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Social Internet of�ings (SIoT) integrates social network schemes into Internet of�ings (IoT), which provides opportunities for
IoT objects to form social communities. Existing social network models have been adopted by SIoT paradigm. �e wide dis-
tribution of IoT objects and openness of social networks, however, make it more challenging to preserve privacy of IoT users. In
this paper, we present a novel framework that preserves privacy against inference attacks on social network data through ranked
retrieval models.We propose PVS, a privacy-preserving framework that involves the design of polymorphic value sets and ranking
functions. PVS enables polymorphism of private attributes by allowing them to respond to di�erent queries in di�erent ways. We
begin this work by identifying two classes of adversaries, authenticity-ignorant adversary, and authenticity-knowledgeable
adversary, based on their knowledge of the distribution of private attributes. Next, we de�ne the measurement functions of utility
loss and propose PVSV and PVST that preserve privacy against authenticity-ignorant and authenticity-knowledgeable adver-
saries, respectively. We take into account the utility loss of query results in the design of PVSV and PVST. Finally, we show that
PVSV and PVST meet the privacy guarantee with acceptable utility loss in extensive experiments over real-world datasets.

1. Introduction

1.1.Motivation. SIoT integrates social network schemes into
IoT systems, which provides opportunities for IoTobjects to
form social networks.�e SIoTparadigm is promising as it is
believed that SIoT structures are helpful in enhancing the
navigability of IoT networks, identifying levels of trust-
worthiness and reusing existing social network models [5].
In this scenario, privacy and security issues have been ex-
tensively studied [6, 7, 24, 48]. However, current studies in
privacy preservation of IoT systems focus on access control
[23, 46], communication and authentication protocols
[4, 34, 44], and attribute-based encryption [39, 43]. �e
features of social network have not been thoroughly
considered.

�e nature of online social networks (OSN) requires
sharing of information. User information, including activity
patterns and descriptive attributes, is mined and analyzed to

improve user experience of OSN applications. �ird party
users also take advantage of the huge amount of data col-
lected by social networks [21]. As part of the improvement of
user experience, ranked retrieval models have been exten-
sively studied and applied to many OSN features, e.g., link
prediction and recommendation systems [32, 36, 47]. For
instance, given a user’s information (which can be a tuple in
a database), a ranked retrieval model returns a ranking result
that serves OSN features, e.g., “People you may know” and
“Recommended for you.” Furthermore, many OSN pro-
viders improve the accuracy of ranked results by taking into
account private attributes of users in the ranked retrieval
model. For example, sensitive demographics such as race,
religion, and income can help in friend recommendation
features as intuitively people sharing similar demographics
are more likely to be interested in each other.

OSN providers relieve users’ concern of privacy leakage
by allowing them to mark attributes as “private” and hiding
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private attributes from profiling pages and ranked results.
Users believe that their privacy is well protected since private
attributes are invisible to the public in their profiles or any
ranked results. However, Rahman et al. [35] proposed Rank
Inference and showed that privacy of private attributes in the
ranked retrieval model is not guaranteed. In their approach,
the value of a private attribute can be inferred through a
ranked retrieval interface given the premises that the domain
of the private attribute is finite and that the ranking function
has both monotonicity property and additivity property
[35]. To be more specific, given monotonicity and additivity
conditions, an adversary is always able to find a pair of
differential queries, qθ and qθ′, such that (a) qθ and qθ′ share
the same predicate on all attributes except for a private
attribute B1, (b) the value of B1 in qθ′ is θwhile the value of B1
in qθ is not, and (c) the ranked result of qθ contains the
victim tuple v while the ranked result of qθ′ does not. Rahman
et al. showed that given the above conditions, the adversary
was able to conclude that the value of v’s B1 is not equal to θ.
Furthermore, the adversary was able to infer the value of v’s
B1 by finding more differential queries and excluding more
values from the domain of B1, as long as the domain is finite.

Privacy issues arise when private attributes of users are
taken into account in the ranked retrieval model. Intuitively,
the issues can be solved by removing private attributes from
ranking functions, which decreases the utility of many OSN
features, the recommendation system cannot provide ac-
curate results. From OSN providers’ perspective, removing
private attributes is not a practical solution. )erefore, this
work aims not only to address the issue of rank inference but
also to propose a framework that preserves the privacy of
users against all inference attacks through the ranked re-
trieval model while minimizes utility loss.

1.2. Related Work. Encryption technologies have been used
throughout history in security and privacy preservation.
Searching on encrypted data [10, 38] has been introduced to
ensure data privacy. Cao et al. [9] proposed a scheme that
allows privacy-preserving ranked search over encrypted
data. A query consisting of multiple keywords is conducted
by searching over encrypted documents with secure
k-nearest neighbor (kNN) technique. Chen et al. [11] took
into consideration correlations between documents before
conducting a search query and achieved better performance.
Vertical fragmentation [13, 15, 16, 22] has been applied to
encrypted data, which hides identities of users by separating
identifier attributes with descriptive attributes. However,
encrypted searching is developed to preserve privacy against
adversaries in a cloud computing environment. Adversaries
can still access decrypted searching results from which
private attribute values can be inferred.

As ONS has been emerging as an important source for
big data, many studies have been carried out for privacy-
preserving data mining (PPDM) and privacy-preserving
data publishing (PPDP). Perturbative methods implement
the “camouflage” paradigm where original data are directly
modified [28]. Agrawal et al. [3] proposed an algorithm that
perturbs data with random additive noise. Liu et al. proposed

data perturbation with multiplicative noise. However, ran-
dom noise has predictable structures in the spectral domain,
and thus, privacy provided by additive noise is questionable
[25]. Furthermore, additive or multiplicative noise can only
be applied to numerical data. Data swapping approaches
[19, 30, 31] perturb data by swapping values between records
that are close to each other. Other distance-based ap-
proaches include [12] in which data points are perturbed
without changing their relevant closeness relationships and
[2] in which data points are clustered and each data point’s
value is replaced by the value of the cluster center. However,
those approaches rely on a universal measurement of
closeness between data points in multidimensional space.
Furthermore, they are limited by the distributions of data
points.

Generalization is the process of replacing a group of
values with a more general value that can represent the
group. Suppression is the ultimate state of generalization
such that the representative value is “not applicable” and as a
result, the group of values is removed from the dataset [45].
k-anonymity [40, 41] is a widely studied approach that
preserves privacy of records by grouping at least k records
into an equivalence class. )e attribute values of the k re-
cords are suppressed so that the k records are in-
distinguishable from adversaries. Machanavajjhala et al. [27]
proposed L-diversity that focuses on attribute privacy.
L-diversity forces each equivalent class to have at least l
different values for each attribute. Li et al. [26] proposed
T-closeness that further considers the distribution of at-
tribute values. T-closeness sets a threshold for the variance
between the distribution of a private attribute in each
equivalence class and the distribution of the same attribute
in the entire dataset. However, those approaches are de-
veloped to preserve privacy of published data, while the
ranked retrieval model of ONS does not directly reveal
private attributes to the public. Furthermore, suppression of
private attribute values introduces unnecessary utility loss to
the ranked retrieval model. Equivalent Set [20] was proposed
to preserve privacy against inference attacks through the
ranked retrieval model. )is approach groups different
tuples into a set such that they are indistinguishable in
ranked results. However, this approach requires that tuples
in the same equivalent set have different values in every
private attribute and have the same value in every public
attribute. Assume that a kNN query q is sent to a ranked
retrieval interface protected by Equivalent Set and that a
tuple t is equal to q in most private attributes. Since the other
tuples in the same equivalent set of t are different from t in
every private attribute, they must be different from q in most
private attributes too. )erefore, the original rank of t given
q should be much higher than that of any other tuple in the
same equivalent set. In this case, the rank of t given q will be
significantly lowered by Equivalent Set in order to achieve
indistinguishability, which reduces the accuracy of the
ranked result of q. Furthermore, it is possible that there is no
t′ such that t′ is different from t in every private attribute and
is same with t in every public attribute. In this case, we have
to suppress the private attribute values of t, which further
introduces utility loss.
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Differential privacy [8, 17, 18] is another widely studied
framework that preserves privacy of published datasets or
hidden databases. It imposes a strong guarantee of privacy
on tuples in statistical databases by adding noise to the
process of query results. However, the ranked retrieval
model outputs ranks of tuples, instead of their values or
aggregate statistics. We cannot directly add noise to ranked
results as the rank of a tuple is determined by not only the
tuple itself but also by other tuples in the database. Fur-
thermore, the optimization of the ranked retrieval model has
not been considered.

1.3. Contributions. )is work presents a novel scheme for
privacy-preserving the ranked retrieval model. We start with
an introduction to the adversary model and introduce our
definition of privacy guarantee. We identify two categories
of adversaries based on their prior knowledge and assume
that adversaries can launch optimal inference attacks
through ranked results.

We propose the polymorphic value set (PVS), a privacy-
preserving framework for the ranked retrieval model. Dif-
ferent from existing methods, PVS does not directly modify
values of tuples or query results. Instead, PVS enables
polymorphism of private attributes such that a private at-
tribute of a tuple can respond to different queries in different
ways. We prove that our framework meets the privacy
guarantee stated in Problem Statement. For adversaries with
and without prior knowledge, we design and implement the
polymorphic value set with true values (PVST) and poly-
morphic value set with Virtual Values (PVSV), respectively.
In the design of PVST and PVSV, we consider utility loss in
the ranked retrieval model and propose a practical mea-
surement of utility loss. We prove that the task of mini-
mizing utility loss is NP-hard and present two heuristic
algorithms that implement PVST and PVSV, respectively.
We run our implementations of PVST and PVSV on a real-
world dataset from eHarmony [29] that contains 486,464
tuples.)e experiments yield excellent results with respect to
privacy guarantee and utility loss.

)e remainder of this paper is organized as follows.
Problem Statement introduces the adversary model and the
privacy guarantee. Privacy-Preserving Framework in-
troduces our privacy-preserving framework. Framework
with Virtual Values presents the design and implementation
of PVSV, along with our analysis of utility loss. )e
implementation of PVST and analysis of utility loss are
presented in Framework with True Values. Experimental
Results contains our experimental evaluation of PVSV and
PVST. In Conclusions, we conclude this paper with a
summary of our key contributions and a discussion of some
open problems.

2. Problem Statement

2.1. Ranked Retrieval Model. In information retrieval, we
have witnessed extensive research in the ranked retrieval
model. Unlike the Boolean retrieval model where only re-
sults that exactly match the predicates can be returned, the
ranked retrieval model allows users to retrieve a list of

records sorted by a proprietary ranking function.)erefore, the
ranked retrieval model provides an alternative solution for
users seeking results sorted by their relevance to the query.

As discussed in the introduction, many OSN applica-
tions have been using the ranked retrieval model to process
incoming queries. Upon a query q, the ranked retrieval
model would calculate each tuple t’s score according to a
proprietary score function s(t ∣ q) and return top-k tuples in
descending order of their scores. )e attributes of tuples
could be either categorical or numerical. In this paper, we
consider only categorical data, which does not limit the
scope of our research. Actually, numerical data can be
treated as categorical data by categorizing the numerical
domain into small intervals such that no more than one
tuple in the database falls into the same interval. Without
loss of generality, we also assume that there is no duplicate
tuple that is equal to another tuple in every attribute.

We now formalize our ranked retrieval model with cat-
egorical attributes. Consider an n-tuple database D with m
public attributes A1, . . . , Am and m′ private attributes
B1, . . . , Bm′ . Let VA

i (resp. VB
j ) denote the value domain of

Ai(resp. Bj). Let t[A]i(resp. t[B]j) denote the value of t in
Ai(resp. Bj). Upon query q, the score function s(t ∣ q)

computes a score for each tuple t ∈ D. )e ranked retrieval
model will then sort all tuples in D in the descending order
and return them as the ranked result. We consider the case
where the score function is linear. )erefore, s(t ∣ q) can be
defined as

s(t ∣ q) � 􏽘
m

i�1
w

A
i ρ q Ai􏼂 􏼃, t Ai􏼂 􏼃( 􏼁 + 􏽘

m′

j�1
w

B
i ρ q Bi􏼂 􏼃, t Bi􏼂 􏼃( 􏼁,

(1)

where wA
i (resp. wB

j ) ∈ (0, 1) is the weight of attribute
Ai(resp. Bj) in the score function, and the matching function
ρ(q[Ai], t[Ai]), (resp. ρ(q[Bi], t[Bi])) indicates if tmatches q
in attribute Ai (resp. Bj).)erefore, the value of ρ(β1, β2) is 1
if β1 is equal to β2, and the value of ρ(β1, β2) is 0 if β1 is not
equal to β2. Note that our ranked retrieval model satisfies the
monotonicity and additivity properties defined in [35].

2.2. AdversaryModel. In Motivation, we mentioned that we
do not make any assumption about the method adopted by
an adversary when attacking a database. We also assume that
the adversary has prior knowledge about the metadata of
tables in the database, as well as the proprietary ranking
function. Furthermore, the adversary is assumed to be able
to issue queries to the ranked retrieval model, view ranked
results, and insert tuples to the database. As a result, the
adversary is able to retrieve all public attribute values by
crawling the database through the query interface [37]. We
denote the set of queries issued by the adversary as QA, the
set of tuples inserted by the adversary as IA, and the cor-
responding set of ranked results as RD. RD is fully de-
termined by QA and IA given fixed D. We name all
information regarding a tuple t ∈ D that an adversary can
find in RD as the trace of t and denote the trace of t as Tt. )e
trace of t includes, but not limited to, the rank of t and the
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relationship between t and any other tuple (e.g., t has a
higher or lower rank than another tuple t′) in a ranked
result. )erefore, given fixed D, IA and QA, Tt is fully de-
termined by the attribute values of t.

Another capability of the adversary we model is the
adversary’s prior knowledge. Consider an extreme case where
the adversary knows the equivalence relation between two at-
tributes B1 and A1. In this case, even without RD, the adversary
is still able to infer the value of B1 of any t ∈ D. In reality, an
adversary can acquire such attribute correlations by being or
consulting an expert in the domain of the dataset or by adopting
data mining methods [42]. For example, based on the personal
information (e.g., gender, ethnicity, age, and blood type which
can be used to infer the gene) stored as public attributes and
published in public medical data repositories, genetic epide-
miologists can generally conclude that an individual does not
have some diseases, merely based on the fact that these diseases
would never be found by the candidate gene among historic
medical datasets. )erefore, an adversary with prior knowledge
could eliminate the possibility of a certain tuple in the database.
Wemodel prior knowledge as a function PK(t ∣ D) that takes as
input t andD and returns either 0 or 1. PK(t ∣ D) � 0 indicates
that, given prior knowledge, the possibility of t ∈ D is zero.
PK(t ∣ D) � 1 indicates that the adversary cannot eliminate the
possibility of t ∈ D. As prior knowledge helps adversaries in
launching an inference attack, adversaries can be partitioned
into two classes: adversaries with prior knowledge and adver-
saries without prior knowledge of the dataset.

Definition 1. We name adversaries without prior knowledge
of the authenticity of any tuple as authenticity-ignorant ad-
versaries. For authenticity-ignorant adversaries, PK(t ∣ D)

always outputs 1. We name adversaries with such prior
knowledge as authenticity-knowledgeable adversaries. For
authenticity-knowledgeable adversaries, PK(t ∣ D) � 1 if
t ∈ D and PK(t ∣ D) � 0 if t ∉ D.

)e objective of both classes of adversaries is to maxi-
mize the following g(v, Bj) value when inferring the value of
victim tuple v in attribute Bj:

g v, Bj􏼐 􏼑 � Pr v Bj􏽨 􏽩 � a􏼐 􏼑, (2)

where Pr(v[Bj] � a) is the probability of v[Bj] � a and a is
the value inferred by the adversary given prior knowledge
and ranked results.

For authenticity-ignorant adversaries, PK(t ∣ D) always
outputs 1 regardless of t and D. We only assume the cases
where users input true information to the databases.)erefore,
for authenticity-knowledgeable adversaries, PK(t ∣ D) � 1 if
t ∈ D and PK(t ∣ D) � 0 if t ∉ D. In this paper, we assume a
strong adversary that can infer the private attribute values of an
arbitrary tuple, given the premise that the trace of the target
tuple is unique. )e premise can be easily met because as long
as there is no duplicate tuple in the dataset, the adversary can
always construct well-designed IA andQA such that the trace of
the target tuple is different from the trace of any other tuple.
)erefore, the adversary can always find a such that
Pr(v[Bj] � a) � 100%.

2.3.ProblemStatement. Aprivacy breach can be described by a
successful inference of a private attribute value in the database.
We view privacy of v[Bj] as the upper bound on the possibility
that an adversary succeeds in inferring the value of v[Bj]. Note
that we do not make any assumption about the adversary’s
attacking method. Our objective in this paper is to present a
framework that sets an upper bound on the probability of
successful inference of an arbitrary private attribute for tuple
t ∈ D. )erefore, we define the objective of the framework as

∀t ∈ D, j ∈ 1, . . . , m′􏼈 􏼉, g v, Bj􏼐 􏼑≤ ε. (3)

We present the upper bound ϵ as our privacy guarantee.
However, a privacy-preserving framework should pro-

vide not only a privacy guarantee but also a notion of
utility—after all, a framework that removes all private at-
tribute values or replaces them with randomly generated
values can surely preserve privacy. )erefore, we use a
measurement based on the variance of ranked results before
and after adopting our framework. Given D and a set of all
possible queries denoted as Q, we define the utility loss for
our ranked retrieval model as follows:

U � 􏽘
t∈D

􏽘
q∈Q

Rank(t ∣ q) − Rank′(t ∣ q)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (4)

where Rank(t ∣ q) and Rank′(t ∣ q) refer to the ranks of
tuple t in the ranked result given query q before and after
applying our frameworks, respectively.

3. Privacy-Preserving Framework

)e only information an adversary can obtain from a da-
tabase through the ranked retrieval model is public attribute
values and ranked results. For an adversary without prior
knowledge, information regarding private attribute values
can only be retrieved from ranked results. )erefore, in
order to preserve privacy, we have to modify the ranked
retrieval model such that the adversary cannot retrieve any
useful information about private attributes from ranked
results.

An idea is to group different tuples together in ranked
results. As in our prior work [20], we can group two tuples v1
and v2 together such that they share the same rank in any
ranked result. )is can be achieved by adopting a new
ranking function s′(t ∣ q) such that s′(v1 ∣ q) � s′(v2 ∣ q) for
all q. If v1 and v2 have different values on every private
attributes, then the adversary is unable to infer the private
values of v1 since v1 and v2 are indistinguishable in any
ranked results. However, this method suffers from high
utility loss. In order to preserve the privacy of all private
attributes, v1 and v2 have to be different over all private
attributes.)us, the original scores of v1 and v2, i.e., s(v1 ∣ q)

and s(v2 ∣ q), differ a lot, which leads to a higher variance
between the rank of v1 before and after adopting this
method.

In this work, we present a novel framework that pre-
serves privacy of private attributes while minimizes the
utility loss. We observe that for a tuple v’s private attribute
v[Bj] if there are at least two potential values for v[Bj] and
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an adversary cannot differentiate any one of them, then the
privacy of v[Bj] can be preserved. For instance, if the
probability of v[Bj] � a is equal to the probability of
v[Bj] � a′, given ranked results and prior knowledge, then
the adversary cannot exclude any one of them. If both the
probabilities are 50%, then the adversary may choose to
randomly pick a value from a and a′ as the inferred result. In
this case, g(v, Bj) will not exceed 50% and privacy of v[Bj]

can be preserved. To prove this statement, suppose that v is
an arbitrary tuple in databaseD, and we want to preserve the
privacy of v[Bj]. Let β

B
j be an arbitrary value in VB

j \ v[Bj]􏽮 􏽯.
We construct tuple v′ such that v′ and v differ in only one
attribute Bj: v′[Bj] � βB

j . We also construct databaseD′ such
that D and D′ differ in only one tuple v ∈ D while v′ ∈ D′.
We define a new score function s′(t ∣ q):

s′(t ∣ q) � 􏽘
m

i�1
w

A
i ρ q Ai􏼂 􏼃, t Ai􏼂 􏼃( 􏼁 + 􏽘

m′

j�1
w

B
i ρ′ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑,

(5)

where

ρ′ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑 � ρ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑, if t≠ v and t≠ v′,

ρ′ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑 � Max ρ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑, ρ q Bj􏽨 􏽩, v′ Bj􏽨 􏽩􏼐 􏼑􏼐 􏼑,

(6)

if t � v or t � v′
Imagine a case where an adversary queriesD and D′ with

the same query workload QA. We denote the ranked results
from D as RD and the ranked results from D′ as RD′ . As in
the new score function, s′(v ∣ q) � s′(v′ ∣ q) for ∀q ∈ QA, RD

is identical to RD′ . )erefore, given only ranked results, the
adversary cannot tell the difference between the two data-
bases being queried. Furthermore, even if we exchange the
values of v and v′, the adversary still cannot observe any
change inRD or RD′ . As a result, the value of v[Bj] and β

B
j are

equivalent from the perspective of the adversary, and the
privacy of v[Bj] can be well preserved. Intuitively, v can be
seen as a tuple that has two polymorphic forms in Bj: v[Bj]

and βB
j . When calculating the score of v with s′(t ∣ q), we

always choose the value that can maximize s′(v ∣ q).
We can further extend the statement to a more general

case. For each tuple v ∈ D and each private attribute Bj, we
can select e distinct values β1, β2, . . ., βe from VB

j \ v[Bj]􏽮 􏽯,
e< |VB

j | − 1. )e new score function can be defined as

s′(t ∣ q) � 􏽘
m

i�1
w

A
i ρ q Ai􏼂 􏼃, t Ai􏼂 􏼃( 􏼁 + 􏽘

m′

j�1
w

B
i ρ′ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑,

(7)

where
ρ′ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑 � ρ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑, if t≠ v,

ρ′ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑 � Max ρ q Bj􏽨 􏽩, t Bj􏽨 􏽩􏼐 􏼑, ρ q Bj􏽨 􏽩, β1􏼐 􏼑,􏼐

. . . , ρ q Bj􏽨 􏽩, βe􏼐 􏼑􏼑, if t � v.

(8)

Consider e tuples v(1)′, . . . , v(e)′ which are identical to v

in all attributes except for Bj. Let v(i)′[Bj] be βi,

∀i � 1, . . . , e. )en for ∀q, we have s′(v ∣ q) � s′(v(i)′ ∣ q).
As a result, from the adversary’s perspective, there are e + 1
potential values for v[Bj]: v[Bj], β1, . . . , βe, which are in-
distinguishable from each other from any ranked results.)e
privacy of v[Bj] can be preserved by grouping it with e
equivalent values.

As such, we introduce the construction of the poly-
morphic value set (PVS). We put v[Bj] into a set in which all
values are indistinguishable when calculating the score with
respect to Bj in the ranking function, i.e., ρ′(q[Bj], v[Bj]).
We name the above set as the polymorphic value set and
denote the polymorphic value set of tuple v in attribute Bj as
P

Bj

v . We define P
Bj

v as follows.

Definition 2. P
Bj

v is a set containing all indistinguishable
values of tuple v’s private attribute Bj. Assigning v[Bj] with
an arbitrary value in P

Bj

v will not change the value of
s′(v ∣ q)∀q, i.e., ρ′(q[Bj], v[Bj]) � ρ′(q[Bj], β),∀β ∈ P

Bj

v

and ∀q.

Since the adversary cannot distinguish different values in
P

Bj

v by launching any inference attacks based only on ranked
results, the privacy guarantee of v[Bj] is

ε �
1

P
Bj

v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

. (9)

In order to achieve the privacy guarantee defined in (3),
for each v ∈ D and each private attribute Bj, we have to
ensure that (a) there is one and only one polymorphic value
set P

Bj

v for v’s attribute Bj and (b) the privacy guarantee
defined in (9) is always valid.

4. Framework with Virtual Values

4.1. Design. In this section, we introduce how polymorphic
value sets can be constructed with generated values to meet
the privacy guarantee in (9) against authenticity-ignorant
adversaries. We name values generated by our framework as
virtual values.

As we proved in Privacy-Preserving Framework, an
authenticity-ignorant adversary cannot distinguish the value
of v[Bj] from other valid values in P

Bj

v , given ranked results.
Since an adversary without prior knowledge cannot validate
the authenticity of any value in P

Bj

v , all values in P
Bj

v are
“valid” in the perspective of the adversary, no matter if they
are generated by our framework or collected from real data
in D. )erefore, we observe that P

Bj

v can be formed by any
values in VB

j .
In order to achieve the privacy guarantee of ε,, we have to

ensure that |P
Bj

v |> (1/ε), ∀v ∈ D, and ∀j ∈ {1, . . . , m′}.
An intuitive algorithm to generate P

Bj

v of size 1/ε is to
randomly pick (1/ε) − 1 values from VB

j \v[Bj]. Specifically,

let the initial P
Bj

v � v[Bj]􏽮 􏽯. )en, we can randomly pick

distinct values fromVB
j \v[Bj] and insert them intoP

Bj

v untilPBj

v

contains at least (1/ε) distinct values. In the same manner, we
can construct a polymorphic value set for each tuple’s each
private attribute.
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4.1.1. Privacy Guarantee. For a databaseDwhere every tuple
v’s every private attribute Bj is included by one polymorphic
value set with virtual values (PVSV) whose size is at least l, if
the adversary has no prior knowledge of D, a privacy level of
ε � (1/l) is achieved.

For an authenticity-ignorant adversary, PK(v ∣ D) � 1
∀v. As proved in Privacy-Preserving Framework, for an
authenticity-ignorant adversary, it is impossible to distin-
guish v[Bj] with at least l − 1 other values. )us we have
g(v, Bj)≤ (1/l) for ∀v ∈ D and ∀j ∈ {1, . . . , m′}. According
to equation (3), a privacy guarantee of (1/l) can be achieved.

4.2. Utility Optimization. In this section, we discuss how to
reduce utility loss caused by polymorphic value sets. We
introduced a metric of utility loss in (4) that calculates the
sum of difference in ranked results given all possible queries.
To practically calculate utility loss, we limit the range of
queries to a finite set named query workload. In practice, the
query workload of a database D can be a set of queries that
are more frequently issued than any other queries. A query
workload may contain duplicate queries, which reflect the
distribution of frequent queries. With a query workload,
denoted as Q, we can define the practical utility loss as

UQ � 􏽘
q∈Q

􏽘
v∈D

Rank(v ∣ q) − Rank′(v ∣ q)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (10)

In order to reduce utility loss, we have to find assign-
ments of P

Bj

v for ∀v ∈ D and ∀j ∈ {1, . . . , m′} such that the
overall UQ can be minimized. Without loss of generality, we
only consider constructing polymorphic value sets of size 2.
In this case, the privacy guarantee is 1/2. For each v[Bj], we
need to find a value that is indistinguishable from v[Bj]. We
denote the polymorphic value of v[Bj] as v′[Bj].

Definition 3. We define the 2-PVSV problem as follows: given
database D and query workload Q, find a polymorphic value
v′[Bj] from VB

j \ v[Bj]􏽮 􏽯 for each v[Bj], ∀v ∈ D and
∀j ∈ {1, . . . , m′}, such that UQ defined in (10) is minimized.

Theorem 1. 4e 2-PVSV problem is NP-hard.

)e proof of )eorem 1 in detail can be found in Ap-
pendix A.

4.3. Heuristic Algorithm. We have proved that the 2-PVSV
problem is an NP-hard problem that may not be solved in
polynomial time.)erefore, we propose PVSV-Constructor,
a heuristic algorithm that can return an approximate so-
lution in polynomial time.

We observe that |s(v ∣ q) − s′(v ∣ q)| is relevant to
|Rank(v ∣ q) − Rank′(v ∣ q)|. A smaller difference between
s(v ∣ q) and s′(v| q) leads to a smaller difference between
Rank(v ∣ q) and Rank′(v ∣ q). )erefore, |Rank(v ∣ q)−

Rank′(v ∣ q)| can be approximately minimized by a solution
that minimizes |s(v ∣ q) − s′(v ∣ q)|. As such, we propose an
approximation of UQ that calculates the score difference
before and after adopting our framework. We denote the
score difference as US

Q and define US
Q as follows:

U
S
Q � 􏽘

q∈Q
􏽘
v∈D

s(v ∣ q) − s′(v ∣ q)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (11)

As shown in Algorithm 1, given input database D, the
number of public and private attributes m and m′ re-
spectively, query workload Q and privacy guarantee ϵ,
PVSV-Constructor constructs an equivalent value set for
each v ∈ D and j ∈ {1, . . . , m′} that minimizes US

Q. Recall the
definition of s′(t| q) in (7), and we have

U
S
Q � 􏽘

v∈D
􏽘

m′

j�1
􏽘
q∈Q

w
B
j ρ′ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑 − ρ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(12)

We denote the score difference of v[Bj] contributed by
P

Bj

v as U(P
Bj

v ).

U P
Bj

v􏼒 􏼓 � 􏽘
q∈Q

w
B
j ρ′ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑 − ρ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(13)

)erefore, US
Q is the sum of U(P

Bj

v ) over all tuples and
private attributes:

U
S
Q � 􏽘

v∈D
􏽘

m′

j�1
U P

Bj

v􏼒 􏼓. (14)

Since the construction of each P
Bj

v is independent from
other polymorphic value sets, we can minimize US

Q by mini-

mizing the score difference contributed by each P
Bj

v for
∀j ∈ 1, . . . , m′􏼈 􏼉 and ∀v ∈ D. Note that |ρ′(q[Bj], v[Bj]) −

ρ(q[Bj], v[Bj])| � 0 if q[Bj] � v[Bj] or q[Bj] ∉ P
Bj

v . Also
note that |ρ′(q[Bj], v[Bj]) − ρ(q[Bj], v[Bj])| � 1 when

q[Bj]≠ v[Bj] and q[Bj] ∈ P
Bj

v . )erefore, if ∀q ∈ Q,

v[Bj] � q[Bj], then any assignment of P
Bj

v cannot contribute

to a higher U(P
Bj

v ) since ρ′(q[Bj], v[Bj]) � 1, ρ(q[Bj],

v[Bj]) � 1, and |ρ′(q[Bj], v[Bj]) − ρ(q[Bj], v[Bj])| is always

zero. In this situation, U(P
Bj

v ) � 0. On the contrary, if ∃q ∈ Q,
v[Bj]≠ q[Bj], then ρ(q[Bj], v[Bj]) � 0, and thus,
|ρ′(q[Bj], v[Bj]) − ρ(q[Bj], v[Bj])| � ρ′(q[Bj], v[Bj]).

According to equation (13), the value of U(P
Bj

v ) is

􏽘
q∈Q

w
B
j ρ′ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑 − ρ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘

q∈Q,q Bj􏼂 􏼃≠v Bj􏼂 􏼃

w
B
j ρ′ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑.

(15)

In order to minimize U(P
Bj

v ), we have to find an as-
signment of P

Bj

v which minimizes |􏼈q ∈ Q ∣ q[Bj]≠

v[Bj],∃β ∈ P
Bj

v , q[Bj] � β􏼉|. Consider the simplest case

where we want to construct P
Bj

v of size 2: v[Bj], β􏽮 􏽯. We have
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􏽘

q∈Q,q Bj􏼂 􏼃≠v Bj􏼂 􏼃

w
B
j ρ′ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑 � w

B
j q ∈ Q ∣ q Bj􏽨 􏽩 � β􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(16)

In this case, β has to be a value in VB
j \v[Bj] such that β

has the lowest frequency among all q[Bj] values for q ∈ Q.
Note that β does not have to be an element of q[Bj] ∣􏽮

q ∈ Q}. If β ∉ q[Bj] ∣ q ∈ Q􏽮 􏽯, its frequency is 0. Similarly, if we

want to construct P
Bj

v of size k, then we should insert the k − 1
least frequent values among all q[Bj] values into P

Bj

v .
In line 4 of Algorithm 1, we initialize the polymorphic

value set of v[Bj] by inserting v[Bj] into P
Bj

v . For v[Bj], a
set Set is constructed from VB

j \ v[Bj]􏽮 􏽯, which contains
all values that can be inserted into P

Bj

v . In order to
minimize U(P

Bj

v ), we insert the k − 1 least frequent
values from Set into P

Bj

v by their frequencies in
q[Bj] ∣ q ∈ Q􏽮 􏽯. )e above construction of P

Bj

v is repeated
for each t ∈ D and j ∈ {1, . . . , m′}. )e computational
complexity of Algorithm 1 is O(|D| · |Q| · m′).

5. Framework with True Values

5.1. Authenticity-Knowledgeable Adversaries. As we men-
tioned in the adversary model, an authenticity-knowl-
edgeable adversary is able to tell if t ∈ D is possible. As a
result, the authenticity-knowledgeable adversary can launch
a more efficient attack on private attributes by examining the
authenticity of values learned from RA. We show a simple
case where an authenticity-knowledgeable adversary breaks
the privacy guarantee provided by polymorphic values sets
constructed with virtual values. Consider that the objective
of the adversary is to infer the value of v[B0] and B0 is the
only private attribute in D. PB0

v is the polymorphic value set
generated for v[B0] and |PB0

v | � 1/ε. Without prior knowl-
edge, Pv[B0] � ε and the privacy guarantee is achieved.
However, for a value β ∈ PB0

v \ v[B0]􏼈 􏼉, if the adversary can
conclude that PK(v′ ∣ D) � 0 for any tuple v′ such that v′ is
equal to v in all public attributes and v′[B0] � β, then the
adversary can exclude β from PB0

v . )erefore,

g v B0􏼂 􏼃( 􏼁 �
ε

1 − ε
> ε, (17)

and equation (9) no longer holds.
As shown above, if values in PB0

v are marked by an
adversary as invalid for v given PK(v′|D), then the adversary
can successfully break the privacy guarantee defined in
framework with virtual values.

5.2. Design. In this section, we propose polymorphic value
sets with true values (PVST) that construct polymorphic
value sets with values that cannot be excluded by PK(t ∣ D).
PVST considers nontrivial prior knowledge of adversaries
and presents the same degree of privacy guarantee in-
troduced in (9).

We have shown above that the implementation with
virtual values can be compromised by adversaries with prior
knowledge. Consider a tuple v ∈ D. Given privacy guarantee
ϵ, we construct m′ polymorphic values sets PB0

v , . . . , P
B

m′
v for

each private attributes of v where |P
Bj

v |≥ 1/ε. Let set MA
v be

M
A
v � v A0􏼂 􏼃􏼈 􏼉 × · · · × v Am􏼂 􏼃􏼈 􏼉 × P

B0
v × · · · × P

Bm′
v . (18)

MA
v is the Cartesian product of sets each of which

contains v’s all equivalent values in an attribute. For public
attribute Ai, the corresponding set is v[Ai]􏼈 􏼉 since public
attribute values are open to the adversary. For private at-
tribute Bj, the corresponding set is P

Bj

v . )erefore, MA
v

contains all possible tuples that are indistinguishable with v

with respect to RA (including v itself ).
With prior knowledge on PK(t ∣ D), an adversary is able

to exclude a value β from P
Bj

v if

∀t ∈ t ∣ t ∈M
A
v , t Bj􏽨 􏽩 � β􏽮 􏽯,PK(t ∣ D) � 0. (19)

As described above, it is safe for the adversary to con-
clude that β≠ v[Bj], if there is no t ∈MA

v such that t[Bj] � β
and PK(t ∣ D) � 1. Alternatively, if for every β in P

Bj

v , there
is a t such that t[Bj] � β and PK(t ∣ D) � 1, then the ad-

versary cannot exclude any value in P
Bj

v , and therefore,
Pv[Bj]≤ ε is guaranteed. Since PK(t ∣ D) � 1 iff t ∈ D, we
construct polymorphic value sets with true values from
t ∈ D.

Definition 4. If there exists l distinct values β1, . . . , βl ∈ P
Bj

v

such that ∀r ∈ 1, . . . , l{ }, βr holds the following property:

(i) Input: ε, D, m, m′, Q
(ii) Output: P

Bj

v , ∀v ∈ D and ∀j ∈ 1, . . . , m′􏼈 􏼉

(1) k � (1/ε) − 1
(2) for t in D do
(3) for j ∈ 1, . . . , m′􏼈 􏼉 do
(4) P

Bj

v � v[Bj]􏽮 􏽯

(5) Set � VB
j \ v[Bj]􏽮 􏽯

(6) Sort elements of Set by their frequencies in q[Bj]| q ∈ Q􏽮 􏽯 in ascending order.
(7) Remove the last |Set| − k + 1 elements in Set.
(8) P

Bj

v � P
Bj

v ∪ Set
(9) end
(10) end

ALGORITHM 1: PVSV-Constructor.
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∃t ∈M
A
v , t Bj􏽨 􏽩 � βr and t ∈ D. (20)

)en, we say that P
Bj

v covers l true values. We denote
T

Bj

v � β1, . . . , βl􏼈 􏼉 as the true value set of t in Bj.
Privacy guarantee: for a database D where every tuple’s

every private attribute is included by one equivalent value set
which covers at least l true values, a privacy level of ε � 1/l is
achieved.

Assume that the adversary’s objective is to infer the value
of v[Bj]. As mentioned in the adversary model, we make no
assumption on the attacking methods adopted by an ad-
versary. Consider MA

v defined in (18), ∀t, t′ ∈MA
v and

∀q ∈ QA, s(t ∣ q) � s(t′ ∣ q). )erefore, the adversary cannot
distinguish tuples in MA

v by observing RA. In this situation,
the adversary would use PK(t ∣ D) to exclude all tuple t in
MA

v such that PK(t ∣ D) � 0. However, as P
Bj

v covers l true
values, there exists l tuples t1, . . . , tl ∈MA

v such that
PK(t ∣ D) � 1 and tr[Bj]≠ ts[Bj] for arbitrary
r, s ∈ 1, . . . , l{ }. As a result, values in t1[Bj], . . . , tl[Bj]􏽮 􏽯 are
indistinguishable given RA and PK(t ∣ D). )us, Pv[Bj] � 1/l.
According to (3), a privacy level of 1/l is achieved.

5.3. Utility Optimization. An intuitive method of con-
structing P

Bj

v is to insert the value of Bj of all tuples that share
the same public attribute values with v into P

Bj

v , i.e., P
Bj

v �

P
Bj

v � 􏼈v′[Bj]|∀i and v′ ∈ D, v′[Ai] � v[Ai]􏼉. )e privacy
guarantee is met if P

Bj

v covers at least 1/ε true values.
Nevertheless, utility loss cannot be ignored as in the intuitive
method, s(v′| q) would be the same for all v′ ∈ 􏼈v′| ∀i
and v′ ∈ D, v′[Ai] � v[Ai]􏼉, and thus information of private
attributes are missing in the ranked result of v′. )erefore,
the size of P

Bj

v is critical in balancing privacy and utility.
With no loss of generality, we limit the size of each poly-
morphic value set to 2. We show that constructing such
polymorphic value sets is an NP-hard problem.

Definition 5. We define the 2-PVST problem as follows:
given database D and a query workload Q, construct P

Bj

v of
size 2 for each tuple v ∈ D, ∀j ∈ 1, . . . , m′􏼈 􏼉, and minimize
UQ defined in (10).

Theorem 2. 4e 2-PVST problem is NP-hard.

)e proof of )eorem 2 can be found in Appendix B.

5.4. Heuristic Algorithm. We have shown that the 2-PVST
problem is NP-hard. In this subsection, we present PVST-
Constructor, a heuristic algorithm that constructs PVST
within polynomial time. PVST-Constructor tries to mini-
mize |P

Bj

v | and 􏽐q∈Q|s′(v ∣ q) − s(v ∣ q)| for each v ∈ D

and j ∈ {1, . . . , m′} with the greedy algorithm.
)e pseudo-code of PVST-Constructor is shown in

Algorithm 2. In lines 2 to 6, we initialize each P
Bj

v with
{v[Bj]}. )en, for each v ∈ D, PVST-Constructor constructs
PB1

v , . . . , PBm
′

v by finding a v′ with the greedy algorithm and
inserting v′[Bj] into P

Bj

v , ∀j ∈ {1, . . . , m′}.)e above process

will be taken multiple times until |P
Bj

v |≥ 1/ε. Since every v′ is
a real tuple existing in D and we insert at least k tuples in the
above processes, P

Bj

v covers at least k + 1 true values, and
thus, the privacy guarantee is met. As mentioned in Utility
Optimization, the size of P

Bj

v is critical in minimizing utility
loss. )erefore, the heuristic algorithm tries to minimize the
utility loss by minimizing the size of each P

Bj

v . We count the
number of polymorphic value sets of v, if the set contains less
than k values, that can be enlarged by inserting v′’s private
attribute values. We denote this count as coverv′ :

coverv′ � j ∣ P
Bj

v

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌< k, v′ Bj􏽨 􏽩 ∉ P
Bj

v􏼚 􏼛

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (21)

Tuple v′ with a higher coverv′ value can enlarge the size
of more polymorphic value sets of v, and thus, we can reduce
the number of tuples that we have to insert into PB1

v , . . . , PBm
′

v .
Furthermore, we take into consideration queries in Q. In

order to minimize UQ, we have to minimize |s′(v ∣ q) −

s(v ∣ q)| for q ∈ Q. Note that for each attribute Bj,
|ρ′(q[Bj], v[Bj]) − ρ(q[Bj], v[Bj])| � 1 if v[Bj]≠ q[Bj] and
q[Bj] ∈ P

Bj

v . We denote the value of 􏽐j|ρ′(q[Bj], v[Bj]) −

ρ(q[Bj], v[Bj])| as lossv′ . )us, we have

lossv′ � 􏽘
q∈Q

􏽘

j�1,...,m′

ρ′ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑 − ρ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 􏽘
q∈Q

􏽘

j�1,...,m′

δ v, v′, q, j( 􏼁,

(22)
where δ(v, v′, q, j) � 1 if v[Bj]≠ q[Bj] and v′[Bj] � q[Bj]

and δ(v, v′, q, j) � 0 otherwise. )erefore, tuple v′ with a
smaller lossv′ can reduce the value of 􏽐j|ρ′(q[Bj],

v[Bj]) − ρ(q[Bj], v[Bj])|, and thus, we can reduce the value
of UQ.

)e computation of coverv′ and lossv′ is done in line 11.
)en, we compute scorev′ , the score of v′ that indicates how
preferable v′ is, relative to other tuples in D\ v{ }. We
adopt the greedy algorithm to find the next v′ for PB1

v ,

. . . , P
B

m′
v , i.e., in each iteration, we choose the tuple

that has the highest score value. In line 15, we insert the
private attribute values of the chosen tuple (denoted as vmax)
into PB1

v , . . . , P
B

m′
v . )e above process is repeated until

the sizes of PB1
v , . . . , P

B
m′

v are no less than k.

6. Experimental Results

6.1. Experimental Setup. To validate PVSV-Constructor and
PVST-Constructor algorithms, we conducted experiments on a
real world dataset [29] from eHarmony which contains 58
attributes and 486,464 tuples. We removed 5 noncategorical
attributes and randomly picked 20 categorical attributes from
the remaining 53 attributes. )e domain sizes of the 20 at-
tributes range from 2 to 15. After removing duplicate tuples, we
randomly picked 300,000 tuples as our testing bed.

By default, we use the ranking function from the ranked
retrieval model with all weights set to 1. All experimental
results were obtained on a Mac machine running Mac OS
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with 8GB of RAM. )e algorithms were implemented in
Python.

6.2. Privacy. )e privacy guarantee of PVSV-Constructor
and PVST-Constructor were tested by performing Ranked
Inference attack [35], including Point-Query, In-Query,
Point-Query&Insert, and In-Query&Insert attacking
methods, on the dataset. From a total of 20 attributes, 5
attributes were randomly chosen as public attributes and
another 5 attributes were randomly chosen as private at-
tributes. We randomly picked 20,000 distinct tuples from
the dataset as the testing bed and randomly generated 10
tuples as the query workload. For PVSV-Constructor, we
constructed a polymorphic value set of size 2 for each
private attribute and each tuple in the testing bed. For
PVST-Constructor, we constructed a polymorphic value
set that covers at least two true values for each private
attribute and each tuple. We randomly picked 1,000 tuples
from the testing bed as our targets and performed 1,000
Rank Inference attacks (250 attacks for each of the four
methods) on the five private attributes of target tuples. We
measured the attack success guess rates based on the fre-
quency of successful inference among all inference at-
tempts. Figure 1 shows the success guess rates of Rank
Inference attacks on the unprotected testing bed, the testing
bed with PVSV, and the testing bed with PVST. As the size
of each polymorphic value set is 2, the success guess rates
on PVSV are around 50%, which are significantly lower
than those of unprotected dataset. We also observe that the
success guess rates on PVSTare slightly lower than those of

PVSV. )e reason is that PVSV-Constructor will be
inserting values into tuple v’s polymorphic value sets until
all v’s polymorphic value sets cover at least 2 true values.
)us, some polymorphic value sets of v may contain more
than 2 values.

6.3. Utility. In this subsection, we quantify utility loss of
PVSV-Constructor and PVST-Constructor algorithms.
)e privacy guarantee of both PVSV-Constructor and
PVST-Constructor is 1/2, i.e., the polymorphic value sets
constructed by PVSV-Constructor contains 2 values, and
the polymorphic value sets constructed by PVST-Con-
structor contains at least 2 true values. )e key param-
eters here are the size of query workload Q, the size of
database D, the number of public and private attributes,
and the weight ratios in the ranking function. We ran-
domly generated 20 tuples as the query workload. By
default, we picked 10 tuples from Q and set |D| � 300, 000,
m � 10, and m′ � 10. )erefore, we randomly picked 10
attributes from the testing bed and set them as public
attributes. )e rest of the 10 attributes were set as private
attributes.

Many recommendation systems of ONS applications
feature top-k recommendation [1, 14, 47] where the ranked
result contains a set of k tuples that will be of interest to a
certain user, as it is impractical and unnecessary to return all
tuples in the database to the user. )erefore, we introduce
average top-k utility loss Uaul, a variant of UQ that focuses on
utility loss of the top-k tuples in a ranked result. Uaul is
defined as

(i) Input: ε, D, m, m′, Q
(ii) Output: P

Bj

v , ∀v and ∀Bj

(1) k � (1/ε) − 1
(2) for v in D do
(3) for j ∈ 1, . . . , m′􏼈 􏼉 do
(4) P

Bj

v � v[Bj]􏽮 􏽯

(5) end
(6) end
(7) for v in D do
(8) while ∃j ∈ 1, . . . , m′􏼈 􏼉, |P

Bj

v |< k + 1 do
(9) for v′ ∈ t ∈ D|∀Ai, t[Ai] � v[Ai]􏼈 􏼉 do
(10) compute coverv′ , lossv′
(11) scorev′ � coverv′ � 1/1 + exp(− lossv′ ) �

(12) end
(13) vmax � argmaxv′∈ |t∈D|∀Ai,t[Ai]�v[Ai]{ }scorev′

(14) for j ∈ 1, . . . , m′􏼈 􏼉 do

(15) P
Bj

v � P
Bj

v ∪ tmax[Bj]􏽮 􏽯

(16) end
(17) end
(18) end

ALGORITHM 2: PVST-Constructor.
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Uaul �
1

|Q|
􏽘

|Q|

i�1

1
D′

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘

v∈D′

min Rank(v ∣ q), k + 1􏼈 􏼉 − min Rank′(v ∣ q), k + 1􏼈 􏼉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

k
, (23)

where D′ � v ∈ D |Rank(v | q))< k or Rank(v | q))< k􏼈 􏼉.
Intuitively, Uaul represents the average percentage rank
difference relative to k over all queries and all tuples in top-k.
Uaul is equivalent to UQ/|Q||D|2 when k � |D|. By default, we
set k � 100.

6.3.1. Evaluation of Uaul with Varying k. We first discuss the
average top-k utility loss of PVSV-Constructor, PVST-
Constructor, and a baseline algorithm on varying k with
other parameters set to default values. For a tuple v’s at-
tribute Bj, the baseline algorithm constructs P

Bj

v with v[Bj]

and a value randomly picked from VB
j \ v[Bj]􏽮 􏽯. )e results

are presented in Figure 2, which shows that the Uaul of
PVSV-Constructor is significantly lower than that of the
baseline algorithm. )e Uaul of PVST-Constructor is also
lower than that of the baseline algorithm when k≥ 5, even
though the baseline algorithm cannot preserve privacy
against authenticity-knowledgeable adversaries. )e exper-
imental results show that both PVSV and PVST can reduce
utility loss with respect to rank differences. Also, note that
PVST-Constructor constructs polymorphic value sets with
true values, and thus, from Figure 3, we can see that some
polymorphic value sets constructed by PVST-Constructor
contains more than 2 values.

6.3.2. Evaluation of Uaul with Varying Sizes of Q.
Figure 4 presents the average top-k utility loss of PVSV-
Constructor on varying |Q|. When |Q| is set to 1, 5, or 10, we
randomly picked 1, 5, or 10 queries from the original Q,
respectively. With increasing number of queries in the query
workload, the Uaul of PVSV-Constructor increases mono-
tonically. )e reason is that PVSV-Constructor always
generates the least frequent value (denoted as v′[Bj]) in
􏼈q[Bj] | q ∈ Q􏼉 for v[Bj]. If |Q| is small, then it is possible
that v′[Bj] ∉ 􏼈q[Bj] | q ∈ Q􏼉, and thus, s(v ∣ q) � s′(v ∣ q)

∀q ∈ Q. However, a larger query workload covers more
private attributes values, and thus, it will be harder for
PVSV-Constructor to generate a value for v[Bj] that has no
impact on the rank of v for any q ∈ Q. Figure 5 presents the
average top-k utility loss of PVST-Constructor on varying
|Q|. We can see that the size of Q has no significant impact
on the Uaul of PVST-Constructor, as the PVST-Constructor
always pick a tuple v′ that is different from v in most at-
tributes and then insert v′[Bj] into P

Bj

v .

6.3.3. Evaluation of Uaul with Varying Sizes of the Dataset.
Figures 6 and 7 depict the impact of the size of datasets on
Uaul of PVSV-Constructor and PVST-Constructor. Datasets
of 100,000 and 200,000 tuples were randomly sampled from
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Figure 1: Attack success guess.
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the testing bed of 300,000 tuples. As expected, |D| has no
significant impact on the Uaul of PVSV-Constructor since
PVSV-Constructor generates values from the domain of
each private attributes. |D| has no impact on the Uaul of
PVST-Constructor, which indicates that a dataset contain-
ing 100,000 tuples is sufficient for PVST-Constructor to
generate polymorphic value sets with true values.

6.3.4. Evaluation of Uaul with Varying m. We investigate the
impact of the number of private and public attributes on

average top-k utility loss. Figure 8 presents theUaul of PVSV-
Constructor with fixed m′ and varying m and with fixed m
and varying m′. When m/m′ is set to 5, we randomly re-
moved 5 attributes from the testing bed. When m/m′ is set to
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15, we added 5 more categorical attributes randomly chosen
from the unused attributes. We observe that the Uaul
monotonically decreases with increasing number of public
attributes and monotonically increases with increasing
number of private attributes. As expected, a higher pro-
portion of public attributes leads to less variant between
s(v ∣ q) and s′(v ∣ q). �e results of the same experiment
with PVST-Constructor are shown in Figure 9. Uaul in-
creases as increasing number of private attributes as ex-
pected. However, Uaul also increases slightly with increasing
number of public attributes. �is is due to the fact that with
more public attributes, there will be few tuples that share the
same public attribute values. Since PVST-Constructor in-
serts only private attribute values from tuples sharing same
public attribute values, more values will be inserted to each
polymorphic value set, which introduces higher utility loss.

6.3.5. Evaluation of Uaul with Varying Weight Ratios.
Figures 10 and 11 illustrate the impact of weight ratios on the
average utility loss. �e experiment was conducted with a

�xed private attribute weight of 1 and varying public at-
tribute weights of 1, 2, and 3. As expected, Uaul of both
PVSV-Constructor and PVST-Constructor decreases as
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increasing weight ratio of public attributes.)e reason is that
as the public attribute weight increases, the part in s′(v ∣ q)

caused by private attributes decreases. )erefore, less impact
would be made to s′(v ∣ q) by PVSV and PVST. As a result,
s′(v ∣ q) would be closer to s(v ∣ q) and the utility loss could
be decreased.

7. Conclusions

In this paper, we proposed a novel framework that preserves
privacy of private attributes against arbitrary attacks through
the ranked retrieval model. Furthermore, we identify two
categories of adversaries based on varying adversarial ca-
pabilities. For each kind of adversaries, we presented
implementation of our framework. Our experimental results
suggest that our implementations efficiently preserve privacy
against Rank Inference attack [35]. Moreover, the imple-
mentations significantly reduce utility loss with respect to
the variance in ranked results.

It is our hope that this paper can motivate further re-
search in privacy preservation of SIoT with consideration of
social network features and/or variant information retrieval
models, e.g., text mining.

Appendix

A. 2-PVSV

In this subsection, we prove that constructing an optimal PVSV
for each attribute of a tuple v is an NP-hard problem.

Definition A.1. For a tuple v in D, we create P
Bj

v for each Bj.
We say v satisfies query q if the following hold for any tuple t
(t≠ v) in D: (1) If s(v ∣ q)< s(t ∣ q), then s′(v ∣ q)< s′(t ∣ q),
and (2) if s(v ∣ q)≥ s(t ∣ q), then s′(v ∣ q)≥ s′(t ∣ q)

For a database containing 2 tuples, the 2-PVSV problem
can be redefined as follows: given a query workload Q, a
database D, construct PB1

v , . . . , PBm
′

v of size 2 such that v

satisfies the most queries in Q.

Definition A.2. Max-3Sat Problem: given a 3-CNF formula
Φ, find the truth assignment that satisfies that most clauses.

Lemma A.1. Max-3Sat ≤P 2-PVSV Problem.

Proof. We construct a reduction function f(Φ) � (D, s, Q)

which takes a Max-3Sat instance as input and returns a 2-
PVSV instance. Without loss of generality, we suppose that
Φ is a conjunction of l clauses and each clause is a dis-
junction of 3 literals from set X � x1, . . . , xn􏼈 􏼉. We construct
database D as follows: D has 0 public attributes and n + 1
private attributes B1, . . . , Bn, C1. Let VB

j be the attribute do-
main of Bj, j ∈ 1, . . . , n{ } and VC

1 be the attribute domain of
C1. Let VB

i � − 1, 0, 1, 2, . . . , n + 2{ } and VC
1 � 0, 1{ }. Two

tuples, v1 and v2, are inserted into D: v1[Bj] � 0 and v2[Bj] �

j + 2 for j ∈ 1, . . . , n{ }, while v1[C1] � 0 and v2[C1] � 1 We
simplify the score function defined in (1) by setting all weights
to 1. Also, note that ρ(q[Bj], t[Bj]) � 0, if q[Bj] is null.

We construct query workload Q based on Φ. For each
clause Lk ∈ Φ, we construct a query qk such that qk[Bi] � i iff
the corresponding literal xi is a positive literal in Lk, and
q[Bi] � i + 1 iff xi is a negative literal in the clause. For
example, given a clause (x1∨x2∨x3), the corresponding
query q should satisfy q[B1] � 1, q[B2] � 3, q[B3] � 3, and
q[C1] � 0. All other attributes in q are set to null by default.
)erefore, s(v1 ∣ q) � 1 and s(v2 ∣ q) � 0, ∀q ∈ Q.

Since s(v2 ∣ q)< s(v1 ∣ q) ∀q ∈ Q, in order to minimize
utility loss, the value of s′(v2 ∣ q) should be as small as
possible. We observe that the minimum possible s′(v2 ∣ q) is
1 because PC1

v2
must be 0, 1{ } as VC

1 � 0, 1{ }. Without loss of
generality, we assume that we have already constructed
PB1

v2
, . . . , P

B
m′

v2 , PC1
v2

for v2 such that s′(v2 ∣ q) � 1, ∀q ∈ Q.
Now, we have an instance of 2-PVSV problem that given

D, Q, constructs PB1
v1

, . . . , PBm
′

v1
, PC1

v1
that satisfies the most

queries in Q. Since VC
1 � 0, 1{ }, PC1

v1
must be 0, 1{ } too as

PC1
v1

contains two distinct values. )erefore, for an ar-
bitrary query q ∈ Q, we have ρ′(q[C], v1[C]) � 1 and
ρ′(q[C], v2[C]) � 1. In order to let v1 satisfy q, we have to
ensure that s′(v1 ∣ q)> s′(v2 ∣ q) � 1. )us, we have

s′ v1 ∣ q( 􏼁> 1,

⟺􏽘
m′

i�1
ρ′ q Bi􏼂 􏼃, v1 Bi􏼂 􏼃( 􏼁> 1,

⟺∃i ∈ 1, . . . , m′􏼈 􏼉, ρ′ q Bi􏼂 􏼃, v1 Bi􏼂 􏼃( 􏼁 � 1,

⟺∃i ∈ 1, . . . , m′􏼈 􏼉, q Bi􏼂 􏼃 ∈ P
Bi

v1
.

(A.1)

Now, we show that the solution of 2-PVSV problem
constructed above can answer the corresponding Max-
3Sat Problem. Suppose that we have the solution PB1

v1
,

. . . , P
B

m′
v1 such that v1 satisfies the most queries in Q. As in

(A.1), if v1 satisfies qk, we have qk[Bi] ∈ PBi
v1
. If v1 does not

satisfy qk, then qk[Bi] ∉ PBi
v1
. Recall that we assign value i or

i + 1 to qk[Bi] if xi is a positive or negative literal in clause
Lk, respectively. )erefore, the assignment of xi given PBi

v1
is

xi � true, if i ∈ P
Bi

v1
,

xi � false, if i + 1 ∈ P
Bi

v1
.

(A.2)

Furthermore, from equation (A.1), we have

s′ v1 ∣ q( 􏼁> 1⟺L � true, (A.3)

where L is q’s corresponding clause in Φ. Note that
i, i + 1{ }⊄Q as |PBi

v1
| � 2 and 0 ∈ PBi

v1
. )us, the value of xi is

either true or false.
As we proved above, v1 satisfies qi if and only if Li is true

given assignment x1, . . . , xl􏼈 􏼉 constructed according to
equation (A.2). )erefore, x1, . . . , xl􏼈 􏼉 satisfies the most
clauses in ϕ if and only if v1 satisfies the most queries in Q.

We now prove that function f can be conducted in
polynomial time. Given a formula Φ with n variables and l
clauses, we construct a 2-PVSV instance with 2 tuples each
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of which has n + 1 attributes and l queries each of which has
4 attributes. )erefore, O(2n + 4l) assignments are needed
and f can be conducted in polynomial time. □

Proof of 4eorem 1. We now prove that the 2-PVSV
problem is NP-hard. In Lemma 3 we proved that Max-3Sat
Problem can be reduced to the 2-PVSV problem in poly-
nomial time. Furthermore, as Max-3Sat Problem is a NP-
hard problem [33], the 2-PVSV problem is NP-hard. □

B. 2-PVST

In this section, we prove that constructing an optimal PVST
for each private attribute of a tuple v ∈ D is NP-hard. We use
the definition of v satisfying q from (9).)e 2-PVSTproblem
can be redefined as follows.

Definition B.1. 2-PVSTproblem: given a query workload Q,
a database D, the optimization problem of 2-PVST is to
construct an arbitrary tuple v’s polymorphic sets,
PB1

v , . . . , PBm
′

v , that satisfies the most queries in Q. )e size of
each polymorphic vale set is 2.

Lemma B.1. Max-3Sat ≤ P 2-PVST problem.

Proof. We construct a reduction function f(Φ) � (D, s, Q)

which takes a Max-3Sat instance as input and returns a 2-
PVST instance. We assume that Φ is a conjunction of l
clauses and each clause is a disjunction of 3 literals from set
X � x1, . . . , xn􏼈 􏼉. Let D have no public attribute and n + 1
private attributes B1, . . . , Bn, C1. For each literal xi, we insert
two tuples, vi and vi

′, into D where

vi C1􏼂 􏼃 � 1, vi Bi􏼂 􏼃 � 1, vi Bj􏽨 􏽩 � − 1∀j≠ i,

vi
′ C1􏼂 􏼃 � 1, vi

′ Bi􏼂 􏼃 � − 1, vi
′ Bj􏽨 􏽩 � 1∀j≠ i.

(B.1)

)en, we insert tuple v into D where v[C1] � 0 and
v[Bj] � 0 ∀j ∈ {1, . . . , m′}. We also set the domain of each
Bj as − 1, 0, 1{ } and the domain of C1 as 0, 1{ }.

Without loss of generality, the score function defined in
(1) is simplified by setting all weights to 1.

Next, we construct query workload Q. For each clause
Lk ∈ Φ, we construct a query qk in which qk[Bj] � − 1 iff xj is
a positive literal in Lk, and qk[Bj] � 1 iff xj is a negative
literal in Lk. We also set qk[C1] � 1. )e rest of the attribute
values are set to null by default. )erefore, if
Lk � (x1∨≠ x2∨x3), then we have qk[C1] � 1, qk[B1] � 1,
qk[B2] � 1, qk[B3] � − 1, and qk[Bj] � null for
j ∈ {4, . . . , m′}.

Note that ρ(q[Bj], t[Bj]) � 0 if q[Bj] is null. )us,
s(v, qk) � 0 ∀q ∈ Q and s(vi, qk), s(vi

′, qk)≥ 1 ∀q ∈ Q. We
observe that for q ∈ Q and i ∈ 1, . . . , n{ }, s(v ∣ q)< s(vi ∣ q)

and s(v ∣ q)< s(vi
′ ∣ q). In order to reduce UQ, we have to

maximize the number of q ∈ Q such that s′(v ∣ q)< s′(vi ∣ q)

and s′(v ∣ q)< s′(vi
′ ∣ q). )e maximum value of s′(vi ∣ q)

and s′(vi
′ ∣ q) is 4, which can be achieved by inserting vi[Bj]

into P
Bj

vi
′ and inserting vi

′[Bj] into P
Bj

vi
. Since PC1

v � 0, 1{ }, the
value of s′(v ∣ q) is at least 1. )erefore, we have

s′(v ∣ q)< s′ vi ∣ q( 􏼁,

⟺s′(v ∣ q)< 4,

⟺􏽘

m′

j�1
ρ′ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑< 3,

⟺∃j ∈ {1, . . . , m′}, ρ′ q Bj􏽨 􏽩, v Bj􏽨 􏽩􏼐 􏼑 � 0,

⟺∃j ∈ {1, . . . , m′}, v Bj􏽨 􏽩≠ q Bj􏽨 􏽩,

⟺∃j ∈ {1, . . . , m′}, − q Bj􏽨 􏽩 ∈ P
Bj

v .

(B.2)

Since |P
Bj

v | is limited to 2, P
Bj

v � 0, 1{ } or 0, − 1{ }, i.e., we
must insert either vi’s or vi

′’s private attribute values into
PB1

v , . . . , PBm
v . Recall that we assign − 1 or 1 to qk[Bj] if xj

is positive or negative, respectively, in Lk. In order to
reduce Max-3Sat to 2-PSVT, we assign literals in the fol-
lowing way:

xj � true, if − 1 ∈ P
Bj

v ,

xj � false, if 1 ∈ P
Bj

v .
(B.3)

)erefore, we denote the corresponding clause of q as L,
and from equation (B.2), we have

∃j ∈ 1, . . . , m′􏼈 􏼉, − q Bj􏽨 􏽩 ∈ P
Bj

v ,

⟺∃j ∈ 1, . . . , m′􏼈 􏼉, xj � true if xj is positive in L,

orxj � false if xj is negative in L,

⟺L � true.
(B.4)

From the above equation, we observe that v satisfying qk

is equivalent to Lk being true.)erefore, we can reduceMax-
3Sat to 2-PVST. Given a solution to the 2-PVSTproblem that
maximizes the number of queries satisfied by v, assignment
x1, . . . , xn􏼈 􏼉 produced by equation (B.3) can satisfy the
largest number of clauses in Φ.

Given a Max-3Sat instance Φ, the construction of the 2-
PVST instance can be conducted in polynomial time as we
construct n queries with 3 attributes and 2n + 1 tuples with n
attributes.)e transformation from the optimal solution of 2-
PVST to the optimal solution of Max-3Sat also takes poly-
nomial time as we assign the value to each one of x1, . . . , xn

once. )erefore, f is a polynomial time function. □

Proof of 4eorem 2. In 4, we proved that a Max-3Sat in-
stance can be reduced to a 2-PSVT instance in polynomial
time. Furthermore, as Max-3Sat Problem is an NP-hard
problem, the 2-PVSV problem is an NP-hard problem. □
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