase the controller exchanges data
messages with the groups of switches. Furthermore before
the controller start exchanging any message with a group of
switches, it checks the𝐺𝑟𝑜𝑢𝑝 𝑇𝑎𝑏𝑙𝑒where all the IDs of group
participants information that we described in the previous
phase are stored. In case of data transmission between a
group of switches and controller, the controller is using the

𝑆𝑒𝑐𝑢𝑟𝑒 𝐶ℎ𝑎𝑛𝑛𝑒𝑙 where it encrypts the data. The controller
encrypts the data using AES in GSM mode, the group key,
and an 𝐼𝑉.

5. Validation and Performance Analysis

As far as the performance analysis of SSPSoC protocol, we
based on a simple scenario with three participants: PKG,
Switch, and Controller. The messages that will be exchanged
between three participants are depicted in Figure 4. As a first
step the switch and controller will obtain a private key from
PKG by establishing a TCP connection and transmitting the
KEY REQUEST message, the PKG will reply by KEY REPLY
message. While a TCP connection is needed in order to
conduct a validation of our protocol, Layer 4 headers and
protocols are not needed in the context on MPSoC, thus
before its integration into an MPSoC platform some proper
modifications should be performed.Afterwardswemove into
GKA process, where we implemented the Sharma protocol
and Teng protocol, described in Section 3. In order to fit
these two GKA protocols in our scenario we implement the
following steps:

(1) A switch broadcasts a JOIN message, which contains
its 𝐼𝐷; the destination is always the controller and
waits for an INVITEmessage.

(2) The controller receives the JOIN message, makes a
decision about the participants of the group, and
broadcasts an INVITE message to them, which con-
tains the 𝐼𝐷𝑠 of all the invited participants and waits
for READYmessages.
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Figure 4: SSPSoC message layer.

(3) The switch receives the INVITEmessage and creates a
list of participants. If the 𝐼𝐷 is valid, based on the list,
it broadcasts a READYmessage.

(4) The controller remains in idle mode until it receives
READY messages from the switches that are par-
ticipants of the group for a specific time. After-
wards it sends a ROUND 1 message and waits for
ROUND 1 REPLYmessages.

(5) As soon as the switch receives the ROUND1message, it
broadcasts a ROUND 1 REPLY message by waiting for
ROUND 1 and ROUND 2messages.

(6) When the controller receives the ROUND 1 Reply
message from all the participants of the group,
it will send ROUND 2 messages by waiting for
ROUND 2 REPLYmessages.

(7) When the controller receives ROUND 2 REPLY mes-
sages from all switches, the key computation of group
key is started.

(8) As a last step the switches that belong already into
a group can start exchanging DATA messages with
controller by using OpenFlow protocol.

Following the SDN concept, we validate the SSPSoc protocol
by using the emulatorMininet 3 [29], running on a computer.
As far as the network entities: OpenVSwitches (OVS) [30] was
used as SDN switches and a Ryu [31] was used as an SDN
controller. The network hosts are emulated using lightweight
OS-level virtualisation: each virtual host inside the mininet

network corresponds to a container and it has a virtual net-
work interface with a distinct IP address [21]. Applications,
such as the PKG, controller, and node executables, can run
directly inside virtual hosts. In our experiments, the hosts are
interconnected using virtual Ethernet links andOVS switches
running in kernel mode. In each emulated network instance,
one virtual host was used to run the PKG, one host for
the controller, and the rest of the hosts to run the nodes
participating in the GKA. As far as the implementation of
GKA protocols, we used the Pairing Based Cryptography
(PBC) [32] cryptographic library, RIPEMD-160, SHA-256
hash functions, and AES-GCM cipher. Following the PBC
library, Type A (based on symmetric pairing) and Type d159
(based on MNT curves [19]) parameters were used for the
implementation of [26] and [25], respectively.

5.1. Network Performance. We perform the scenario for a
sample of 1 up to 30 nodes (32 virtual hosts in total).
Specifically, in order to test the performance of our protocol
based on group key agreement, groups of 2 up to 30 nodes
(switches) were created. In this work, the first concern was
the evaluation of the performance of our SSPSoC by using
two different GKA protocols in order to find out which is
more appropriate in our case according to their total cost, the
cost of ROUND 1 and ROUND 2, and the key derivation cost.
The total cost is referring to the time when a first INVITE
message has been broadcasted until the time that the first
DATA message has been formed and sent. The cost of two
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Figure 5: Performance results.

rounds is referring to the period from first ROUND 1message
or ROUND 2 message accordingly sent by controller until
the period that the last ROUND 1 REPLY or ROUND 2 REPLY
message received by the switch. The key derivation cost
refers to time that we need in order to derive the group key
(Figure 5).

5.2. Memory Consumption. Following the MPSoC concept
another important factor we should take into account is the
memory consumption, since bothGKAprotocols are promis-
ing low power consumption. We perform the above scenario
for 5, 10, and 15 nodes. The total amount of heap memory
allocated during the execution of the SSPSoC protocol by
using the two GKA schemes was measured with Valgrind
tool Suite [20], which perform a dynamic binary analysis and
enables the Massif heap profiler. The results are presented on
Figure 6.

6. Conclusion and Future Work

In this paper, we propose a new communication protocol
based on group key agreement approach able to address
the inside communication of a CoC system. Following the
design of the proposed SSPSoC protocol, we validate and
simulated it within an SDN environment. Our results focused
on the evaluation of two GKA schemes according to their
scalability and their power consumption. As far as the
results are concerned, we noticed that the Teng protocol
has far better performance and significantly lower power
consumption based on the number of participants and that
makes it more appropriate option for the third phase of our
SSPSoC protocol. From the other side the Sharma protocol,
even without using pairing as Teng protocol, has higher cost
and memory consumption. We believe that these results are
obtained due to the authenticity of every participant that



10 Security and Communication Networks

5 nodes 10 nodes 15 nodes

23.40
22.60

27.70 27.30

32.70 32.30

Controller
Nodes

0

5

10

15

20

25

30

Pe
ak

 h
ea

p 
m

em
or

y 
al

lo
ca

tio
n 

(K
iB

)

(a) Sharma protocol

5 nodes 10 nodes 15 nodes

Controller
Nodes

24.30

16.50

28.30

19.00

32.40

20.30

0

5

10

15

20

25

30

Pe
ak

 h
ea

p 
m

em
or

y 
al

lo
ca

tio
n 

(K
iB

)

(b) TENG protocol

Figure 6: Memory consumption of two GKA protocols.

the Sharma protocol is considering in contrast to the Teng
protocol which does not consider the authenticity of the
group participants.

Possibly, future work could be the implementation of
the SSPSoC protocol within the context of MPSoC. In
order to achieve this, a cyclic accurate simulator should
be chosen and some appropriate modifications should be
made in the SSPSoC protocol. Another possible extension
could be to add more controllers in our system and create
groups of controllers; with this way secure communication is
provided not only between ICs but also between the different
abstraction layers of a MPSoC architecture.
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