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Cyber risk assessment requires defined and objective methodologies; otherwise, its results cannot be considered reliable. The lack
of quantitative data can be dangerous: if the assessment is entirely qualitative, subjectivity will loom large in the process. Too much
subjectivity in the risk assessment process can weaken the credibility of the assessment results and compromise risk management
programs. On the other hand, obtaining a sufficiently large amount of quantitative data allowing reliable extrapolations and
previsions is often hard or even unfeasible. In this paper, we propose and study a quantitative methodology to assess a potential
annualized economic loss risk of a company. In particular, our approach only relies on aggregated empirical data, which can be
obtained from several sources. We also describe how the method can be applied to real companies, in order to customize the initial

data and obtain reliable and specific risk assessments.

1. Introduction

The process of risk assessment and treatment is fundamental
to the implementation of an effective cyber security program
and plays a crucial role for the national and international
regulations in the field of data protection. A complete un-
derstanding of cyber risks is necessary, in order to ensure
that the security controls an organization has in place are
sufficient to provide an appropriate level of protection
against cyber threats.

However, defining reliable models for the cyber risk
exposure is still an open problem. Existing models [1-4]
suffer from some important concerns that, for example,
prevent the insurability market development [5]. First of all,
cyber risk evaluation and the study of its related impact are
performed mostly in qualitative ways, which are usually
affected by errors and misrepresentations of the risk. They
also exhibit several disadvantages, such as the approximate
nature of the achieved results and the difficulty of per-
forming a cost-benefits analysis [6]. Quantitative ap-
proaches, in their turn, are usually based on scoring
systems that associate a certain score to a technological/
organizational context. The idea is commendable but, as it
will be clarified afterward, the way in which it is commonly

implemented does not give a realistic measure of the cyber
risk and the related impact. Reliable models for the measure
of the cyber risk are not available or have significant
limitations, like the lack of generalization and the fact that
most works consider only the analysis of past data to derive
probabilistic models, while it is not clear how to obtain
reliable estimates about future events [7, 8]. Moreover,
some quantitative approaches, like the well-known HTMA
(how to measure anything) [9] and the FAIR [10] methods
rely on a subjective evaluation of the likelihood of an event
(in particular, of the probability of a successful attack due to
a certain threat) given by a team of experts [11, 12]. These
kinds of probabilities usually show some level of inaccuracy
and should be replaced by more objective models. The
impact of the set of considered threats is then measured in
terms of economic loss, which is also subjectively esti-
mated. Based on these premises, the need to improve the
quantitative evaluation of the cyber risk of an organization,
through a dynamic monitoring of the attacks and vul-
nerabilities the organization is experiencing, clearly
emerges.

A recent study, for the case of data breaches in IT and
information security, has been developed in [13]. However,
itis clear that the whole panorama involves other sectors (for
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instance, business and finance companies) and other cyber
threats. This means that in order to obtain reliable repre-
sentations of this wide scenario, more general analyses are
required. A step towards the generalization of this work has
been done in [14], where the authors consider the whole
range of cyber risks and associated costs, by analyzing
sufficiently large and available datasets. This kind of ap-
proach is not new in the literature (see, for instance, [8, 15]
for a study based on data breaches): through the analysis of a
large amount of historical data, probabilistic models about
the registered cyber crime events can be derived. However,
as the authors in these papers clearly state, such an approach
has some important limitations. Indeed, cyber crime is a
dynamic and continuously evolving phenomenon: consid-
ering only past data is clearly not enough to obtain reliable
estimates about future events.

For instance, let us suppose that a company wants to
determine its risk exposure and eventually define possible
strategies to increase its security against cyber crime. In such
a case, relying on probabilistic models is very likely to be not
enough, since specific countermeasures and consequent
attack strategies should be taken into account. One example
of this process is given in [12], where the authors consider a
dynamic model that describes possible interactions between
a defender and an attacker. In such a model, each coun-
termeasure is considered as a software update of an existing
cyber security system and is characterized by an effectiveness
score; the optimal strategy is thus obtained by taking into
account the interplay between the defender and the attacker.

Previous works highlight the fact that the whole scenario
of cyber risk, with the heterogeneous ensemble of all possible
players and events, looks like a phenomenon that difficultly
allows deriving reliable probabilistic models. In particular,
applications on some real case studies might strongly depend
on specific aspects of the involved subjects. For instance,
conducting a risk assessment with a qualitative approach
may result in a good level of controls for malware defense,
but this does not provide evidence on whether these security
measures are effective in counteracting malware attacks. As a
consequence, inaccurate prioritization could result in
valuable resources being spent on risk areas that may not be
very important and which may not deserve such resources
and vice versa.

As mentioned above, one way to reduce the uncertainty
in this scenario is the one of relying on opinions of experts
[11, 12]. This kind of approach is followed in HTMA [9],
where a set of threats is characterized by a likelihood value
and the corresponding impact. Basically, the likelihood is the
probability of successful attack due to each threat, while the
impact expresses the subsequent economic loss. In partic-
ular, in the HTMA method, the impacts are estimated
through interviews to experts that, for each threat, are asked
with the 90% confidence range for possible economic losses.
Their answers are then used to define the random variable
associated to the impact; a log-normal distribution is as-
sumed for each one of the considered threats.

In this paper, we use the HTMA approach but assuming
experts’ opinions only as a starting point to be progressively
and continuously improved through the acquisition of new
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and updated information on the organization’s behavior
against cyber threats. More precisely, we propose to exploit a
combination of probabilistic techniques and objective data
as an input to HTMA. Our goal is to define a methodology
for fitting a probabilistic model into a real case study. The
procedure we propose is substantially based on checking the
effectiveness of the applied measures through a data-driven
approach. As previous studies by SANS Institute already
outline [16], one of the key focuses of an effective cyber risk
assessment is the measurement of the security controls
implementation effectiveness. Indeed, as seen in most risk
assessment methods, a risk matrix only representing impact
and likelihood is a commonly used tool to assess cyber risk.
According to previous approaches, these values are obtained
through the analysis of a sufficiently large amount of his-
torical data. However, these values hardly reflect the actual
state of a particular entity under analysis. Indeed, a reliable
assessment of the risk exposure without taking into con-
sideration the effectiveness of the applied measures is a hard
task. For this purpose, our analysis considers the CIS 20
Critical Security Controls (Center for Internet Security,
https://www.cisecurity.org/), but the same procedure can be
applied to any other suitable set of security issues.

The paper is organized as follows. In Section 2, we briefly
remind the probabilistic model we consider, based on the
HTMA approach. In Section 3, we describe how empirical
data can be used to fit the model into an actual entity (for
instance, a company). In Section 4, we show an application
of this methodology to some real case scenarios. Finally, in
Section 5, we draw some conclusive remarks.

2. Probabilistic Model

In this section, we shortly describe the method we use for
evaluating the cyber risk exposure of a company. We first
present a generic model that fits into our study case and give
the basic notions that are fundamental for our analysis. We
then briefly introduce the HTMA methodology and describe
how it can be used to derive a quantitative measure for the
risk exposure.

2.1. General Model. We consider a set of events
I; = {E,,..., E,}, the i-th one with probability of occurrence
p; fori=1,...,n; in this paper, we assume that the events
are independent, which means that the occurrence of E;
does not influence the occurrence of all the other events E;,
with j+#i. More complex scenarios, in the presence of
correlation between different events, will be analyzed in
future work. Each event E; is also linked to a random
variable ¢;, which is associated to the impact and is described
through a probability distribution f® (c,): each time the
event E; occurs, it has an impact ¢;, whose particular value
depends on f(i) (¢;). Then, we denote as C(Iy) the random
variable defined as the sum of the impacts of the considered
events. Our goal is to characterize the statistical properties of
C(Ip).

Actually, unless specific choices for the distributions of ;
are made, providing a closed form for the distribution of
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C(Ip) is unfeasible. However, we can proceed with nu-
merical simulations and estimate its cuamulative distribution
function (CDF). More precisely, we can simulate N different
scenarios: in each scenario, we simulate the occurrences of
the events E;, and for each occurred event, we randomly
extract the corresponding impact, according to f ¥ (c;). Let
C be the resulting total impact obtained in the j-th sim-
ulated scenario; then, the CDF of C(Iy) can be estimated as

#j{C(f) sa}. ()

Fe (@) = P{C(Iy)<a} = N

It is clear that, in order to obtain reliable estimates via
numerical simulations, the value of N must be sufficiently
large.

One crucial quantity in our analysis is the loss exceedance
curve defined as

LC(IE) (a)=P {C (IE) Za} =1- FC(IL;) (a) + P{C (IE) = a}.
(2)

By definition, the value of Ly, (a) corresponds to the
probability that the total impact of the considered events is
equal to or exceeds a threshold value a. If, for instance, we
have Ly, (a) = 0.2, then this means that the probability
that the set of considered events results in a total impact >a
is equal to 0.2. Also by definition, we have Ly, (0) = 1 and
LC(IE)(OO) =0.

2.2. Cyber Risk Assessment Based on HTMA. In this section,
we briefly describe the use of the HTMA method for
assessing cyber risk. We consider a set of n different cyber
threats and, with reference to the notation introduced in the
previous section, define E; as the event that the i-th threat
has resulted in an economic loss for the company. Thus, p; is
the probability of such an occurrence, for instance, in the
time interval of one year.

Following the HTMA methodology, each economic
impact is obtained on the basis of interviews: in particular,
for each threat, experts are asked with the 90% confidence
interval of economic losses that their company might sus-
tain, in case of occurrence of the considered threat. The
impact of each cyber threat is then associated to a range in
the form [c(™™;c™™], corresponding to the 90% confi-
dence interval. In particular, as mentioned, the HTMA
method assumes that each economic impact follows a log-
normal distribution, with mean y; and standard deviation o;
that are obtained as

1 (max) +1 l(min)
) )
~ log (C,-(max)) —log (Ci(mm)) (4)
% 329 ’

respectively. Thus, starting from likelihood values and the
corresponding economic impacts distribution, Monte Carlo
simulations can be performed to obtain the loss exceedance
curve Le ) (a).

In each simulated scenario, we consider all possible (i.e.,
identified) threats. For each threat, we randomly sample a

variable with continuous uniform distribution in [0;1]. If
such value exceeds p;, then the corresponding impact is
sampled (according to the corresponding log-normal dis-
tribution); otherwise, it is set as 0. Then, by computing the
sum of all impacts, we obtain the value of the total impact. If
we consider a sufficiently large number of scenarios, then we
can obtain a reliable estimate of the loss exceedance curve.

3. Cyber Risk Assessment Framework

The loss exceedance curve introduced in the previous section
strongly depends on the company assets and characteristics.
In other words, in order to obtain a reliable estimate of the
loss exceedance curve, we need to customize the values p; and
¢; to the actual organization we are considering. This oper-
ation is usually performed through surveys submitted to the
company, in order to obtain a reliable overview of what the
company is currently doing to prevent cyber threats. How-
ever, it is clear that the use of such answers is likely not enough
to obtain a complete and accurate picture of the actual state of
the company. As an example, the implementation of a par-
ticular strategy (e.g., having good anti-malware tools) does
not mean that the strategy is indeed effective, since its ef-
fectiveness is influenced by many other factors.

In other words, if the stakeholders’ answers are evaluated
with a more objective process, this will result in a more
objective profiling of the company. This is our aim, which we
pursue by introducing the use of some data-driven key risk
indicators (KRIs) in the HTMA approach. The model we use
is described next, while its application to some practical case
studies is reported in Section 4.

3.1. Data-Driven KRIs. Suppose that we can dispose of a tool
that monitors the company and returns a sufficient amount
of quantitative evidences such as

(1) Malicious code/software activity (i.e., malware,
ransomware, botnet evidences)

(2) Insecure/unencrypted/vulnerable protocols usage
(i.e., P2P, vulnerable SSL, etc.)

(3) Deep web exposure (company targeted by criminals)

(4) Data breaches due to human errors, third parties, or
hacking activity
(5) Software/infrastructure vulnerabilities

Clearly, we could use such information to establish a
well-defined set of KRIs that negatively influence the ef-
fectiveness of the existing controls. For instance, the de-
tection of malware incidents originating within the network
of the organization is a clear indicator that some of the
employees are not aware about phishing attacks and that the
anti-malware tools used by the company are not enough,
even if all due controls are implemented. In the same way,
vulnerabilities or unnecessary/insecure services exposed on
the Internet perimeter of the company are a clear indicator
that the implemented controls are not effective. In both
cases, it is clear that the level of security is not as high as
claimed. So, the answers of the survey should be mapped



with a list of evidences pertaining to cyber incidents and
technical vulnerabilities obtained, for example, with a set of
cyber intelligence sources, in order to associate an effec-
tiveness score to each one of the given answers. This way, one
can get a more realistic picture of the company cyber profile:
in the case of a “bad” score, the controls implemented by the
company and declared by the answers are not effective. In
other words, the likelihood of the associated threats should
be increased, since the probability of incurring in some
related incidents is higher than expected. On the contrary, in
the case of a “good” score, the stakeholders” answers can be
positively weighted consequently.

More precisely, when considering the stakeholders’
answers, we propose to use a mapping between all the
questions and the set of considered threats: this way, we can
obtain a coverage score that in the end is used to calibrate the
initial likelihood values according to the company profile.
For this purpose, we first define the control coverage vector
t=[f},...,T,] as the ensemble of scores computed on the
basis of the stakeholders’ answers. Basically, each entry 7; is
defined as the state of coverage against the i-th considered
threat. In particular, we define a control as a series of atomic
actions to protect the organization against internal and
external threats. An example of control is “Continuous
Vulnerability Management,” that, as per CIS v7, could be
realized carrying out operations like performing authenti-
cated vulnerability scanning, deploying automated operat-
ing system patch management tools, etc. The more actions
are performed, the higher the level of control’s imple-
mentation will be. For instance, an effective measurement of
this control can be achieved by taking into consideration the
exposure to software and infrastructure vulnerabilities;
moreover, an effective measurement of the malware defenses
(CSC 8) can be achieved verifying the infections events
originated within the network. Then, the stakeholders’ an-
swers can be mapped into the set of controls; in particular,
the answers can be collected in a vector g, while the controls
in a vector d. Then, let W be a matrix with number of rows
and columns equal to, respectively, the number of answers
and controls. We can write

d=gW, (5)

where the entries of W are all <1. With this choice, the
values in d correspond to weighted sums of elements of g. In
particular, the entry in position (i, j) in matrix W, which we
denote as w; ;, expresses the impact of the i-th answer on the
j-th control. These coefficients need to be normalized, in the
sense that the sum of each column in W equals 1. Ifw; ; = 0,
this means that the action referred to the i-th answer has no
impact on the j-th control. The entries of W are determined
on the basis of statistical analyses and evaluations on em-
pirical data. We point out that the whole procedure is in-
dependent of both the number of collected answers and the
number of analyzed controls. Indeed, choosing a different
set of answers or different controls (or both of these pos-
sibilities) will just result in different dimensions and dif-
ferent entries for the matrix W (and, obviously, different
lengths for the vectors g and d), while the whole procedure
will remain unchanged.
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For each threat E;, we then combine the elements of d, in
order to obtain the elements of 7. Indeed, each control is
associated to one or more threats: the formula we have used
in our simulations is

7=dK, (6)

where K is another matrix in which the entries of each
column sum to 1, whose entries, analogously to those of W,
are evaluated after a statistical analysis performed on em-
pirical data. The entry in position (i, j) in K, which we

denote as k; ;, expresses the impact of control i on the j-th
threat.
By combining (5) and (6), we obtain

T =gWK, (7)

which shows how the entries of the control coverage vector
are in linear dependence with the entries of the answer
vector. It must be noticed that this matrix approach is rather
classic and widely used in the literature [17, 18]. The main
novelty of our analysis is in the fact that the vector f is not
used directly but it is combined with another vector resulting
from empirical data.

Actually, analogously to what was done for the control
coverage vector, a set of measurements can be provided in
order to obtain another length-n vector that we call effec-
tiveness vector and denoted as f = ﬁl, o ,fn]. The vectors
and 7 are then combined, in order to obtain the effective
coverage score, which is a length-n vector t whose i-th entry is
obtained as t; = (1 — (1/5)t;),. It is clear that this operation
corresponds to scaling the entries of the control coverage
vector on the basis of the evidences found. Finally, the
customized likelihoods are obtained as p; = (xp,)**, where
x = max{l — t;,0.06}. We point out that these expressions
have been derived after evaluation of available empirical data
and extrapolations of the values from [19].

On the other hand, from a practical point of view, it is
extremely useful to define a global indicator that measures
the general cyber security posture of a company. We call this
value Security Control Score (SCS) and we compute it as the
average value of the entries of t. Basically, a high SCS in-
dicates substantial and effective investments in people and
technology to protect the digital assets and a low exposure to
costs following from cyber threats.

4. Application to Real Case Scenarios

In this section, we describe the application of our model to
some real case scenarios. Consistently with the existing
literature, we first consider historical data to obtain reliable
values for the likelihood and impact values of a set of cyber
threats. Then, we show a real case study, by applying the
procedure described in Section 3, that is, introducing the
evidences resulting from the intelligence tool into the
estimate.

4.1. Obtaining Initial Likelihood Values. In order to provide
all the required inputs for the HTMA model, we need to
define a set of cyber threats for which the likelihood and
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impact values can be reliably estimated. For this purpose, we
rely on data reported in [19]; this choice is motivated by the
fact that this report contains a large amount of information
about events in 2017, so it offers a significant and recent
picture of the current cyber crime panorama. According to
[19], we consider nine different threats and the corresponding
likelihood values; such values are listed in Table 1. An ID
number is assigned to each threat, in order to simplify the
notation.

For each one of the considered threats, starting from
[19], we have determined the 90% confidence ranges for the
impacts, on the basis of the sector in which a company
operates; such ranges are listed in Table 2. For instance, for a
company operating in the industrial sector, the range of
losses due to malware events goes from a minimum of
1.95M$ to a maximum of 2.19 M$.

The distinction between operating sectors might not be
enough to obtain reliable estimates of the economic losses: as
[19] clearly shows, the company size is another aspect that
must be taken into account. In particular, coherently with
[19], we can define the company size as a function of the
number of seats (i.e., number of employees). This de-
pendence can be heuristically modelled through a coefficient
« defined as follows:

as® + bs® + cs

117 , if $ 40000,
o= (8)
deks + le™s
BT if s >40000,

where s is the number of seats and the values of the coeficients
in (8) have been obtained on the basis of extrapolations from
data contained in the report (a=1.04-10""% b=-6.54-10"%,
c=141-10", d=1.815-10", k=2.125-10", [=0.5838, and
m=6.398-107").

The coefficient « can then be used to adjust the ranges
listed in Table 2. In order to clarify this aspect, let us suppose
that a company operating in the industrial sector has a = 0.1:
then, all the impacts reported in Table 2 must be multiplied
by a coefficient equal to 0.1. For instance, the range for
malware attacks becomes [0.195;0.219]: these values cor-
respond to cfmm) and cfmax) that are used in (3) and (4).

The values computed this way can then be used as re-
liable values for the likelihoods and impacts that are
exploited in the HTMA methodology.

4.2. Case Studies. In order to validate our approach, we have
run some simulations considering three different organi-
zations O;, O,, and O;, with the following common
properties:

(i) There are 2000 workstations
(ii) Their business sector is industrial/manufacturing

(iii) Their annual revenue is about 350,000,000 $

It must be said, however, that the proposed approach is
quite general and can be equally applied to different sectors.
What usually changes passing from one scenario to another

TaBLE 1: Considered threats with the corresponding likelihood
values.

1D Threat Likelihood
1 Malware 0.98
2 Web-based attacks 0.67
3 Denial of services 0.53
4 Malicious insiders 0.40
5 Phishing and social eng. 0.69
6 Malicious code 0.58
7 Stolen devices 0.43
8 Ransomware 0.27
9 Botnets 0.63

is obviously the numerical values of the quantities involved,
while the approach and the set of formal relationships at the
basis of the model remain substantially unchanged.

An intelligence tool is supposed to be used to detect
cyber evidences on the cyber perimeters of O,, O,, and O;, to
verify the effectiveness of the security controls implemented
by them. Table 3 reports the number of evidences, of the type
listed in Section 3.1, monitored for the three organizations in
a precise period of time (e.g., 1 year), distinguishing them on
the basis of the impact: trivial, middle, and critical. Eight
cyber intelligence sources S;, with i =1,...,8, have been
adopted. Suitably processed, the values in Table 3 permit to
determine the effectiveness vector f. By combining it with 7,
we can compute the effective coverage score, t, and finally,
the security control score, SCS. All these values are reported
in Table 4. Finally, the corresponding ranges of the economic
losses (90% confidence intervals) are listed in Table 5.

This is all we need to run numerical simulations, fol-
lowing the HTMA approach, for the three considered
companies. The resulting loss of exceedance curves is shown
in Figure 1. These curves have been obtained by applying the
theoretical approach discussed in Section 2.2. So, according
to (2), each curve represents, for the specific organization it
refers to, the probability that the economic loss is equal to or
greater than the values of a reported in abscissa.

As it clearly results from the figure, this company
profiling might have some serious consequences in the cyber
risk assessment. For instance, suppose that the maximum
loss that the three companies can sustain is equal to 1 M$.
We see that, for the three companies, the probabilities of
exceeding this value are significantly different and go from a
minimum of approximately 0.05 for the company O, to
maximum of approximately 0.75 for the company O,. These
values might be compliant or not with the profile and ex-
pectations of the organization, and in the latter case, they
should suggest the adoption of correcting actions to reduce
the risk. On the other hand, the picture so obtained is
provisional, since it is expected to change, getting better or
worse in subsequent assessment campaigns.

5. Conclusion

In this paper, we have described a data-driven approach to
assess cyber risk and associate a score to the cyber exposure
of a company. Our model relies on the well-known HTMA



TaBLE 2: Impact ranges of the considered threats, expressed in M$, for different industrial sectors.
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1D Financial Utilities and energy Aerospace and defense Technology and software Health care
1 [3.51; 3.93] [3.29; 3.69] [2.78; 3.11] [2.51; 2.81] [2.4; 2.69]
2 [2.99; 3.35] [2.8; 3.14] [2.36; 2.65] [2.14; 2.4] [2.04; 2.29]
3 [2.32; 2.61] [2.18; 2.44] [1.84; 2.06] [1.66; 1.86] [1.59; 1.78]
4 [2.15 2.35] [1.97; 2.21] [1.66; 1.86] [1.5; 1.68] [1.44; 1.61]
5 [1.93; 2.16] [1.81; 2.03] [1.52; 1.71] [1.38; 1.55] [1.32; 1.48]
6 [1.91; 2.13] [1.79; 2] [1.51; 1.69] [1.37; 1.53] [1.31; 1.46]
7 [1.28; 1.44] [1.2; 1.35] [1.01; 1.14] [0.915; 1.03] [0.875; 0.983]
8 [0.79; 0.885] [0.74; 0.829] [0.625; 0.7] [0.565; 0.633] [0.54; 0.605]
9 [0.521; 0.585] [0.488; 0.548] [0.413; 0.463] [0.373; 0.418] [0.356; 0.4]
ID Services Industrial Retail Public sector Transportation
1 [2.115 2.37] [1.95; 2.19] [1.78; 1.99] [1.58; 1.77] [1.4; 1.57]
2 [1.8; 2.01] [1.66; 1.87] [1.51; 1.7] [1.34; 1.51] [1.19; 1.34]
3 [1.4; 1.57] [1.29; 1.45] [1.18; 1.32] [1.04; 1.17] [0.926; 1.04]
4 [1.26; 1.42] [1.17; 1.31] [1.06; 1.19] [0.944; 1.06] [0.838; 0.939]
5 [1.16; 1.3] [1.07; 1.21] [0.976; 1.1] [0.866; 0.973] [0.769; 0.863]
6 [1.15; 1.28] [1.06; 1.19] [0.968; 1.08] [0.859; 0.959] [0.762; 0.851]
7 [0.769; 0.864] [0.713; 0.801] [0.648; 0.728] [0.575; 0.646] [0.51; 0.573]
8 [0.475; 0.532] [0.44; 0.493] [0.4; 0.448] [0.355; 0.398] [0.315; 0.353]
9 [0.314; 0.351] [0.29; 0.326] [0.264; 0.296] [0.234; 0.263] [0.208; 0.233]
ID Consumer products Communications Life science Education Hospitality
1 [1.4; 1.57] [1.35; 1.52] [1.24; 1.39] [0.955; 1.07] [0.955; 1.07]
2 [1.19; 1.34] [1.15; 1.29] [1.06; 1.19] [0.813; 0.912] [0.813; 0.912]
3 [0.926; 1.04] [0.897; 1.01] [0.823; 0.924] [0.632; 0.709] [0.632; 0.709]
4 [0.838; 0.939] [0.811; 0.909] [0.745; 0.834] [0.572; 0.641] [0.572; 0.641]
5 [0.769; 0.863] [0.744; 0.836] [0.683; 0.767] [0.525; 0.589] [0.525; 0.589]
6 [0.762; 0.851] [0.738; 0.824] [0.678; 0.756] [0.52; 0.581] [0.52; 0.581]
7 [0.51; 0.573] [0.494; 0.555] [0.454; 0.51] [0.348; 0.391] [0.348; 0.391]
8 [0.315; 0.353] [0.305; 0.342] [0.28; 0.314] [0.215; 0.241] [0.215; 0.241]
9 [0.208; 0.233] [0.201; 0.226] [0.185; 0.207] [0.142; 0.159] [0.142; 0.159]
TasLE 3: Evidences of intelligence. TaBLE 5: Ranges of economic losses for each considered organi-
tion (k$).
Evidences zation (k$)
Source Trivial Middle Critical Threat ID 0O, (0.4) 0, (0.64) 05 (0.8)
o 0, 0, 00 0, O, O, 0O, O, 1 [397.53;446.46] [417.31;468.68] [209.13;234.86]
2 [355.51;400.48] [175.87;198.12] [171.17;192.82]
gl g f ; g g i 3 g i 3 [136.53: 153.46] [138.41:155.58]  [49.15: 55.24]
& 1 2 0 b s 1 b 2o 4 [189.65;212.34] [192.48;215.51] [110.39;123.60]
S3 3 ) 0 12 5 1 12 5 1 5 [229.01;258.98] [84.09;95.10] [67.10;75.89]
g G5 2 b a1 L 6 [217.65;244.34] [171.48;192.51] [106.47;119.52]
¢ s 1 o0 b a1 L s 7 [120.56;135.43] [139.39;156.60]  [87.31;98.08]
& n 0 1 b s 1L 8 [28.01:31.38]  [30.55;34.24]  [13.86;15.53]
7 . . .
5 S s b a1 L s 9 [13.93;15.66]  [22.31;25.0851]  [24.95;28.04]

TaBLE 4: Effective coverage score values for the three simulated
companies.

Threat ID O, 0, O,

1 0.5 0.61 0.85
2 0.23 0.79 0.78
3 0.64 0.74 0.95
4 0.12 0.34 0.67
5 0.21 0.87 0.90
6 0.16 0.56 0.75
7 0.15 0.23 0.57
8 0.68 0.75 0.91
9 0.91 0.87 0.82
SCS 0.4 0.64 0.8

approach but reduces the margin for subjectivity by in-
troducing the use of some quantitative key risk indicators. Its
applicability in practice has been illustrated through some
preliminary case studies taken from the industrial
manufacturing world. Future works will concern application
of the proposed method in a variety of different sectors, with
the aim to catch practical evidences of the advantages it
offers with respect to previous methods.

The proposed model should allow overcoming the in-
trinsic limits of the existing risk assessment approaches,
which are based on the estimate of the threats’ occurrence
probability and on the observation of events that occurred in
the past, thus not guaranteeing an adequate protection for
the future. The proposed approach is also expected to
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FIGURE 1: Loss exceedance curves for the three considered organizations.

provide companies and institutions with a new practical tool
able to assess their cyber risk exposure and helping the
definition of data protection policies for processes, systems,
and infrastructures. The proposed solution is wide-ranging
and applicable to different contexts, maintaining versatility
and possibility to be used by companies and institutions of
different size and working in different fields.
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