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Image encryption is a useful technique of image content protection. In this paper, we propose a novel image encryption algorithm
by jointly exploiting random overlapping block partition, double spiral scans, Henon chaoticmap, and Lü chaoticmap. Specifically,
the input image is first divided into overlapping blocks and pixels of every block are scrambled via double spiral scans. During
spiral scans, the start-point is randomly selected under the control of Henon chaotic map. Next, image content based secret keys
are generated and used to control the Lü chaotic map for calculating a secret matrix with the same size of input image. Finally, the
encrypted image is obtained by calculating XOR operation between the corresponding elements of the scrambled image and the
secret matrix. Experimental result shows that the proposed algorithm has good encrypted results and outperforms some popular
encryption algorithms.

1. Introduction

Some well-known security events, such as PRISM and
Xkeyscore, make people pay much attention to information
security. Since digital images are widely used in the Internet,
how to protect image content [1, 2] has become an issue to
be urgently solved. Image encryption is a useful technique
of image content protection [3]. It converts images into
noise-like encrypted images by disrupting pixel positions
or changing pixel values. In recent years, researchers have
developed many useful image encryption algorithms. These
algorithms can be roughly divided into two categories as
follows.

The first direction is to manipulate image pixels in the
spatial domain. This kind of algorithm usually scrambles
pixel positions through matrix transformation and destroys
spatial correlation between pixels of the original image, so
as to convert input image into chaotic image. For example,
Tang et al. [4] proposed an encryption algorithm based
on Arnold transform and three random strategies. This
encryption technique is a secure algorithm and can overcome
size limitation of the Arnold transform. In another study,
Tang et al. [5] divided input image into overlapping blocks,
conducted random block shuffling, and exploited Arnold

transform and a chaotic map to generate secure matrix for
block-wise encryption. In [6], Zhang and Liu used skew-tent
chaotic map to achieve permutation and diffusion without
changing pixel information. This method has high efficiency
and a large key space, but it is not secure enough from the
viewpoint of histogram [5]. In [7], Li et al. exploited reversible
data hiding (RDH) and compressive sensing to design a
meaningful image encryption algorithm. This algorithm
encrypts a secret image into a meaningful image by RDH
and reaches a high embedding rate. Recently, Wang et al.
[8] designed an efficient image encryption algorithm based
on two-dimensional partitioned cellular automaton. This
algorithm supports parallel computing and is easy for VLSI
implementation. In another work, Wang et al. [9] exploited
multiple mixed hash functions, cyclic-shift function, and
piece-wise linear chaotic maps to achieve image encryption.
This scheme can overcome security flaw of the well-known
chaotic image encryption called Baptista’s algorithm and
its improved versions. In [10], Hayat and Azam proposed
a useful image encryption technique using a dynamic S-
box and pseudo-random numbers over an elliptic curve.
This technique can resist known plaintext attack and chosen
plaintext attack.
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Since chaotic systems have many sensitive properties
(e.g., sensitivity to initial conditions and system parameters)
and show better performance than traditional encryption
techniques (e.g., AES [11] and DES [12]), many researchers
have tried to design image encryption with chaotic maps
[13–19]. In general, chaos-based image encryption algorithms
consist of two steps: pixel permutation and pixel diffusion.
The pixel permutation changes pixel position, while the pixel
diffusion alters pixel values where a change in a pixel will
spread almost to other pixels of entire image. Contributed
by the sensitivity properties of chaotic system, chaos-based
image encryption algorithms generally achieve good security
performance. Some representative chaos-based encryption
algorithms are introduced here. Amin et al. [20] proposed
a new image encryption algorithm based on chaotic block
cipher. This algorithm jointly uses cryptographic primitive
operations, nonlinear transformation functions, and chaotic
tent map to achieve encryption. It is secure against brute-
force attack. Abd El-Latif et al. [21] presented a novel image
encryption with linear feedback shift register and chaotic
maps in time and frequency domains. This method can resist
differential attack. In another study, Abd El-Latif and Niu
[22] proposed a hybrid image encryption by using chaotic
system and cyclic elliptic curve. This method reaches good
security. In [23], Tang et al. exploited Henon map, logistic
map, and bit-plane decomposition to design an algorithm for
multiple-image encryption. This algorithm can convert four
gray-scale images into an encrypted PNG image. In another
work, Wang et al. [24] used two chaotic systems to develop
a hybrid color image encryption scheme. In [25], Abanda
and Tiedeu proposed a fast and simple image encryption
algorithm by combining two kinds of chaotic maps to meet
real-time application. Belazi et al. [26] presented a novel
selective image encryption by using DWT with AES s-box
and chaotic permutation. This method can resist differential
and statistical attacks. In another study, Belazi et al. [27]
designed an efficient image encryption with substitution-
permutationnetwork and chaotic systems.This algorithmhas
good performances in security and speed.

Recently, Tang et al. [28] proposed an image encryption
algorithm by using random projection partition and chaotic
system. This algorithm is secure and has a fast speed. Li
et al. [29] introduced a quantum color image encryption
scheme. This scheme exploits quantum controlled-NOT
image generated bymultiple chaotic maps to control the XOR
operation in the encryption process. It can resist the attack
of histogram analysis. Parvaz and Zarebnia [30] defined
a combination chaotic system with logistic, sine, and tent
systems and applied it to image encryption. To improve
security, Liu et al. [31] proposed to use a randomly sampled
noise signal as initial value of chaotic map. Chen and Hu
[32] designed an adaptive encryption algorithm based on
improved chaotic mapping for medical images. However, the
encryption results of this algorithm have obvious block effect.
In [33], Chai et al. jointly used chaotic system, elementary
cellular automata, and compressive sensing to design efficient
image encryption. This algorithm can resist known-plaintext
attack and chosen-plaintext attack. Wu et al. [34] proposed
a new image encryption algorithm by pixel diffusion with
DNA approach and pixel permutation by a two-dimensional

Hénon-Sine map. This algorithm can resist statistical attack,
differential attack, and noise attack, but has limitation in
encrypting color images.

The other direction is to conduct encryption in the trans-
formdomain [35, 36]. Generally, this kind of encryption algo-
rithms firstly transforms input image from spatial domain
to transform domain, then modifies those coefficients in
the transform domain with some well-defined rules, and
finally converts coefficients to spatial domain. For example,
Singh et al. [35] exploited Arnold transform and singular
value decomposition to make phase image encryption in the
fractional Hartley domain. Vashisth et al. [36] conducted
image encryption in the fractional Mellin transform domain
by using structured phase filters and phase retrieval. Naeem
et al. [37] presented novel image encryption algorithms with
a cyclic shift and the 2D chaotic Baker map in transform
domains, such as the Integer Wavelet Transform (IWT)
domain, the Discrete Wavelet Transform (DWT) domain,
and the Discrete Cosine Transform (DCT) domain. The
algorithm in DWT domain shows better performance than
those in other transformdomains. In another work, Belazia et
al. [38] proposed a novel partial image encryption approach
based on permutation-substitution-diffusion (PSD) network
and multiple chaotic maps in wavelet transform domain.
Recently, Annaby et al. [39] integrated random fractional
Fourier transforms, phase retrieval, and chaotic maps to
design a scheme for color image encryption. Zhang and Tong
[40] exploited IWT and set partitioning in hierarchical trees
(SPIHT) to make image encryption and compression. This
method has good performances in security and compression.
Li et al. [41] exploited two-dimensional DWT to decompose
original images and conducted encryption in DWT domain
by Arnold transform and robust chaotic map.This algorithm
can convert four grayscale images with the same size into an
encrypted image. Wu et al. [42] introduced an asymmetric
multiple-image encryption method via compressed sensing
and nonlinear operations in cylindrical diffraction domain.
This method can encrypt eight images and resist ciphertext-
only attack.

In this paper, we propose an image encryption algorithm
based on double spiral scans and chaotic maps. The pro-
posed algorithm jointly exploits random overlapping block
partition, double spiral scans, Henon chaotic map, and Lü
chaotic map to calculate encrypted image. Compared with
previous image encryption algorithms based on chaotic map,
a key contribution of our algorithm is the double spiral scans,
which can efficiently scramble pixels of image block. Many
experiments are conducted and the results show that the pro-
posed algorithm is effective and outperforms some popular
encryption algorithms. The rest of this paper is organized as
follows. In Section 2, we introduce the proposed algorithm.
In Section 3, we present key space analysis. In Section 4,
we discuss experimental results. Finally, conclusions of this
paper are made in Section 5.

2. Proposed Algorithm

Figure 1 shows the block diagram of our image encryption.
Themain steps of our algorithm include random overlapping
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Figure 1: Block diagram of our image encryption.

block partition, double spiral scans, and XOR operation.
In the first step, the input image is randomly divided into
overlapping blocks under the control of secret keys. In the
second step, we shuffle image pixels of every overlapping
block by double spiral scans, where a secret key k1 is used to
determine the order of encrypting image blocks. To improve
security, the Henon chaotic map is exploited to generate
random start-points for double spiral scans. In the third step,
we generate keys based on the content of input image and use
the keys to control the Lü chaotic map for generating a secret
matrix. Finally, we calculate the XOR operation between
the shuffled image and the secret matrix, and the result
is the final encrypted image. In the following sections, we
first introduce the random overlapping-block partition, then
describe the double spiral scans and the used chaotic maps
in our algorithm, and finally explain the key generation and
the detailed steps of our encryption scheme and decryption
scheme.

2.1. RandomOverlapping Block Partition. We exploit random
overlapping-block partition scheme [5] to divide input image
into overlapping blocks. And then we shuffle every image
block by double spiral scans to complete the scrambling
operation. The detailed process of the random overlapping-
block partition is explained as follows. Assume that the size
of input image is𝑀×𝑁, the selected block size is 𝑆 × 𝑆, and𝑡𝑥 and 𝑡𝑦 are the overlapping sizes between adjacent blocks
along the x-axis and the y-axis, respectively, where 𝑡𝑥 ∈ [1, 𝑆)
and 𝑡𝑦 ∈ [1, 𝑆). Let 𝑛𝑥 and 𝑛𝑦 be the numbers of image blocks
in the x-axis and the y-axis, respectively. Thus, 𝑛𝑥 and 𝑛𝑦 can
be calculated as follows.

𝑛𝑥 =
{{{{{{{

𝑁 − 𝑡𝑥𝑆 − 𝑡𝑥 , If mod (𝑁 − 𝑡𝑥, 𝑆 − 𝑡𝑥) = 0
⌊𝑁 − 𝑡𝑥𝑆 − 𝑡𝑥 ⌋ + 1, Otherwise

(1)

𝑛𝑦 =
{{{{{{{{{

𝑀− 𝑡𝑦𝑆 − 𝑡𝑦 , If mod (𝑀 − 𝑡𝑦, 𝑆 − 𝑡𝑦) = 0
⌊𝑀 − 𝑡𝑦𝑆 − 𝑡𝑦 ⌋ + 1, Otherwise

(2)

where ⌊⋅⌋ means rounding down operation and mod(⋅, ⋅)
means modulo operation. Therefore, the total number of
random overlapping blocks is𝑁total = 𝑛𝑥×𝑛𝑦.The coordinate
of the i-th image block in the x-axis direction is denoted by𝑋[𝑖], and the coordinate of the j-th image block in the y-
axis direction is denoted by 𝑌[𝑖], where 𝑖 = 1, 2, . . . , 𝑛𝑥 and𝑗 = 1, 2, . . . , 𝑛𝑦. Then, 𝑋[𝑖] and 𝑌[𝑗] can be determined as
follows. If mod(N − t𝑥, S − t𝑥) = 0, 𝑋[𝑖] = (𝑖 − 1)(𝑆 − 𝑡𝑥),
where 𝑖 = 1, 2, . . . , 𝑛𝑥. Otherwise, the x-coordinates of the
first n𝑥− 1 blocks are calculated byX [i] = (i− 1)(S− t𝑥), where𝑖 = 1, 2, . . . , 𝑛𝑥 − 1, and the x-coordinate of the last block is
X[n𝑥] = N − S + 1. Similarly, if mod(M − t𝑦, S − t𝑦) = 0, Y[j]
= (j − 1)(S − t𝑦), where 𝑦 = 1, 2, . . . , 𝑛𝑦. Otherwise, the y-
coordinates of the first n𝑦− 1 blocks are Y[j] = (j − 1)(S − t𝑦),
where 𝑦 = 1, 2, . . . , 𝑛𝑦 − 1. And the y-coordinate of the last
block is Y[n𝑦] = M − S+1. Here, image blocks are numbered
from left to right and top to bottom, and the coordinates of
the i-th image block are represented by (X[u𝑖], Y[v𝑗]). The
random block pattern depends on the block size S and the
overlapping sizes 𝑡𝑥and 𝑡𝑦, where the theoretical range of S is
(1, min (M, N)]. In the experiment, it is found that a small S
value will make more image blocks and thus lead to a slow
speed. Therefore, we randomly select the S value from the
range [32,min(𝑀,𝑁)) in this study. As the ranges of t𝑥 and t𝑦
are both [1, 𝑆), the total number of our random block patterns
is (min(𝑀,𝑁) − 31)(𝑆 − 1)2. Note that the parameters S, t𝑥,
and t𝑦 are determined by the user and thus they can be taken
as secret keys in practice.

2.2. Double Spiral Scans. The scheme of double spiral scans
proposed in this paper is used to scramble position of every
pixel in an overlapping block. Details of our double spiral
scans for pixel scrambling in a block are explained as follows.

As shown in Figure 2, our double spiral scans consist of
two parts. Firstly, a start-point is randomly selected. Then,
we visit block pixels from the start-point with a spiral scan as
shown in Figure 2(a) and obtain a pixel sequence according
to the order of visit. Similarly, we visit block pixels from the
start-point with another spiral scan as shown in Figure 2(b)
and obtain another pixel sequence according to the order of
the visit. Next, we concatenate the first pixel sequence and the
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(a) The first scanning direction (b) The second scanning direction

Figure 2: Diagram of double spiral scans.
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(a) Original block
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(b) Encrypted block
started from ‘N’
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(c) Encrypted block
started from ‘Q’

Figure 3: Original block and different encrypted blocks.

Pixel sequence 1: A-B-C-D-E-F-G-H-I-J-K-L-M-N-O-P-Q-R-S-T-U-V-W-X-Y.
Pixel sequence 2: N-O-J-E-D-C-B-A-F-K-P-U-V-W-X-Y-T-S-R-Q-M-L-G-H-I.
Pixel sequence 3: Q-R-S-T-O-J-E-D-C-B-A-F-K-P-U-V-W-X-Y-L-G-H-I-N-M.

Figure 4: Original pixel sequence and the pixel sequences generated by double spiral scans with different start-points.

second pixel sequence to make a new pixel sequence. Finally,
we can generate the encrypted image block by filling image
block from left to right and top to bottom via picking pixel
from the new sequence one by one. Note that all block pixels
are visited, and every pixel is scanned only once.

More specifically, we first randomly select start-point for
the double spiral scans. Here, coordinates of the random
start-point are randomly generated by the Henon chaotic
map.Thedetailed calculation will be described in Section 2.3.
As shown in Figure 2, the solid circle is the start-point of
double spiral scans in a block. The scanning process can be
divided into two directions. For the first scanning direction,
as shown in Figure 2(a), we scan block pixels starting from
the start-point and follow the below scanning direction: right,
up, left, and down. When scanning to block border or the
scanned pixel, we turn the scanning direction. If there is
no pixel for scanning, the first scanning process is finished
and then the first pixel sequence is obtained. For the second
scanning direction, as shown in Figure 2(b), we scan block
pixels starting from the start-point and follow the below
scanning direction: left, up, right, and down. Similarly, when
scanning to block border or the scanned pixel, we turn the

scanning direction. If there is no pixel for scanning, the
second scanning process is also finished and then the second
pixel sequence is obtained. Next, a new pixel sequence can
be generated by concatenating the first and the second pixel
sequences. Finally, the encrypted block can be obtained by
filling it with the new pixel sequence from left to right and
top to bottom. Clearly, the encrypted block can be accurately
decrypted once the start-point is known by filling pixels back
according to the visiting order of double spiral scans.

An example of our double spiral scans is illustrated here.
Figure 3(a) is a 5×5 image block. We scan pixels from left
to right and top to bottom and then get a pixel sequence
1, as shown in Figure 4. Suppose that coordinates of the
start-point are (3, 4), i.e., the location of ‘N’ as shown in
Figure 3(a). We visit block pixels by the double spiral scans
and generate the pixel sequence 2, as shown in Figure 4.Then,
we fill pixels back to image block with the pixel sequence
2 and obtain the encrypted block as shown in Figure 3(b).
Similarly, suppose that coordinates of the start-point are (5,
2), i.e., the location of ‘Q’ as shown in Figure 3(a). We visit
block pixels by the double spiral scans and generate the pixel
sequence 3, as shown in Figure 4. Then, we fill pixels back
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to image block with the pixel sequence 3 and obtain the
encrypted block as shown in Figure 3(c). Obviously, different
start-points lead to different encrypted results. In this study,
we choose different start-points for different image blocks by
using Henon chaotic map.This strategy can improve security
of our algorithm.

2.3. Chaotic Maps. This section describes the chaotic maps
used in our algorithm. Henon chaotic map is a typical two-
dimensional discrete chaotic map. We use it to generate the
start-points for double spiral scans. The Henon chaotic map
is defined as follows.

𝑥 (𝑘 + 1) = 1 − 𝑎𝑥2 (𝑘) + 𝑦 (𝑘)
𝑦 (𝑘 + 1) = 𝑏𝑥 (𝑘) (3)

where a and b are control parameters. When 𝑎 ∈ (0.54, 2) and𝑏 ∈ (0, 1), the Henon chaotic map will reach chaotic state.
In this study, we select 𝑎 = 1.4 and 𝑏 = 0.3 and take the
initial values x(0) and y(0) as keys. We repeatedly calculate
(3) 𝑁total times and then obtain two chaotic sequences: x =[𝑥(1), 𝑥(2), . . . , 𝑥(𝑁total)] and y = [𝑦(1), 𝑦(2), . . . , 𝑦(𝑁total)].
Since elements of the chaotic sequences are decimals and
pixel coordinates of image block are integers, the two
sequences are mapped to integer sequences as follows.

𝐷(𝑖) = ⌊(mod (𝑥 (𝑖) ∗ 248, 𝑆))⌋ , 𝑖 = 1, 2, . . . , 𝑁total (4)

𝐹 (𝑖) = ⌊(mod (𝑦 (𝑖) ∗ 248, 𝑆))⌋ , 𝑖 = 1, 2, . . . , 𝑁total (5)

where D(i) is the i-th element of the array D used to record
the x-coordinate of the start-point of the i-th image block and
F(i) is the i-th element of the array F used to record the y-
coordinate of the start-point of the i-th image block.

Moreover, we exploit Lü chaotic map to generate secret
matrix for XOR operation. The classical Lü chaotic map [43]
is a three-dimensional discrete chaoticmap that characterizes
the transition between the Lorenz system [44] and the Chen
system. The Lü chaotic map is calculated as follows.

𝑥 = 𝑎 (𝑦 − 𝑥)
𝑦 = 𝑐𝑦 − 𝑥𝑧
𝑧 = 𝑥𝑦 − 𝑏𝑧

(6)

where x0, y0, and z0 are initial values of the Lü chaotic system
and a, b, and c are its control parameters. The system is in
chaos when a = 36, b = 3, and c = 20. Note that x0, y0, and z0
are also taken as keys.

2.4. Key Generation. We generate content-based keys based
on input image and use them to control the Lü chaotic map.
This strategy can make our algorithm resistant to differential
attack. To do so, the initial values x0, y0, and z0 are calculated
by the following equations.

𝑥0 = [𝐼 (1, 1) ⊕ 𝐼 (1, 2) ⊕ ⋅ ⋅ ⋅ ⊕ 𝐼 (𝑖, 𝑗)]255

𝑦0 = [(1/𝑀𝑁)∑
𝑁
𝑖=1∑𝑀𝑗=1 𝐼 (𝑖, 𝑗)]255

𝑧0 = 𝑥0 + 𝑦0
(7)

where𝑀×𝑁 is the size of input image and 𝐼(𝑖, 𝑗) is the pixel
value of input image I, where 𝑖 ∈ [1,𝑁] and 𝑗 ∈ [1,𝑀].
Obviously, x0 is the decimal result of XOR operation between
all image pixel values, and y0 is the decimal result of mean
value of all image pixels. Therefore, if an image pixel in the
plaintext image is changed, the calculated results of x0, y0, and
z0 are also changed and then the chaotic sequences controlled
by these keys will be different. This means that a changed
input image will lead to a different encrypted result.

2.5. Encryption Scheme. The steps of our encryption scheme
are as follows.

Step 1. The input image I is divided into random overlapping
blocks according to the block size S and the overlapping
sizes t𝑥 and t𝑦. Calculate the total number of the overlapping
blocks 𝑁total and use a pseudo-random generator controlled
by a key k1 to generate 𝑁total random numbers. Sort these
random numbers and record the original positions of the
sorted numbers in an array P[𝑁total], which is used to
determine the order of encrypting image blocks.

Step 2. Use Henon chaotic map to generate two arrays:𝐷[𝑁total] and 𝐹[𝑁total]. Note that D(i) and F(i) are the x-
coordinate and y-coordinate of the start-point of the P[i]-th
block, respectively, where 1 ≤ 𝑖 ≤ 𝑁total. Take (𝐷(𝑖), 𝐹(𝑖)) as
the start-point of the P[i]-th block, encrypt the P[i]-th block
by double spiral scans, and write the encrypted result to the
image. Repeatedly conduct block encryption starting from i
= 1 to i = 𝑁total. After all blocks are processed, a scrambled
image J is available.

Step 3. Calculate content-based keys x0, y0, and z0 from input
image and use them to control the Lü chaotic map to generate
a secret matrix G sized M×N. Then calculate E = J ⊕ G,
where ⊕ represents the XOR operation of the corresponding
elements of the matrices, and the matrix E is the encrypted
image.

2.6. Decryption Scheme. The decryption scheme is a reverse
process of our encryption scheme. Note that the keys of
the Lü system are transmitted to the receiver via secure
channel. Therefore, calculations of initial chaotic parameters
x0, y0, and z0 are not required at the receiver’s side. Detailed
decryption process is as follows.

Step 1. Use x0, y0, and z0 to control the Lü chaotic map to
generate a secret matrix G. Calculate J = E ⊕ G.

Step 2. According to the block size S and the overlapping
sizes t𝑥 and t𝑦, the image matrix J is divided into random
overlapping blocks. Compute the number of the overlapping
blocks 𝑁total and use a pseudo-random generator controlled
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Figure 5: Six original images.

by a key k1 to generate 𝑁total random numbers. Sort these
random numbers and record the original positions of the
sorted numbers in an array 𝑃[𝑁total].
Step 3. Use Henon map to calculate the arrays 𝐷[𝑁total] and𝐹[𝑁total]. Take (𝐷(𝑖), 𝐹(𝑖)) as the start-point of the P[i]-th
block, decrypt the P[i]-th block by double spiral scans, and
write the decrypted result to the image. Repeatedly conduct
block decryption starting from 𝑖 = 𝑁total to 𝑖 = 1. After
all blocks are processed, the decrypted image I is obtained.
Note that this step is similar to the second step of encryption
scheme.Themajor difference is the order of processing image
blocks.

3. Key Space Analysis

Kerckhoffs’s principle is a basic principle of the modern cryp-
tography. It illustrates that “A cryptographic system should
be secure even if everything about the system, except the key,
is public knowledge” [45]. This implies that security of a
cryptographic system is only dependent on secret keys, not
the algorithm itself. In other words, security of an encryption
algorithmmainly depends on the size of key space. In general,
the larger the key space, the more secure the algorithm. The
key space of our algorithm includes three parts. The first
part is the initial values of the Henon chaotic map x(0) and
y(0), and the random block pattern determined by the block
size S and the overlapping sizes t𝑥 and t𝑦. As x(0) and y(0)
are floating numbers and require 64 bits’ storage, their key
space is 264×2 = 2128. The space of random block pattern is(min(𝑀,𝑁) − 31)(𝑆 − 1)2. The second part is the random
key used to control the pseudo-random generator for block
selection. The precision of the key is 64 bits. Since the key is

used to randomly select block and the permutationnumber of
blocks is𝑁total!, the valid key space is min(264,𝑁total!). When
the block number𝑁total ≥ 21, the following expression𝑁total!> 264 holds. In this case, the key space is 264. Otherwise, the
key space is𝑁total!.The third part is the initial values of the Lü
chaotic map.These three parameters are all floating numbers.
Therefore, the key space of this part is 264×3 = 2192.

In summary, the key space of our algorithm is 2128×
(min(M, N) − 31)(S − 1)2×min(264,𝑁total!) × 2192 = (min(M,
N) − 31)(S − 1)2× min(264, 𝑁total!) × 2320. For example, for
a 512 × 512 image, if S = 150, t𝑥 = 70, and t𝑦 = 70, the total
number of image blocks is 36. Consequently, our key space is
481 × 1492× 264× 2320 = 481 × 1492× 2384 ≈ 4.2 × 10122, which
is large enough to resist brute-force attacks [6]. For reference,
the key spaces of the encryption algorithms reported in [6,
18, 19, 31] are 2104, 2265, 10117, and 1059, respectively, which are
much smaller than our key space.

4. Experimental Results

In the experiment, the parameters of our algorithm are set
as follows. The initial values of Henon map are x(0) = 0.1
and y(0) = 0.3. The block size is S = 150 and the overlapping
sizes are t𝑥 = 70 and t𝑦 = 70. The key of the pseudo-random
generator is k1 = 2.

4.1. Encrypted Results. To validate our algorithm, some gray-
scale images and color images are selected as test images.
Figure 5 presents these test images and their detailed infor-
mation is listed in Table 1. We apply our encryption scheme
to these images and find that all encrypted images are chaotic
images. Figures 6(a)–6(f) are the encrypted versions of the
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Table 1: Test images.

Image Lena Fingerprint Woman Lake Goldhill ChestXray
Size 512×512 256×256 256×256 512×512 576×720 418×602
Type Grayscale Grayscale Color Color Grayscale Grayscale

Table 2: Correlation coefficients of the original images and their encrypted images.

Test image Horizontal direction Vertical direction Diagonal direction
Original image Encrypted image Original image Encrypted image Original image Encrypted image

Lena 0.9757 −0.0685 0.9692 0.0857 0.8820 0.0059
Fingerprint 0.9142 0.0933 0.9738 0.0616 0.8050 −0.0101
Woman 0.9655 0.0334 0.9758 0.1030 0.8825 −0.0007
Lake 0.9677 −0.0062 0.9638 −0.0137 0.9144 −0.0214
Goldhill 0.9780 −0.0351 0.9625 0.0556 0.6915 0.0330
ChestXray 0.9974 0.1183 0.9969 −0.0403 0.9364 −0.0059

(a) Encrypted Lena (b) Encrypted Fingerprint (c) Encrypted Woman (d) Encrypted Lake

(e) Encrypted Goldhill (f) Encrypted ChestXray

Figure 6: Encrypted images.

six test images generated by our encryption scheme. From the
encryption results, it is observed that our encryption scheme
can encrypt different size images, and all the encrypted
images are noise-like images and meaningless. This means
that our algorithm can effectively encrypt images.

4.2. Correlation Analysis. The pixel correlation is the degree
of association of the gray values between pixels. Generally,
the smaller the correlation between adjacent pixels of the
encrypted image is, the better the performance of the encryp-
tion algorithm is. When calculating the pixel correlation in a
certain direction (horizontal, vertical, or diagonal direction),
several adjacent pixel pairs are randomly selected, and then
the correlation coefficient is calculated. The formula of
correlation coefficient is defined as follows.

corr (x, y) = 𝐸 [(𝑥 − 𝜇𝑥) (𝑦 − 𝜇𝑦)]𝜎𝑥𝜎𝑦 (8)

where 𝜇𝑥 and 𝜇𝑦 represent mean values of x and y, 𝜎𝑥
and 𝜎𝑦 are the standard deviations of x and y, and 𝐸[⋅]
is the expectation function. The correlation coefficient is
ranging from −1 to 1. The larger the correlation coefficient,
the stronger the correlation between two pixel sequences. For
a plaintext image, any two adjacent pairs of pixels usually
have a strong correlation. A good performance encryption
algorithm should break such correlation.

In the experiments, we randomly select 3000 pairs of
adjacent pixels in horizontal, vertical, and diagonal direc-
tions, respectively, and calculate their correlation coefficients
to verify the performance of our algorithm. Table 2 presents
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Figure 7: Distribution of adjacent pixels in horizontal direction.

(a) Decrypted Woman (b) Decrypted Lake (c) Decrypted Goldhill (d) Decrypted ChestXray

Figure 8: Decrypted images with a wrong key: x(0) = 0.100001.

the correlation coefficients of original images and their
encrypted versions. It can be found that the correlation
coefficients of the original image are close to 1, while the
correlation coefficients of the encrypted image are near 0.
For space limitation, some typical visual results of distri-
bution of adjacent pixels are illustrated in Figure 7. Figures
7(a)–7(d) are the pixel pair distribution of the test images
(i.e., Fingerprint, Woman, Lake, and Goldhill) in horizontal
direction, and Figures 7(e)–7(h) are the pixel pair distribution
of their encrypted versions in the horizontal direction. The
comparison shows that the pixel pairs of original images are
concentrated around the diagonal with 45 degrees, showing
high correlation coefficients, while the pixel pairs of the
encrypted image are uniformly distributed over the entire
value interval. This illustrates that our encryption scheme
can effectively break the correlation between adjacent pix-
els.

4.3. Key Sensitivity Analysis. A good encryption algorithm
should be sensitive to the change of secret keys. This means
that a slight difference of the keys should result in a great
change in the decrypted image. If the difference between
two encrypted images is very large, it is very difficult for
attackers to break the algorithm through differential attacks.
In the experiment, we change the initial values x(0) or y(0) of
the Henon chaos system slightly and keep other decryption
keys unchanged. We use these wrong keys to decrypt Figures
6(c)–6(f) and obtain the decrypted images as shown in
Figure 8 and Figure 9, where Figure 8 uses a wrong key x(0)
= 0.100001 (10−6 added) and Figure 9 uses a wrong key y(0) =
0.300001 (10−6 added). Obviously, the decrypted results with
a wrong key are still noise-like images.This indicates that our
algorithm is key-sensitive.

4.4. Histogram Analysis. Histogram is an important statis-
tical feature used to show distribution of pixel values. It is
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(a) Decrypted Woman (b) Decrypted Lake (c) Decrypted Goldhill (d) Decrypted ChestXray

Figure 9: Decrypted images with a wrong key: y(0) = 0.300001.
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Figure 10: Histograms of original images.
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Figure 11: Histograms of our encrypted images.
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Figure 12: Histograms of the encrypted images generated by [6].

often exploited to measure performance of image encryption
algorithms. In general, an efficient encryption algorithm
is expected to generate encrypted image with uniformly
distributed histogram. Figures 10(a)–10(c) are the histograms
of red, green, and blue components of the color image
Lake (Figure 5(d)), and Figure 10(d) is the histogram of the
grayscale image Goldhill (Figure 5(e)). Figure 11 presents the

histograms of the encrypted images generated by our algo-
rithm, and Figure 12 shows the histograms of the encrypted
results generated by the encryption algorithm [6]. It can
be observed that our histograms are almost uniformly dis-
tributed and those histograms generated by the encryption
algorithm [6] are rugged. Therefore, from the viewpoint of
histogram, our algorithm is also secure.



10 Security and Communication Networks

Table 3: Comparison of the variance of histogram among different algorithms.

Image Original variance
Variance of histogram of
the encrypted result

[6] [25] [31] Our
Lena 0.9725×106 0.1681×106 607.3 1339 1052.4
Fingerprint 1.5573×106 0.6517×106 34.96 277.51 329.11
Woman 0.1696×106 0.0793×106 369.33 260.1 245.37
Lake 0.7899×106 0.1514×106 3515.0 2146.5 1030.3
Goldhill 1.5506×106 0.9906×106 5538.7 2519.7 1737.4
ChestXray 6.1454×106 3.5074×106 1164.6 1164.1 1356.9
Average 1.8643×106 0.9248×106 2421.6 1284.5 958.58

Table 4: Entropy comparisons among different algorithms.

Image Original [6] [25] [31] Our
Lena 7.2185 7.3634 7.9974 7.9991 7.9992
Fingerprint 5.1141 6.9960 7.9963 7.9963 7.9964
Woman 6.8981 7.4099 7.9972 7.9986 7.9991
Lake 7.7610 7.9427 7.9985 7.9993 7.9997
Goldhill 7.5195 7.6788 7.9984 7.9993 7.9995
ChestXray 5.8733 7.3865 7.9991 7.9985 7.9989
Average 6.7308 7.4629 7.9978 7.9985 7.9988

To quantitatively analyze histograms, the variance of
histogram [46] is exploited to analyze performance, which is
defined as follows.

𝑉 (𝑍) = 1𝐿2
𝐿−1∑
𝑖=0

𝐿−1∑
𝑗=0

12 (𝑧𝑖 − 𝑧𝑗)2 (9)

where 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝐿-1}, z𝑖 (0 ≤ i ≤ L − 1), z𝑖 is the total
number of pixels with gray value equal to i, and L = 256 for
the grayscale image. In general, the smaller the histogram
variance, the more secure the encrypted image. Table 3 is
histogram variance comparison between our algorithm and
other algorithms [6, 25, 31]. From the results, it is observed
that our results are all smaller than those of the compared
algorithms, except two cases. Specifically, our results of
Fingerprint and ChestXray are bigger than those of [25, 31].
However, for the average variance of histogram, our result
is much smaller than those of the compared algorithms.
It means that our algorithm has better performance than
the compared algorithms [6, 25, 31] in terms of variance of
histogram.

4.5. Entropy Analysis. Entropy [47] is often used to describe
the uncertainty or randomness of an image. It is a useful
metric for measuring security of image encryption. It is
defined as follows.

𝐻(E) = −𝐿−1∑
𝑖=0

𝑃 (𝑒𝑖) log2𝑃 (𝑒𝑖) (10)

where E = {𝑒0, 𝑒1, . . . , 𝑒L−1} and P(e𝑖) is the possibility of the
occurrence of e𝑖. For an image with 256 gray-level (e.g., L =

256), the theoretical maximum of the entropy is 8. In general,
a bigger entropy means a more secure encryption algorithm.
Table 4 lists entropy comparisons between our algorithm and
the compared encryption algorithms [6, 25, 31]. It can be
seen that the entropies of our algorithm are all close to 8 and
are bigger than those of the compared algorithms [6, 25, 31].
Therefore, our algorithm is more secure than the compared
algorithms [6, 25, 31] from the viewpoint of entropy.

4.6. Differential Attack. Differential attack is an effective
method for analyzing security of cryptographic system.
Generally, attacker slightly changes pixels of a plaintext
image, generates a slightly altered encrypted image, and then
analyzes the relationship between the generated encrypted
image and the normal encrypted image. In practice, NPCR
(Number of Pixels Change Rate) and UACI (Unified Average
Changing Intensity) [48, 49] are often used to evaluate the
capability of resisting differential attack. UACI and NPCR are
defined as follows.

UACIR,G,B

= 1𝑊 ×𝐻 [[
∑
𝑖,𝑗

𝐶R,G,B (𝑖, 𝑗) − 𝐶R,G,B (𝑖, 𝑗)255 ]
]

× 100%
(11)

NPCRR,G,B = ∑𝑖,𝑗𝐷R,G,B (𝑖, 𝑗)𝑊 ×𝐻 × 100% (12)

where W and H are the image width and height and𝐶R,G,B(𝑖, 𝑗) and 𝐶R,G,B(𝑖, 𝑗) are the pixel values in the i-th
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Table 5: Comparison results of NPCR and UACI (unit: %).

Algorithm Image (1, 1) (128, 128) (360, 360) (512, 512)
NPCR/UACI NPCR/UACI NPCR/UACI NPCR/UACI

Our
Lake 99.61/33.42 99.60/33.37 99.61/33.37 99.61/33.37

Goldhill 99.61/33.75 99.61/33.48 99.62/33.75 99.62/33.71
Lena 99.63/33.47 99.60/33.39 99.62/33.39 99.60/33.39

[6]
Lake 99.52/34.40 99.51/34.41 99.51/34.41 99.51/34.41

Goldhill 99.56/34.31 99.59/34.36 99.59/34.36 99.56/34.36
Lena 99.54/34.67 99.55/34.64 99.54/34.68 99.54/34.66

[31]
Lake 99.61/33.48 99.60/33.53 99.59/33.55 99.61/33.48

Goldhill 99.60/33.53 99.58/33.52 99.60/33.55 99.61/33.49
Lena 99.61/33.51 99.60/33.48 99.60/33.61 99.58/33.58

(a) Encryption result of the modified Lena (b) Difference between (a) and the original
encrypted Lena

Figure 13: Visual result of differential attack.

row and j-th column of two encrypted images, respectively.
If 𝐶R,G,B(𝑖, 𝑗) ̸= 𝐶R,G,B(𝑖, 𝑗), then 𝐷R,G,B(𝑖, 𝑗) = 1. Otherwise,𝐷R,G,B(𝑖, 𝑗) = 0. Note that the theoretical values of NPCR
and UACI are 100% and 33.33%, respectively. Generally, the
closer to the theoretical values the calculated results, themore
secure the encryption algorithm.

In the experiments, the standard images Lake, Goldhill,
and Lena are selected as the test images, where their red
components are used. Four locations (i.e., (1, 1), (128, 128),
(360, 360), and (512, 512)) are selected in the test images for
changing pixel values. For each test image, we just alter one
pixel to generate a modified original image and then conduct
encryption. Table 5 presents NPCR and UACI comparison
results among our algorithm and the compared algorithms
[6, 31]. It can be found that all NPCR values of our algorithm
are greater than or equal to 99.60%, which is a little greater
than or equal to those of the compared algorithms [6, 31]. For
UACI, all our values are close to the theoretical value 33.33%,
which is almost equal to the results of [31] but a little better
than those of [6].

For space limitation, we only present a typical visual
result. In the experiment, we change the pixel of Lena in the
coordinate (1, 1) (its value is changed from 169 to 170) to
generate the modified Lena and encrypt it with the same key.

The encryption result is shown in Figure 13(a).The difference
image between Figure 13(a) and the original encrypted result
of the Lena is shown in Figure 13(b). From the result, it is
observed that even if input image is slightly changed, our
encryption result will be greatly changed. This indicates that
our algorithm is highly sensitive to pixel change. Therefore,
our algorithm can resist differential attack.

According to Kerckhoffs’s principle [45], a successful
cryptanalysis should accurately estimate secret keys (equiv-
alent to recovering plaintext). For chosen plaintext attack,
attacker can choose some specific plaintexts to calculate their
corresponding ciphertexts. In practice, differential attack
analysis is the most common way to achieve the chosen
plaintext attack [18]. As well-known, diffusion technique
can ensure security of a cryptographic algorithm against
the chosen-plaintext attack [18]. To resist this attack, in this
paper, we achieve diffusion by using content-based keys
to control the Lü chaotic map for changing pixel values.
In addition, we exploit double spiral scans to randomly
scramble pixel positions. These techniques ensure that it is
difficult to observe useful trace between secret keys and
plaintext/ciphertext.Thismeans that correct key estimation is
almost impossible in practice.Therefore, the chosen-plaintext
attack is impractical for our algorithm.



12 Security and Communication Networks

(a) Density is 0.01 (b) Density is 0.05 (c) Density is 0.10

Figure 14: Decrypted images under the attack of salt and pepper noise with different densities.

(a) 40 × 40 block (b) 100 × 140 block (c) 128 × 512 block

Figure 15: Encrypted images with block missing.

(a) 40 × 40 block missing (b) 100 × 140 block missing (c) 128 × 512 block missing

Figure 16: Decrypted images with block missing.

4.7. Robustness Test. To evaluate robustness performance
of our algorithm, we attack many encrypted images with
operations of salt & pepper noise and block missing, respec-
tively. It is found that our algorithm can efficiently restore
the decrypted images from the attacked encrypted images.
For space limitation, typical examples are presented here.
Firstly, we add salt & pepper noise with different densities
(i.e., 0.01, 0.05, and 0.10) to the encrypted version of Lena
(as shown in Figure 6(a)), decrypt the attacked encrypted
images, and then obtain the decrypted images as shown in

Figure 14. It can be observed that image noises are randomly
distributed in the decrypted images and image qualities of
the decrypted images gradually decrease with the increase
of noise density. Secondly, we remove image blocks with
different sizes from the encrypted version of Lena to generate
the attacked encrypted versions as shown in Figure 15. We
decrypt these attacked encrypted images and obtain the
recovered results as shown in Figure 16. It is found that
when the size of the missing block is small (e.g., 40 ×
40), visual quality of the recovered image is good and the
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Table 6: Computational time comparison among different algorithms (unit: second).

Algorithm Lena Fingerprint Woman Lake Goldhill ChestXray
[6] 4.601 2.350 4.065 4.059 5.747 4.444
[25] 7.788 2.984 5.838 13.098 12.231 7.782
[31] 4.821 2.718 5.774 6.514 4.382 5.219
Our 2.792 1.755 3.264 3.860 3.759 2.100

recovered image is almost the same as its original image. As
the block size becomes large (e.g., 128 × 512), visual quality
of the decrypted image decreases. But the appearance of the
original image can be easily recognized from the decrypted
image. From the above results, it can be concluded that our
algorithm is robust against salt & pepper noise attack and
block missing.

4.8. Computational Time Evaluation. To compare computa-
tional time, we exploit the assessed algorithms to encrypt
the six test images, i.e., Lena, Fingerprint, Woman, Lake,
Goldhill, and ChestXray, and record the running time of each
algorithm. All algorithms are implemented with MATLAB
R2014a and run on a computer with 3.4 GHz Intel Core
i5-3570 CPU and 4.0 GB RAM. Table 6 presents compu-
tational time comparison among different algorithms. It is
observed that our algorithm runs faster than the compared
algorithms [6, 25, 31]. The fast speed of our algorithm is
mainly contributed by the low complexity of double spiral
scans.

5. Conclusions

In this paper, we have proposed an image encryption algo-
rithm based on double spiral scans and chaotic maps. A key
contribution is the double spiral scans, which can efficiently
scramble pixels of image block.Moreover, content-based keys
are generated and used to control the Lü chaotic system, so
as to ensure our sensitivity to the change of input image.
Many experiments have been done and the results have
illustrated that our algorithm has good encryption perfor-
mance and outperforms some popular image encryption
algorithms.
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