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The increasement of software complexity directly results in the augment of software fault and costs a lot in the process of software
development and maintenance. The complex network model is used to study the accumulation and accumulation of faults in
complex software as a whole. Then key nodes with high fault probability and powerful fault propagation capability can be found,
and the faults can be discovered as soon as possible and the severity of the damage to the system can be reduced effectively. In
this paper, the algorithm MFS_AN (mining fault severity of all nodes) is proposed to mine the key nodes from software network. A
weighted software network model is built by using functions as nodes, call relationships as edges, and call times as weight. Exploiting
recursive method, a fault probability metric FP of a function, is defined according to the fault accumulation characteristic, and a
fault propagation capability metric FPC of a function is proposed according to the fault propagation characteristic. Based on the
FP and FPC, the fault severity metric FS is put forward to obtain the function nodes with larger fault severity in software network.
Experimental results on two real software networks show that the algorithm MFS_AN can discover the key function nodes correctly

and effectively.

1. Introduction

With the development of computer technology and the
expansion of software applications [1], the scale and com-
plexity of software systems increase continuously. Software
faults directly lead to the rise of system failure ratio, and
their reliability is becoming more and more difficult to
guarantee. In the test and maintenance process, developers
cannot deal with the software problems with a clear purpose
[2]. Therefore, if some potentially useful information can
be found from software source code or dynamic execution
process to help software workers understand the structural
characteristics of software quickly, it will be of great signifi-
cance for improving software development and maintenance
efficiency [3-5]. Affected by the achievements in the complex
network field, some researchers regard software system as
a software network for scientific research. This provides a
novel research idea and platform for better understanding

and measuring the internal topology structure of complex
software system and receives great attention.

The knowledge of complex network has been introduced
into software engineering by using network model to repre-
sent the structural characteristics of a software system, and
researchers have found many novel features of the structure
from different points of view [6, 7]. Valerde et al. [8] apply
complex network to construct the topology structure of
software and propose a method to model the software as an
undirected network for the first time. In the method, the node
is regarded as the software class and the edge is regarded as
the call relationship among the classes. With experiments,
they find the “scale-free” and “small-world” properties in
software network. Myers et al. [9] use directed network to
represent the collaboration relationship among the classes of
software. They learn that indegree and outdegree distribution
of the network obey the power-law distribution with different
exponents. Pan et al. [10] adopt a binary software network to
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represent class units or package units and their dependence
relationships in a software system, as well as a community
detection method to detect the best module partition of the
software system. The optimal module partition is compared
with the real module partition in the system to guide the
optimization design of the module when a software version is
updated. Thung et al. [11] propose a new method to simplify
the complexity of a software network. Then, they measure
the importance of classes from different properties (between-
ness, closeness, etc.). Furthermore, they condense the class
network which only contains some important classes. By
the method, they are able to depict the overall design for
software and make the design model easy to understand.
Mohammed et al. [12] construct a mapping of research system
to identify software security techniques used in the software
development process, which enables software developers to
understand the existing software security approach better.
Thus, software security problems are urgent to be solved.
Measuring the importance of nodes accurately in soft-
ware network is the premise to improve the security and
reliability of software [13]. In software network, a few key
nodes have an important effect on the overall stability,
reliability, and robustness of the system [14], such as the
impact of cascading failure propagation. If there are faults
in these nodes, it can result in partial or total system
crashes and irreversible results. Identifying these nodes and
providing them with key protection help to prevent system
crash caused by deliberate attacks. Researchers have defined
the importance of nodes in software network from different
aspects. Freeman [15] utilizes the betweenness to measure
the node importance and points out that a node is more
important in software network if its betweenness is bigger.
Callaw et al. [16] consider that a node is more important in
software network if its degree is bigger, because the node with
bigger degree connects with more nodes. However, it does not
consider the overall structure of a software network and has
some limitations. Kitsak [17] makes it clear that the location
of a node in network has a great impact on its importance
and exploits the k-shell decomposition method to measure
the node importance. The metric result is proved to be better
than the betweenness and degree of centrality. Turnu et al.
[18] measure the quality of software by analysing the degree
distribution of nodes in a software network. They define the
structure entropy to describe the degree distribution of nodes
and prove that the statistical information of the structure
entropy in a software network can be related to the number
of software bugs. It further proves that there is a relationship
between the structure characteristics of a software network
and the quality of the software. Wang et al. [19] define the
influential nodes in a network by studying the weighted
software network at the function level. They analyse the
relationship between the statistical characteristics of software
network and the influential nodes through experiments.
Bhattacharya et al. [20] predict software evolution based on
the static graph topology analysis and propose NodeRank
value to measure the importance of a node. The fault of
a function is not only caused by itself but also affected by
other functions. Huang et al. [21] define the importance
of a node based on the dependence relationship and the
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information propagation among functions. Their algorithm
MIN can effectively mine the influential nodes in a software
network, but its assignment to the probability of information
propagation has certain subjectivity.

In complex networks, random walk model judges the
importance of a node by considering its own connectivity
degree and the importance of neighbouring nodes around
it. Typical methods are PageRank, NodeRank [20], and so
on. In software network, the CK metric set proposed by
Chidamber and Kemerer [22] indicates that the number of
classes that are coupled to a given class named CBO can
affect the propensity of the class node to contain defects. If
the CBO of a class is larger, it is more sensitive when other
parts change. So it is harder for software workers to maintain.
Ren et al. [23] believe that the more numbers of modules,
classes, or functions that are directly or indirectly dependent
on the function nodes, the greater the cost of constructing it
and the probability of error. Ren et al. [24] also believe that
when a function node is the role of the calling function, it
may accumulate the defect of the called function node with
a certain probability. When a function node is the role of
the called function, it may propagate its defects to its caller
with a certain probability. Based on the random walk model
and combined with the directed weighted feature of software
network, the following FP and FPC are proposed.

In summary, this paper focuses on the call dependence
relationship among functions and the fault accumulation and
propagation of dynamic execution process. Firstly, according
to the dynamic execution information of software, we build a
weighted software network model. Then, utilizing recursive
method, the fault probability metric FP of a function is
defined in accordance with fault accumulation characteristic,
and the fault propagation capability metric FPC of a function
is proposed on the basis of fault propagation characteristic.
Finally, by combining FP and FPC, the fault severity metric
FS is put forward and the algorithm MFS_AN (mining
fault severity of all nodes) is proposed to calculate the FS
and obtain the function nodes with larger fault severity in
software network.

The rest of this paper is organized as follows. Section 2
describes the process of mining key nodes in a software
network based on the fault accumulation and propagation.
The experiment results are given in Section 3. Conclusion and
future work are mentioned in Section 4.

2. Mining Key Nodes Based on Fault
Accumulation and Propagation

2.1. Weighted Function Execution Network. In software net-
work, the different execution times among functions reflect
the tightness degree of nodes’ interaction. In order to
incorporate this difference, this paper constructs a weighted
software network model.

Definition 1 (WFEN (Weighted Function Execution Net-
work)).

WFEN = (NSet, ESet, Weight) (1)
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FIGURE 1: A portion of a weighted function execution network.

where NSet is the function node set of a software network,
ESet is the edge set which is the function call relationship
during the software execution process, and Weight denotes
the execution times that a function calls another one.

Figure 1 represents a portion of a weighted function
execution network.

As the software system works, a function is a calling
function and also a called function. In the execution process
of a function node u, the nodes called directly by u are the
direct outdegree neighbor node of u, and the set of these
direct out-degree neighbor nodes is called as the Direct Out-
degree Neighbor Set (DONS). Similarly, set of the indegree
neighbor nodes which call node u directly is named as the
Direct In-degree Neighbor Set (DINS).

Definition 2 (DONS (Direct Out-degree Neighbor Set)).
DONS (u) = {v; lu —v;}, u,v; € NSet (2)
Definition 3 (DINS (Direct In-degree Neighbor Set)).
DINS (u) = {v; | v; — u}, u,v; € NSet 3)

2.2. The Fault Probability. Figure 2 shows a more common
topology structure of software network. By analyzing these
three different topologies, we study the fault accumulation
characteristics of functions in software network and obtain
the fault probability of a function.

FIGURE 2: Common topologies in software network.

For nodes Bl and CI, they have the same size of the call
function set; that is, the number of call nodes is equal, but the
call relationship between these nodes is different. For nodes
Bl and D1, they have the same size of execution routes, but
the node D1 has a larger call function set and a more complex
execution process. Therefore, the influences of the node Bl,
C1, and D1 on the node A are different.

With the structure shown in Figure 2, we can learn that
the function fault is caused not only by itself, but also by
its call functions. Moreover, for the objective function, each
node in its DONS has different influence on the objective
function. For this, we define the fault probability quantitative
standard FP of each node which is the accumulation of
infection coming from its call nodes. Based on the call rela-
tionships among the functions in DONS, the computational
formula of the FP is given as follows.



Definition 4 (FP (the fault probability of a node)).

N
FP(u)=a+ Y P, *FP(v), v, € DONS(u) (4)
i=1

—;

p _ Weight (u,v;)
T X Weight (jov)”

jeDINS(v) ()

where « is the fault probability of u caused by itself (0 <
a < 1),v;isanodein DONS(u), N is the size of the DONS(u),
P is the probability infected by the direct neighbors of u,

u—>v;

jisa node in DINS(v;), and n is the size of the DINS(v;).

Example 5. Figure 3 is a simple weighted function execution
network.

In Figure 3, an example shows how to calculate the FP of
a function node. In real world, the size of each function with
various definitions is different, and the fault probability of
each function is also different. But the setting of specific fault
values is more complicated. The main work of this paper is to
show the correlation of faults and not to pay attention to the
fault calculation method of the node itself. To be universal,
we set the fault probability of function node itself to 0.5.
That is to say, suppose the probability of fault occurring and
not occurring is the same. The function node set NSet =
{A,B,C, D, E, F}, and the Direct Out-Degree Neighbor Set of
each node is as follows:

DONS (A) = {B};

DONS (B) = {C, D} ;

DONS (C) = {E, F}; (6)
DONS (D) = {F};

DONS (E) = DONS (F) = ®.

For nodes E and F, which belong to leaf nodes in the
software network, then FP(E) = FP(F) = « = 0.5; according
to the definition of FP, the fault probability of other nodes in
the software network is as follows:

FP(C):oc+(§*FP(E)+ *FP(F))
3 2+4
— 1.1666667;
FP (D) = ( 4 FP(F))—08333334'
=+ 2+4* = 0. 5 (7)

FP (B) =oc+<§ * FP (C) + % *FP(D)) =25

FP(A) = a+ (g . FP(B)) ~ 3.0,

Through the calculation of FP, the fault probability of a
function node is identified. According to the above calcu-
lation results, the fault probability of each function node in
Figure 3 is in the order of: A>B>C>D>E=F.

The fault probability of a node (FP) in Definition 4 is
really not probability. It is just a metric of a node, if the FP of
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FIGURE 3: A simple weighted function execution network.

anode is higher and the node more likely has faults. So it may
take arbitrary large value. Just because FP measures recursive
weighted out degree of node u, it happens to embody the
process of fault accumulation in a software system. Therefore,
in the case of probability cumulative, total more than 1, this is
a possibility, not restricted by 1.

Via the above analysis, based on the fault accumulation
characteristics of a function and the recursive method, we
utilize the formula (4) to calculate the fault probability FP
for each function in software network. Then the algorithm
MFP_AN (Mining fault probability of all nodes) is proposed
to get the FP of all nodes in software network.

In Algorithm 6, we show the process of the method
MFP_AN. In line (1), we first initialize a FPList to store the
information and fault probability FP of all function nodes. In
lines (2-9), alooping procedure calling the procedure MFP to
calculate and store the FP for all function nodes is presented.
In the procedure MFP, we show the process that the FP of
a node is calculated by a recursively process. In line (1), we
first define and initialize some related variables. Lines (2-21)
describe the process to compute the current node affected by
its out-degree neighbor nodes recursively and obtain the FP
of the target node.

Algorithm 6 (mining fault probability of all nodes
(MFP_AN)).

Input: node set NSet, out-degree adjacency table out-
DegreeList, in-degree adjacency table inDegreeList
Output: the measuring result FPList of nodes
Process:

(01) Initialize FPList;

(02) for (each U € NSet)

(03) if (tempList.contains(U))

(04) FPList.add(U,tempList.get(U));
(05) break;
(06) endif

(07)  value = MFP (U,outDegreeList,inDegreeList);
(08)  FPList.add(U,value);

(09) end for

(10) return FPList;
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Procedure (MFP (U: a node; outDegreeList: out-degree adja-
cency table; inDegreeList: in-degree adjacency table))

(01) Imitialize «, Fa=0, P=0, FP=0, tempList;
(02) if (outDegreeList[U.index]!=null)
(03)  for (each V € outDegreeList[U.index])

(04) if (inDegree[V.index]!=null)

(05) Initialize sum=0;

(06) for (each I € inDegree[V.index])
(07) count = Label(I,V);

(08) sum += count;

(09) end for

(10) for (each I € inDegree[V.index])
(11) if (I.index == U.index)

(12) count_UV = Label(U,V);
(13) P = count_UV/sum;

(14) break;

(15) end if

(16) end for

(17) end if

(18) Fa += P « MFP

(VoutDegreeList,inDegreeList);
(19)  end for
(20) end if
(21) FP= « + Fa;
(22) tempList.add(U,FP);
(23) return FP;

2.3. The Fault Propagation Capability. Similarly, this section
defines the fault propagation capability metric FPC of a
function according to the fault propagation characteristics.

Definition 7 (FPC (the fault propagation capability of a
node)).

in N
FPC (u) = Ki;; +Y P, ., xFPC(v),
max i=1 (8)
v; € DINS (u)
Weight (v;, u )
Py ) i pons(r) )

X Weight (v, j)’

where K is the in-degree of a node u, K _ is the
maximum value of in-degree in the network, K"/ Kgax
denotes the fault propagation capability of the objective
function itself, v; is a node in DINS(u), N is the size of the
DINS(u), P, _,, is the probability of u called by functions in
the DINS(u), jisanode in DONS(v;), and n is the size of the
DONS(v;).

Example 8. Based on Figure 3, an example shows how to
calculate the FPC of a function node. The function node set
NSet={A, B, C, D, E, F}, K" =2 and the Direct In-Degree

max

Neighbor Set of each node is as follows:
DINS (A) = O
DINS (B) = {A};
DINS (C) = DINS (D) = {B} ; (10)
DINS (E) = {C};
DINS (F) = {C, D} .

According to the definition of FPC, the fault propagation
capability of all nodes in the software network is as follows:

K
FPC (A) = = 0;

in
Kmax

in

FPC (B) = —2— +

vl »n

* FPC (A)) =0.5;

(9]

FPC(C) = —% +

L ERC (B)) — 0.8125;

+
w

3

s * FPC (B)) = 0.6875;

+
w

3

FPC(E) = —2- + .

(
(
T
(

« FPC (C)) =0.9125;

[\S}

Kin
FPC (F) = —L

in
Kmax

+
2

= 2.0125.

4
# FPC(C) + | + FPC (D)>

(11)

Through the calculation of FPC, the fault propagation
capability of a function node is identified. According to
the above calculation results, the fault propagation capabil-
ity of each function node in Figure 3 is in the order of
F>E>C>D>B>A.

Algorithm 9 (mining fault propagation capability of all nodes
(MFPC_AN)).

Input: node set NSet, out-degree adjacency table out-
DegreeList, in-degree adjacency table inDegreeList,
inDegreeMax

Output: the measuring result FPCList of nodes
Process:

(01) Initialize FPCList;

(02) for (each U € NSet)

(03) if (tempList.contains(U))



6
(04) FPClList.add(U,tempList.get(U));
(05) break;
(06) end if

(07)  value = MFPC (U,outDegreeList,
inDegreeList,inDegreeMax);

(08)  FPCList.add(U,value);

(09) end for

(10) return FPCList;

Procedure (MFPC (U: a node; outDegreeList: out-degree
adjacency table; inDegreeList: in-degree adjacency table;
inDegreeMax: maximum value of in-degree))

(01) Inmitialize Fp=0, P=0, inDegree=0, FPC=0, tempList;
(02) if (inDegreeList[U.index]!=null)

(03)  inDegree = inDegree[U.index].size;

(04)  for (each V € inDegreeList[U.index])

(05) if (outDegree[V.index]!=null)
(06) Initialize sum=0;
(07) for (each I € outDegree[V.index])
(08) count = Label(V;]);
(09) sum += count;
(10) end for
(11) for (each I € outDegree[V.index])
(12) if (L.index == U.index)
(13) count_VU = Label(V,U);
(14) P = count_VU/sum;
(15) break;
(16) end if
(17) end for
(18) end if
(19) Fp +=P « MFPC

(VoutDegreeList,inDegreeList,inDegreeMax);
(20)  end for
(21) end if
(22) FPC= inDegree/inDegreeMax + Fp;
(23) tempList.add(U,FPC);
(24) return FPC;

Similarly, via the above analysis, based on the fault
propagation characteristics of a function and the recursive
method, we use the formula (8) to calculate the fault propa-
gation capability FPC for each function in software network.
Then the algorithm MFPC_AN (mining fault propagation
capability of all nodes) is proposed to get the FPC of all nodes
in software network. Algorithm 9 is similar to Algorithm 6.
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2.4. The Fault Severity. Some researchers believe that the type
of fault determines the behaviour of transmission [25, 26].
That is, different faults in the same software have different
laws of propagation behaviour. The research focuses on the
study of fault characteristics. However, other researchers
believe that the system architecture determines the behaviour
of fault propagation [27]. That is, the same fault in different
architectures can be evolved into system failure with different
types or different severity levels. This view is based on the
analysis of the system structure. It focuses on the regularity
of the propagation of faults in the architecture. This paper
mainly studies the latter. Therefore, this article firstly cal-
culates the fault probability FP and the fault propagation
capability FPC of a function node, respectively. Then the
two points are taken into account in this function node.
Supposing it fails, the possible fault severity FS of the
software system is calculated. Under this premise, we study
the function fault characteristics of software system based on
architecture.

In Sections 2.2 and 2.3, the fault probability and the fault
propagation capability of a function node have been studied,
respectively. The former is measured from the Out-Degree
Neighbour of a function node, or to say that is the node
affected by others. The latter is measured from the in-degree
neighbour of a function, or to say that is the effect of the node
on others. However, only a comprehensive consideration of
these two aspects can fully measure the severity of the damage
to a software system.

A node is more likely to have faults if its FP is higher, and
it should be paid more attention. However, if a function only
has faults but it does not spread its own faults, then the node
will not cause very serious consequences to software system,
while if a function is not only prone to fail but also has a strong
capability to spread its faults to others, then it will cause very
serious consequences to software system. Therefore, from the
perspective of the fault severity, the fault probability FP and
the fault propagation capability FPC of a function are directly
proportional. The definition of FS (The fault severity) is given
as follows.

Definition 10 (FS (the fault severity)).

FS(u) = FP (u) + FPC (1), u € NSet (12)

where FP(u) is the fault probability of a function node u
and FPC(u) is the failure propagation capability of u. They
jointly determine the fault severity to a software system when
the function node u fails. And if a node is with a bigger FS, it
will have greater impact on the software system and then it is
more critical.

First, we obtain the fault probability set FPList and
the failure propagation capability set FPCList of software
network through Algorithms 6 and 9, respectively. Then,
we use formula (12) to calculate the fault severity FS, and
the algorithm MFS_AN (mining fault severity of all nodes)
is proposed to discover the top-k key nodes from software
network.

In Algorithm 11, the process of the method MFS_AN is
presented. Line (1) first initializes an empty FSList set that
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stores the FS of all function nodes. Lines (2-7) present a
looping process that calculates the FS. In line (8), the FS in
the FSList are sorted. In Line (11), the first k function nodes in
the FSList are selected as the key nodes of software network.

Algorithm 11 (mining fault severity of all nodes (MFS_AN)).

Input: node set NSet, FPList, FPCList
Output: the top-k key nodes list Knodes
Process:

(01) Initialize FSList;

(02) for (each U € NSet)

(03)  FP(U)=FPList.get(U);

(04) FPC(U)=FPClList.get(U);

(05)  FS(U)=FP(U) * FPC(U);

(06)  FSList.add(U,FS(U));

(07) end for

(08) FSList.sort();

(09) Knodes = FSList.get(K);

(10) return Knodes

3. Experiment and Analysis

In this section, we verify the method MFS_AN by testing two
kinds of classic tool software Tar and Cflow obtained from
the open source community. Tar is a file compression and
decompression tool. Cflow is a C program analysis tool for
tracking the calling process of functions in the C program.
In the Linux environment, we can extract the functions and
the dependence relationships of open-source software with
the help of tool pvtrace. The results are output to files as
text (such as graph.dot). The nodes and the dependence
relationships then can be graphically displayed by means
of the visualization tool Graphviz. As the main function
must be very important to software, so it is excluded in the
following experimental verification. In addition, before the
experiment, we pretreat the experimental data and delete the
loop in the software network, so that recursion can be finished
successfully.

3.1. The Distribution of FS. By tracking the execution process
of Tar and Cflow, the dynamic execution information of
the two types of software is obtained, and the weighted
function execution network WFEN is constructed as the
basis of experimental data. The fault probability FP and
the fault propagation capability FPC of all functions are
obtained by mapping the node set and the call relationships of
software network to Algorithm 6 (MFP_AN) and Algorithm 9
(MFPC_AN). The return values of Algorithms 6 and 9 are
mapped to Algorithm 11 (MFS_AN). The fault severity FS
of all nodes and the key nodes in software network are
obtained. Figures 4 and 5 show the fault severity scores and
the distribution of key nodes in the different versions of Tar
and Cflow.

SF
O = WA 1O\ 00
Ly

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
rank

—s— Tar-1.21
—e— Tar-1.23
—s— Tar-1.25
—=— Tar-1.27
—+— Tar-1.28

FIGURE 4: SF value distribution of Tar.

1 6 11 16 21 26 31 36 41 46 51 56 61 66
rank
—a— Cflow-1.0

—o— Cflow-1.1
—— Cflow-1.2
—— Cflow-1.3
—a— Cflow-14

FIGURE 5: SF value distribution of CFlow.

From the results distribution shown in Figures 4 and
5 (the first 70 nodes are chosen because of the number of
nodes in different versions is different), we can summarize
the following rules:

(1) We can find that every result distribution obeys the
power-law distribution. With the distribution, we verify that
software network shows the scale-free properties of complex
network.

(2) There are a few nodes with big FS and most of nodes
with small FS. But their criticality and impact on the overall
software architecture can be reflected in the higher scores.

(3) Their curves are basically at the same trend in different
versions of the Tar and Cflow. In other words, in different
versions, if the function nodes have the same criticality, the
fault severity to software system is no big difference.

By analysing the node criticality in the two types of
software from Figures 4 and 5, the key nodes in the software
network are defined according to the FS, as the hierarchical
structure of FS distribution is obvious, according to the
turning point of curves in the graph, to select Top-10 as the
key nodes of Tar and Cflow software network, respectively. In
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TABLE 1: The rank of function nodes by SF for Tar versions.
Rank/value
Node Tar-1.21 Tar-1.23 Tar-1.25 Tar-1.27 Tar-1.28
flush_archive 1/11.178 1/10.253 1/9.238 1/9.221 1/9.208
dump_file 2/8.509 2/8.256 2/8.306 2/8.357 2/8.408
dump_file0 3/6.287 3/6.120 3/6.150 3/6.150 3/6.150
find_next_block 4/5.220 4/4.676 5/4.323 5/4.313 5/4.304
update_archive 5/4.460 5/4.412 4/4.556 4/4.729 4/4.830
gnu_flush_write 6/3.849 6/3.567 6/3.112 6/3.107 7/3.103
_gnu_flush_write 7/3.475 7/3.246 8/2.744 8/2.740 9/2.737
create_archive 8/2.873 8/3.004 7/2.944 7/3.104 6/3.170
dump_regular_file 9/2.621 9/2.642 9/2.509 9/2.629 10/2.629
open_archive 10/2.311 10/2.292 10/2.299 10/2.534 8/2.768
TaBLE 2: The rank of function nodes by SF for Cflow versions.
Rank/value
Node Cflow-1.0 Cflow-1.1 Cflow-1.2 Cflow-1.3 Cflow-1.4
nexttoken 1/14.878 1/15.642 1/15.642 1/13.266 1/14.610
yylex 2/7.282 2/7.728 2/7.728 3/6.341 3/7.037
get_token 3/7.255 3/7.670 3/7.670 2/6.382 2/7.063
yyparse 4/2.370 4/2.492 4/2.530 4/2.656 4/2.514
parse_declaration 5/2.175 5/2.308 5/2.355 5/2.547 5/2.349
parse_dcl 6/1.949 7/2.046 6/2.188 6/2.455 6/2.241
expression 7/1.890 6/2.069 7/2.069 7/1.831 7/1.775
yyrestart 8/1.479 9/1.479 9/1.479 10/1.479 8/1.663
func_body 9/1.377 8/1.510 8/1.510 9/1.513 11/1.381
append_to _list 10/1.371 10/1.347 10/1.347 -- --

TaBLE 3: In/Out-degree statistics of ranking top-5 and back-5 nodes
in Cflow-1.4.

Rank Node K, Kout
1 nexttoken 14 2
2 get_token 1 1
3 yylex 1 5
4 yyparse 1 5
5 parse_declaration 1 4
-5 clear_active 1 0
-4 set_active 1 0
-3 compare 1 0
-2 depmap_alloc 1 0
-1 register_output 1 0

Tables 1 and 2, we present the key nodes and their rank for
different versions of the Tar and Cflow.

From the data shown in Tables 1 and 2, the following rules
can be summarized:

(1) For a given function node, the criticality ranking
in different versions is basically stable. Although there is
a change about the ranking of a specific function node in
different software versions, the change is very small. For

example, in Table 1, the ranking range of the function node
find_next_block is [4, 5] and the criticality ranking of the
function node dump_file has been stable at 2 in different
versions.

(2) Due to the ranking stability of the key nodes in
software evolution, we have sufficient reason to predict the
position of a function node in a new software version. For
instance, in Table 2, the function node yylex is always more
critical in each version, and then we can predict that it is likely
to still be more critical in the next up-to-date version.

3.2. Correctness Verification

3.2.1. Degree Distribution of FS. In order to illustrate the
correctness of the key nodes, taking Cflow-1.4 as an example,
we use indegree K, and outdegree K, these two indicators,
respectively, as the criticality characterization of a function in
software network.

According to the data in Table 3, it can be explained that
although the criticality of a function node is not directly
related to degree, they have a certain positive correlation.
The outdegree values of top-5 are bigger; then their fault
probability is greater, and the in-degree values are also bigger;
then their fault propagation capability is greater as well, so the
overall fault severity is greater. While the back-5 are all leaf
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FIGURE 7: Joint distribution of FP and FPC in Cflow-1.4.

nodes with one in-degree, even if they fail, the range of fault
propagation is limited. The different versions of Tar and other
versions of Cflow are similar to Table 3 and they will not be
described in detail here.

3.2.2. Joint Distribution of FP and FPC. Figures 6 and 7 show
the joint distribution of the FP and FPC in Tar-1.28 and
Cflow-1.4 software networks. As shown, most functions are
located at the lower left corner of the graph; it means that the
FP and FPC of these functions are relatively small; a small
number of functions are located in the middle of the graph; it
means that the FP and FPC of them are relatively big; only a
very small number of functions are at the upper right corner
of the graph; it signifies that the FP and FPC of these functions
are big. Such functions are not only prone to fail but also
have a strong fault propagation capability. If they fail, the
fault severity to system disruption will be greater. In order to
ensure the stability of software system, we should pay more
attention to such functions and guarantee their correctness
and robustness.

3.2.3. IC Model. In social network, the Independent Cascade
Model (IC Model) is a propagation model of researching
influence maximization problem. It is a probabilistic model.
When a node u is activated, it tries to activate its inactivated
neighbor node v with probability P,. This attempt is only
done once, and these attempts are independent of each other.
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FIGURE 9: IC Model simulation results for different Cflow versions.

That is to say, the activation of u to v is not affected by other
nodes.

In software network, when a failed node u is called, it
propagates faults to the neighbor node that calls it with a
probability P,. If the node u can affect a number of nodes,
the severity of its failure is significant. This is very similar to
the maximization of influence in social network. Therefore,
we use IC model to verify that the proposed method MFS_AN
does help to measure the fault severity of a node.

According to the mining results of the two kinds of
software Tar and Cflow, the top-10 nodes and back-10 nodes
are selected as source nodes, respectively. Through the IC
model to simulate the number of nodes they can affect after
being called, which in turn shows the severity of their failure.
Due to the randomness of the IC model, we repeated the
simulation 10 times for each version of each kind of software
and then averaged the results, as shown in Figures 8 and 9.

As can be seen from Figures 1 and 2, if the functions
fail, the number of nodes that can be affected by the top-
10 function nodes is about 4 to 5 times that of the back-10
function nodes. This shows that if the top-10 function nodes
fail, the fault severity of the software system will be 4 to 5 times
that of the back-10 function nodes. Therefore, the ranking
of node importance by the MFS_AN method does help to
measure the fault severity of a node.
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TABLE 4: The comparison of node rankings in Cflow-1.4.
Cflow-1.4) Rank/value
Node MFS_AN Degree
nexttoken 1/14.610 1/16
get_token 2/7.063 10/2
yylex 3/7.037 6/6
yyparse 4/2.514 6/6
parse_declaration 5/2.349 7/5
parse_dcl 6/2.241 5/7
expression 7/1.775 4/8
yyrestart 8/1.663 6/6
tree_output 9/1.489 2/14
linked_list_iterate 10/1.383 5/7

TaBLE 5: The comparison of node rankings in Tar-1.28.

Tar-1.28 Rank/value

Node MFS_AN Degree
flush_archive 1/9.208 9/4
dump-_file 2/8.408 8/5
dump_file0 3/6.150 3/13
update_archive 4/4.830 1/14
find_next_block 5/4.304 716
create_archive 6/3.170 4/9
gnu_flush_write 7/3.103 11/2
open_archive 8/2.768 9/4
_gnu_flush_write 9/2.737 11/2
dump_regular_file 10/2.629 4/9

3.3. Comparison with Degree Method. The algorithm
MFS_AN measures the node criticality from two aspects of
the outdegree and indegree in the whole network structure.
In directed graph, the degree centrality algorithm is a classical
algorithm to measure the node criticality from outdegree and
indegree. Thus, this paper compares the algorithm MFS_AN
with degree centrality algorithm (denoted as Degree). Tables
4 and 5 show the comparative results of Cflow-1.4 and
Tar-1.28.

The node ranking lists presented in Tables 4 and 5 are
different, and the Degree method has the phenomenon that
the same metric value of multiple nodes results in the same
ranking. The reason is that the MFS_AN method starts from
the fault accumulation and propagation characteristics of a
function and focuses on out-degree neighbor nodes and In-
Degree Neighbor nodes that have direct or indirect relation-
ship with the current function node. It considers the global
influence of the node. While the Degree method only pays
attention to the direct out-degree and in-degree neighbor
node of the current function node, it ignores the indirect
influence of other nodes. However, in software network,
the nodes are not isolated and they realize the complicated
software function by calling each other. Therefore, compared
with Degree method, MFS_AN method can identify the

Security and Communication Networks

structure of a software more clearly and mine the key nodes
of software network more accurately.

In summary, the algorithm MFS_AN proposed in this
paper is correct and effective for the node criticality evalu-
ation in software network. By using the algorithm MFS_AN
to identify the key nodes in software network, it is helpful to
reduce the software fault severity and improve the robustness
and stability of software.

4. Conclusions and Future Work

In this paper, a novel algorithm MFS_AN is proposed to
evaluate the criticality of nodes in software network by
combining the two characteristics of fault probability and
fault propagation capability together. And function nodes
with larger fault probability and stronger fault propagation
capability are regarded as the key nodes. With experiment, we
analyse the FS distribution of the nodes in different software
versions, realize the evolution law of software, and prove the
algorithm MFS_AN can discover the key function nodes cor-
rectly and effectively in software network. On the other hand,
the criticality of a function node is not directly related to
degree, but it has a certain positive correlation. Furthermore,
we could understand the software structure more easily and
reduce the workload of testing and maintenance process to a
maximum extent. In the future research, we will focus on how
to divide the software module based on the key nodes.
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