
Research Article
Efficient and Transparent Method for Large-Scale TLS Traffic
Analysis of Browsers and Analogous Programs

Jiaye Pan , Yi Zhuang , and Binglin Sun

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 200016, China

Correspondence should be addressed to Yi Zhuang; zy16@nuaa.edu.cn

Received 3 April 2019; Revised 16 August 2019; Accepted 20 September 2019; Published 27 October 2019

Guest Editor: Surya Nepal

Copyright © 2019 Jiaye Pan et al. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many famous attacks take web browsers as transmission channels to make the target computer infected by malwares, such as
watering hole and domain name hijacking. In order to protect the data transmission, the SSL/TLS protocol has been widely used to
defeat various hijacking attacks. However, the existence of such encryption protection makes the security software and devices
confront with the di�culty of analyzing the encrypted malicious tra�c at endpoints. In order to better solve this kind of situation,
this paper proposes a new e�cient and transparent method for large-scale automated TLS tra�c analysis, named as hyper TLS
tra�c analysis (HTTA). It extracts multiple types of valuable data from the target system in the hyper mode and then correlates
them to decrypt the network packets in real time, so that overall data correlation analysis can be performed on the target.
Additionally, we propose an aided reverse engineeringmethod to support the analysis, which can rapidly identify the target data in
di�erent versions of the program. e proposed method can be applied to the endpoints and cloud platforms; there are no trust
risk of certi�cates and no in�uence on the target programs. Finally, the real experimental results show that the method is feasible
and e�ective for the analysis, which leads to the lower runtime overhead compared with other methods. It covers all the popular
browser programs with good adaptability and can be applied to the large-scale analysis.

1. Introduction

Currently, the incidents of malware attack occur so fre-
quently as to cause the serious loss of data and property to
internet users. Malicious code has presented new forms such
as ransomware, phishing, and coin mining. Web browsers
are the important sources of malware to infect the target
computers. For example, users download and install soft-
ware bundled with malicious codes from the third-party
website, or users encounter phishing attacks and access the
fake page, or the web browser loads a web page with vul-
nerability exploitation codes and triggers the infection of
malware [1]. Meanwhile, the incorrect con�guration of le-
gitimate applications may also cause the ex�ltration of
privacy data. For terminal users, web browser is an im-
portant application in their work and life. Consequently, it is
crucial to inspect the content of web pages in order to create
a secure internet environment for computer users.

Moreover with the development and popularity of the
Secure Socket Layer (SSL) protocol [2] and its subsequent

version Transport Layer Secure (TLS) [3], lots of websites
and client applications adopt the HTTPS protocol instead of
HTTP [4]. It is based on TLS which can prevent the
transmission of data from advertising hijacking and packet
manipulation. is also becomes the barrier of security
information and event management (SIEM) systems. Al-
though the TLS protocol is very secure in theory, there are
many kinds of problems in its practical uses. e software
which implements the protocol may have vulnerabilities,
such as those of OpenSSL [5, 6], and some insecure algo-
rithms and cipher suites may cause the cipher text to be
cracked [7, 8, 9]. Moreover, there may be Man-In- e-
Middle (MITM) attacks in the authentication process, for
reasons such as counterfeit certi�cates [10], certi�cate ver-
i�cation bugs or lack of security consciousness [11, 12].
Actually the problems led by improper deployment of TLS
protocol are more complicated than we thought, especially
in the browser application and HTTP protocol [13, 14]. e
security of TLS protocol is continuously improved in the
confrontation between attack and defense, which has been

Hindawi
Security and Communication Networks
Volume 2019, Article ID 8467081, 22 pages
https://doi.org/10.1155/2019/8467081

mailto:zy16@nuaa.edu.cn
https://orcid.org/0000-0002-2184-1680
https://orcid.org/0000-0003-0706-0148
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8467081

shown in the draft of TLS version 1.3 [15]. Meanwhile, there
are many enhanced mechanisms for TLS applications [16],
some of which are widely used in practice, such as HTTP
Strict Transport Security (HSTS) [17], Public-Key Pinning
Extension (PKPE) [18], Certificate Transparency (CT) [19],
and so on.

In this situation, the firewall based on packet filtering
cannot make deep analysis on the packet content. One better
solution is to choose, model, and classify the plain in-
formation in the TLS connections with training, such as the
handshake fingerprints [20] and then to pick out the
malicious traffic in the real environment [21]. +is method
can only discover the abnormal TLS connections, but fails to
identify the web page which contains malicious payload
because the packet is not decrypted. Another solution is to
interpose a TLS proxy in the communication, which is more
general in security software and devices. First, adding a
trusted Certificate Authority (CA) in the system and con-
figuring the network proxy, when the browser makes a TLS
handshake, it will generate a specific certificate for the re-
quest domains, and it is signed with the installed certificates
beforehand [22]. In this case, trusted and auditable con-
nections will be established. Actually, this method is very
suitable for web browsers but not general since many
software implement the TLS protocol in a custom manner,
also with the certificate or public key pinning. Besides, proxy
will delay the network transmission which can be detected
by both the client and server, and the incorrect proxy
configuration may cause serious security problems [22, 23].
Function hook is also an approach to network data analysis,
but it would interrupt the workflow of the program. Ad-
ditionally, hooks will meet the challenge of program version
diversity. +ere are also some good tools for manual analysis
which depend on proxies, such as Fiddler and mitmproxy
[24, 25]. Wireshark is also helpful when the master key of
TLS session can be obtained and imported [26, 27], but it
depends on the special configuration of the target program
and also lacks the full automation. +e plugins of browsers
can also help to analyze the web page content, which do not
have the capability of raw packet manipulation and have
compatibility issues. From the perspective of attacks, the
aggressive methods have limitations, and they will be in-
effective due to vulnerability patches. Nowadays, in that the
security of TLS is improved, the attack approach cannot
make a persistent traffic analysis. It is common that the
browser triggers the vulnerability and malware installation
when users are working on the internet; hence, traffic
analysis needs to be deepened in order to block themalicious
code ahead.

In general, the existing methods are inefficient for the
large-scale analysis in real time, which also depend on the
modification of the target program or system.+e analysis is
limited to the decryption and isolated from the data analysis
in the system perspective. In accordance with the above
situations, we deeply research the mechanism of different
browsers and analogous programs. +en, we propose the
hyper TLS traffic analysis method, named as HTTA, which
attempts to analyze the TLS traffic from a new perspective. It
aims at the efficiency, transparency, large-scale, automation,

and real-time analysis. +e key idea is that it extracts the
session information from the process space of browsers and
then correlates it with multiple types of data and works in
real time, so that further correlation analysis can be per-
formed on the decrypted packets. +e proposed information
extraction method and data analysis pattern can cover the
popular web browsers on multiple platforms and overcome
the challenge of real-time analysis, without depending on the
trusted certificates and hooking methods.

In summary, the main contributions of this paper are as
follows:

Firstly, we propose a new efficient automated method
and its corresponding framework for large-scale TLS
traffic analysis of the browsers; it is also suitable for
programs which have the homogeneous crypto in-
frastructure. +e method collects and correlates mul-
tiple types of online data with noninvasive mode, which
can perform real-time transparent analysis. It carries
both efficiency and security and can be deployed
flexibly.
Secondly, we propose a new session information ex-
traction method based on the session cache and the
characteristic of low fragmentation heap, which can
cover the popular web browsers. Additionally, for
coping with the version diversity of programs, the
instruction similarity matching method with the
constraint of graph path is further proposed to locate
the key variable and function, to help extract the rel-
evant session information.
+irdly, we give a prototype implementation on
Windows platform and analyze its essential links. +e
framework has a simple structure for fast installation
and deployment, and it can be used in the further
development of the automated analysis system for TLS
traffic in the real environment.
Finally, this proposed method is verified by experi-
ments with multiple types of browsers in reality. +e
experimental results demonstrate that the method can
perform precise and efficient analysis with the lower
performance overhead and also make no interruption
to the workflow of the target program at the same time.

+e rest of the paper is organized as follows. +e related
work is reviewed in Section 2. Section 3 describes the
proposed method and analysis approaches in detail. Section
4 shows the key points of implementation. +e conducted
experiments and results are demonstrated in Section 5.
Section 6 gives the discussions, and Section 7 concludes the
work.

2. Related Work

+ere are a lot of research work about the attack and defense
techniques of browsers and traffic analysis, and some related
work with this paper are as follows.

2.1. Protocol Crack and Attack. Duong et al. proposed the
BEAST attack which could obtain the plaintext passed

2 Security and Communication Networks

between the browser and server. It utilized the weakness of
cipher block chaining (CBC) mode in the TLS protocol [8].
Rizzo et al. proposed the CRIME attack [7], which tried to
guess the key request data such as cookies in the TLS channel
exploiting the weakness of TLS compression method. Far-
dan et al. proposed the Lucky +irteen attack which used a
timing attack against the CBC encryption mode [9]. Padding
Oracle [28], BREACH [29], so on are similar attacks. +ese
attacks are complex, most of which need to inject the attack
code into the victim’s browser and send large requests to the
web server. +ey also depend on the specific protocol
versions.

2.2. Proxy and Traffic Analysis. Marlinspike et al. designed
and implemented SSLStrip which could intercept the HTTP
request before it redirected to HTTPS [30]. Liang et al.
discovered the HTTPS deployment problems in CDNs,
which could cause MITM attacks [31]. Jia et al. proposed the
browser cache poisoning (BCP) attack [32], which amplified
the threat of MITM attacks by poisoning the browser cache
for persistence after the user ignores the warning of illegal
certificates. Sherry et al. proposed BlindBox [33], which was
a deep packet inspection (DPI) system based on encryption
traffic, whereas a new protocol and encryption scheme
needed to be designed. Similarly, searchable encryption is
widely discussed in the cloud storage, outsourcing, and so on
[34]. But it may have difficulties to fully secure network
communications, for example, the encryption efficiency is
low, and anyone on the network route can search the content
by keyword guessing. Even though, from the perspective of
traffic analysis, it is difficult to understand the semantics of
the whole communication through some searches only.

Durumeric et al. probed into the impact on HTTPS by
security software and network devices [23]. It pointed out
that web servers could detect these behaviors, and the in-
terception might weaken the security of original TLS con-
nections. Carnavalet and Mannan designed a framework for
analyzing the TLS proxies on the client, which could uncover
the security risks introduced by these interception tools [22].
However, these research studies showed that the network
proxy might cause the security problems, and similarly
malicious code could also disrupt the proxy configuration
with the same method. In this paper, HTTA does not act as a
TLS proxy so as to avoid raising security problems. It is
transparent to the both sides of the communication.

2.3. Memory Data Extraction. Dolan-Gavitt et al. proposed
the virtual machine introspection (VMI) framework Tappan
Zee (North) Bridge which could analyze the memory data
[35]. +e keyfind plugin is used to search master keys in the
memory, and it tries to decrypt and validate the packet by
using the each 48-byte data as a master key. Similarly,
Taubmann et al. proposed TLSkex which could also extract
master keys of TLS connections based on VMI technology
[36], and it used a brute force together with some heuristic
approaches based on searching in a memory snapshot. Feng
et al. proposed ORIGEN [37], which was applied to get the
data structure profiles in the new versions of the software

based on the knowledge on its old version. It is helpful to
solve one of the problems in our framework. We also
propose another solution to solve the location problem of
pivotal functions and variables.

2.4. Page Content Analysis. Vadrevu et al. proposed a new
web browser with the forensic engine named ChromePic
[38], which could record and reconstruct the process of
common web attacks based on Chromium. Jayasinghe et al.
proposed a novel dynamic approach to detect drive-by
download attacks [1], and it can monitor the bytecode
generated by a browser in real time with low performance
overhead. Studies based on the page content analysis fall on
the next step of our research, and some can be integrated
into the proposed framework in this paper.

In general, compared with the existing research work, we
mainly focus on the efficient automated TLS traffic analysis
in the large scale, which will recover the original text in the
encryption channel and make further data analysis. More-
over, we unwrap the network packets by correlating multiple
types of runtime data, and will deal with the effect of de-
cryption and the real-time analysis problems. +e proposed
method in this paper is applicable and scalable, which can be
easily deployed in practice.

3. Method Description

3.1. Architecture Overview. Traffic encryption mechanisms
improve the capability of data protection, while they weaken
the security data analysis system. To address this, flexible and
efficient schemes are needed for TLS traffic acquisition and
correlation. Two questions should be considered which also
motivates the research. One is: how to defend the vulner-
ability exploitations and malicious codes before the browser
parses and renders the page? +e thorough method is to
analyze the content of network traffic continuously and
extract the traffic characteristics to the host or network
intrusion prevention system. +e other is: how to improve
the efficiency and reduce the impact on the target system
while analyzing? It preferably needs the noninvasive ap-
proaches to ensure the security and real time.

+e overall architecture of HTTA is shown in Figure 1; it
collects multiple types of data associated with the target
programs in the hyper mode, for example, from the kernel
space, hypervisor, or hardware device. +e acquired data
include processes, threads, active network connections, file
operations, and TLS sessions on the target operating system.
+e network traffic is also collected and filtered, which can
be performed in a bypass mode if there are no packet in-
terception requirements. +e noninvasive method is used
which means it does not modify the executable module and
configuration of target program, and also it does not in-
tercept the original workflowwhichmay lead to the failure of
communication. Transparency means that the target pro-
gram and remote server cannot directly detect the presence
of the analysis. +ere is another notable point, as seen from
Figure 1, that the dotted lines denote the appropriate in-
teractions with the target system in the special case. For

Security and Communication Networks 3

example, inject a thread into the space of target process to
accomplish aided task. For the most cases, it is not requisite.

+e process information contains the process name, the
executable file path, loaded modules, and process/thread
environment block (PEB/TEB). According to the in-
formation, we can determine the target program together
with its version and crypto infrastructure. +e network
connections mainly include the IP addresses and ports of
target process referring to the TCP/IP protocol, which can
be directly correlated with the network packets. +e above
data are acquired from the kernel space of the operating
system; there have already been lots of research studies
about that. +e session information includes the essential
key and related parameters for decrypting the traffic, which
exist in the memory space of the target process, and we call
it TLS session information (TSI). Actually, the former in-
formation is also in the memory space, which is managed by
the system kernel. File handles refer to the files opened by
the target program, and the file content can be further
correlated with the decrypted network packets. +e data
correlation module first correlates the target program with
the TLS traffic at the level of TCP/UDP stream, and later the
correlation results will be sent to the inspection module for
decryption and analysis. +e packet filter module identifies
the needed network traffic and can also perform preliminary
analysis to extract the fingerprint of the crypto library.
Besides, as denoted by the dotted line in Figure 1, the
module can decide whether or not to pend packets of the
specific stream for a while until the extraction module
obtains the associated TSI. +is will be discussed below in
this paper.

For further discussion, the proposed method also has
good extensibility and compatibility. It is suitable for not
only web browsers but also other programs, while the
browser programs are widely used and relatively stable. We
can construct the unified TSI extraction patterns for
browsers, but it is difficult to cover other unknown pro-
grams, and then individual analysis is needed in advance.

HTTA is not limited to the platform; it can be applied to
Windows, Linux, and others. It supports all the TLS ver-
sions, including old SSL and the newest TLS 1.3. Because the
essence of symmetric encryption mechanism has not been
changed, the handshake protocol changes enormously. +e
encryption mode such as stream cipher and block cipher has
no influence on the method. Moreover, HTTA is convenient
for engineering extension and deployment, for example,
modules can be moved from the user space to kernel space,
or to the outside of the system. On the other hand, it is
helpful to migrate between operating platforms, for example,
avoiding the platform interdependency of packet capture
and memory access module. +e number of external in-
terfaces is reduced in order to keep it independent. In fact,
we only need two interfaces which are memory read and
network access.

3.1.1. Aided Packet Interception. In the scenario of all the
traffic can be decrypted in time, to ensure that we addi-
tionally introduce an additional interaction procedure be-
tween the packet filter and information extraction modules,
as shown in Figure 1. Because in particular situations, for
example, the configuration of cache time has been modified,
the session information will not be cached for a long time.
When the packet filter module detects that the TLS hand-
shake is finished, it notifies the information extraction
modules and queues the next packets at the same time, as are
shown in steps 1∼3 in Figure 2. Information extraction
module then extracts the required data, after which it notifies
the packet filter module again, as are shown in steps 4∼5 in
Figure 2. +e packet filter module continues to forward the
previous packets in the waiting queue, as are shown in steps
6∼7 in Figure 2. +erefore, under this mechanism, it is for
sure that information extraction modules can obtain the
session information through the control of network packet
forwarding. With the possible little cost of network delay, we
should avoid the TCP timeout.

Process
information

Network
connections

Session
information

File
contents

Inject

Collector

Data
correlation

Inspection
and analysis

Decryption

Packet filter Network
traffic

Intercept

TLS records
Notify

Cipher

Plaintext

Figure 1: Architecture of HTTA.

4 Security and Communication Networks

In this mode, the session information and subsequent
packets will be transferred to the decryption and analysis
module for further process. Another waiting point can be set
when packet filter module waits for the notification of
analysis module and then decides whether to drop the target
connection or not. It does not occur in all the packets.
Because a TLS record often consists of multiple TCP packets,
the decision can be determined in the last packet of the
record, even in the last packet of stream, for better opti-
mization. Moreover, if HTTA works in the offline analysis
mode, there would be no interception delay.

3.1.2. Deployment and Operating Modes. For different ap-
plication scenarios, there could be three deployment modes
of HTTA. In the first scenario, the analysis framework is
installed on the local system, and it can be extended based on
further development or integrated with other security
analysis components. +e second scenario is in the vir-
tualized environment; the analysis framework is deployed in
the hypervisor component and then can analyze the TLS
traffic of programs on the VMs. In the third scenario, it is
deployed on the access point of internal network just as the
firewall.

As shown in Figure 3, in the first case, HTTA is divided
into the user mode and kernel mode module. +e TSI ex-
traction and packet capture module are in the kernel mode;
data decryption and analysis can be in the user mode, which
is convenient for further development according the specific
requirement. In the second scenario, all modules are stayed
in the hypervisor, and it is out of the band and fully
transparent to the target system. Furthermore, data from
different VMs can converge into one process node in this
case. For the above cases, the network packets are collected
in the kernel of the target system, which would intervene the
target communication to some extent, but it only forwards
the packet without unwrapping and wrapping. In the third
scenario, a proxy module should be deployed on the target
computer, and then the TSI obtained by the proxy module
will be sent to the local firewall together with the network
traffic. At this moment, the packets can be collected by port
mirroring of the network device, which does not introduce

any direct interceptions. For different deployment modes,
the core logic of HTTA is the same, so the prototype below
concentrates on the first deployment mode.

Additionally, HTTA can be configured with audit mode
or interception mode which is suitable for traffic audit and
real time analysis. In the audit mode, the framework only
considers the integrity of TSI. While real time is necessary in
the intercept mode, it can block and replace the target
content. For accomplishing the TLS packet filtering
according to the designed framework, there are several
influence factors. First, the TSI extraction works based on
the dynamic environment, not on the offline memory dump,
and the precise should be ensured. Second, TSI and network
packet could be correlated since they are obtained in the
separated process. Finally, correlation and decryption
should be finished in a short time for real-time analysis. We
will give further description and discussion in this paper and
then analyze and validate that by real experiments.

3.1.3. Challenges and Countermeasures

(a) TSI Extraction. +ere are some searching techniques
in the memory, such as Magic number and debug
symbols. However, it will cause high performance
overhead when searching in the large address range.
To overcome this, we propose an optimized method.
Some browsers support log mode which can output
TLS master key into a file [26], but this should
modify the runtime configuration, and it is not
general. Finally, we propose an efficient method of
extracting TSI in the process memory of browsers,
which covers all popular browsers. It will bring
convenience to information extraction together with
data structure analysis.

(b) Version Change.+e minor version of browsers may
change frequently, and it will cause the binary layout
changing because of recompilation. +e critical data
extraction depends on the reverse engineering of
target binary program. In fact, most applications
including web browsers are not obfuscated. HTTA
only depends on several binary features, if we can
locate the address of some functions and then can
extract TSI rapidly. We can choose some stable
functions that reference the target variable, and
expect they will be invariant if the program version
updates. We adopt the method of semiautomation to
solve the changing problem of the version with
consideration of practice.

(c) Real Time and Overhead. In HTTA, the TSI ex-
traction thread runs in the kernel space or out of the
system, and it will continuously access and control
process memory better. +e TSI extraction module
cooperates with the packet filter module, and it
works when the connection is established and stops
if the connection is closed; it can reduce the rate of
CPU usage. On the other hand, we can properly
delay the speed of packet forwarding by the packet
filter module, and consequently extend the duration

Application

Information
Extraction

Packet filter

Waiting queue

Notify

Notify

5

3

4

1

2

7

6

Figure 2: Additional interaction of the extraction and filter
module.

Security and Communication Networks 5

of target TLS connection. +en, the extraction
modules will have enough time to obtain the session
information.

3.1.4. Security Issues and Analysis. No additional trusted
root certificates are installed in the system; therefore, the
related security risks do not exist, and, for example, the
corresponding private key is stolen or cracked.+e proposed
solution only inspects the network traffic in real time
without preserving the data, which will be deleted after the
analysis.+e potential risk is that the decrypted data can also
be accessed by the malicious code if it would be. In this case,
we can migrate the analysis code into the kernel which can
prevent most of the nonrootkit malware. On the other hand,
the memory protection method can also be used such as
Intel Software Guard Extensions (SGX). In fact, if the
malware comprises the target system, it may directly extract
the sensitive data from the target application or other re-
source storage more easily.

Meanwhile, the solution does not directly intervene the
execution flow of target program, and it reduces the impact
of uncertainties. Network packet forwarding is the only
intervention. When packets are collected by the kernel
module, the module should be minimized and safely de-
veloped. In the audit mode, it has a minimal effect on the
network communication of target program. In the in-
terception mode, additional daemon threads can be created
to watch the process of packet forwarding, so that it can
handle the connection timeout in time due to the exception
of the analysis system.

3.2. Approaches of the TSI Extraction. +e procedure of TSI
extraction contains two parts: one is to extract the classes or
structures which are related to the target TSI, and the other is
to extract the internal member information of the structures
above. We can extract these data from the process memory

space of programs, but need to obtain the structure location
and member offsets of TSI, depending on the binary or
source code analysis preliminarily. For example, we can
obtain the TLS session structure according to the source
code ofOpenSSL, which is defined as SSL_session. It contains
the master key which is the critical data for the encryption
and decryption according to the TLS specification, and then
we can decrypt the packets based on that. So, the main goal
in the extraction is the data structure like above.

According to the stipulations of the RFC documents,
TLS protocol consists of key exchange and data encryption
transmission, and the latter uses symmetric encryption
mechanism. In other words, the both ends of communi-
cation hold the symmetric key information. +e client end
also holds the key information while the connection is alive.
Moreover, the TLS protocol supports the session resumption
for improving efficiency, using session ID (SID) or session
ticket to identify the connection. So, the client program
would cache the session information in the memory for
resumption with the above ways.

3.2.1. Overview of Typical Browsers. We focus on the
browser programs on the Windows platform, which is
widely used and vulnerable in the developing countries.
+ere are abundant applications but a fewweb browsers with
high market penetration on personal computers, which are
Chrome, Firefox, IE, Edge, Safari, and Opera [39]. Other
browsers, such as Maxthon, 360, and Sogou, are all built on
the core engines above.

First, although the network modules of browsers are
slightly different, they all adopt themultiprocess architecture
in the newest version. For Chromium-based browsers, the
main process is in charge of network communication, so the
TLS data transfer is in the separated process, and Firefox is
similar. +e development of Safari on Windows has been
stopped. +e version on Mac OS uses a separate process to

Application

User mode
Kernel mode

HTTAk

HTTAu

(a)

Application Application

Hypervisor

HTTA

VM VM

(b)

Application

HTTA

Firewall
Endpoint

HTTAp

(c)

Figure 3: Different deployment modes for HTTA.

6 Security and Communication Networks

process network communication. Unlike other browsers, the
network data are processed separately in each render process
in IE series.

Second, the web browsers have different TLS imple-
mentations. Chrome and Opera based on Chromium use the
BoringSSL which is a fork version of OpenSSL [40, 41], and
Firefox maintains its own implementation named network
security services (NSS). Safari uses Apple Secure Transport
and coreTLS libraries. IE and Edge have part implementation
in the schannel and wininet library. Most of the other
browsers are the integration of the above-mentioned facts.
In fact, other forks of OpenSSL such as LibreSSL are similar
in the aspects of this paper [42]. +e basic information of
TLS implementation of some web browsers on Windows is
shown in Table 1.

As the analysis shown above, although there are many
differences between the TLS implementation for kinds of
browsers, the TLS session information is managed by the
specific module loaded in the memory. +erefore, we can
extract the session data from the process memory space. It is
also suitable for other programs which are built on the
analogous crypto libraries of TLS.

3.2.2. Data Extraction. Due to the session resumption
mechanism, modern web browsers always link the session
structures together and cache them in the relative fixed
memory region. +en, these chained structures are refer-
enced by some global variables, in which the popular
browsers and derivatives all have such characteristics. So, if
we can locate the addresses of target global variables, then
the session information can be extracted rapidly by tra-
versing the hierarchy structures. We describe the TLS cache
management for the main browsers below.

Chrome does not use the internal cache method pro-
vided by BoringSSL or early in OpenSSL. It manages the TLS
cache externally, which defines the class SSLClientSes-
sionCache [40]. When the TLS handshake initializes, the
browser tries to look up existing session in the cache list and
insert new session into the cache list when handshake fin-
ishes. +e cache structure is ssl_session_st which contains
established time, resumption information, cipher parame-
ters, and so on. +e cache list uses std::list to manage the
session structures. Class SSLClientSessionCache is referenced
in the class SSLContext which is defined as a singleton. +is
implies that the SSLContext pointer is stored in the binary as
the global variable.Opera and other browsers which are built
on Chromium have the same case.

Firefox defines the static pointer cache in sslnonce file
[43], and it points to a double-link list structure. +e
structure is sslSessionID which contains accessed time,
session ID, master key, and so on. It should be noticed that
the master key is not stored in the form of plaintext and
encrypted through the Public-Key Cryptography Standards
(PKCS). So, we need to obtain the symmetric key used by
PKCS beforehand and then decrypt the extracted session
information.

Safari defines the variable _gSessionCache in the Security
and coreTLS libraries, which points to a double queue. +e

cache structure also contains the master key and session
resumption information.

+e TLS interfaces of IE and Edge are encapsulated in the
schannel library, among which the SslContextList variable
points to the TLS cache information in the process memory
of the browser. When the TLS handshake between the client
and server is finished, the system derives the read key, write
key, and other parameters from the master key and then
stores them into the CSslUserContext class which is linked by
SslContextList. Meanwhile, the link list GlobalObjectList and
GlobalServerInfoList in thewininet library caches the current
socket information and also have relations with SslCon-
textList. A sketch is shown in Figure 4, the needed data is
stored in the structure CSecureSocket and CSslUserContext.
+erefore, we can get precise ports and key information in the
memory for the IE, Edge, and other IE core-based browsers.

As known from the analysis, the popular browsers all
have the global variable which points to the TLS session
cache information. So, if we can locate the variable first, all
existing TSI can be traversed rapidly.

Additionally, if the session cache data is flushed or the
lifecycle of session is too short, we may not obtain the
corresponding TSI in time. As a supplement to satisfy the
special requirement, we also propose the rapid TSI ex-
traction method based on the low fragmentation heap (LFH)
mechanism [44], to locate the target in the limited memory
region. +e operating system provides a special memory
management scheme for the memory allocation with small
sizes which is named as LFH on Windows. Actually, some
applications or libraries also have the similar custom
implementations, such as Firefox, and we all call it LFH here.
+e key of LFH is that the similarly-sized memory blocks are
allocated from the same memory bucket by using the
bucketing scheme. As shown in Figure 5, when the allocation
with specific size is committed, the memory block will be
allocated via the corresponding bucket from the preallocated
memory chunks. For the structure that contains the TSI, the
allocation size belongs to the scope of LFH.+e size of target
structure nearly remains stable in different versions of the
same program and is easy to obtain. When the version of
target program is known, the allocation of the structure that
stores TSI will be bound to the certain bucket. For example,
as shown in Figure 5, the size of target structure is 400 bytes
and allocated from bucket #25; then, we only focus on this
bucket continuously. +erefore, when the TSI cannot be
obtained by the method above, we can extract the fields such
as port, session ID, or session ticket from the network packet
and then match the target structure in the preacquired
memory blocks of the corresponding bucket. It should be
noted that the LFH bucket should be activated before it takes
over the allocation of the corresponding size for the LFH of
operating system. +e bucket is activated if the number of
allocations for the bucket allocation size has reached a small
value, and it can be easily satisfied for browser programs. It
can be forcedly activated in the worst case by injecting the
specialized thread, as shown in Figure 1.

Furthermore, if the target structure that contains TSI is
unknown, and the reverse engineering and debugging are
difficult to perform on the target program, the brute force

Security and Communication Networks 7

method can be used first to determine the size and location
of the target structure [36]. +en, the TSI can be rapidly
obtained according to the LFH for the subsequent analysis in
the wide range.

3.2.3. Locating the Variable and Structures. We divide the
acquisition of global variables that point to the sessions into
two cases, one is that the binary program has abundant
debug symbols, and the other is contrary. If the debug

symbols of the binary program can be accessed, such as IE,
Edge, and Firefox, we could quickly obtain the offset value of
the target variable according to the debug symbol. In that
case, the impact of version change can be reduced. For the
latter case, we should extract the offset to the module base by
reverse engineering. One simple method is to locate the
target address by the reference of constant strings; it is ef-
fective in some cases, but not universal.

+en, we introduce the semiautomated method to
ease the burden of reverse engineering because the var-
iable can be located through the functions which refer-
ence it. When the address of related function is known in
one version of the program, we could obtain the similar
information from other versions. Two approaches can be
applied, one is the graph matching based on the control
flow graph (CFG) of the target function [45], and the
other is proposed here, named as instruction similarity
matching with the constraint of graph path (ISMCP). +e
former is widely used in the research of malware de-
tection and binary program similarity detection [46, 47].
But in this paper, we only find the specific function and do
not make comparisons on the entire binary program. It
can make an accurate match when the CFG of target
function has few changes in the new versions. +e latter
chooses the key path of the CFG to calculate the path
similarity between different versions, with the purpose of
picking out the target function when the CFG has major
changes. It is fuzzy compared with the former. In the first
place, both the two methods statically disassemble the
target program and generate the CFG for all functions of
the program.

(1) Locating the function by CFG matching. CFG is a directed
graph, G � (V, E), where V is the vertex set of the graph and
E is the edge set of the graph, E � vi, vj | vi, vj ∈ V, vj􏽮

may execute after vi}, the vertex in the graph indicates a
program basic block which has no jump instructions. Graph
G contains all the possible execution paths of the program.
+e CFG analysis is widely used in compiler optimization
and program analysis. Here, this method builds and models
the CFG of target function and then locates new target based
on the graph isomorphism check.

Definition 1 (subfunction CFG (SCFG)). +e CFG Gf of
subfunction F is a tuple.G � (V, E,VE,VX, LABEL V,

LABEL E), where V is the set of basic blocks, E ∈ V × V

which is the set of edge, VE denotes the entry block of the
function, and VX is the exit block. LABEL V is the label
function of vertexes, which maps each basic block into a

Table 1: Overview of related modules of browsers on Windows.

Browsers Number of network processes Related libraries
Chrome 1 chrome.dll
Firefox 1 nss3.dll/softokn3.dll
IE ≥1 schannel.dll/wininet.dll
Edge ≥1 schannel.dll/wininet.dll
Opera 1 opera_browser.dll
Others 1 or ≥1 chrome.dll or schannel.dll/wininet.dll

Traversal structureGlobal variable

GlobalObjectList

HTTP_REQUEST_HANDLE_OBJECT

CSecureSocket

CSslUserContextSslContextList

Figure 4: Extraction by the traversal for IE.

Buckets Memory chunks

1

2

3

···

···

···

···

···

16

25

400 bytes

400 bytes

400 bytes Allocated target
block

128 bytes

16 bytes

16 bytes

16 bytes

128 bytes

Free block

Figure 5: Example of memory allocation via the LFH.

8 Security and Communication Networks

positive integer. Similarly, LABEL E is the label function of
edges.

+en, we define LABEL V as LABEL V � SIZEOF
(v)∓r, v ∈ V, where the function SIZEOF is used to calculate
the total instruction bytes of the basic block and r is an error
parameter which is introduced to extend the match range.
We do not give the definition of E, in order to reduce the
matching restrictions. Furthermore, one can limit the vertex
number of graph to increase the accuracy in the matching, or
match with the subgraph Gf

′ instead of the graph Gf to
increase the coverage in the other versions of target program.

When we have the CFG Gf1 of target function in the
specific version of binary program, then attempt to find Gf2
in the other version, Gf1 and Gf2, is isomorphic. Graph
isomorphism is a nondeterministic polynomial time (NP)
problem, but CFG has some particular favorable conditions.
It has fixed entry vertex, and each vertex has at most two
outgoing edges, while the jump tables are an exception.
Actually, the case of jump tables can be recognized easily.
+e VF2 algorithm is adopted [48], and the computation

time based on CFGmatching will be short in practice. When
the change between different versions is slight, the CFG
match method can locate the target function precisely. But
the graph isomorphism restricts the relationship of edges,
and it would expose the limitations when some edges of the
CFG of the corresponding function are broken in the new
version of program.

(2) Locating the function by ISMCP. For the purpose of
locating the target function in the new version when the
CFG of target function has major changes, we propose the
ISMCP method which can be helpful to extract the target
function.

Definition 2 (path in SCFG). Path P is an order v1,

v2, . . . , vk, where vi belongs to vertex set V, vi, vi+1 belongs to
set E, 1≤ i≤ k, and vertexes in the order are different from
each other. k is the path length.

Definition 3. Path similarity,

PATH SIM(S, T) � 􏽘

PATH LEN(s)

i�0

LCS LEN STR vsi(􏼁, STR vti(􏼁(􏼁/MAX LEN STR vsi(􏼁(􏼁, LEN STR vti(􏼁(􏼁(􏼁

PATH LEN(S)
, (1)

where S and T are two paths, PATH LEN is the function of
calculating path length, and PATH LEN(S)≤ PATH
LEN(T), vsi ∈ S, vti ∈ T, 1≤ i≤PATH LEN(S). LCS LEN
is a function which calculates the length of the longest
common string (LCS) [49], LEN calculates the length of the
string, MAX returns the maximum value of arguments, and
function STR converts the basic block into a byte sequence.

While the program version updates, some codes of the
specific function may also change in the new version, which
would cause the change of CFG. As shown in Figure 6, the
two CFGs are not the same, but there is the same execution
path, 020112. If the path length is short, we can also measure
the similarity of two paths by computing LCS, instead of
direct comparison. We expect that the function of the new
version preserves part execution features compared with the
old one, and they can be found by the matching of in-
struction sequences. If the similarity between the new and
original functions is low, we consider that they do not have
the correspondence. In that situation, we need to choose the
function in the new version as the template instead, expect to
still find the corresponding one in the subsequent versions of
the program.

+e detailed steps of ISMCP are described as follows:

Step 1: selecting the matching paths. First, we choose
somematching paths in the target function of the initial
version, which can represent the vital execution flow of
the function; meanwhile, take the entry block of the
function as the starting point of paths and confirm the
path length k (suggest k≤ 12). If k is too large, the
capability of matching will decrease, and the path

number will grow exponentially. When paths are
confirmed, we continue to label the edges of each path,
and the label function is as follows:

LABEL E vi, vi+1(􏼁 �

0, if the jump condition is FALSE,

1, if the jump condition is TRUE,

2, others.

⎧⎪⎪⎨

⎪⎪⎩

(2)

If the jump condition is FALSE from block vi to vi+1,
label vi, vi+1 is marked as 0 and marked as 1; on the
contrary, in other cases, it is marked as 2. Finally, we get
the set of path templates PT � Pi | 1≤ i≤ k􏼈 􏼉. Figure 6
shows two same paths which belong to different CFGs.
Step 2: generating the byte sequences. We should
convert the basic blocks into integer values. Before this,
we map all the instructions of the architecture to 16-bit
integers, and build a mapping table in advance. +en,
instructions of each basic block will be translated to the
byte sequence, as shown in Figure 7. +is can preserve
the semantic feature of the target function and ignore
the influence of specific registers and memory
addresses.
Step 3: calculating the path similarity. Export all CFGs
of functions in the target executable and traverse all the
CFGs successively based on depth first search algo-
rithm. In the traversal process of each CFG, we check
the edge label of each path until the end of the path. For
one path, if all the label values are matched with the

Security and Communication Networks 9

path template, we calculate the path similarity of both.
As mentioned above, the LCS method can also be used
in the matching. Otherwise, we continue to traverse
until all path templates are checked or the entire CFG is
walked through. +e detailed procedure is shown in
Algorithm 1.
Step 4: sorting all similarity values. When all the CFGs
in the target binary program are traversed, lots of
similarity values will be generated. +en, we sort these
values in descending order and show the results to-
gether with the address of each function. Finally, we
pick out the top similarity values of each path template
for further analysis.

We expect that the above method can assist with the
rapid locating of the target function when part of the code
changes in different versions of the program, especially
when the structure of CFG changes greatly.+e complexity
of path similarity generation algorithm is O(M∗N∗2k),
where M is the total number of the CFG in target program,
N is the vertex number of the CFG, and k is the length of
path. In reality, the CFG structure is sparse, so when k is
small and the root node is fixed, the method can be ex-
ecuted efficiently.

3.2.4. Offset of the Structure Member. Another problem is to
extract the members of structure when the starting address
of chained structures is located. It is easier for programs
which are open source or have abundant debug symbols.
One can clearly see the internal variables and understand the
logic, or calculate the member offset in a structure according
to the variable type of the source code. For the common
binary program, static manual reverse analysis is a time-
consuming job. Similar to the location of the target structure,
we can first determine the function that references the
member or parses the entire structure. +en, the specific
version of target program is selected as the initial template to
obtain the information of other versions. On this basis, we
can rapidly examine the changes of member offsets when the
program version updates.

Another aided method is to debug and analyze the target
program dynamically. So, we can develop and set a local TLS
server program based on the modified OpenSSL, so that the
TSI of each connection would be known, and it can be
replayed in addition. +e target program is then started and
connected to the local server. When the TLS handshake
completes, the address of corresponding TSI is also de-
terminate.+en, in the memory space of the browser, we can
recursively search the byte sequence of the member of target
structure to get the offset value. +e procedure can be au-
tomatically accomplished. +e example diagram is shown in
Figure 8; we locate the master key parameter in the session
structure.

+ere may be the recursive search since sometimes the
byte array is referenced by a pointer or referenced by the
pointer to pointer. +e more layers the recursion have, the
more uncertain and complicated it would be. For example,
in the structure ssl_session_st, the buffer of the master key
locates in the memory region of the current structure, but
the ticket member is in the buffer referenced by the pointer
tlsext_tick of the structure [40]. In general, when the offset
information in the specific version is known, it would have
few changes in other versions. Based on this assumption, the
extraction of member offset of the structure can be auto-
mated to some extent.

0 1
1

1

1

0

0

0

1

1

2

2

(a)

1

1

1

0

0

0

0

0 1

1

2

2

2

2

(b)

Figure 6: Two paths of different CFGs having the same labels.

Mapping

62 61 65 61 66 67 01 77 01 76

Byte sequence

Mapping table Instructions

push
mov
and
mov
xor
inc
test
jz

ebp
ebp, esp
esp, 0FFFFFFF8h
eax, dword_1173F508
ecx, ecx
ecx
eax, eax
short loc_FE88CB1

mov
push
jmp
call
and
xor
inc

jz
test

............

......

......

0x61
0x62
0x63
0x64
0x65
0x66
0x67

0x0176
0x0177

Figure 7: Example of instruction mapping.

10 Security and Communication Networks

Besides, we should extract enough information from the
target structures in order to achieve the analysis of TLS
traffic. For the cipher mode of CBC, the master key or read/
write key is needed, and the hash message authentication
code (HMAC) is also needed. +e initialization vector is the
last bytes of the last cipher text which can be obtained in data
packets. For the Galois counter mode (GCM) mode, the
master key is enough; otherwise, another value Salt is
needed, comparing with the CBC mode. Because Salt is an
implicit nonce while the explicit nonce is transferred

through the network; both are then combined into a single
nonce value according to the TLS specification. +e addi-
tional authentication data (AAD) can also be obtained from
the network packet.

3.3. DataCorrelation. First, all kinds of acquired data would
be correlated in order to accurately decrypt the TSL traffic of
the target program. +en, the unwrapped plaintext can be
correlated with the files that the target process has opened, to
examine if there exists the data exfiltration. +e fields that
data correlation depends on are shown in Figure 9, where the
field plaintext represents the decrypted content of the net-
work packet. Besides, for the case that the process in-
formation is fuzzy, the fingerprint extracted from the
handshake packets can also be used to determine the crypto
library loaded by the target process.

+e TLS session is established upon the TLS connection;
therefore, one TCP streammay contain several TLS sessions,
but each data packet only corresponds to one TLS session.
We deal with the packets according to the TCP stream and
build the mapping to TSI for each segment of the TCP
stream. As shown in Figure 10, the handshake messages are
the dividing point. When the TLS handshake is finished, the
decryption task of the current session will be started.
Moreover, due to the session resumption mechanism, one
TSI can also correspond to many TCP streams. As denoted

Input: +e set of CFGs in target binary program, CFG_SET. +e set of path templates, PT
Output: +e set of path similarity values, SV_SET
1: function PathSimGenerator(CFG_SET, PT)
2: for graph in CFG_SET
3: Initialize an array variable, stack
4: Append first node of graph to stack
5: while stack is not empty
6: Pop the top item n from stack
7: Load instruction sequence of n
8: Get current path path_c and its label sequence label_c from stack
9: if the length of stack is equal with length of path_c and p in PT has the same label with path_c then
10: s_value� PATH_SIM(p, path_c)
11: Insert s_value into SV_SET
12: Remove n from stack
13: else
14: Load neighbors of n into n_nbs
15: if b in n_nbs is not visited then
16: if b is not in stack then
17: Append b to stack
18: Mark b as visited
19: end if
20: else
21: Remove n from stack
22: Mark all items in n_nbs as not visited
23: end if
24: end if
25: end while
26: end for
27: return SV_SET
28: end function

ALGORITHM 1: Generation algorithm of path similarity.

Application

2

3

1

Locate the session
structure

Establish the TLS
handshake

Obtain the offset
within target structure

Known session
parameters

Master key

Local server

Figure 8: Locate the structure member by dynamic debugging
analysis.

Security and Communication Networks 11

in the dotted box in Figure 10, some fields would be
extracted from the handshake messages, and after that the
further correlation continues.

Since the TSI and network packets are obtained, re-
spectively, and the TSI may not contain all elements needed by
decryption, next we discuss how to correlate them in time.
According to the RFC document, for each TLS record, the
integrity needs to be verified at both ends of communication.
With the cipher key, we can determine the corresponding TLS
record by trying decrypting and verifying the record. At worst,
we need to verify each recordwith all the extracted cipher keys,
but the cost will rise when the number of keys increases. In the
offline mode, it is still an effective method, though. In fact, we
should consider the following cases.

(1) TSI contains the IP address and port. It is the perfect
case because all the packets and TSI can be directly
correlated by the IP and port. Of course it should be

limited in a reasonable time period because the client
port may be reused when the associated TCP con-
nection is closed.

(2) TSI contains the resumption information. +e basic
resumption information includes session ticket and
session ID, and the ticket is more widely used by
servers than session ID currently. With the re-
sumption information, the TSI can be correlated
with the packet easily in most cases. +e resumption
information can be extracted from the TLS hand-
shake packet Server Hello andNew Session Ticket and
the extension of Client Hello. However, there would
be many connections with the same resumption
information but corresponding to different TSIs.
Because the session key derivation depends on the
random numbers of the handshake packets, which
may be updated in the new TLS session. In this case,

Network
connections

Processes Packets

Files

TSI

Handle Plaintext

Fingerprint

Memory

PEB/TEB

SID/ticket

IP/port

Figure 9: Correlations of multiple types of data.

New session ticket

New session ticket

Client hello

Client hello

Server hello

Server hello

Client hello

Server hello

TCP stream 1 TCP stream 2

TSI 1

TSI 2
···

···

···

···

Random
Session ticket

(i)
(ii)

Session ticket(i)

Random
Cipher suite

(i)
(ii)

Figure 10: Correlation between TCP streams and TSIs.

12 Security and Communication Networks

we should try to decrypt and verify TLS record by the
set of TSIs which contains the same resumption
information.

(3) TSI contains the time information. If the TSI only
contains the last accessed time, meanwhile it does
not contain any resumption information. In this
case, we can set a time period and try to decrypt and
verify the record with the TSI within this period. As
is shown in Figure 11, when one record occurs, the
period around the current time is chosen as the
validation window. +erefore, in the short period of
time, the number of TSIs used for trying is limited.

(4) TSI contains nothing except the key. Since there is no
assistant data, we need to perform decryption and
verification on each TLS record with all the TSIs. As
is mentioned above, it will cause network delay.
+erefore, when the TSI is extracted we should
append the acquired time, and then the correlation
will be converted to the case in the last paragraph.

4. Prototype Implementation

We implement a prototype of HTTA on Windows platform,
in order to verify its feasibility. +e extraction of global cache
and structure member offset belong to the preliminary work
before the framework running. We develop some plugins
based on the IDA Pro 6.8 tool [50]. As is shown in Figure 12,
the prototype contains a kernel driver which captures the
packets and extracts the TSI, an application in user mode that
manages the I/O with kernel driver and decrypts the packets.

Information extraction module works as a kernel thread,
which currently supports three types of browsers, Chrome,
Firefox, and Edge. It also processes the additional encryption
of Firefox. We can distinguish applications from each other
by reading their process names. For Chrome and Firefox, the
TSI is maintained in the parent process which has the same
process name with child processes. It works on multithread
mode, which creates several work threads beforehand.
Multiple threads can cope with several browsers simulta-
neously. Moreover, TSI is stored in the render process for
Edge, andmultiple threads can improve its efficiency.We use
hash table to store the extracted TSI and remove the du-
plicated item based on master key or send key. For the sake
of performance we build several hash tables which takes
port, ticket, session ID, and time as the hash key,
respectively.

+e packet filter module is built on the Windows Filter
Platform (WFP) [51]. By taking advantage of the character of
the FwpsFlowAssociateContext function that it only pro-
cesses the packets of the target processes and registering the
callback function in FWPM_LAYER_STREAM_V4 layer,
the module can process the payload directly without
maintaining the TCP sequence. All the packets are captured
and cloned and then sent to the uploading buffer. Packet
filter module hangs up the packets, waits for the notification,
and then decides to drop it or reinject into the protocol stack.

+e decryption module is implemented based on the
OpenSSL library, which has multiple work threads and

creates separate buffer queue for each TCP stream. It also
parses the packet and extracts some parameters such as
random number, and then derives key information based on
TSI and required parameters. In practice, there is a special
case that the client may send application data immediately
after Client Key Exchange message in an initial handshake
before it receives theNew Session Ticketmessage from server
at that moment. Hence, the sent payload cannot be corre-
lated with TSI by the ticket. To cope with this situation, we
create an additional buffer queue to decrypt them after the
correlation is finished.

5. Experiments and Results Analysis

+e experiments are performed on the desktop computer
composed of Intel i7-6700 @ 3.40GHz CPU, 24GB memory
and Windows 10 (1607) 64-bit. For the kernel driver testing,
we also install VMware Workstation and create virtual
machines with it. +e configuration of virtual machine is 4
cores CPU, 8GB memory and Windows 10 64-bit operating
system. Meanwhile, another virtual machine is created for a
local gateway, which has 2 core CPU, 1GB memory, and
Ubuntu 16.04 64-bit operating system. +e main test
browsers are 64 bit Firefox (65.0.1), Chrome (72.0.3626.81),
and Edge (38.14393.1066.0), which can represent most of the
cases.

5.1. Evaluation of the TLS Session Lifecycle. First, we evaluate
the lifetime of TLS sessions in the memory for different
browsers in real life. +e target browsers are executed with
default configurations, and the network bandwidth of the
experiment environment is 20Mbps. We write a test script
for automatically visiting the homepages of top HTTPS
websites from Alexa, including 20 domestic and 10 foreign
sites. +e page will be immediately closed when it is fully
loaded, and the experiment is repeated at least 10 times.
+en, we count the TLS sessions by the ticket and TCP port,
and also develop hook plugins for browsers to obtain the
time of allocation and free for each session object.Wireshark
is used to capture the network packets. Finally, we analyze
the duration of TCP connections and correlate them with
TLS sessions. Even though these websites may change dy-
namically and there may be errors between different tests, it
will not affect the result.

In each test, about one thousand TCP connections are
established in the interval of ten minutes.+e result is shown
in Figure 13, which is the average value based on the ten
tests. It shows the lifetime distribution of TCP connections
and TLS sessions in the real website access, where the left bar
denotes the duration distribution of TLS sessions. Most

12 13 14 15 16 17 18 19

Connection

TSI
Verification window

20 21 22 23 24

······

···

Timeline

Figure 11: Verification with the TSI in a short period.

Security and Communication Networks 13

sessions can exist for a long time, so that the extraction
module has enough time to obtain the TSI from the memory
in the bypass mode. It also has challenges for the session that
exists less than 1 s. Besides, the duration of TLS session is
associated with the TCP connection in theory, which is more
obvious in Edge. +e session objects in the process memory
of IE and Edge can be released in time. Other sessions with
long cache time are managed by the system process. Chrome
and Firefox manage sessions by themselves. +erefore, most
TLS sessions exist in thememory for a long time, and the rest
with short lifecycle can be released in time corresponding to
the concurrent connections. As shown in the figure, in
general the duration of most TLS session objects is long,
especially in the case of mass data transmission, such as
sending and receiving large files, so that the extraction
modules have enough time to obtain them. Moreover, we
find that Chrome do not release the session objects in time
for most cases, and it may have the consideration of
communication performance.

5.2. Effectiveness and Overhead Measurement. +en, we
perform experiments on the real session extraction and
packet decryption, in order to evaluate the effectiveness of
HTTA. +e extraction module extracts TSIs by traversing
the cache information starting at the global variable pointer.
It should be notified that the audit mode is used here, which
means that we do not intercept and pend the packets;
otherwise, this experiment may make no sense. We still
choose three 64 bit browsers mentioned in the last section as
the target programs and then install them in the virtual
machine. Meanwhile, when the HTTA framework runs, the
Wireshark and perfmon tool are used to capture network
packets and obtain the processor time, respectively. +e
experiment is also repeated 10 times, while generating about
one thousand connections each time, and then we calculate
the average results. As shown in Figure 14, the packet de-
cryption rates are 96.45%, 99.07%, and 95.25%, respectively.
+e decryption rate is over 95% for each test browser, es-
pecially near 100% for Firefox. Further, we investigate the
reason why the decryption does not cover all the TCP
connections. One is due to the statistical method, for
Chrome, it creates multiple concurrent connections at the
same time, but only one corresponding session is reserved
and actually cached, which occupies about 4% in all the
captured connections. For Edge, some connections do not
come from the render process but the frame process, such as
the favicon request which does not belong to our concerns.
+e rest few connections have a very short time to live, and
most of that do not have the substantial data transmission, so
that they are not obtained due to the very short duration of
session objects in the audit mode.

In addition, as can be seen that the average CPU usage
rate is low in all the tests, within 5%. +ose are the counting
values, while the browsers open and render the web pages.
For longer period, if the idle time is considered, it would lead
to a lower average processor time. +e CPU occupation
mainly comes from the extraction and decryption module

User mode
Kernel mode

TCP/IP
stack

(tcpip.sys)

KM filter
engine Callout

HTTA

Extraction
threadsTCP

streams

TLS records Decisions TSI

I/O manager thread

Decryption threads

Figure 12: Prototype architecture of HTTA on Windows platform.

Chrome Edge Firefox
0

20

40

60

80

100

Pe
rc

en
ta

ge

<1s

>10s
1s–10s

Figure 13: Duration of sessions and connections for typical
browsers.

14 Security and Communication Networks

which are in the user space. Overhead of the packet filter
module in the kernel space is negligible.

Next, we evaluate the effectiveness of the matching method
based on the low fragmentation heap; consider the extreme case
that all the TSIs are obtained from the heap memory by
searching. As mentioned above, if the handshake packets are
pending in the communication, the corresponding session
information can surely be obtained in the memory space, and
what needs to be concerned is the overhead and time delay. We
take Chrome as the example and choose the SSLClientSock-
etImpl object as the target from which we can extract the TSI
and TCP connection information all at once. +en, we count
and observe the time delay caused by packet queuing with
different number of concurrent connections in the web page,
respectively. In order to avoid the impact of network transfer, a
local TLS server is created. As shown in Figure 15, the page
loading time does not increase obviously when the number of
connections increases, and it is in the acceptable range. +e
main reason is that the number of concurrent connections of
the browser is limited.While the number of connections grows,
one traversal of the LFH chunks can obtain several target
objects, and it is beneficial. Finally, the browser loads the page
that generates 1000 http requests with the response size of
50KB, and the processor time is recorded.+e result shows that
the processor time of entire system does not increase obviously
because the extraction modules works on demand, not con-
tinuously. In fact, the search only occurs when the TSI is not
obtained from the session cache.

Actually, the scenario above is common in the non-
browser programs, which utilize the aforementioned TLS
libraries to make secure communications. For example,
some malicious programs communicate with the remote
server based on the HTTPS protocol. It uses the WinHtt-
pSendRequest function of the winhttp library to send data,
which will be subsequently encrypted by functions in the
schannel library before sending.+e TSI can be easily located
by magic string “Microsoft SSL Protocol Provider” in the
heap memory while the handshake process is hung tem-
porarily. So, the encrypted TLS traffic can be obtained
stealthily without any preliminary analysis.

+en, we choose three structures from three browsers to
evaluate the real matching effect. +e structures are

sslSessionID (0x188), ssl_session_st (0x198), and CSecur-
eSocket (0x170), which contains the TSI information, re-
spectively. +e value in parentheses is the size of structure in
the test version. In the experiment, we successively access the
above-mentioned websites, the matching process continues,
and the processor time is suppressed below 5%. +e ex-
perimental results are shown in Table 2. +ere are lots of
repetitive accesses to a small amount of memory blocks.
After removing the duplicate addresses, the number of
blocks that contain the target structures is limited. +e
matching process is efficient, and the time consumption can
be negligible, although there are lots of nontarget blocks
associated with the bucket, especially for Edge. One reason is
that the new LFH heap is introduced onWindows 10, which
is called segment heap [44], and then more memory chunks
would be traversed to obtain the target structures.

5.3. Comparison with Other Methods. In the next experi-
ments, HTTA is compared with Fiddler and mitmproxy,
which are the widely used web analysis tool, to demonstrate
the impact on the original communication of the method.
Fiddler interposes a proxy to intercept the TLS connections
of browsers, while mitmproxy is configured as the trans-
parent mode. As is similar to the last section, we, re-
spectively, download the page with different sizes from the
local TLS server and obtain the page loading time from the
development tool of the browser. As shown in Figure 16, for
the transfer of small page, the page loading time is near for
different methods. But there may be errors in the loading
time of around 10ms because of the counter of operating
system, as shown in the interval 10KB∼100KB. While the
size of transferred packets grows, the impact on transfer
delay by Fiddler and mitmproxy will increase obviously, and
the impact of our method tends to be negligible. +e average
latency of each communication is about 5ms, while the
maximum is about 10ms at worst. Because HTTA only
needs to correlate the TSI with the connection, it only
duplicates the packets and does not intercept the connection
continuously. Mitmproxy maintains the TLS communica-
tions on both sides because of the transparent proxy; the
initial handshake would cause a lot of time, and the
handshake impact will be ignored while the size of packets

100

80

60

40

20

0
Chrome EdgeFirefox

Decryption rate
Processor time

Figure 14: Decryption rate and overhead of the extraction by the
global variable.

5 10 20 30 40 50 60 70 80 90
Number of connections

Base
HTTA

0
50

100
150
200
250
300
350
400
450

Lo
ad

in
g

tim
e (

m
s)

Figure 15: Overhead of the extraction by the traversal of LFH.

Security and Communication Networks 15

grows. Fiddler causes the lower network delay than mitm-
proxy, since it uses web proxy protocol on the client side.

Another difference is that Fiddler captures and processes
packets in the user mode, while HTTA currently captures
packets in the kernel mode and sends to the upper module.
+e communication between the user mode and kernel
mode module may cause time delay. If HTTA works on the
offline mode, it would have no impact on communications.

5.4. Correlation Cost in the Extreme Case. As aforemen-
tioned, it is easy to correlate TSI with the network con-
nection in most cases by the connection port or session
resumption information. In general, when the TLS hand-
shake is finished, the related information can be rapidly
extracted, so that the decryption can be started. +e time
spent of extraction is less than 5ms. However, in the absence
or loss of such information, it is necessary to try to decrypt
and verify one record of TLS session to determine the re-
lationship between the two. Specific methods are afore-
mentioned. In this experiment, we choose some popular
cipher suites of TLS protocol to evaluate and take OpenSSL
as the crypto library even though it is not the optimal. As
shown in Figure 17, with the growth of key numbers the
verification time does not increase drastically for different
cipher suites. If the number of key materials is less than 100,
the time required to achieve the correlation with TCP stream
is about 5ms. +e time consumption of the GCM mode is
lower than the CBC mode. In reality, few TSI is generated at
the same interval of time. +erefore, if the verification is
needed, it is possible to keep the time overhead within a
reasonable range. In the experiment, we use TLS 1.2 version
because many websites do not support TLS 1.3. Actually, the

new version only changes the handshake protocol, the
symmetric encryption does not change, and it would not
impact the result.

5.5. Localization of Target Objects. To support the large scale
application of HTTA, we also design the helper of locating
target structures and variable which can reduce the addi-
tional overhead of reverse engineering. Here, we perform the
experiments to demonstrate the effect. Because there are
abundant debug symbols for Edge and Firefox, we first
choose Chrome 32-bit as the target program. To obtain the
cache variable, function SSLContext::GetInstance is used as

10 50 100 200 300 400 500
Length of packets (KB)

Base
HTTA

Fiddler
Mitmproxy

0
10
20
30
40
50
60
70
80
90

Lo
ad

in
g

tim
e (

m
s)

(a)

Length of packets (MB)
1 5 10 15 20 25 30

Base
HTTA

Fiddler
Mitmproxy

0

500

1000

1500

2000

2500

3000

3500

Lo
ad

in
g

tim
e (

s)

(b)

Figure 16: Comparisons with Fiddler and mitmproxy.

0
5

10
15
20
25
30
35
40
45

El
ap

se
d

tim
e (

m
s)

50 50010 300100 800 1000200
Number of key materials

AES256_CBC_SHA
AES256_GCM_SHA384
AES128_GCM_SHA256

Figure 17: Elapsed time of correlation attempt for different cipher
suites.

Table 2: Statistics of the traversal on the LFH.

Program Number of all traversed blocks
(million) Duration

Time consumption per
million
blocks

Proportion of target blocks in
the traversal

Number of target blocks
without duplications

Firefox 338 190s 562ms 78% 537
Chrome 326 187s 574ms 50% 343
Edge 381 207s 543ms 25% 363

16 Security and Communication Networks

the target for a test, from which the session structures can be
referenced. +e function in the version of 58.0.3029.110 is
taken as the initial template. First, we try to get the target
function by the traditional CFG matching. +e base control
flow graph is established, and two parameters described
above, which are the matching error of the node label and
the number of nodes, are also considered. +en, it matches
all the CFGs in other versions of the program, so that it can
quickly locate the target. +e results show that it can locate
the function precisely for the latter consecutive versions,
while fails to find target in some prior versions. In fact, there
are few subtle differences between different versions that
some sides of CFG have changed. It is a challenge for ap-
plying graph isomorphism search method in that situation.
Even though the complexity of graph isomorphism search is
high, the actual match time is controlled because of the
special constraints. Besides, we can observe that when the
match error of vertex grows, the match result grows dras-
tically. +is means the fuzzy match based on graph iso-
morphism does not work well here.

+en, we continue to measure the ISMCPmethod by the
next experiment, and also take the function above as the
target. But we use the function in the older version
51.0.2704.103 as the template, from which we select the
paths. +e length of path changes from 3 to 6, and the
number of each generated path locates in the range from 1 to
5. +en, the template is matched with all the functions of
target version of the program by ISMCP.+e result is shown
in Figure 18; for each version of the program, we sort all the
functions by their path similarities, from which we can see
the obvious change in curvature. +e target functions in
different versions are in concentrated distribution, and
hundreds of them rank within top 0.5%; it can still be ob-
served clearly in the partial magnification which also bring
some challenges for further analysis, although shrank the
search scope. In addition, with the growth of path length, the
number of generated similarity values goes down; mean-
while, the capability of locating target function also declines.

+emain reason is that the CFG of the above function has a
too simple structure and few vertexes. +erefore, we then
choose another function DoVerifyCertComplete, which also
changes in the different versions.Meanwhile, we can also obtain
the target by one direct call reference in that function.+e CFG
of the function has around 20 vertexes, and structure is more
complex. We choose the path length between 6 and 9, and the
generated path number of each length varies from 16 to 30.+e
experiment steps are the same with the former one, and the
result is shown in Figure 19. Now, we can see an excellentmatch
result. For each version of the program, the top function is the
target function.Most of the target functions in different versions
are located within top 20, which is a better result.

Besides, the fact as shown in Figure 20, even the path
number and length grows, the match time does not improve
obviously. One reason is that the CFG structure is sparse,
with the path length grows, the number of matched graphs
will reduce, and the number of paths which can satisfy the
constraint will also decrease. On the contrary, the number of
matching operations increases when the path length is short.
Additionally, because the module (Chrome.dll) that contains

the target function consists of near 200 thousand functions,
the process is hard to finish within the acceptable time range
when the bindiff tool is used.

For the location of the structure members, we can use the
same method. In the subsequent experiment, we choose the
SSL_SESSION_dup function of Chrome, which references lots
of session parameters, including master key. +e version
65.0.3325.181 is used as the template to build the paths, and the
path length is same as the above experiment. +e result is
shown as Figure 21 since the architecture of the function keeps
stable in many versions; the top 10 functions are all the target
function in the newer versions of target program.

Similarly, for Firefox, we can obtain the global cache variable
by function ssl_DestroySID. In the next experiment, version
56.0.0 (64bit) is used as the initial template to build the paths of
ISMCP. +en, we try to locate the same function in the pro-
grams with newer version number. +e result is shown in
Figure 22, and the target function can be found in the top 5
values of the result for each newer version. +en, function
ssl3_FillInCachedSID is further used in the experiment, from
which we can obtain the offsets of specific session parameters.
As shown in Figure 23, even though the similarities decrease in
totality, the target can also be found in the top 10 of the results
for version 58.0.2 and 60.0.2. But most matching values are
located between the top 50 and 100 for version 65.0.1 and later,
and then the difficulty of location is increased. It is better to
update the matching template of the function due to the major
structure change in the new versions.

Since the file size of module containing target functions is
small for Firefox, we can perform the comparions by the bindiff
tool. +e result is not good, as shown in Figure 24. For
ssl3_FillInCachedSID, the desired functions in the newer
versions are not recognized. Function ssl_DestroySID is lo-
cated only in version 60, due to the few changes of that version.

In fact, compared with the address change of the global
variable, the member offset of target structure remains more
stable, as shown in Table 3. In most cases, we only check
whether the offset has changed in the new version.

5.6. Adaptation to the Program Change. +e proposed
method can be applied to the analysis of the popular
browsers, also including other browsers with the same
kernel. Meanwhile, some programs use the browser as the
web component, and the corresponding traffic can also be
directly analyzed, for example,Weixin for Windows, Tencent
video, Netease cloudmusic, and so on. Besides, some client
programs of cloud disk use wininet library for the secure
communications, which can also be directly analyzed.
Furthermore, the address of the target global variable may
change in different versions of the program due to the
compilation. So, we need to construct the offset database of
the target variable in advance. For the structure member, it
generally changes when the version of program has the
major change.

Moreover, we investigate the variation of the target
object size, which is used in the experiment of traversing the
LFH. As shown in Table 4, the size can remain stable in
different versions, which is sensitive to the major version

Security and Communication Networks 17

Location of the target function

0.0

0.2

0.4

0.6

0.8

1.0
Si

m
ila

rit
y

20000 40000 60000 80000 100000 120000 140000 160000 1800000
Serial number

p3v51
p4v51
p5v51
p6v51

p3v54
p4v54
p5v54
p6v54

p3v58
p4v58
p5v58
p6v58

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

500 1000 15000 2000
Serial number

p3v51
p4v51
p5v51
p6v51

p3v54
p4v54
p5v54
p6v54

p3v58
p4v58
p5v58
p6v58

(b)

Figure 18: Result 1 of Chrome based on ISMCP. P3 denotes that the path length is 3, v51 denotes that the major version is 51, and others are
similar.

0 10000 20000 30000 40000 50000
Serial number

p6v51
p7v51
p8v51
p9v51

p6v58
p7v58
p8v58
p9v58

p6v65
p7v65
p8v65
p9v65

p6v70
p7v70
p8v70
p9v70

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

(a)

100 200 400300 5000
Serial number

p6v51
p7v51
p8v51
p9v51

p6v58
p7v58
p8v58
p9v58

p6v65
p7v65
p8v65
p9v65

p6v70
p7v70
p8v70
p9v70

0.2

0.4

0.6

0.8

1.0
Si

m
ila

rit
y

(b)

Figure 19: Result 2 of Chrome based on ISMCP.

G6(16) G7(20) G8(27) G9(30)

V51

V58

V65

V70

0

0.5

1

1.5

2

2.5

El
ap

se
d

tim
e (

m
s)

Figure 20: Execution time of matching per graph in different
conditions. G6 (16) denotes that the path length is 6 and the
number of paths is 16, others are similar.

p6v75
p7v75
p8v75
p9v75

p6v72
p7v72
p8v72
p9v72

p6v70
p7v70
p8v70
p9v70

p6v68
p7v68
p8v68
p9v68

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

20 40 60 80 1000
Serial number

Figure 21: Result 3 of Chrome based on ISMCP.

18 Security and Communication Networks

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

125 150 175 2001005025 752
Serial number

p8v68
p9v68
p10v68

p8v65
p9v65
p10v65

p8v60
p9v60
p10v60

p8v58
p9v58
p10v58

Figure 22: Result 1 of Firefox based on ISMCP.

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

25 50 75 100 125 150 175 2002
Serial number

p8v68
p9v68
p10v68

p8v65
p9v65
p10v65

p8v60
p9v60
p10v60

p8v58
p9v58
p10v58

Figure 23: Result 2 of Firefox based on ISMCP.

Figure 24: Comparisons of different Firefox versions by bindiff.

Security and Communication Networks 19

changes. In practice, we can properly increase the search
range to improve the adaptability.

6. Discussion

+e proposed method is practical and universal, as it does not
depend on vulnerabilities of the program and protocol. It is
mainly applicable for browsers and analogous programs since
we discover the uniform pattern of information extraction, and

it is applicable for the programs which adopt the similar crypto
infrastructure. But it is difficult to directly extract the session
information for the program that has the personalized imple-
mentation of TLS protocol. In the situation, the individual
reverse engineering work is needed to make the analysis cover
the program.

+e version of browser program may change frequently;
in most cases, we only need to check the variation with low
cost, due to the semiautomated method. Little manual work

Table 3: Variation of the parameter offset in different versions.

Program Structure Member Version Offset value

Firefox sslSessionID keys
56.0 0xAC
60.0.2 0xB5
65.0.1 0xB5

Chrome ssl_session_st master_key
65.0.3325.181 0xC8
70.0.3538.77 0xC8
75.0.3770.80 0xC8

Edge CSslUserContext ReadWriteKey
10.0.14393.1613 0x18
10.0.16299.15 0x18
10.0.17134.1 0x18

Table 4: Variation of target objects of different versions.

Program Object Version Size (bytes)

Firefox sslSessionID

56.0 0x190
60.0.2 0x188
62.0.3 0x188
65.0.1 0x188

Chrome ssl_session_st

61.0.3163.100 0x1B0
65.0.3325.146 0x198
70.0.3538.77 0x198
72.0.3626.121 0x198

IE/Edge CSecureSocket

11.0.14393.1770 0x170
11.0.14393.2273 0x170
11.0.16299.15 0x180
11.0.17134.1 0x198

Target application

Untrusted code

Enclave data
Load

Load

SGX enclave

R3

R0
NtCreateEnclave
NtLoadEnclaveData
NtInitializeEnclave

KiEncls

Detour

Extraction
code

HTTA

Figure 25: A solution to the case of SGX.

20 Security and Communication Networks

is needed to ensure the accuracy in practice. But when the
target function in the new version has major changes, we
would spendmuch time to update the new function template
to locate the target parameters.

+e noninvasive method of this paper means that it does
not intervene the execution flow of target program. As
mentioned above, the solution has the interception mode and
audit mode. In the interception mode, few related handshake
packets will be intercepted at the system kernel level, but there
is no reassembly and decryption. Meanwhile, in the audit
mode, the decryption rate may not reach the one hundred
percent, but it can minimize the impact on the target system
and application.

Besides, as a supplement, we also propose the extraction
method based on the low fragmentation heap. When the
amount of traffic of the program is small, the corresponding
heap bucket may not be activated. If the bucket is needed to
be forcedly activated, there would be the thread injection
which slightly interferes with the target system.

For the standalone deployment, other security products
may exist. Because the solution does not involve the function
hooking methods, they can coexist. Moreover, as a defense
solution, we can also add the related modules to the while list of
security products.

While the Intel SGX is also a barrier to the solution, it has
not been used by target programs. In that case, it needs to
load the extraction code into the same enclave of the process
when the target program initializes, which also causes the
intervention. Because as a defense solution the module of
HTTA can start in advance of other applications. One re-
sponse solution on the Windows platform is shown in
Figure 25. When the target program calls the NtInitiali-
zeEnclave function that corresponds to the EINITprivileged
instruction, we load the enclave part of extraction module to
the same enclave. In this case, the kernel function hooking is
needed, and there are many stable methods.

7. Conclusions

In this paper, we propose a new TLS traffic large-scale auto-
mated analysis method for browsers and analogous programs,
which is efficient and transparent to the programs. It extracts
multiple types of data by several modes and correlates them
together to accomplish the overall analysis of the target in real
time.+e experimental results have shown that the method can
effectively capture and analyze all the packets, with the high
decryption rate and low runtime overhead. Moreover, we
propose the aided location method of targets to solve the
program diversity problem, which can reduce the workload of
binary analysis and support the framework.

In this paper, we mainly focus on the researching and
performing experiments on the browser programs and
would pay more attentions to other programs in the near
future. Moreover, the automated method of binary reversing
and parameter extraction should be continuously improved.

Data Availability

No data were used to support this study.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

+is work was supported by the National Natural Science
Foundation of China (General Program) under grant no.
61572253 and the Innovation Program for Graduate Stu-
dents of Jiangsu Province, China (grant no. KYLX16_0384).

References

[1] G. K. Jayasinghe, J. S. Culpepper, and P. Bertok, “Efficient and
effective realtime prediction of drive-by download attacks,”
Journal of Network and Computer Applications, vol. 38, no. 1,
pp. 135–149, 2014.

[2] “RFC6101,” August 2018, https://tools.ietf.org/html/rfc6101.
[3] “RFC5246,” August 2018, https://tools.ietf.org/html/rfc5246.
[4] “RFC2818,” August 2018, https://tools.ietf.org/html/rfc2818.
[5] “CVE-2014-0160,” August 2018, https://cve.mitre.org/cgi-

bin/cvename.cgi?name�CVE-2014-0160.
[6] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage,

“When private keys are public: results from the 2008 Debian
OpenSSL vulnerability,” in Proceedings of the ACM SIG-
COMM Conference on Internet Measurement, pp. 15–27,
ACM, Chicago, Illinois, USA, November 2009.

[7] “CVE-2012-4929,” August 2018, http://cve.mitre.org/cgi-bin/
cvename.cgi?name�CVE-2012-4929.

[8] T. Duong and J. Rizzo, “Here come the ⊕ ninjas,” August 2018,
http://www.hpcc.ecs.soton.ac.uk/∼dan/talks/bullrun/Beast.pdf.

[9] N. J. A Fardan and K. G. Paterson, “Lucky thirteen: breaking
the TLS and DTLS record protocols,” in Proceedings of the
IEEE Symposium on Security and Privacy 2013, pp. 526–540,
IEEE, San Francisco, CA, USA, May 2013.

[10] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar,
and D. A. Osvik, “Short chosen-prefix collisions for MD5 and
the creation of a rogue CA certificate,” in Advances in
Cryptology, pp. 55–69, Springer, Berlin, Germany, 2009.

[11] K. Dan, M. L. Patterson, and L. Sassaman, “PKI layer cake:
new collision attacks against the Global X.509 infrastructure,”
in Proceedings of the International Conference on Financial
Cryptography and Data Security, pp. 289–303, Springer-
Verlag, Tenerife, Spain, January 2010.

[12] D. Akhawe and A. P. Felt, “Alice in warning land: a large-scale
field study of browser security warning effectiveness,” in
Proceedings of the USENIX Conference on Security 2013,
pp. 257–272, USENIX Association, Washington, DC, USA,
August 2013.

[13] A. Parsovs, “Practical issues with TLS client certificate au-
thentication,” in Proceedings of the Network and Distributed
System Security Symposium 2014, San Diego, CA, USA,
February 2014.

[14] M. Kranch and J. Bonneau, “Upgrading HTTPS in mid-air: an
empirical study of strict transport security and key pinning,”
in Proceedings of the Network and Distributed System Security
Symposium, San Diego, CA., USA, February 2015.

[15] “TLS 1.3 draft,” August 2018, https://tools.ietf.org/html/draft-
ietf-tls-tls13-28.

[16] T. Nichols, A. Bates, J. Pletcher et al., “Securing SSL certificate
verification through dynamic linking,” in Proceedings of the
ACM Sigsac Conference on Computer and Communications

Security and Communication Networks 21

https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc2818
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4929
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4929
http://www.hpcc.ecs.soton.ac.uk/~dan/talks/bullrun/Beast.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-28
https://tools.ietf.org/html/draft-ietf-tls-tls13-28

Security, pp. 394–405, ACM, Scottsdale, AZ, USA, November
2014.

[17] “HTTP strict transport security (HSTS),” August 2018,
https://tools.ietf.org/html/rfc6797.

[18] “Public key pinning extension for HTTP,” August 2018,
https://tools.ietf.org/html/rfc7469.

[19] “Certificate transparency,” August 2018, https://tools.ietf.org/
html/rfc6962.

[20] M. Husák, M. Čermák, T. Jirśık, and P. Čeleda, “HTTPS traffic
analysis and client identification using passive SSL/TLS fin-
gerprinting,” EURASIP Journal on Information Security,
vol. 2016, no. 1, 2016.

[21] “Deciphering malware’s use of TLS (without Decryption),”
August 2018, https://arxiv.org/pdf/1607.01639.pdf.

[22] X. C. Carnavalet and M. Mannan, “Killed by proxy: analyzing
client-end TLS interception software,” in Proceedings of the
the Network and Distributed System Security Symposium, San
Diego, CA, USA, February 2016.

[23] Z. Durumeric, Z. Ma, D. Springall et al., “+e security impact
of HTTPS interception,” in Proceedings of the the Network
and Distributed System Security Symposium, San Diego,
California, USA, February-March 2017.

[24] “Fiddler,” August 2018, http://www.telerik.com/fiddler.
[25] “Mitmproxy,” August 2018, https://github.com/mitmproxy/

mitmproxy.
[26] “NSS key log format,” August 2018, https://developer.mozilla.

org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format.
[27] “Jkambic,” August 2018, http://media.defcon.org/DEF%20CON%

2024/DEF%20CON%2024%20presentations/DEFCON-24-Jkam
bic-Cunning-With-Cng-Soliciting-Secrets-From-Schannel-
WP.pdf.

[28] J. Rizzo and T. Duong, “Practical padding oracle attacks,” in
Proceedings of the 4th USENIX Workshop on Offensive
Technologies, pp. 1–8, USENIX Association, Washington, DC,
USA, August 2010.

[29] “BREACH,” August 2018, https://github.com/nealharris/
BREACH.

[30] M. Marlinspike, “More tricks for defeating SSL in practice,” in
Proceedings of the DEFCON’17, Winchester, NV, USA, July-
August 2009.

[31] J. Liang, J. Jiang, and H. Duan, “When HTTPS meets CDN: a
case of authentication in delegated service,” in Proceedings of
the 2014 IEEE Symposium on Security and Privacy, pp. 67–82,
IEEE, San Jose, CA, USA, May 2014.

[32] Y. Jia, Y. Chen, X. Dong, P. Saxena, J. Mao, and Z. Liang,
“Man-in-the-browser-cache: persisting HTTPS attacks via
browser cache poisoning,” Computers and Security, vol. 55,
pp. 62–80, 2015.

[33] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “BlindBox:
Deep packet inspection over encrypted traffic,” Acm Sigcomm
Computer Communication Review, vol. 45, no. 4, pp. 213–226,
2015.

[34] L. Wu, B. Chen, S. Zeadally, and D. He, “An efficient and
secure searchable public key encryption scheme with privacy
protection for cloud storage,” Soft Computing, vol. 22, no. 23,
pp. 7685–7696, 2018.

[35] B. Dolan-Gavitt, T. Leek, J. Hodosh, andW. Lee, “Tappan Zee
(north) bridge: mining memory accesses for introspection,” in
Proceedings of the ACM Sigsac Conference on Computer &
Communications Security, pp. 839–850, ACM, Berlin, Ger-
many, November 2013.

[36] B. Taubmann, C. Frädrich, D. Dusold, and H. P. Reiser,
“TLSkex: harnessing virtual machine introspection for

decrypting TLS communication,” Digital Investigation,
vol. 16, pp. S114–S123, 2016.

[37] Q. Feng, A. Prakash, M. Wang, C. Carmony, and H. Yin,
“ORIGEN: automatic extraction of offset-revealing in-
structions for cross-version memory analysis,” in Proceedings
of the ACM on Asia Conference on Computer and Commu-
nications Security, pp. 11–22, ACM, Xi’an, China, May-June
2016.

[38] P. Vadrevu, J. Liu, B. Li, B. Rahbarinia, K. H. Lee, and
R. Perdisci, “Enabling reconstruction of attacks on users via
efficient browsing snapshots,” in Proceedings of the Network
and Distributed System Security Symposium 2017, San Diego,
CA, USA, February-March 2017.

[39] “Desktop browsermarket share worldwide,” August 2018, http://
gs.statcounter.com/browser-market-share/desktop/worldwide.

[40] “Chromium source code,” August 2018, https://chromium.
googlesource.com/chromium/src.git/+/62.0.3188.1/net/ssl/.

[41] “OpenSSL,” August 2018, https://www.openssl.org.
[42] “LibreSSL,” August 2018, http://www.libressl.org.
[43] “Firefox source code,” August 2018, http://releases.mozilla.

org/pub/firefox/releases/.
[44] “Segment heap internals,” August 2018, https://www.

blackhat.com/docs/us-16/materials/us-16-Yason-Windows-
10-Segment-Heap-Internals.pdf.

[45] F. E. Allen, “Control flow analysis,” Acm Sigplan Notices,
vol. 5, no. 7, pp. 1–19, 1970.

[46] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with
applications to software plagiarism detection,” in Proceedings
of the ACM Sigsoft International Symposium on Foundations
of Software Engineering, pp. 389–400, ACM, Hong Kong,
China, November 2014.

[47] S. Alam, R. N. Horspool, and I. Traore, “A framework for
metamorphic malware analysis and real-time detection,”
Computers and Security, vol. 48, pp. 212–233, 2015.

[48] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)
graph isomorphism algorithm for matching large graphs,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 26, no. 10, pp. 1367–1372, 2004.

[49] G. Dan,Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology, Cambridge University
Press, London, UK, 1997.

[50] “IDA,” August 2018, https://www.hex-rays.com/products/
ida/index.shtml.

[51] “Windows filtering platform,” August 2018, https://docs.
microsoft.com/zh-cn/windows/desktop/FWP/windows-filtering-
platform-start-page.

22 Security and Communication Networks

https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc7469
https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/rfc6962
https://arxiv.org/pdf/1607.01639.pdf
http://www.telerik.com/fiddler
https://github.com/mitmproxy/mitmproxy
https://github.com/mitmproxy/mitmproxy
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/Key_Log_Format
http://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Jkambic-Cunning-With-Cng-Soliciting-Secrets-From-Schannel-WP.pdf
http://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Jkambic-Cunning-With-Cng-Soliciting-Secrets-From-Schannel-WP.pdf
http://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Jkambic-Cunning-With-Cng-Soliciting-Secrets-From-Schannel-WP.pdf
http://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Jkambic-Cunning-With-Cng-Soliciting-Secrets-From-Schannel-WP.pdf
https://github.com/nealharris/BREACH
https://github.com/nealharris/BREACH
http://gs.statcounter.com/browser-market-share/desktop/worldwide
http://gs.statcounter.com/browser-market-share/desktop/worldwide
https://chromium.googlesource.com/chromium/src.git/+/62.0.3188.1/net/ssl/
https://chromium.googlesource.com/chromium/src.git/+/62.0.3188.1/net/ssl/
https://www.openssl.org
http://www.libressl.org
http://releases.mozilla.org/pub/firefox/releases/
http://releases.mozilla.org/pub/firefox/releases/
https://www.blackhat.com/docs/us-16/materials/us-16-Yason-Windows-10-Segment-Heap-Internals.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Yason-Windows-10-Segment-Heap-Internals.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Yason-Windows-10-Segment-Heap-Internals.pdf
https://www.hex-rays.com/products/ida/index.shtml
https://www.hex-rays.com/products/ida/index.shtml
https://docs.microsoft.com/zh-cn/windows/desktop/FWP/windows-filtering-platform-start-page
https://docs.microsoft.com/zh-cn/windows/desktop/FWP/windows-filtering-platform-start-page
https://docs.microsoft.com/zh-cn/windows/desktop/FWP/windows-filtering-platform-start-page

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

