
Research Article
Efficient Extraction of Network Event Types from NetFlows

Gustav Sourek and Filip Zelezny

Department of Computer Science, Czech Technical University, Czech Republic

Correspondence should be addressed to Gustav Sourek; souregus@fel.cvut.cz

Received 25 September 2018; Accepted 31 December 2018; Published 6 February 2019

Guest Editor: Jörg Keller

Copyright © 2019 Gustav Sourek and Filip Zelezny. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

To perform sophisticated traffic analysis, such as intrusion detection, network monitoring tools firstly need to extract higher-level
information from lower-level data by reconstructing events and activities from as primitive information as individual network
packets or traffic flows. Aggregating communication data into meaningful entities is an open problem and existing, typically
clustering-based, solutions are often highly suboptimal, producing results that may misinterpret the extracted information and
consequently miss many network events. We propose a novel method for the extraction of various predefined types of network
events from rawnetwork flowdata.Thenewmethod is based on analysis of computational properties of the event types as prescribed
by their attributes in a given descriptive language. The corresponding events are then extracted with a supreme recall as compared
to a respective event extraction part of an in-production intrusion detection system Camnep.

1. Introduction

Network traffic management analytics tools strive to provide
users with high level abstracted view of network communi-
cation data. Apart from simple monitoring services, deeper
analysis is often required to provide necessary insight into
complex network behavior. A prominent example of a tool
relying on deep traffic analysis is intrusion detection systems
(IDS), monitoring network traffic data with the goal of
revealing malicious activities and incidents. In this paper
we refer to an existing solution for intrusion detection, a
multistage collective network behavior analysis system called
Camnep [1]. The purpose of Camnep is to monitor high
volume traffic networks for incidents, based on statistical
information collected from publicly accessible parts of lower
layer packets, i.e., IP and data link layer with no deep packet
inspection, aggregated into connections, also called network
flows or NetFlows (IPFIX) (Section 5.1). In the lower stages
of processing the network traffic, before assessing malicious-
ness to incidents, the system needs to extract higher-level
information from lower-level data, mainly by constructing
events and activities from individual connections. The reason
behind extracting events is that classification of individual
flows is not sufficient as we often need context of other flows
involved to decide on their maliciousness [2]. At the same

time, creating events also reduces the information payload
for prospective analysis and detection layers. Clustering
connections to meaningful entities is an open problem and
existing solutions rely mostly on simple clustering techniques
[3] or are driven by handmade rules designed by domain
experts [1, 4].
In the task of incident extraction, assuming the view of

network traffic as a sequence of NetFlows, we intent to group
thoseNetFlows that logically belong together, forming the so-
called events. An example of an event type might be a regular
data transfer between two hosts, ssh traffic, or malicious
port scan, ssh cracking, distributed denial of service attack,
etc. Intuitively, it should be possible to cluster NetFlows
according to their source or destination IPs, or according to
other information present in the NetFlow record with respect
to the observed NetFlow ordering. Although it is a step
forward from the individual flow-level analysis, in practice
this kind of straightforward clustering, e.g., k-means based
on numeric vector NetFlow representation, leads to limited
correspondence to known event types occurring in the
network and suboptimal results in the final reconstruction of
events.
We propose an automated method for event extraction,

assembling various known types of network events from
raw NetFlow data with a guidance of existing event-type

Hindawi
Security and Communication Networks
Volume 2019, Article ID 8954914, 18 pages
https://doi.org/10.1155/2019/8954914

http://orcid.org/0000-0001-6964-4232
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8954914

2 Security and Communication Networks

descriptions for known classes of events1. To evaluate the
method, we focus on the use case of event extraction for
intrusion detection and compare the detection performance
over predefined types of events against the respective part
of an existing IDS Camnep. The new method is based on
computational analysis of the existing event-type definitions
as described by formulae in a simple descriptive language.
We first show theoretically how the new approach leads
to maximization of recall of these event types and further
analyze the complexity and advantages of themethod. Finally,
we report experiments proving superior recall as compared to
Camnep.

2. Related Work

The scope of this work lies on a border of general network
traffic analysis and intrusion detection, while a special respect
in processing the traffic is taken to allow for extraction of
known types of events representing malicious behavior.
The related problem of identifying traffic events, i.e.,

mapping flows to known application classes, has attracted
attention in the network management and security research
community, since simple methods relying mostly on pure
port number dictionaries were proved insufficient and mis-
leading [5], due to the increasing volumes of HTTP tun-
neling, customized protocols, encryption, and applications
camouflage, which makes the problem much more challeng-
ing. For that reason, more sophisticated statistical techniques
began to emerge, utilizing machine learning for Internet
traffic identification [6]. Most of these works considered the
traffic on individual flow level [7]; others clustered flows
based on their characteristics, utilizing statistical clustering
[8] or machine learning techniques [9]. These clustering
approacheswere based onbasic flow attributes, usually packet
sizes and duration, typically grouping flows into a predeter-
mined number of clusters [10] using generic techniques such
as k-means [3]. A more related clustering approach utilizing
structural properties of flow clusters with the concept of
graphlets is presented in Blinc [2].
Considering the particular problem of aggregating Net-

Flows into malicious events as a part of intrusion detection,
the literature is quite scarce. Although most of the existing
IDS probably deal with the problem of higher level informa-
tion extraction from individual traffic flows in some form,
the authors are unaware of more publicly available works
addressing generally the NetFlow aggregation part of the
intrusion detection problem, with the event layer (Section 3)
in Camnep [1] being the only exception.
Network security and management tools depend heavily

on automated IDS to extract sensible information out ofmali-
cious activity to be presented to the user [11]. The amount of
network generated data suggests employingmachine learning
tools to analyze the traffic data and the respective community
of research has been very active in proposing various forms of
models for the incident identification tasks. The approaches
vary from the very early attempts using association rules [12],
to learning neural networks for incident labeling [13]. Other
approaches utilize decision trees to learn explicit knowledge

[14] and unsupervised methods using clustering as an inher-
ent part of network traffic analysis [15]. Inmore recent works,
distributed, robust approaches utilizing strategies from trust
modeling and game theory were introduced [16].
However, in real world practice, there are numerous

issues affiliated with an online use of sophisticated machine
learningmethods on actual networks, andmajority of the IDS
currently in use are still either rule or expert system based
[4]. The main advantage of these approaches is the human-
readable form of the knowledge included in the system, and
by those means the overall traceability and decomposability
of the system behavior for given incident types. Moreover, the
rule based models are not limited to design by hand as they
can also be extracted by the means of machine learning.
While the need for interpretability of the rules can often

form a limitation on the detection performance, they can be
further combined with other machine learning-based detec-
tion techniques. An example of such a hybrid approach is
presented in Camnep [1], an agent based intrusion detection
system designed for deployment on high speed back-bone
networks. Camnep combines expert rules forming explicit
models of incidents for feature description and extraction in
the lower stages, with classification, agent techniques, and
trust modeling in the final stages [17].
A significant portion of the IDS works mentioned refer

to a popular dataset created in 1999 named KDD’99 [18],
published by Defense Advanced Research Projects Agency
(DARPA). Although it was a step forward in comparing
and evaluating IDS approaches, this work has received a lot
of critique for including flaws in many statistical respects
[19] and limitations that are inherited from the DARPA
datasets [20]. This dataset is now almost 20 years old, which
is a considerable time span in the network domain and
makes such an evaluation not truly informative. The traffic
has changed rapidly since then, causing the signatures and
behavior of attacks in the dataset problematic for comparison
with a real traffic today.
For the reasons mentioned, in this paper we refer to a

real-use IDS Camnep [21], processing recent university traffic
(rather than KDD’99) in a widely used CiscoNetFlow format.
We take the respective part of event extraction in Camnep
system as a baseline for the new approach, so that we can
evaluate the method in real context of actual incidents and
work with relevant feedback of a current system.

3. Camnep Event Layer

The respective part of Camnep responsible for event extrac-
tion consists of a multistage process based on a clustering
strategy utilizing expert designed similarity metric. Since we
propose a method for event extraction that can be seen as an
improvement to the clustering-based approaches, we firstly
describe the Camnep event extraction process (as detailed in
a technical report on Camnep [22]) in this chapter.
The elementary communication data unit for Camnep is

a network flow or NetFlow, which was introduced on Cisco
routers to give the ability to collect IP network traffic as it
enters or exits an interface. NetFlows are captured within a

Security and Communication Networks 3

restricted time-frame used for data acquisition from a local
network and stored in the observed order as captured by
the network probes, from which they are further merged
into a single data source. At first the flows are filtered to
reduce their overall number, which decreases computational
requirements of the event creation process in high through-
put networks. Because of the fact that the system concentrates
on themalicious behaviors in the network, this input filtering
skips certain trustworthy (measured on individual flow-level)
connections or connections with no chance of being a part of
an event, yet such a functionality can be omitted for general
analysis purposes in this paper.
The purpose of the respective event extraction process

is to group all individual flows from the incoming network
traffic into sets of flows (events) with respect to to their
features. An event in Camnep then corresponds to some
bounded, interpretable, specific network behavior, where the
specification is based on features of the sources, destinations,
and size characteristics of the transferred traffic.
To create an event, Camnep treats individual flows as

feature-vectors in a predefined multidimensional space in
which it considers the events as clusters, subject to a given
similarity metric. At minimum, the feature vectors contain
information on source and destination IP addresses, ports,
and the used protocol. Additionally, they may also contain
information from the transfer itself, such as the number of
packets and bytes. The sequential clustering process then
takes place in the corresponding feature space endowing the
flows.
The clustering processworks in two stages. Firstly, smaller

elementary clusters are formed to represent partial network
behaviors, and these elementary clusters are then further
aggregated to create the actual events.
Each preprocessed flow is transformed into the feature

vector which directly represents a so-called flow-cluster (𝜙𝑓𝑖),
residing in the same feature space for clustering. These are to
be further aggregated into so-called elementary clusters (𝜙𝑒𝑗)
through the first stage of the clustering process.
The logic of the similarity metric is also divided into two

subparts. In the first, structural properties of the flows in the
clusters are checked against each other. In the second, simi-
larity in the number of transferred bytes is being measured.
Both parts have to be satisfied for the similarity condition to
hold.
A flow-cluster 𝜙𝑓𝑖 can only be considered structurally

similar to an elementary-cluster 𝜙𝑒𝑗 if both clusters share the
same protocol and also one of the following combinations of
IP addresses and ports.

(1) source IP address and source port (∼response)
(2) source IP address and destination port

(3) destination IP address and source port

(4) destination IP address and destination port (∼
request)

Further, 𝜙𝑓𝑖 and 𝜙𝑒𝑗 can only be considered similar in the
size of the bytes being transferred if the following condition
holds:

󵄨󵄨󵄨󵄨󵄨󵄨𝑏𝑦𝑡𝑒𝑠 (𝜙
𝑓
𝑖) − 𝑎V𝑔𝐵𝑦𝑡𝑒𝑠 (𝜙𝑒𝑗)󵄨󵄨󵄨󵄨󵄨󵄨

≤ min {𝑏𝑦𝑡𝑒𝑠 (𝜙𝑓𝑖) , 𝑎V𝑔𝐵𝑦𝑡𝑒𝑠 (𝜙𝑒𝑗)}
(1)

where 𝑏𝑦𝑡𝑒𝑠(𝜙𝑓𝑖) denotes effectively the number of bytes in
the single flow 𝑖 and 𝑎V𝑔𝐵𝑦𝑡𝑒𝑠(𝜙𝑒𝑗) stands for the average
number of bytes across all the flows in 𝜙𝑒𝑗. The rationale
behind this formula is to allow for relatively greater discrep-
ancies in size within greater clusters.
Finally, if the similarity does not hold for any elementary-

cluster, the flow-cluster 𝜙𝑓𝑖 transforms into a new 𝜙𝑒𝑗 on its
own.
The point of the second stage of the clustering process is

to reveal more compound network behavior. The rationale
behind this stems from the observation that the elementary
clusters often form only a part of some larger services. An
example of such network behavior can be generic data trans-
fers fromweb services, where one can expect high variance in
the number of bytes transferred across individual events, yet
all such events generally represent the same network behavior
from an IDS point of view. Another example could be peer-
to-peer traffic.
For this second stage of clustering, the similarity metric

is slightly updated. Now the clusters need to share the same
protocol and also either of (i) average value of number of bytes
or (ii) the same source or destination port. Further, they need
to be similar in the size of the bytes transferred as measured
by the following condition parameterized by a given number
𝑘 > 1.

󵄨󵄨󵄨󵄨󵄨󵄨𝑎V𝑔𝐵𝑦𝑡𝑒𝑠 (𝜙
𝑓
𝑖) − 𝑎V𝑔𝐵𝑦𝑡𝑒𝑠 (𝜙𝑒𝑗)󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑘 ∗min {𝑏𝑦𝑡𝑒𝑠 (𝜙𝑓𝑖) , 𝑎V𝑔𝐵𝑦𝑡𝑒𝑠 (𝜙𝑒𝑗)}
(2)

The incoming sequence of flows is thus iteratively pro-
cessed in the two sequential steps, so that each new coming
flow or elementary cluster is checked against the existing
clusters, one by one, to be merged with on a first match or
create a standalone cluster otherwise. The final event clus-
ters, representing second-stage clustering output, are then
classified by matching against existing rule-based models of
incident types described in Section 3.1. The output validated
clusters can then be seen as individual network events.
We can see that the similarity metric is designed to

capture common structural [2] and statistical [8] properties
of events based on shared endpoint and flow size similarity,
in a similar fashion to previous works [6]. Consequently, the
clustering process in Camnep is very generic and should be
thus generally robust and unbiased to various event types.

3.1. Incident Types. The incident types are classes of events,
defined on the domain of flow clusters (sets), that can be
observed within a network and are in the current scope
of IDS. Although the events can generally represent any

4 Security and Communication Networks

Figure 1: A snapshot of a 5-minute window of traffic within the university network. Flows are displayed as directed arrows between two
endpoints displayed as dots. Individual flows are grouped into events of particular types as distinguished by colors.

form of network behavior, the overall focus of Camnep is
on intrusion detection, and so the scope of incident types
in Camnep includes mainly forms of network attack and
malicious behavior. An example of event-types in use is
various classes of vertical and horizontal port scanning, ssh
cracking, syn-flood and distributed denial of service attacks,
etc. The important aspect of these events is that they are
typically formed by plurality of network flows, whereas each
of these network flows does not necessarily present any sort
of malicious behavior when considered on its own, and
thus the maliciousness of an event cannot be assumed on
the individual NetFlow level. The complexity arising from
the aggregation of flow traffic forms the interesting and
intriguing part of this problem (Figure 1).

Example 1. As a simple example [23], consider a sequence
of flows aiming at a particular endpoint port 22. If each
of the flows is to be analyzed separately, it can easily be
considered as a regular ssh communication request. Yet when
we group those flows, according to their properties such as the
same endpoint and size, we can explore potential exploit or
malicious ssh-cracking behavior from the plurality of small
flows checking the same ssh endpoint during a very short
time-scope, possibly transferring a considerable amount of
data back afterwards.

For the definition of these event-types a unified descrip-
tion language (Section 3.2) is being used within the frame-
work of the system, capturing various forms of restrictions on
how a cluster of flows, forming an event of a particular type,
should look like. The complexity of event types, as captured

by the description framework, varies from simple, clearly
defined classes used more for administration purposes, such
as icmp traffic or udp data-transfer, to types of events
exhibiting more complex network behavior such as p2p event
indicators, and malicious events, e.g., port scanning or ssh
cracking attacks.

Example 2. For example, an event definition for TCP port
scan behavior posed as a flow cluster description in the
descriptive and natural language looks as follows:

packets = 100..∞ (more than 100 packets trans-
ferred)
protocol = TCP (the 4th layer protocol of flows is
TCP)
uniqSrcIPs = 1 (there is only one (common) source
IP adress)
uniqDstPrt = 2..∞ (there are at least two destina-
tion ports)
uniqDstIPs = 2..∞ (there are at least two destina-
tion IPs)
bytesPerPacket = 40..60 (flows carry between
40..60 bytes/packet)
fuzzyBytesPerPacket = 40,48,50,60 (actual
bytes/packet ∈ {40, 48, 50, 60})
bytesPerFlowFuzzyDivision = 4 (the ratio is app.
divisible by 4)
flows = 5..∞ (total number of flows is greater than
5)

Security and Communication Networks 5

maxPacketsPerDstIP = 0..100 (less than 100 packets
per destination IP)
maxFlowsPerDstIP = 0..11 (less than 11 flows per
each destination IP)
bytesSimilarity = 0..2 (coefficient of variance of
flow sizes less than 2)

The more complex the network incident is, the more
difficult it is to define a clear description of the exhibited
behavior. Namely, defining complex network events with rich
underlying graph structure, such as the p2p and distributed
attack behavior, and revealing corresponding cooperating or
infected hosts is rather too difficult problem to be captured
by a single description, and higher layer modules utilizing
more sophisticated methods are being used for the task
[24]. The purpose of the description language used for the
event extraction is thus not to clearly identify any malicious
behavior, but to set sort of necessary (must) bounds on the
event types, with which all relevant information from flows
can be extracted into events for the prospective analysis. By
those means the main goal of the event extraction process
is to maximize recall of incidents. The possible false alarms
caused by the overgenerality of the descriptions of event types
are thus further handled by subsequent dedicated detectors,
where the information is iteratively refined and fused to
decrease the false positive rate, before the final assessment of
maliciousness is performed by the system.

3.2. Description Language. Analysis of the actual description
language for event types is the core of the current process
improvement and main contribution of this work. The lan-
guage is used to indicate that a set of NetFlows can be seen
as a potential manifestation of an event of a particular type
(the actual event might be detected in the set in subsequent
stages). The definition of an event type is a conjunction of
formulae putting restrictions on the descriptives of the set of
flows. These formulae can be either designed by an expert
or learned by the means of machine learning, where the
important aspect is interpretability of the learned formulae
so that they are intelligible enough to be understood by
an expert. These formulae apply sort of value and range
restrictions to flow-set properties, such as flow addresses,
sizes, protocols, etc. The formulae used may be existentially
but are usually generally quantified.
Analyzing the features of the set of flows that these

formulae put the restrictions on, we can notice they might
be categorized into flow-specific, relational, and aggregative
formulae, depending on what sort of information from the
flow-set they evaluate. A deeper computational rationale
behind these categories is explained later in Section 4.2.

Example 3. To introduce the categorization idea, what fol-
lows are examples of the formulae categories posed in natural
language.

(1) flow-specific formulae

(i) protocol of all flows must be TCP
(ii) all flows must be smaller than 20 bytes

(iii) number of bytes per packet of each flowmust be
divisible by 4

(iv) all flows must lead to destination port 80

(2) relational formulae

(i) for each flow to IP1 there must be subsequent
flow from IP1

(ii) flows to port 22 must come from 3 or more
predefined addresses

(3) aggregative formulae

(i) number of unique destination IPs must be less
than 3

(ii) average number of bytes should be between 20
and 60

(iii) percentage of unique ports should be higher
than 50

(iv) entropy of destination ports and IPs should be
closer than 3

The flow-specific formulae express constraints on various
properties of a flow, such as defining the protocol, flags, or
limiting the number of bytes and packets. The flow-specific
formulae represent majority of all event-type definition for-
mulae designed by the experts. The main common attribute
of formulae in this category is that they can be evaluated for
each flow separately and (as generally quantified) hold true
for all the flows in a particular event instantiation. They refer
to flow attributes of Protocol, Start, Duration, Flags, Packets,
Bytes, Addresses, Ports, and derived features, such as Bytes
per Packet. The restrictions used here are formed by putting
upper and lower bounds, or enumeration of plausible values
of the attributes mentioned.
The category of relational features is experimental and it

is not used in the actual system. The features in the relational
category had reflected various structural and sequential
properties of flows. As such they referred to time and
address/port attributes and the formulae using them were
checking existence of a given relational pattern in the whole
set of flows or separately for each flow.Wedonot refer to them
in the later sections as most of these features were simplified
and passed into the aggregative category.

Aggregative category of formulae puts restrictions on
features expressing attributes of the whole sets of flows.
For that they utilize aggregation functions such as count,
maximum, average, entropy, etc. The restrictions used are
again intervals or enumerations of admissible values. Part of
aggregation features may also be seen in an intersection with
the relational category, for instance, restricting the timespan
between the first and last flow. The aggregative formulae
always hold true for the whole set of flows and cannot be
evaluated separately which makes them more complex.
A depiction of how these formulae are generally assem-

bled in the system can be seen in Figure 2.We can see that the
descriptive language, utilizing conjunctions of various types
of formulae mentioned, provides rich capabilities for creating
complex definitions of various event types, such as the one

6 Security and Communication Networks

Flow attributes Aggregation Function Transformation Membership

SrcIP Group by Count Logarithmic Value

DstIP Unique Gaussian Interval

SrcPort Combination Max/Min Set of values

DstPort Percentage Set of intervals

Packets Entropy

Duration Selection of Similarity

Bytes Condition

Flags Average

Protocol

Hierarchical compounding

Figure 2: Language of formulae checking values of features assembled from sets of flows. The individual flows can be grouped by some of
their attributes while their other attributes are further aggregated using some of the listed aggregation functions. This aggregation process
might be repeated in a recursive manner. A final derived feature is subsequently checked against a membership function of the enumeration
of values or intervals to find whether the respective formula holds true. Arrows represent aggregated combinations in use by formulae of
actual event types in use.

from Example 2, and that by the means of the introduced
language structure we can capture multitude of common
malicious behaviors.

4. New Event Extraction

In Camnep, the incoming flows are continuously grouped,
following the order inwhich they are collected by the network
probes, with accordance to the flow similarity metric in the
two stage clustering process, to be finally matched against
existing event-type classification models.
The subject of this paper is a novel method of event

construction from NetFlow traffic data that merges together
the stage of flow aggregation and event description matching
to globally optimize the set of identified events in order to
maximize their recall. The primary objective of the method is
to secure that no potential event (attack) comes through the
process of event extraction unnoticed. At the same time the
method should be able to input the flows sequentially, as they
come, andmust be fast enough to be applied onhuge amounts
of traffic data in real IDS.

4.1. Motivation. The existing solution described in Section 3
is better than naive clustering as it pays respect to the
general nature of network events, but it is still suboptimal
and produces often misleading results. One of the reasons
is that defining an optimal clustering metric, forming a
perfect similarity measure of flows (clusters) across various
event types, is just not possible. Also the greedy nature of
the clustering algorithm may lead to reconstruction errors

in more complex types of events. Another reason is the
unpredictability of NetFlow ordering, as generally NetFlows
that logically belong together (i.e., are a manifestation of
well recognizable and well defined cause, such as certain
user or software action) may not necessarily be observed
in a continuous sequence. The sequential greedy clustering
algorithm may thus miss many real events once the clusters
are matched against the event-type descriptions in scope.

Example 4. Let us consider a trivial incoming sequence of flows
(𝑓1,𝑓2,𝑓3) with the endpoints 𝑓1(𝑠𝑜𝑢𝑟𝑐𝑒𝐴, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐵, . . . ,),𝑓2(𝑠𝑜𝑢𝑟𝑐𝑒𝐶, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐵, . . . ,), and 𝑓3(𝑠𝑜𝑢𝑟𝑐𝑒𝐶, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐷,. . . ,). Following a greedy clustering process utilizing end-
point similarity (e.g. the one in Camnep from Section 3),
such an observed sequence of flows would result into cluster
𝑐1(𝑠𝑜𝑢𝑟𝑐𝑒𝑋, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐵, . . . ,). Yet changing the processing
order of the incoming flows to (𝑓2 , 𝑓3, 𝑓1)would create cluster𝑐2(𝑠𝑜𝑢𝑟𝑐𝑒𝐶, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑋, . . . ,), as depicted in Figure 3.
Even if we choose more robust clustering strategies such

as spectral clustering [25], instead of the greedy one presented
in Section 3, the algorithm will by definition always have
to choose one resulting cluster over another for every set
of flows. For event types 𝑡𝑦𝑝𝑒1 and 𝑡𝑦𝑝𝑒2 with “competing”
descriptions 𝑑𝑒𝑠𝑐1 and 𝑑𝑒𝑠𝑐2 (e.g., request and response event
types), i.e., where one form of clustering the same set of flows
into {𝑓1, 𝑓2}, {𝑓3} in 𝑑𝑒𝑠𝑐1 might be preferred over another
form {𝑓1}, {𝑓2, 𝑓3} in 𝑑𝑒𝑠𝑐2, will lead the clustering process to
miss some of the potential events, analogously to the situation
from Figure 3, and introduce false negatives into the output
of IDS.

Security and Communication Networks 7

D

Flow3

→ Clustering→
process

A

B

C

Flow1

Flow2

Time of incoming flows →

A

B

C

Flow1 Flow2

D

Flow3

B

C

Flow2

Figure 3: Using the greedy endpoint-based clustering process on the incoming sequence of flows (𝑓1, 𝑓2, 𝑓3) ordered by the time of collection
(left) will result (right) into specific clustering (green) while missing another possible valid cluster (red).

A more profound reason why clustering possibly leads to
suboptimal event reconstruction results lies deep in using a
similarity metric function in the form of 𝜆(𝑜𝑏𝑗𝑒𝑐𝑡𝑖, 𝑜𝑏𝑗𝑒𝑐𝑡𝑗)
to determine whether two NetFlows 𝑓𝑖, 𝑓𝑗 (see (1)) or two
clusters 𝜙𝑖, 𝜙𝑗 (see (2)) belong together into an event. While
the criteria used in the current (rule-based) similarity metric
are reflecting some desired properties of some event types,
i.e., endpoint and flow-size similarity, there is no way to
capture all properties of all events at once. Finally, using
the categorization of event-type properties from Section 3.2,
we note that a pairwise application of the similarity metric
to flows (clusters), is naturally restricted to flow-specific
features, and generally cannot capture desired aggregative
properties of events.

Example 5. As a consequent example, let us consider a situ-
ation with event-type 𝑡𝑦𝑝𝑒1 of description 𝑑𝑒𝑠𝑐1 containing
aggregative formula “average of flow-sizes must be from
1 to 10 bytes.” Assume again a flow sequence (𝑓1, 𝑓2, 𝑓3),
with the respective properties𝑓1 (13𝑏𝑦𝑡𝑒𝑠, . . .),𝑓2(6𝑏𝑦𝑡𝑒𝑠, . . .),𝑓3(7𝑏𝑦𝑡𝑒𝑠, . . .). The resulting aggregative property of the
average of presented flow set (13+ 6 + 7)/3makes it naturally
come out as a 𝑡𝑦𝑝𝑒1 event. Following the clustering procedure
based on a similarity metric in the form 𝜆(𝑓𝑙𝑜𝑤𝑖, 𝑓𝑙𝑜𝑤𝑗),
e.g., the one from (1), to group couples of flows together, we
might end up grouping {𝑓2, 𝑓3} or {𝑓1, 𝑓3} while grouping of{𝑓1, 𝑓2} would not be possible, although it also constitutes a
valid event of 𝑡𝑦𝑝𝑒1 that might still be desired by the same
measures if just 𝑓3 was presented first. So while some couples
of flows are consistent and others are not, as captured by the
similarity 𝜆(𝑓𝑙𝑜𝑤𝑖, 𝑓𝑙𝑜𝑤𝑗), the aggregative property should
stay agnostic of the individual comparisons, yet this is not the
case in the clustering process as, in the analogy of switching
order, (𝑓1, 𝑓2, 𝑓3) ends up with a different result {𝑓1}, {𝑓2, 𝑓3},
while (𝑓1, 𝑓3, 𝑓2) leads to the original {𝑓1, 𝑓2, 𝑓3}.
Generally speaking, the problem with clustering is in

the quality measure it optimizes, derived from the algorithm
and similarity metric used, which is generally different from
the quality criteria desired for event extraction, although
it intuitively might seem to solve the task. A high quality
clustering is only confirmed indirectly when, in the end,

all the real events are explored and correctly classified.
By this indirect reasoning, we can see that clustering and
the subsequent classification stages are tied together, since
suboptimal clustering will harm the classification stage and
vice versa, and so we can conclude that a perfect clustering
should be equal to event identification based on the classifi-
cationmodels, defined in the established language framework
(Section 3.2).

Example 6. Should one want to group a population of
individuals to reveal the underlying set of families, using a
clustering approach would seem reasonable, while it might
likely end up creating clusters of men and women instead.
Since we know what the general properties of families are,
it follows as a more reasonable strategy to utilize those
properties and search for those directly.

4.2. Strategy. Analyzing the weaknesses of the clustering
process, the key idea of the newmethod is to replaceNetFlows
clustering phase directly with an exhaustive exploration of
events. While the clustering process is sensitive to many
settings (Section 4.1) and different measures of similarity,
preferring different clusters in different network contexts, the
newmethod is robust and context invariant, as it removes the
similaritymetric function, constituting just an approximation
of desired properties of clusters, and replaces it directly with
event-type descriptions formulae, which have been either
learned or designed by the experts. In other words, instead
of first clustering the flows and then checking whether the
extracted clusters match the specifications, we explicitly try
to create the clusters in a way to match the specifications
whenever possible. This naturally leads to maximization of
recall. Thus to reconstruct an event it means to search for
all valid data instantiations of a given event-type definition
in the data. The event exploration process then corresponds
to search for a model of a logical theory, given by the set of
event-type formulae, in the NetFlow data. Such a search falls
naturally into the exponential category, as it would generally
require to check all subsets (power-set) of flows, which would
be inadmissible.
The key factor to make the search admissible is to provide

search bounds. We base these bounds on the constraints

8 Security and Communication Networks

in
co

m
in

g

RE
SU

LT
(3

 ev
en

ts
) RE

SU
LT

(2
 ev

en
ts

)

CAMNEP
clustering

Proposed
method

flo
w

s

in
co

m
in

g

flo
w

s

1
2
3
4
5
6
7

1
2
3

1
2
3

1
2
36

1
1

1

1

2

2

2

2

2

33

3

3

3

6

6

6

5

5

5

5

6

4
5

4
5

4
5

6

6

7

7

7

4

4

4

4

4

4

7

7

1
1

5
5

77

7
7

Figure 4: Depiction of comparison of the new two staged event extraction method (right) with the actual one in Camnep (left). In the
first stage, also called expansion of version space, the flow-specific formulae are being processed to create proto-events. In the second stage,
referred to as the aggregation phase, the proto-events are processed through the aggregative formulae to produce output events.

defined in the language used for event-type definitions
(Section 3.2). Following this framework, we can see that the
complexity of search raises from the descriptions, in contrast
to the clustering approach where the complexity raises purely
from the NetFlow data, following the intuition that it is much
easier to look for simple event types, e.g., TCP data transfer,
than for those with complex structure and aggregated prop-
erties, such as distributed forms of attacks. To formalize the
event types complexity, we have actually divided the formulae
constituting the event definitions into categories, introduced
in Section 3.2, according to the complexity of searching for
their model in data.
The first category we refer to as flow-specific formulae

represents simple rules that we can find a model for in linear
time in the number of flows. The main common attribute of
formulae in this category is that they can be evaluated for each
flow separately and hold true for all the flows in a particular
event instantiation. These features of flow-specific formulae
result in their special treatment in the algorithm (Section 4.3).
The second category consists of so-called aggregative

formulae, representing various aggregation functions. The
search for their model falls generally into the NP-complete
category, and rather than describing particular flows they
express attributes of relations between them and attributes of
whole sets of flows. The aggregation formulae thus hold true
for the whole event and cannot be evaluated separately, which
makes the search for their model more computationally
complex.

In the stage of event extraction from set of flows, the
primary objective is to maximize recall, while leaving the
burden of identifying suspicious events on subsequent clas-
sifiers trained to do so. On the other hand, we also cannot
extract all subsets of flows as events because therewould be an
astronomical number of them.Therefore the event extraction
process is driven directly by the definitions of the relevant
event types in scope of IDS so as to make sure it produces
all and only the valid relevant events.

4.3. Algorithm. The goal of the algorithm is to process the
input flows in the order they naturally come to produce all
possible future events in scope. The idea of the algorithm
is based on decomposition (Section 4.2) of the event-type
formulae (Section 3.2). Using this decomposition we can
order the formulae from computationally easy to hard and
utilize that within the search method. The idea of the search
method is depicted in Figure 4, and we describe it more
closely in this section.
At first we utilize the features of flow-specific formu-

lae, allowing us to consider them as being shared by all
the flows within a particular event, on which we base a
procedure that maps every pair of flow and flow-specific
part of j-th event-type description (𝑓𝑙𝑜𝑤𝑖, 𝑓𝑙𝑜𝑤𝑆𝑝𝑒𝑐𝑙) onto
a specific hash-key ℎ𝑎𝑠ℎ𝑘. The hash-key reflects the fact
that having an instantiation 𝑒V𝑒𝑛𝑡𝑘 of an event-type 𝑡𝑦𝑝𝑒𝑙
based solely on its flow-specific 𝑓𝑙𝑜𝑤𝑆𝑝𝑒𝑐𝑙 part of descrip-
tion 𝑑𝑒𝑠𝑐𝑙, all the flows {𝑓𝑙𝑜𝑤𝑖, 𝑓𝑙𝑜𝑤𝑗, . . . , 𝑓𝑙𝑜𝑤𝑛} within

Security and Communication Networks 9

1: function CreateKey(flow; flowSpec)
2: keys ←󳨀 0
3: for all formula ∈ flowSpec do
4: attValue←󳨀 (formula ⊲ flow) ⊳flow-formula evaluation
5: keys ←󳨀key ∪ attValue
6: end for
7: hashKey ←󳨀hash(keys) ⊳arbitrary hash function
8: return hashKey
9: end function

Algorithm 1: Hashing of the flows.

1: function DistributeFlows(Flows)
2: minTime ←󳨀 time of the first flow ∈ Flows
3: maxTime ←󳨀 time of the last flow ∈ Flows
4: intervalCount ←󳨀 (maxTime −minTime)/winSize
5: flowWindows ←󳨀 0
6: for all flow ∈ Flows do
7: idx = (flow.time −minTime)/winSize
8: flowWindowsidx = flowWindowsidx ∪ flow ⊳flow distribution
9: end for
10: return flowWindows
11: end function

Algorithm 2: Distribution of flows into time windows.

this instantiation must have yielded the same evaluations
{𝑎𝑡𝑡𝑉𝑎𝑙𝑢𝑒𝑎, 𝑎𝑡𝑡𝑉𝑎𝑙𝑢𝑒𝑏, . . . , 𝑎𝑡𝑡𝑉𝑎𝑙𝑢𝑒𝑚} with flow-specific for-
mulae 𝑓𝑙𝑜𝑤𝑆𝑝𝑒𝑐𝑙. The evaluation of a formula 𝑠𝑝𝑒𝑐𝑎 on
a flow 𝑓𝑙𝑜𝑤𝑖 (marked as 𝑠𝑝𝑒𝑐𝑎 ⊲ 𝑓𝑙𝑜𝑤𝑖) yields a value𝑎𝑡𝑡𝑉𝑎𝑙𝑢𝑒𝑎, which might be, e.g., a destination IP address of
the flow 𝑓𝑙𝑜𝑤𝑖 if the formula specifies that there is a unique
destination IP address in the event-type description 𝑑𝑒𝑠𝑐𝑙, or
simply 𝑡𝑟𝑢𝑒 if the formula evaluates as such, e.g., when 𝑠𝑝𝑒𝑐𝑏
specifies that all flows must be smaller than 𝑥-bytes, which
flow 𝑓𝑙𝑜𝑤𝑖 satisfies.
This does not mean that any flow, possibly belong-

ing into some event of type 𝑡𝑦𝑝𝑒𝑙, will yield the same
hash-key ℎ𝑎𝑠ℎ𝑘 through evaluation against its description𝑓𝑙𝑜𝑤𝑆𝑝𝑒𝑐𝑙, since there can be more than one instantiation𝑒V𝑒𝑛𝑡𝑘, . . . , 𝑒V𝑒𝑛𝑡𝑜 of that event-type 𝑡𝑦𝑝𝑒𝑙, but exactly all the
flows {𝑓𝑙𝑜𝑤𝑖, 𝑓𝑙𝑜𝑤𝑗, . . . , 𝑓𝑙𝑜𝑤𝑛} belonging to that particular
instantiation 𝑒V𝑒𝑛𝑡𝑘 of event-type 𝑡𝑦𝑝𝑒𝑙 will yield the same
hash-key ℎ𝑎𝑠ℎ𝑘. The flow-specific hash-key generation is
described by the procedure in Algorithm 1.
At the initialization, the traffic is divided into (5-minute)

time intervals, as described in Algorithm 2, which, although
not necessary for the new method (Section 4.4), serves for
comparison against Camnep, and is sort of a standard in
traffic analysis [26], as it is generally expected that the events
occur within short limited time-frames [23].
In the next preprocessing step, described in Algorithm 3,

we divide all descriptions 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑠 ←󳨀 {𝑑𝑒𝑠𝑐1, 𝑑𝑒𝑠𝑐2,. . . , 𝑑𝑒𝑠𝑐𝑛} of the event types in scope {𝑡𝑦𝑝𝑒1 , 𝑡𝑦𝑝𝑒2, . . . , 𝑡𝑦𝑝𝑒𝑛}
into flow-specific {𝑓𝑙𝑜𝑤𝑆𝑝𝑒𝑐1, 𝑓𝑙𝑜𝑤𝑆𝑝𝑒𝑐2, . . . , 𝑓𝑙𝑜𝑤𝑆𝑝𝑒𝑐𝑛} and
aggregation formulae {𝑎𝑔𝑔1, 𝑎𝑔𝑔2, . . . , 𝑎𝑔𝑔𝑛} (Section 3.2).

This division is processed by a parser based on a predefined
formulae dictionary (3).

𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ←󳨀 {({𝑎𝑡𝑡} , 𝑓𝑢𝑛𝑐, {𝑟𝑒𝑠𝑡𝑟})
󳨃󳨀→ {𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖V𝑒, 𝐹𝑙𝑜𝑤𝑆𝑝𝑒𝑐}} (3)

The dictionary maps all possible formulae onto the two
formula types based on their structure, i.e., the used flow
attribute(s), (aggregation) function, and restriction(s) on the
corresponding outcome.
Themain searchmethod thenworks in two steps.Thefirst

step processes the flow-specific formulae and loads a stream
of incoming flows into a hashmap-based memory structure
referred to as a version space. In the version space, every
possible instantiation of all event types exists as an event
prototype, or simply proto-event, holding a specific hash-
key as defined earlier (Algorithm 1). These instantiations are
generally overly inclusive sets of flows based solely on the
flow-specific formulae and thus, using the hash-key, there is
no need of comparing new incoming flow with any of the
previous (Section 4.4). This first phase of the algorithm, we
refer to as the expansion of the version space (expansion
phase in Figure 4), is described in Algorithm 4.
The next step after the version space creation is the

extraction of events from proto-events. In this step we apply
the aggregation formulae (aggregation phase in Figure 4) on
the proto-events from version space. The idea here is that,
although remaining in the NP-complete category, the search
for a model of an aggregation formulae is now performed
on much smaller sets of flows, already divided into exclusive

10 Security and Communication Networks

1: function ParseDescriptions(Descriptions, Dictionary)
2: flowSpec←󳨀 0
3: aggregative ←󳨀 0
4: parser ←󳨀 new Parser(Dictionary) ⊳predefined dictionary parser
5: for all desc ∈ Descriptions do
6: 𝑖 ←󳨀 𝑖 + 1
7: flowSpeci ←󳨀 parser.parseFlowSpec(desc)
8: aggregativei ←󳨀 parser.parseAggreg(desc)
9: end for
10: descriptions ←󳨀 {{𝑓𝑙𝑜𝑤𝑆𝑝𝑒𝑐}, {𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖V𝑒}}
11: return formulae
12: end function

Algorithm 3: Parsing event descriptions into flow-specific and aggregative.

1: flowWindows ←󳨀DistributeFlows(Flows)
2: descriptions ←󳨀ParseDescriptions(Descriptions, Dictionary)
3: versionSpace ←󳨀 {(𝐾𝑒𝑦𝑠 ←󳨀 0) 󳨃󳨀→ (𝑃𝑟𝑜𝑡𝑜𝐸V𝑒𝑛𝑡𝑠 ←󳨀 0)}
4:
5: procedure ExpandVersionSpace ⊳flow processing
6: for all flowWindow ∈ flowWindows do
7: for all flow ∈ flowWindow do
8: for all flowSpec ∈ descriptions.f lowSpec do
9: for all formula ∈ flowSpec do
10: if flow ⊭ formula then
11: break
12: end if
13: end for
14: hashKey ←󳨀CreateKey(flow,flowSpec) ⊳hashing the flow
15: if hashKey ∈ versionSpace.Keys then
16: protoEvent ←󳨀 (versionSpace ←󳨀hashKey)
17: protoEvent.Flows←󳨀protoEvent.Flows ∪ flow ⊳add flow
18: else
19: protoEvent ←󳨀 0 ⊳create new proto-event
20: protoEvent ←󳨀protoEvent.Flows ∪ flow
21: versionSpace←󳨀versionSpace ∪ (hashKey 󳨃󳨀→ protoEvent)
22: end if
23: end for
24: end for
25: end for
26: end procedure

Algorithm 4: Expansion of flows into version space.

subsets by flow-specific formulae. To find the model of
𝑑𝑒𝑠𝑐𝑖 and the resulting event of 𝑡𝑦𝑝𝑒𝑖 means to search for
a valid subset of flows from the proto-event satisfying the
given aggregation formulae 𝑎𝑔𝑔𝑖. This process is described in
Algorithm 5.
While searching for a valid subset satisfying a given

aggregation formula we would theoretically still have to
proceed through a power set of thousands of flows in some
cases. For that purpose, heuristics are defined to speed up
this subset search. They are designed specifically for the
aggregation function types used commonly by the experts,
e.g., the average, entropy difference, count, unique count, etc.

Example 7. An example of a subset search driven by a very
simple heuristic for the aggregation formula “average of bytes
per flow must be within a given range” is described in
Algorithm 6. After sorting the flows with respect to their size
the search iteratively removes the flows with size outside of
the specified range, in the direction of the desired average
value change.This heuristic subset search thus works in𝑂(𝑛∗
log(𝑛) + 𝑛) time, or in 𝑂(𝑛2) without presorting.

Example 8. An example of a more complex heuristic driving
the search for a model of formula “entropy of destination

Security and Communication Networks 11

1: function ExtractEvents(versionSpace)
2: events←󳨀 0
3: descriptions ←󳨀ParseDescriptions(Descriptions, Dictionary)
4: for all protoEvent ∈ versionSpace do
5: flows←󳨀protoEvent.flows
6: desc ←󳨀 (descriptions ←󳨀protoEvent.type) ⊳description for event
7: repaired = true
8: while repaired = true do
9: repaired = false
10: for all formula ∈ desc.Aggregative do
11: if flows ⊭ formula then
12: flows ←󳨀subsetSearch(formula, flows)
13: repaired = true ⊳set was changed 󳨐⇒ redo
14: end if
15: end for
16: end while
17: if protoEvent.flows ̸≡ 0 then ⊳valid subset was found
18: events ←󳨀events ∪ protoEvent
19: end if
20: end for
21: return events
22: end function

Algorithm 5: Extracting events from proto-events.

1: function subsetSearch(formulaavg, Flows)
2: flows←󳨀sort(flows, flows.Bytes) ⊳optional pre-sorting
3: while flows ̸≡ 0 do
4: if avg(flows.Bytes) < formulaavg.range then
5: flow ←󳨀min(flows, flows.Bytes)
6: flows ←󳨀 flows \ flow
7: else if avg(flows.Bytes) > formulaavg.range then
8: flow ←󳨀max(flows, flows.Bytes)
9: flows ←󳨀 flows \ flow
10: else
11: break
12: end if
13: end while
14: return flows
15: end function

Algorithm 6: Heuristic driven flow subset with limited average search.

IPs must be close to entropy of destination ports within a
given margin” is presented in Algorithm 7. At first we arrange
buckets 𝑏𝑗 for all IPs and ports and distribute all 𝑛 flows
into the buckets {𝑏1, . . . , 𝑏𝑞} accordingly. From the buckets
distribution, the entropies can be easily calculated in linear
time in the number of buckets 𝑙 as

𝐻 = −
𝑞

∑
𝑘=1

𝑏𝑘
𝑛 ln(

𝑏𝑘
𝑛) (4)

Assuming that the difference of entropies is not satisfactory,
for each 𝑓𝑙𝑜𝑤 we calculate a measure 𝐸𝐷𝑓𝑙𝑜𝑤 representing
the decrease in entropy difference after removal of that 𝑓𝑙𝑜𝑤.
This calculation, based on the existing buckets {𝑏1, . . . , 𝑏𝑞}
as performed by the 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝐷𝑖𝑓𝑓𝐴𝑓𝑡𝑒𝑟𝑅𝑒𝑚𝑜V𝑎𝑙𝑂𝑓 function,

can be, interestingly, carried out in constant 𝑂(1) time for
each 𝑓𝑙𝑜𝑤. This follows from decomposition of the formula
for calculating Shannon entropy iteratively while adding or
removing flows as

−𝐻𝑖 = ∑
𝑘

𝑏𝑘
𝑖 ln(

𝑏𝑘
𝑖) = 1

𝑖 ∑
𝑘

𝑏𝑘 ln (𝑏𝑘) − ln (𝑖)𝑖 ∑
𝑘

𝑏𝑘 (5)

= 1
𝑖 ∑
𝑘

𝑏𝑘 ln (𝑏𝑘) − ln (𝑖) (6)

After adding (i+1)th flow, the entropy changes to

−𝐻𝑖+1 = ∑
𝑙

𝑏𝑙
𝑖

𝑖
𝑖 + 1 ln(𝑏𝑙

𝑖
𝑖

𝑖 + 1)

12 Security and Communication Networks

= 1
𝑖 + 1∑

𝑙

𝑏𝑙 ln (𝑏𝑙) − ln (𝑖 + 1)
𝑖 + 1 ∑

𝑙

𝑏𝑙
(7)

= 1
𝑖 + 1∑

𝑙

𝑏𝑙 ln (𝑏𝑙) − ln (𝑖 + 1) (8)

where

(a) if the added flow falls into existing j-th bucket (𝑏𝑗 ←󳨀
𝑏𝑗 + 1)

∑
𝑙

𝑏𝑙 ln (𝑏𝑙) = ∑
𝑘

𝑏𝑘 ln (𝑏𝑘) − 𝑏𝑗 ln (𝑏𝑗) + 𝑏𝑗+1 ln (𝑏𝑗+1) (9)

(b) if the added flow creates a new bucket m (𝑏𝑚 ←󳨀 1)
∑
𝑙

𝑏𝑙 ln (𝑏𝑙) = ∑
𝑘

𝑏𝑘 ln (𝑏𝑘) − 𝑏𝑗 ln (𝑏𝑗) + 1 ln (1) (10)

The flows are then sorted into a heap with respect to this
new measure 𝐸𝐷, and the 𝑓𝑙𝑜𝑤 with the maximal 𝐸𝐷𝑓𝑙𝑜𝑤,
i.e., the one causing the biggest portion of 𝐼𝑃 − 𝑝𝑜𝑟𝑡 entropy
difference, is being iteratively removed until the entropy
difference falls within the restricted range. In each iteration, it
is necessary to update the buckets, entropies, and individual
𝐸𝐷𝑓𝑙𝑜𝑤𝑖 measures for all flows sharing a bucket (IP or Port)
with the actually removed one. We note that all these updates
are performed in constant 𝑂(1) time by the same means
as calculating the original 𝐸𝐷 measure, resulting from the
entropy formula decomposition (see (8)). It follows that the
complexity of this heuristic falls into 𝑂(𝑛2), yet on average it
is much faster since the sizes of buckets, which are iterated
after each removal, are generally smaller than the cardinality
of the whole flow set.
Various other heuristics might be used and found in

literature [27] and by those means allowing us to convert
the flow aggregative formulae subset search into some of the
existing state-of-the-art search methods for combinatorial
problems. Most of the heuristics we used are usually simple
and greedy, and by those means generally suboptimal (see
Section 4.4). On the other hand they remain intuitive and
work in linear or low polynomial time. Finally they still
provide some very good results, as discussed in Section 5.

4.4. Analysis. The brute-force solution complexity of this
problem would fall into 𝑂(𝑘 ∗ (2𝑁)), where 𝑘 is the number
of event types and 𝑛 is the number of flows, ignoring the
complexity of individual formulae evaluation. While this
remains as theworst case scenario complexity in the approach
introduced, exploiting the typical structure of event types, the
new method will perform much faster in a typical scenario,
where many flow-specific criteria are posed within the event
type.
As stated in Section 3.2, the event-type descriptions are

specified by a conjunction of formulae, or can be actually
easily decomposed into a set of such, using de Morgan’s
laws, from any other rule-based description. In the algorithm
we utilize this to treat any description as a single sequence

of formulae and further exploit the order invariability of
the conjunction to reorder the formulae according to the
categorization into the flow-specific and aggregative types. By
these means we first find a model for flow-specific formulae;
i.e., we are looking for the biggest subsets of incoming flows
satisfying flow-specific criteria, which we further refine to
meet the aggregative criteria. The reason to search for the
biggest subset rather than just any subset is to naturally
maximize the recall of all flows (and endpoints) involved in
the incidents.
Finding a model for the flow-specific criteria through

version space creation, constantly adding valid flows into
proto-events, is monotonic process and thus linear in the
number of flows. The reason this phase is so fast is that it
actually requires no formula checking and comparisons with
the already processed objects (flows, clusters), in contrast to
the clustering approaches (Camnep). This setting is similar
in spirit to stream data mining [28] as the processing speed is
invariant to the size of the processed traffic. This feature also
allows refraining from using the (5-minute) time-windows
to reduce the traffic load, possibly introducing errors when
an event is undesirably split into two consecutive frames.
Should there be desirable features of the time-windows
kept, e.g. restrictions on the duration of an event type
keeping the version space small, it could be implemented
by just recording separately the time of the first flow for
every proto-event and invalidating it after the time period
expires.
The fast version space creation capability is implemented

through the flow hashing (Algorithm 1). Assuming constant
amortized time of existential queries in the hashmap, creation
of version space takes only linear time in the number of
incoming flows𝑛. Since this is done for all 𝑘 of the event types,
this phase runs in𝑂(𝑘∗𝑛).The factor 𝑘 can be further reduced
(into app. log(𝑘)), considering the (sometimes significant)
overlap of flow-specific formulae across the classes of event
types, which can be by those means arranged into a tree of
common formulae sets.
The version space creation not only is faster but serves as

a more accurate model of the real network events scenario.
By continuously constructing not just a single sequence but
several parallel temporary proto-events from the incoming
flows, it results in that some of the flows get duplicated among
various proto-events of different types, which comes naturally
from nondistinctive definitions of event types and allows for
their complete fit on the data, which was not possible in the
disjoint clustering approach.
It is favorable to realize that decomposing (with

repetitions) the original flow sequence into the version
space divides the problem into smaller subproblems and
breaks down every possible relevant information connection
between the flows into independent subsets defined by the
proto-events. This fact allows considering every proto-event
as completely independent of each other and by those
means parallelize all further proto-event processing (e.g., the
aggregation phase), leading to additional speedup.
The second (aggregation) phase of the algorithm, i.e., pro-

cessing individual proto-events with the aggregative formulae
model search, is not monotone and cannot be reduced in

Security and Communication Networks 13

1: function subsetSearch(formulaentropy, Flows)
2: portBuckets ←󳨀groupBy(Flows, unique(Flows.Ports))
3: ipBuckets ←󳨀groupBy(Flows, unique(Flows.Ips))
4: entropies ←󳨀 {𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑜𝑟𝑡𝐵𝑢𝑐𝑘𝑒𝑡𝑠), 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑖𝑝𝐵𝑢𝑐𝑘𝑒𝑡𝑠)}
5: for all flow ∈ Flows do ⊳each calculation ∈ O(1)
6: EDflow ←󳨀entropyDiffAfterRemovalOf(portBuckets, ipBuckets, flow)
7: end for
8: heapFlows←󳨀heap(Flows, ED) ⊳flows sorted w.r.t. ED
9: while |entropyportBuckets − entropyipBuckets| > formula.Diff do
10: mFl ←󳨀 heapFlows.removeMax()
11: {𝑝𝑜𝑟𝑡𝐵𝑢𝑐𝑘𝑒𝑡𝑠, 𝑖𝑝𝐵𝑢𝑐𝑘𝑒𝑡𝑠} ←󳨀remove(portBuckets, ipBuckets, mFl)
12: entropies ←󳨀 update(entropies, mFl) ⊳constant O(1)
13: for all flow ∈ ((portBuckets ∩ mFl.port) ∪ (ipBuckets ∩ mFl.ip)) do
14: EDflow ←󳨀 entropyDiffAfterRemovalOf (portBuckets, ipBuckets, flow)
15: heapFlows.heapify(flow, EDflow)
16: end for
17: end while
18: return flows
19: end function

Algorithm 7: Heuristic subset search for ports-IPs entropy difference limit.

a similar manner. It means to search again within a proto-
event for amaximal subset of flows satisfying given restriction
on the result of an aggregation function applied over them.
For most formulae with aggregation function (e.g., Average,
Entropy) this falls into the NP-complete category as it can be
shown to be subset-sum problem reducible [29]. Also for some
formulae it might be desirable that one set (proto-event) may
yield more than one subset (event) of flows. As such it could
be posed as a CSP optimization problem and solved explicitly
by means of, e.g., dynamic programming [30]. Although
the search in this step is now performed on typically much
smaller subsets (proto-events) of the original set, for the sake
of speed we suffice with approximate solutions and heuristics
(e.g., Algorithms 6 and 7).
It is important to notice that the application of these

heuristics is the only place in the whole method where any
false negative error may arise and possibly an actual event be
missed. Leaving the rest of the method exact and complete,
this is thus the place to incorporate more extensive search
should a greater recall be required. On the other hand, the
heuristics provide good explanation for missing a particular
flow-event classification (explained by a failuremessage of the
respective formula), they take part in only some of the event
types, and they have been experimentally proved to be very
robust (Section 5).

5. Experiments

In the experiments we evaluate the new event extraction
method against the clustering based extraction approach in
Camnep over the scope of various event types. Since the
models of these event types are given (Section 3.1), there is
no correct or wrong classification considered, and we are
interested only in the number of identified events at this
stage, representing the recall of all events from the network

satisfying these models. The decrease in recall of the events
at this stage signifies false negative errors to be made by
the system. These errors may arise due to the suboptimal
clustering results in Camnep, or due to the greedy heuristics
used for aggregative model search in the new method. The
purpose of experiments is to evaluate the extent of these
errors between the two methods by proportion of the recall
over the selected event types.

5.1. NetFlow Data. The traffic data we are working with
were collected from a university network during one week.
Statistical descriptives of the traffic over selected classes of
events, as processed by Camnep, can be seen in Table 1.
For the IDS context, the reported classes are limited to a
potentiallymalicious subset, as assessed by a severitymeasure
(1 − 9) used in Camnep; however the method is equally
applicable to nonmalicious classes (severity < 4), too.
In its raw form the data consist of elementary information

aggregated from network packets in the NetFlow format, i.e.,
the unidirectional component of TCP (UDP, ICMP equiva-
lent), identified by shared source and destination endpoints,
together with the aggregated attributes. Particularly, these are
tuples of

(𝑆𝑡𝑎𝑟𝑡-𝑡𝑖𝑚𝑒, 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙, 𝑠𝑟𝑐-𝐼𝑃, 𝑠𝑟𝑐-𝑃𝑜𝑟𝑡,
𝑑𝑒𝑠𝑡-𝐼𝑃, 𝑑𝑒𝑠𝑡-𝑃𝑜𝑟𝑡, 𝐹𝑙𝑎𝑔𝑠, #𝑃𝑎𝑐𝑘𝑒𝑡𝑠, #𝐵𝑦𝑡𝑒𝑠) (11)

corresponding to the start time of the first packet in the
flow, the duration and 4th layer protocol, source-destination
ports and addresses, all flags aggregated from packets during
the connection and overall number of packets and bytes
transferred. This representation is widely adopted across
computer networks analysis community and is a standard for
security event logging as well as a number of other affiliated
applications [31].

14 Security and Communication Networks

Table 1: Distribution of communication data captured within a university network over selected, potentially malicious, classes.

Event type Severity #IPs #events #flows
ssh cracking 9 149 3412 291538
ssh cracking response 9 143 3406 287686
port scan (in/out, tcp) 7 996 17463 21732
port scan (tcp) 7 539 1486 125799
port scan (vertical, tcp) 7 4 6 1485
dns tunnel-like behavior 6 6 14 14
dns tunnel-responses-like behavior 6 4 6 6
p2p-like behavior (tcp) 6 238 1009 215333
p2p-like behavior (udp) 6 135 9156 886345
p2p-responses-like behavior (tcp) 6 32 742 250956
p2p-responses-like behavior (udp) 6 147 5424 985336
data transfer (tcp) 4 244 4639 108729
data transfer (udp) 4 94 793 26026
icmp traffic 4 1127 6370 93315
scan-like behavior (horizontal, tcp) 4 940 1165 11358
scan-like behavior (horizontal, udp) 4 1 10 2228
scan-like behavior (vertical, tcp) 4 6 37 29969
scan-like behavior (vertical, udp) 4 3 17 5700
scan-responses-like behavior (horizontal, tcp) 4 300 3742 5489
scan-responses-like behavior (horizontal, udp) 4 0 0 0
scan-responses-like behavior (vertical, tcp) 4 7 48 32785
scan-responses-like behavior (vertical, udp) 4 3 26 8495

In cooperation with Cisco research, we used full-day Net-
Flow traffic records collected from inline university network
probes, where the regular amount of traffic counts up tomore
than 6 million flows a day, corresponding to more than 30
thousand events with thousands of IPs involved.

5.2. Results. We evaluated both methods on the same full-
day traffic data and compared the results for the numbers
of identified events from flows over selected event types.
Although bothmethods used the same input flows and event-
type models, the results naturally differed due to a number of
causes in the identification of flows as a part of some event.
In analysis of these causes, four different types of event from
flows identification situations (Figure 5) occurred.

(a) The new method finds some extra flows belonging to
an event

(b) The new method finds a completely new event
(c) Thenewmethodmisses some flowswhile incorporat-
ing majority of others

(d) Both methods identify exactly the same event

Firstly, the results showed that the new method domi-
nated the clustering approach of Camnep in the numbers of
identified flows. The only situation where it was not clearly
dominating was the situation 𝑐, where some flow-event classi-
fications were missed. In these situations, however, there was
always a majority of flow-event classifications for the same
event that were identified as opposed to Camnep.This results

from the aggregative formulae model search (Algorithm 5),
which searches for themaximal subset of valid flows, securing
that any subset found either will completely encompass the
subset resulting from clustering (situation 𝑎) or will find the
same subset that happened to be maximal already (situation
𝑑), or, in the case they intersect only partially or not at all,
the new method’s subset will always be larger. Also we can
notice that for the case of completely new event exploration
by the new method (situation 𝑏) there is no complementary
situation for the clustering method, which is rooted in the
version space expansion phase of flow-specific formulae that
secures the completeness of proto-events. In other words,
there is no way to create a valid cluster that would be missed
by the new approach as a part of some proto-event in the
expansion phase, and it can only choose to prefer a different
cluster to that one for being larger in the aggregation phase.
Of course this quality of the new method might be

theoretically broken by the use of inadmissible aggregation
heuristics in the maximal subset search (e.g., Algorithm 6).
In practice, however, our experiments confirm exactly the
mentioned scenarios from Figure 5. Moreover, the faulty
situation 𝑐 was observed for only 100 out of 6.5million flows
tested, corresponding to app. 0.000015% relative (to Camnep)
error in flow-event identification recall. Also for every such a
missed flow-event 𝑓𝑙𝑜𝑤𝑖 󳨃󳨀→ 𝑒V𝑒𝑛𝑡𝑥 classification there is a
corresponding explanation for excluding that particular flow
𝑓𝑙𝑜𝑤𝑖 fromevent 𝑒V𝑒𝑛𝑡𝑥 of a type 𝑡𝑦𝑝𝑒V, based on the heuristic
removing it while solving particular aggregative formula
𝑎𝑔𝑔𝑘 ∈ 𝑑𝑒𝑠𝑐V of 𝑡𝑦𝑝𝑒V, e.g., for the fact that the flow 𝑓𝑙𝑜𝑤𝑖 is

Security and Communication Networks 15

New approach

Camnep

(a) (b)

(c)
(d)

Figure 5: Depiction of the four different flow (star) to event (circle) conformations arising from comparison of the new method (red) with
Camnep (blue). The diagrams are roughly proportional to the actual occurence of the cases.

distinctly bigger than a required average in the formula 𝑎𝑔𝑔𝑘.
This condition, i.e., situation 𝑐 based on average aggregation
heuristic search from Algorithm 6, was actually the case for
a number of the 100 flows, which were included in a p2p-
like-behavior event by the clustering approach, yet removed as
outliers and replaced with more suitable flows (with respect
to average-restricting formula 𝑎𝑔𝑔𝑘 ∈ 𝑑𝑒𝑠𝑐V of p2p-like-
behavior) by the new method, and so even the small relative
error remains disputable to be an actual error.
The resulting comparison of the recall of events across

selected event types is presented in Figure 6. As apparent from
the results, within the generally smaller proto-events, there is
not that much space for errors caused by the (inadmissible)
heuristics, as compared to the clustering approach that
is sensitive to many factors (Section 4.1). The number of
involved factors and the space for errors in recall grow with
the complexity of event types. For that reason we can see
that the difference between performances of both methods
varies across the event types, being generally higher and
more favorable for the new method in complex types. On
the contrary the performances tend to be more similar for
event types with simple descriptions, such as in the case of
icmp traffic (very simple definition). Nevertheless, the new
method performs consistently no worse than Camnep event
extraction in all types of events and although the results
were filtered for potentially malicious classes only, the new
method fares significantly better on the nonmalicious event-
type classes, too.
The second result we present in Figure 7 shows the distri-

bution of newly identified events frompreviously unclassified
flows, i.e., the flows that, processed by the clustering method

in Camnep, ended up in clusters that did not match any of the
models in scope. These newly identified events correspond
to false negatives of the clustering approach and can thus
be seen as a pure contribution to the previous approach
corresponding to the situation 𝑏 from Figure 5. Importantly,
representatives of false negative errors of clustering in Cam-
nep explored by the new method over various event types
were consequently studied in flow-level detail and confirmed
with the experts to contain real incidents of the respective
event types.
Finally, we tested the speed of the new method, since

fast computation is a crucial requirement for online NetFlow
traffic processing and any method with too high complexity,
although provably more accurate, would be rendered useless.
The first version space expansion phase of the method is very
fast and can be deployed online with negligible overhead.
The second aggregation part ismuchmore complex; however,
introducing the mentioned improvements and heuristics for
speedup (Section 4.4), we were able to decrease the complex-
ity to very reasonable levels. The new method, implemented
in Java, was verified to process 24 hours of university network
traffic with app. 7 million flows within 10 − 15 minutes of
computational time on a single-threaded (for fair comparison
with Camnep) personal pc, which is comparable to time
complexity of the Camnep clustering approach with 7 − 10
minutes of computation in the same setting. Thus, for a
reasonable set of event classes, such as those reported in the
performed experiments, the method is, on average, able to
process traffic of a university-scale network in real time using
just a single thread. Moreover, it can be easily parallelized for
further scaling.

16 Security and Communication Networks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
po

rt
sc

an
 (i

n/
ou

t,
tc

p)
po

rt
sc

an
 (t

cp
)

po
rt

sc
an

 (v
er

tic
al,

 tc
p)

ss
h

cr
ac

ki
ng

ss
h

cr
ac

ki
ng

 re
sp

on
se

dn
s t

un
ne

l-l
ik

e b
eh

av
io

r

dn
s t

un
ne

l-r
es

po
ns

es
-li

ke
 b

eh
av

io
r

p2
p-

lik
e b

eh
av

io
r (

tc
p)

p2
p-

lik
e b

eh
av

io
r (

ud
p)

p2
p-

re
sp

on
se

s-
lik

e b
eh

av
io

r (
tc

p)

p2
p-

re
sp

on
se

s-
lik

e b
eh

av
io

r (
ud

p)
da

ta
 tr

an
sfe

r (
tc

p)
da

ta
 tr

an
sfe

r (
ud

p)
icm

p
tra

ffi
c

sc
an

-li
ke

 b
eh

av
io

r (
ho

riz
on

ta
l, t

cp
)

sc
an

-li
ke

 b
eh

av
io

r (
ho

riz
on

ta
l, u

dp
)

sc
an

-li
ke

 b
eh

av
io

r (
ve

rti
ca

l, t
cp

)

sc
an

-li
ke

 b
eh

av
io

r (
ve

rti
ca

l, u
dp

)

sc
an

-re
sp

on
se

s-
lik

e b
eh

av
io

r (
ho

riz
on

ta
l, t

cp
)

sc
an

-re
sp

on
se

s-
lik

e b
eh

av
io

r (
ho

riz
on

ta
l, u

dp
)

sc
an

-re
sp

on
se

s-
lik

e b
eh

av
io

r (
ve

rti
ca

l, t
cp

)

sc
an

-re
sp

on
se

s-
lik

e b
eh

av
io

r (
ve

rti
ca

l, u
dp

)

Figure 6: Statistical comparison of the new method (red) with Camnep (blue) over selected malicious classes for the number of identified
events. Due to the immense difference of frequency of occurence between some of the event types, the total number of events (Camnep +
new method) is normalized to 100% for every class.

1

10

100

1000

10000

po
rt

sc
an

 (i
n

- i
n,

 h
or

izo
nt

al,
 tc

p)

po
rt

sc
an

 (i
n

- i
n/

ou
t,

ho
riz

on
ta

l, t
cp

)

po
rt

sc
an

 (i
n

- o
ut

, h
or

izo
nt

al,
 tc

p)
po

rt
sc

an
 (t

cp
)

po
rt

sc
an

 (v
er

tic
al,

 tc
p)

ssh
 cr

ac
ki

ng
ssh

 cr
ac

ki
ng

 re
sp

on
se

p2
p-

lik
e b

eh
av

io
r (

tcp
)

p2
p-

lik
e b

eh
av

io
r (

ud
p)

p2
p-

re
sp

on
se

s-l
ik

e b
eh

av
io

r (
tcp

)

p2
p-

re
sp

on
se

s-l
ik

e b
eh

av
io

r (
ud

p)

po
rt

sc
an

 (o
ut

 -
in

, h
or

izo
nt

al,
 tc

p)
da

ta
 tr

an
sfe

r (
tcp

)
da

ta
 tr

an
sfe

r (
ud

p)

sc
an

-li
ke

 b
eh

av
io

r (
ho

riz
on

ta
l, t

cp
)

sc
an

-li
ke

 b
eh

av
io

r (
ve

rti
ca

l, t
cp

)

sc
an

-li
ke

 b
eh

av
io

r (
ve

rti
ca

l, u
dp

)

sc
an

-re
sp

on
se

s-l
ik

e b
eh

av
io

r (
ho

riz
on

ta
l, t

cp
)

sc
an

-re
sp

on
se

s-l
ik

e b
eh

av
io

r (
ho

riz
on

ta
l, u

dp
)

sc
an

-re
sp

on
se

s-l
ik

e b
eh

av
io

r (
ve

rti
ca

l, t
cp

)

sc
an

-re
sp

on
se

s-l
ik

e b
eh

av
io

r (
ve

rti
ca

l, u
dp

)

Figure 7:Unidentified behavior flows resulting fromCamnep clustering, identified by the newmethod to belong into selected types of events.
The displayed numbers of these events represent clear domination in recall over the clustering approach.

Security and Communication Networks 17

6. Conclusions

We introduced amethod for efficient extraction of predefined
network event types from raw NetFlow traffic data aimed at
maximization of their recall. The core idea of the method
is in explicit search for events based on analysis of expert
descriptions of their corresponding types. We motivated and
discussed the need for such an approach in the context
of modern intrusion detection systems based on clustering
and statistical models. Particularly, we compared with an in-
production state-of-the-art intrusion detection system Cam-
nep, developed by Cisco Research. Following this approach
we decomposed the typically multistaged intrusion detection
process, into stages that are, rather than on software concepts
and intuition, based on computational properties of the
sought-for event types.
We introduced corresponding efficient algorithms for

event extraction and discussed their advantages. We also
introduced a number of extending heuristics that enable
scaling onto real life traffic volumes, at the expense of theo-
retical incompleteness of the event extraction. We analyzed
properties of the method and showed experimentally that,
in agreement with the analysis, the new method achieves
supreme recall of known event types while keeping a very low
computational overhead.

Data Availability

The university traffic data in the NetFlow format used to
support the findings of this study were supplied by Cisco
Cyber Threat Defense under license and so cannot be made
freely available. Requests for access to these data should be
made to Gustav Sourek, souregus@fel.cvut.cz.

Disclosure

Present address is Dept. of Computer Science, Karlovo
namesti 13, Prague 2, 120 00, Czech Republic.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are grateful to researchers from Cisco Cognitive
Threat Analytics, namely, Karel Bartos, Petr Somol, and
Tomas Pevny, for collaboration on the project. The work in
this paper was supported by OP VVV project Research Cen-
ter for Informatics no. CZ.02.1.01/0.0/0.0/16 019/0000765.
Computational resources were provided by the CESNET
LM2015042 and the CERIT Scientific Cloud LM2015085,
provided under the programme “Projects of Large Research,
Development, and Innovations Infrastructures.”

Endnotes

1. The system for event extraction from NetFlows detailed
in this paper is covered by US Patent US9374383B2 [32]

References

[1] M. Rehak, M. Pechoucek, P. Celeda, J. Novotny, and P. Minarik,
“CAMNEP: Agent-based network intrusion detection system,”
in Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2008, pp.
1813–1816, Portugal, May 2008.

[2] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:
Multilevel traffic classification in the dark,” Computer Commu-
nication Review, vol. 35, no. 4, pp. 229–240, 2005.

[3] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, andK. Salama-
tian, “Traffic classification on the fly,”Computer Communication
Review, vol. 36, no. 2, pp. 23–26, 2006.

[4] M. Mizutani, K. Takeda, and J. Murai, “Behavior rule based
intrusion detection,” in Proceedings of the CoNext Student
Workshop ’09, pp. 57-58, Italy, December 2009.

[5] A. W. Moore and K. Papagiannaki, “Toward the accurate
identification of network applications,” in Proceedings of the
6th International Workshop on Passive and Active Network
Measurement (PAM ’05), pp. 41–54, April 2005.

[6] T. T. T. Nguyen and G. Armitage, “A survey of techniques
for internet traffic classification using machine learning,” IEEE
Communications Surveys & Tutorials, vol. 10, no. 4, pp. 56–76,
2008.

[7] H. Jiang, A. W. Moore, Z. Ge, S. Jin, and J. Wang, “Lightweight
application classification for networkmanagement,” in Proceed-
ings of the 2007 SIGCOMM Workshop on Internet Network
Management, INM ’07, pp. 299–304, Japan, August 2007.

[8] A. W. Moore and D. Zuev, “Internet traffic classification
using bayesian analysis techniques,” in Proceedings of the ACM
SIGMETRICS International Conference On Measurement and
Modeling of Computer Systems (SIGMETRICS ’05), pp. 50–60,
Alberta, Canada, June 2005.

[9] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow
clustering using machine learning techniques,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics): Preface, vol.
3015, pp. 205–214, 2004.

[10] J. Erman,A.Mahanti,M.Arlitt, andC.Williamson, “Identifying
and discriminating between web and peer-to-peer traffic in the
network core,” in Proceedings of the 16th International World
WideWeb Conference (WWW ’07), pp. 883–892, Banff, Canada,
May 2007.

[11] F. Mansmann, F. Fischer, D. A. Keim, and S. C. North,
“Visual support for analyzing network traffic and intrusion
detection events using TreeMap and graph representations,” in
Proceedings of the 3rd ACM Symposium on Computer-Human
Interaction forManagement of Information Technology, CHIMIT
09, 2009.

[12] W. Lee, S. J. Stolfo, and K. W. Mok, “Mining in work flow
environments: Experiments in intrusion detection,” in Proceed-
ings of the 1999 Conference on Knowledge Discovery and Data
Mining, 1999.

[13] S. Mukkamala, G. Janoski, and A. Sung, “Intrusion detection
using neural networks and support vector machines,” in Pro-
ceedings of the International Joint Conference onNeural Networks
(IJCNN ’02), 2002.

mailto:souregus@fel.cvut.cz

18 Security and Communication Networks

[14] P. Laskov, P. Düssel, C. Schäfer, and K. Rieck, “Learning intru-
sion detection: supervised or unsupervised?” in International
Conference on image analysis and processing, (ICAP), 2005.

[15] K. Leung and C. Leckie, “Unsupervised anomaly detection in
network intrusion detection using clusters,” inProceedings of the
Twenty-eighth Australasian conference on Computer Science, vol.
38, pp. 333–342, Australian Computer Society, Inc., Newcastle,
2005.

[16] K. Bartos and M. Rehak, “Trust-based solution for robust
self-configuration of distributed intrusion detection systems,”
Europian conference in Artificial Intelligence, 2012.

[17] M. Rehák, M. Pê, M. Grill, J. Stiborek, K. Bartoŝ, and P. Ĉeleda,
“Adaptive multiagent system for network traffic monitoring,”
IEEE Intelligent Systems, vol. 24, no. 3, pp. 16–25, 2009.

[18] A. A. Olusola, O. S. Adeola, and O. A. Daramola, “Analysis of
KDD’99 Intrusion Detection Dataset for Selection of Relevance
Features,” in Proceedings of the World Congress on Engineering
and Computer Science, 2010.

[19] M. Tavallaee, E. Bagheri,W. Lu, andA. A. Ghorbani, “A detailed
analysis of the KDD CUP 99 data set,” in Proceedings of the 2nd
IEEE Symposium on Computational Intelligence for Security and
Defence Applications, pp. 1–6, 2010.

[20] J. McHugh, “Testing Intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system evalua-
tions as performed by Lincoln Laboratory,” ACM Transactions
on Information and System Security, vol. 3, no. 4, pp. 262–294,
2000.

[21] M. Rehak, M. Pechoucek, K. Bartos, M. Grill, and P. Celeda,
“CAMNEP: An intrusion detection system for highspeed
networks,” Progress in informatics, special issue: the future of
software engineering for security and privacy, 2008.

[22] M. Pechoucek, “Game theoretic, multi-agent approach to net-
work traffic monitoring: final report,” US Defense Technical
Information Center, 2012.

[23] G. Šourek, O. Kuželka, and F. Železný, “Learning to Detect
Network Intrusion from a Few Labeled Events and Background
Traffic,” in Intelligent Mechanisms for Network Configuration
and Security, vol. 9122 of Lecture Notes in Computer Science, pp.
73–86, Springer International Publishing, Cham, 2015.

[24] J. Jusko and M. Rehak, “Revealing cooperating hosts by con-
nection graph analysis,” Security and Privacy in Communication
Networks, 2013.

[25] Y.N.Andrew,M. I. Jordan, andWYair, “On Spectral Clustering:
Analysis and an algorithm,” Advances in Neural Information
Processing Systems, 2002.

[26] So-In. Chakchai, A Survey of Network Traffic Monitoring and
Analysis Tools. Cse 576m computer system analysis project,
Washington University, St. Louis, USA, 2009.

[27] C. R. Reeves, Ed., Modern Heuristic Techniques for Combinato-
rial Problems, John Wiley & Sons, NY, USA, 1993.

[28] H. O. Nasereddin Hebah, “Stream data mining,” International
Journal of Web Applications, 2009.

[29] J. C. Lagarias and A. M. Odlyzko, “Solving low-density subset
sum problems,” Journal of the ACM, vol. 32, no. 1, pp. 229–246,
1985.

[30] S. Martello and P. Toth, “A mixture of dynamic programming
and branch-and-bound for the subset-sum problem,”Manage-
ment Science, vol. 30, no. 6, pp. 765–771, 1984.

[31] D. Rossi and S. Valenti, “Fine-grained traffic classification with
Netflow data,” in Proceedings of the 6th International Wireless
Communications and Mobile Computing Conference (IWCMC
’10), pp. 479–483, July 2010.

[32] G. Sourek, K. Bartos, F. Zelezny, T. Pevny, and P. Somol, “Events
from network flows,” US Patent 9,374,383, 2016.

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

