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Software-de�ned networking (SDN) is a promising approach to networking that provides an abstraction layer for the physical
network. �is technology has the potential to decrease the networking costs and complexity within huge data centers. Although
SDN o�ers �exibility, it has design �aws with regard to network security. To support the ongoing use of SDN, these �aws must be
�xed using an integrated approach to improve overall network security. �erefore, in this paper, we propose a recurrent neural
network (RNN) model based on a new regularization technique (RNN-SDR). �is technique supports intrusion detection within
SDNs. �e purpose of regularization is to generalize the machine learning model enough for it to be performed optimally.
Experiments on the KDD Cup 1999, NSL-KDD, and UNSW-NB15 datasets achieved accuracies of 99.5%, 97.39%, and 99.9%,
respectively. �e proposed RNN-SDR employs a minimum number of features when compared with other models. In addition,
the experiments also validated that the RNN-SDR model does not signi�cantly a�ect network performance in comparison with
other options. Based on the analysis of the results of our experiments, we conclude that the RNN-SDR model is a promising
approach for intrusion detection in SDN environments.

1. Introduction

�e current Internet architecture has existed for almost three
decades and is now becoming a progressively complicated
system. �e Internet lacks the capacity to accommodate
continually changing requirements and the demanding
nature of present day applications. Software-de�ned net-
working (SDN) [1] was introduced as an architecture per-
mitting unparalleled compliance and scalability in the
implementation and con�guration of network services. �e
segregation of the data and control planes a�ords better
control over tra�c �ow and �exibility. Real-time in-
formation acquisition via the OpenFlow protocol [2] is made
possible due to the �ow-based nature of SDNs. However, the
SDN architecture also contains numerous security chal-
lenges concerned with the control application interface,
control plane, and control data interface [3]. Consequently,

SDN security has become a major issue and has gained
critical signi�cance [4, 5].

A signi�cant network security tool is an intrusion de-
tection system (IDS). An anomaly based IDS attempts to
recognize deviations from a baseline model. Much research
has been performed in the context of detecting anomalies in
an SDN environment. While these researches showed great
results, they are limited in their applicability. Techniques
proposed to detect anomalies have included Bayesian net-
works, support vector machines (SVMs), and arti�cial
neural networks (ANN), but these proposals have su�ered
from excessive computational cost and high false alarm rate
(FAR) [6]. Lately, traditional machine learning methods
have been replaced by a new approach, called deep learning
(DL), that gives better accuracy when compared with tra-
ditional machine learning. DL can extract deep features in
order to obtain high-level features. In SDN environments
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(constrained resource network), DL has potential due to its
adaptability.

Drawing on cutting-edge research in the field of anomaly
detection, the recurrent neural network (RNN) is the most
popular method of performing classification and other
analysis on sequences of data. In addition, it is a powerful
technique that can show remarkable results in sequence
learning and improving the anomaly detection rate in an
SDN environment. In this paper, we propose an RNNmodel
based on a new regularization technique RNN-SDR. RNN-
SDR is tested within an SDN controller against the KDD
Cup 1999, NSL-KDD, and UNSW-NB15 datasets.

)e major contributions of this paper are as follows:

(1) We introduce the design and implementation of an
IDS in an SDN environment using an RNN based on
a new regularizer that decays the weights according
to the standard deviation of the weight matrices and
compares the results against its parents. To the best
of our knowledge, this is the first model that has
achieved a high accuracy for IDS in an SDN envi-
ronment in terms of throughput and latency.
Noteworthy, however, is that it is slightly slower than
the Beacon controller.

(2) )e RNN-SDR model achieves a detection rate of
99.5% using the KDD Cup 1999 dataset, 97.43%
using the NSL-KDD dataset, and 99.9% using the
UNSW-NB15 dataset. )is indicates that the RNN-
SDR model outperforms other state-of-the-art
models.

(3) We also evaluate the RNN-SDR model performance
in the SDN controller. )e test outcomes indicate
that the RNN-SDR model has significant potential
for real-time detection.

)e rest of this paper is organized as follows. First, the
applicability of deep learning in the domain of intrusion
detection is established, followed by a review of related work
in this field. )e system developed in this research is de-
scribed, and the datasets used to evaluate the system are
presented. )e system’s intrusion detection and network
performance is presented, analyzed, and compared with the
state of the art. Finally, the paper is concluded.

2. Deep Learning for Intrusion Detection

Deep learning is an advanced field of machine learning (ML)
that allows the creation of models with discriminative
powers that exceed other statistical ML methods. )e basic
algorithms of deep learning are deep neural networks
(DNNs) that operate across several connected layers. )e
layers are linked in a way that sees each forward layer taking
inputs from the previous layer andmodifying those inputs in
a hidden way. )ese algorithms have the advantage of being
able to extract discriminative features from data in a hier-
archical fashion in a way that best represents the data
without resorting to handcrafting.

For intrusion detection, features such as protocol_type,
duration, service, and flag are fed to the neural network and

pass through several layers. Every layer in the neural net-
work works as a transformation of features. Each feature
becomes more discriminative after passing through a hidden
layer. )e features pass through several hidden layers and, in
the last output layer, the outcome of the neural network is
compared with labels attached to the original data to de-
termine whether the network has detected attack types such
as DoS, Probe, and U2R. Due to its discriminative power,
deep learning approaches have been used by many authors
[7, 8] for network intrusion detection, and still the area is
open for quality research.

3. Related Work

Before the development of DNN variants, classical ML al-
gorithms, such as random forest (RF), SVM, ANN, and
k-nearest neighbors (KNN) were used by various researchers
to develop IDSs [9–12]. However, these methods have in-
herent limitations. In particular, these focus on a large set of
features of traditional networks that cannot be applied to
SDNs.

Work on anomaly detection in SDN using flow-based
IDS was employed in [13, 14]. Self-organizing map (SOM),
used by Braga et al. [13], is considered to be a light weight
approach for detection of distributed denial of service
(DDoS) attacks in SDNs. )e accuracy of this approach was
found to be very high based on six traffic flow features. Four
traffic anomaly detection algorithms NETAD, maximum
entropy, threshold random walk with credit-based (TRW-
CB) rate limiting, and rate limiting were used in [14] in an
SDN environment for anomaly detection. )eir simulations
showed that these algorithms produced promising results
with low overhead in small networks. Other algorithms to
detect DDoS attacks, such as SVM, were used in [15, 16] and
produced better results. An ensemble of graph theory al-
gorithms based on KNN was used by ALEroud and Alsmadi
to detect anomalous flow in SDNs [17]. An algorithm based
on the variation of the entropy of the destination IP ad-
dresses of the flow in an SDNwas proposed byMousavi et al.
[18] to detect early DDoS attacks. )e sensitivity was about
96% for 250 packets at the start. Similarly, in [19], a DL-
based approach using a stacked autoencoder was used. )eir
algorithm performance, evaluated on their own dataset, was
quite satisfactory having high accuracy and low FAR. In
[20, 21], the authors applied DNN and a gated recurrent unit
recurrent neural network (GRU-RNN) in an SDN envi-
ronment. )ey achieved an average accuracy of 75.75% for
DNN and 89% for GRU-RNN using six basic features using
the NSL-KDD dataset.

4. Methodology and System Description

In this section, we review the RNN and the new regularizer.
)en, we describe, in detail, the architecture of the SDN-
based IDS. Finally, we discuss the KDD Cup 1999, NSL-
KDD, and UNSW-NB15 datasets.

4.1. RecurrentNeuralNetworks. )e RNN architecture is the
addition of sequential information to the feedforward neural
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network. )e RNN performs the same task for each part.
)is is why it is called a recurrent network; the output is
dependent upon the previous computation. )e hidden
computation of RNN is computed as given below:

Ht � σ Wxt + VHt− 1 + bH( , t � T, . . . , 1, (1)

where Ht denotes the hidden state vector at time t; σ is the
activation function, also known as the nonlinearity function;
W is the hidden weight matrix; V is the hidden to hidden
weight matrix; xt is the input vector at time t; and bH is the
bias term.

4.2. A New Regularization Technique. )e regularization
technique used in this paper is based on taking the standard
deviation of the weight matrix and multiplying that by λ to
yield the regularization term. )e motivation behind this is
to create an adaptive form of weight decay. )e formal-
ization is given in equations (2) and (3):

λ � 
k

i�1
σ wi( , (2)

where k is the number of rows in the weight matrix, i is the ith

row of the weight matrix, and σ represents the standard
deviation as given below:
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, (3)

where λ is the regularization parameter that acts as a penalty
to prevent weights from reaching high values during the
training process and n is the number of columns in each ith

row of the weight matrix.
Training models were trained using the Nesterov ADAM

optimizer, with tanh activation functions. )e model was
trained over 100 epochs with a batch size of 32. )e labeled
data were classified with a feedforward network.

4.3. System Architecture. )e proposed IDS algorithm is
embedded in the SDN controller as an application since the
SDN controller is not designed to analyze network traffic in
depth like an IDS. )is paper focuses on the use of the SDN
paradigm as a network infrastructure for the IDS. )e ar-
chitecture of SDN is given in Figure 1. )is architecture has
three parts:

(i) Flow Collector. )is module collects the packet from
the flow and extracts all the information required
for the trained IDS algorithm such as the protocol
used, the IP addresses, and the port. All these details
are passed to the controller.

(ii) Anomaly Detector. )is module collects the data
from the flow collector and loads the proposed IDS
algorithm to check the packet for anomalies. )e
proposed IDS based on the new regularizer is the
heart of this module.

(iii) Anomaly Mitigator.)is module is dependent upon
the decision of the anomaly detector. )e anomaly
mitigator will either drop or forward the packet
based on the results conveyed by the detector.

4.4. Datasets. In this paper, we targeted three benchmark
datasets to test the proposed model. A brief description of
these datasets is given below:

(1) KDD Cup 1999 Dataset. )is was the first dataset
used in the third international KDD tools compe-
tition that was held with the collaboration of KDD-
99.)e data consist of “normal” data and anomalous
data broken up into four different classes based on
the attack types given in Table 1.

(2) NSL-KDDDataset.)is dataset is a refined version of
the KDD Cup 1999 dataset and has the following
advantages over the KDD Cup 1999 dataset:

(i) )ere were no redundant data in the training
set, so the classifier does not get biased toward
duplicate records

(ii) )ere were no redundant data in the testing set,
so the trained classifier performance is not
disturbed by the duplicate records

(iii) Records selected from each difficulty level are
inversely proportional to that of the KDD
dataset. )erefore, the performance of different
machine learning methods varies widely making
it a more complex dataset

(3) UNSW-NB15 dataset. )e UNSW-NB15 dataset
includes nine different modern attack types and a
wide variety of normal activities with 49 features,
inclusive of the class label, over more than 2.5 million
records. )ere are six categories of features: flow
features, basic features, content features, time fea-
tures, additional generated features, and labeled
features. )ese features are further divided into
subcategories. For example, additional generated
features have two subgroups called general purpose
features and connection features.

In the dataset, features from the 36th column to the 40th
column represent general purpose features, while the 41st
feature to 47th feature are connection features [22].

)e attacks, which are known by labels, are classified into
the nine types given below:

(i) Reconnaissance
(ii) Shellcode
(iii) Exploit
(iv) Fuzzers
(v) Worm
(vi) DoS
(vii) Backdoor
(viii) Analysis
(ix) Generic
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4.5. Data Preprocessing. )e RNN only takes numerical data
for training and testing. )erefore, the first step is to convert
textual and nominal data into numerical data. For this
purpose, the following steps were performed:

(1) For the NSL-KDD dataset, 38 nonnumerical features
were converted to numerical features. )ree features
(protocol type, service, and flag) were assigned unique
integer values. )e four distinct attack types (R2L,
DoS, U2R, and Probe) were assigned integer values 1,
2, 3, and 4, respectively. )e normal category was
assigned the value 0.

(2) For the UNSW-NB15 dataset, there are already nine
specific categories defined in the dataset as explained
in the previous section. We only performed scaling/
normalizing of the values for this dataset.

4.6.Data Scaling. All the datasets have different attributes of
numerical and nonnumerical types. Attributes are encoded
to numerical values and are scaled according to the following
mathematical equation:

Xi �
Xi − min Xi( 

max Xi(  − min Xi( 
, for i � 1, . . . , n, (4)

where n represents the number of records and X represents a
specific column in the dataset. Duplicate records were re-
moved from the dataset to prevent the classifier from
producing biased results.

5. Intrusion Detection Performance Analysis

5.1. Evaluation Metrics. For all datasets, the AUC-ROC
curve, true positive rate (TPR), true negative rate (TNR),
false positive rate (FPR), and average validation accuracy
were computed. Apart from these measures, the F-Score
values were also calculated. All these measures can easily be
calculated from the confusionmatrix that represents the true
positives (TP), true negatives (TN), false positives (FP), and
false negatives (FN). )e mathematical representation of
each measure is given below:

(i) Accuracy. It is the ratio between true intrusions
detected vs overall detection:

accuracy �
TP + TN

TP + TN + FP + FN
. (5)

(ii) True Positive Rate. It is the percentage of intrusions
that were actually intrusions and correctly
detected:

TPR �
TP

TP + FN
. (6)

(iii) True Negative Rate. It is the percentage of packets
that were nonintrusions and correctly classified as
nonintrusions:

Table 1: Attack classes based on different attack types.

Attack class Attack types
DoS Back, Land, Neptune, Pod, Smurf, Teardrop
Probe Satan, Nmap, IPsweep, Portsweep
U2R Loadmodule, Perl, RootKit, Bufferoverflow

R2L Ftpwrite, GuessPasswd, Imap, Warezclient,
Warezmaster, multihop, Phf, Spy

Internet

Firewall

SDN switch

SDN controller

Flow collector

Anomaly detector

Anomaly mitigator

LAN

Figure 1: A high-level view of the IDS architecture for the SDN environment.
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TNR �
TN

TN + FP
. (7)

(iv) Precision. It is the ratio between the true anomalous
packets vs total packets that were marked as
intrusions:

precision �
TP

TP + FP
. (8)

(v) F-Score. It is the harmonic mean of true positive rate
and precision:

F − Score �
2

(1/precision) +(1/TPR)
. (9)

5.1.1. KDD Cup 1999 Dataset. For the KDD Cup 1999
dataset, the average validation accuracy achieved is 99.52%
with 100% AUC-ROC curve. Our proposed model has
produced 99.5% and 99.4% TPR and TNR, respectively. )e
validation accuracy and AUC-ROC are shown in Figures 2
and 3, respectively.

5.1.2. NSL-KDD Dataset. For the NSL-KDD dataset, the
RNN model embedded with the new regularizer was trained
for 100 epochs. )e TPR and TNR for this dataset were
computed to be 97.43% and 97.35%, respectively. )e av-
erage validation accuracy achieved was 97.39%, and the
AUC-ROC curve had the value 99.7%, as shown in Figures 4
and 5, respectively.

5.1.3. UNSW-NB15 Dataset. For the UNSW-NB15 dataset,
the RNN model with the novel regularizer was trained for
100 epochs. )e TPR and TNR for this dataset were
computed as 98.4% and 98.13%, respectively. )e average
validation accuracy achieved was 99.9%. )e AUC-ROC
curve had a value of 1.0, as shown in Figures 6 and 7,
respectively.

5.2.Detection PerformanceMeasurement. We compared the
performance results of our proposed model with results
from the literature. From Table 2, we can clearly see that
our proposed method outperforms other models in all the
evaluation metrics for all classes and has the potential to be
used for anomaly detection in an SDN environment. In
Table 2, we compare precision (Pr), true positive rate
(TPR), and F-Score for legitimate and anomaly classes. We
computed all these measures for the three datasets we used.
For legitimate classes, precision was 94.3%, 92.2%, and
93.5% for the KDD Cup 1999, NSL-KDD, and UNSW-
NB15 datasets, respectively. Precision tells us the positive
predictive values. In other words, it shows the ratio of the
total positive values in the dataset, and the positive in-
stances predicted by the classifier. )erefore, we can say
that our classifier is good enough to detect nonanomalous

classes. Similar results were achieved for anomalous classes.
)e TPR measure represents the sensitivity of the classifier.
)e values indicate that the model is very accurate.
Sometimes, TPR and precision are not considered good
measures. F-Score provides an alternate view representing
the harmonic mean of precision and sensitivity. )e data in
Table 2 indicate that our model achieved higher values for
F-Score and, therefore, can be considered efficient. Hence,
our model is more accurate and precise than other
methods.

In addition, we compared our results with classical and
neural network based methods used by different researchers.
In terms of accuracy, our model outperforms all listed
methods used for anomaly detection in an SDN environ-
ment (Table 3). For the three datasets, we achieved satis-
factory accuracy. )is accuracy is high for the cost of
overhead and latency as can be seen from Figures 8 and 9.
)e throughput is low and latency is high, but the intrusion
detection accuracy is also high.
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Figure 2: Train and test accuracy for the KDD Cup 1999 dataset
while training the RNN embedded with the proposed regularizer.
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Figure 3: AUC-ROC curve for the KDD Cup 1999 dataset after
training the RNN with the proposed regularizer.
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6. Network Performance Analysis

In this section, we evaluate the effect of our RNN on network
performance. )e evaluation testbed is described in the first
part, and then the network performance evaluation is
presented.

6.1. Experimental Setup. )e mininet emulator was used to
test the learning model in the network as an intrusion de-
tection system based on the new regularization technique.
Mininet is an open source Python-based network emulator
that is used to create a virtual networking topology con-
necting virtual hosts via various devices such as switches,
links, and controllers. It runs Linux network software and
can support OpenFlow for custom routing and SDN.

As mininet needs to be installed on a Linux server, we
chose Oracle VM VirtualBox to carry out our simulations.
)e simulation was conducted on a system with 64-bit
Ubuntu 18.04 LTS on a Core-i7 with 16GB of RAM. )e

performance of the controller embedded with the proposed
model was tested on various numbers of OpenFlow switches
emulated by Cbench in mininet. )e performance of the
proposed model was compared with the POX and Beacon
OpenFlow controllers after training on the NSL-KDD and
UNSW-NB15 datasets with the throughput and latency
running modes.

6.2. Analysis of Results. We conducted an analysis of our
results in terms of throughput and latency and then com-
pared it with existing POX and Beacon controllers. Figure 8
shows the throughput for POX, Beacon, and our proposed
work. Based on our analysis, there is a slight difference in
throughput between Beacon and the proposed work when
the number of switches is 8, 128, or 256. When compared
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Figure 4: Train and test accuracy for the NSL-KDD dataset while
training the RNN embedded with the proposed regularizer.
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Figure 5: AUC-ROC curve for the NSL-KDD dataset after training
the RNN with the proposed regularizer.
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Figure 6: AUC-ROC curve for the UNSW-NB15 dataset after
training the RNN embedded with the proposed regularizer.
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with the POX controller, the performance decreased by
2.702% for 8 switches. For 128 and 256 switches, the per-
formance dropped 3.32% and 3.51%, respectively, when
compared with the POX controller.

We observed minimal difference in the performance of
our proposed algorithm when compared with the Beacon
controller. )e average decreases in throughput of 0.63%,
1.22%, and 2.33% are seen, respectively, for 8, 128, and 256
switches. Hence, our proposed model gave satisfactory re-
sults in terms of throughput.

Figure 9 illustrates latency on the NSL-KDD dataset. In
this figure, it can be seen that performance decreases reg-
ularly as the number of switches increases. )is decrease can
be ascribed to the extra responsibility of analyzing and
checking packets.

Similarly, the simulations were carried out for the model
trained on the UNSW-NB15 dataset, and the results were
analyzed in terms of throughput and latency. )e results
were compared with existing POX and Beacon controllers.
Figure 10 shows the throughput for POX, Beacon, and our
proposed work.

As can be seen, there is a significant difference in
throughput of the Beacon controller and the proposed work
when the number of switches is 32, 64, or 256. When
compared with the POX controller, the performance de-
creased by 1.4% for 32 switches. As for 128 and 256 switches,
the performance dropped 3.4% and 3.6%, respectively, when
compared with the POX controller. When compared with
the Beacon controller, there is minimal difference in the
performance of our proposed algorithm. Average decreases
in throughput of 1.6%, 1.3%, and 2.4% are seen, respectively,
for 32, 128, and 256 switches. Hence, from these results, it is
seen that our proposed model, trained on the UNSW-NB15
dataset, slightly lags in throughput but with a higher ac-
curacy than the other models (Table 3).

For the latency presented in Figure 11, we observed the
same findings as above. )e performance decreases as the
number of switches increases, just like for the other models.
)is decrease is due to the extra responsibility for checking and
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Figure 9: Latency of existing controllers vs our proposed model on
the NSL-KDD dataset.

Table 2: Comparison of detection performance.

Algorithms
Legitimate class Anomaly class

Pr (%) TPR (%) F-Score (%) Pr (%) TPR (%) F-Score (%)
Our work (KDD Cup 1999) 94.3 99.5 93.01 95 96 92.21
Our work (NSL-KDD) 92.2 97.43 91 94.57 93.5 91.13
Our work (UNSW-NB15) 93.5 98.4 94.03 95.2 97.01 92.3
VanilaRNN 43 90 58 57 10 17
SVM 71 32 44 64 90 75
DNN 67 89 76 88 66 76
GRU-DNN 87 89 88 91 90 90

Table 3: Comparison to other methods.

Method Accuracy (%)
DNN [20] 75.75
SVM [23] 69.53
NB trees [23] 82.02
GRU-RNN [21] 89
Our work (KDD Cup 1999) 99.5
Our work (NSL-KDD) 97.39
Our work (UNSW) 99.9
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Figure 8: )roughput of existing controllers vs our proposed
model on the NSL-KDD dataset.

Security and Communication Networks 7



analyzing packets for intrusions. After analyzing the results, we
can say positively that the proposedmodel has the potential for
real-time anomaly detection in an SDN environment.

Based on the analysis of the results above, we can see that
there is a trade-off between the throughput or latency and
security. When one of them increases, the other will de-
crease. Hence, it is the responsibility of the network ad-
ministrators to tune the network according to its
requirements, either to make it more secure by adding the
algorithm for analyzing the packet or make it fast.

7. Conclusion

In this paper, we present an anomaly based IDS in an SDN
environment using an RNN with a new regularization al-
gorithm. We train the RNN-SDR on the KDD Cup 1999,

NSL-KDD, and UNSW-NB15 datasets and show that our
model outperforms other state-of-the-art algorithms with an
accuracy of 99.5%, 97.39%, and 99.9% for the KDD Cup
1999, NSL-KDD, and UNSW-NB15 datasets, respectively.
Our scheme uses a minimum number of features compared
with other state-of-the-art approaches. )is makes the
model more computationally efficient for real-time de-
tection. In addition, the network performance evaluation
shows that our proposed approach slightly affects the
controller performance. )is implies a trade-off in either
selecting security or speed. Nevertheless, our model is
practical for implementation in the context of an SDN.
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