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With the widespread application of big data, privacy-preserving data analysis has become a topic of increasing signi�cance. �e
current research studies mainly focus on privacy-preserving classi�cation and regression. However, principal component analysis
(PCA) is also an e�ective data analysis method which can be used to reduce the data dimensionality, commonly used in data
processing, machine learning, and data mining. In order to implement approximate PCA while preserving data privacy, we apply
the Laplace mechanism to propose two di�erential privacy principal component analysis algorithms: Laplace input perturbation
(LIP) and Laplace output perturbation (LOP). We evaluate the performance of LIP and LOP in terms of noise magnitude and
approximation error theoretically and experimentally. In addition, we explore the variation of performance of the two algorithms
with di�erent parameters such as number of samples, target dimension, and privacy parameter. �eoretical and experimental
results show that algorithm LIP adds less noise and has lower approximation error than LOP. To verify the e�ectiveness of
algorithm LIP, we compare our LIP with other algorithms. �e experimental results show that algorithm LIP can provide strong
privacy guarantee and good data utility.

1. Introduction

In many modern information systems, the amount of data is
very large. Massive data increase the di�culty of data
analysis and processing. Principal component analysis
(PCA) is a standard data analysis method, which can be used
to reduce the data dimensionality. More speci�cally, it
projects the original high-dimensional data to the space of
principal components composed by the eigenvectors of the
covariance matrix of the data to get low-dimensional data,
which can represent most of information of the original data.
PCA simpli�es the data, making data easier to use while
saving on the computational complexity of the algorithm.
For example, face recognition is much faster when �rst
projecting the data into lower dimension.

Financial and medical data often deal with private or
sensitive information. Ifmachine learning tasks or datamining

algorithms work directly on the original data, the outputs of
these algorithms will leak private information, whichmay pose
potential threats to individuals. �erefore, privacy preserva-
tion has become an urgent problem that needs to be solved.
Di�erential privacy (DP) [1] is an e�ective and provable
privacy protection model. It attends to hide private in-
formation while ensuring basic statistics of the original data.
�e notion of di�erential privacy has two types: (ε, 0)-DP and
(ε, δ)-DP [2]. (ε, 0)-DP is usually called pure di�erential
privacy, while (ε, δ)-DP with δ > 0 is called approximate
di�erential privacy. (ε, δ)-DP is a weaker version of (ε, 0)-DP
as the former provides freedom to violate strict di�erential
privacy for some low probability events.

�ere are several approaches to making approximate
PCA while satisfying di�erential privacy. Input perturbation
adds noise to the data before computing the PCA, while
output perturbation adds noise to the output of PCA. We
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can add Laplace noise to implement input perturbation and
output perturbation. Both approaches can effectively sim-
plify data and preserve the data privacy; however, there are
few studies on their performance. At the same privacy
protection level, better performance (less noise and lower
error) mean better data utility. In this paper, we propose two
differential privacy principal component analysis algorithms
and evaluate their performance.

Our main contributions are as follows:

(1) We apply Laplace mechanism to propose two dif-
ferential privacy principle component analysis al-
gorithms, Laplace input perturbation (LIP) and
Laplace output perturbation (LOP), and give proof
for its (ε, 0)-DP.

(2) We offer two criteria, i.e., noise magnitude and
approximation error, to evaluate the performance of
two algorithms. Less noise and lower approximation
error result in better performance. (rough theo-
retical verification, we ensure that LIP has better
performance than LOP.

(3) We conduct the experiments to verify the performance
of LIP and LOP in terms of noise magnitude and
approximation error on five real datasets. We further
explore the variation of performance of the two al-
gorithms with different parameters such as number of
samples, target dimension, and privacy parameter. (e
experimental results show that at the different pa-
rameters, algorithm LIP always adds less noise and has
lower approximation error than LOP. Compared with
other algorithms, LIP can also provide good data utility.

(e rest of the paper is organized as follows. Section 3
introduces principle component analysis, differential pri-
vacy, and Laplace mechanism. Section 4 first describes the
two differential privacy principle component analysis al-
gorithms and then analyzes the privacy and utility. Section 5
shows the performance of two algorithms on five real
datasets. Section 6 concludes the paper.

2. Related Work

Since Dwork proposed the concept of differential privacy,
data preservation in the field of data mining and machine
learning has received considerable attention. (e current
research studies mainly focus on privacy-preserving clas-
sification, regression, and frequent itemset mining.

Classification technology plays an important role in data
prediction, which aims to build models that can describe and
distinguish data. (e typical privacy protection classification
algorithms are SuLQ-Based ID3, DiffP-C4.5, and DiffGen.
(e basic idea of SuLQ-Based ID3 [3] is to add noise to true
count value before calculating the information gain of the
attributes and finally generate the corresponding decision
tree. Although this method can satisfy differential privacy,
the added noise is too large. To overcome the disadvantages
of SuLQ-Based ID3, DiffP-C4.5 [4] first selects and splits
attributes by exponential mechanism. However, this method
can only support few analyses and queries. (e classification

accuracy of DiffGen [5] is higher than SuLQ-Based ID3 and
DiffP-C4.5 from the perspective of theory and practical
application; unfortunately, when the dimension of the
classification attribute is very large, the selection method
based on the exponential mechanism is inefficient and may
exhaust the privacy budget. Frequent itemset mining is an
effective data analysis method; it aims to discover itemsets
that frequently appear in the dataset. Bhaskar et al. proposed
algorithm truncated frequency (TF) [4]; it reduces the number
of candidate itemsets depending on their own frequency.
However, when the number of target itemsets is large, this
method will fail. Considering this weakness, Li et al. proposed
algorithm PrivBasis [5] according to the idea of θ-base (θ is a
threshold) to generate candidate itemsets. However, gener-
ating θ-base is not very easy. Inspired by Zeng and Li, Wang
et al. proposed algorithm PrivSuper [6] that randomly trun-
cates transactions in a dataset, which will cause large trun-
cation error. Regression is a common data analysis method in
machine learning; it is a quantitative relationship that de-
termines the interdependence of two or more attributes. (e
typical regression algorithms based on differential privacy are
logistic regression and linear regression. In algorithms LPLog
[7] and ObjectivePerb [8], the noise magnitude is decided by
the sensitivity of the weight vector and the cost of computing
sensitivity is high. Considering the disadvantages of the two
algorithms, algorithm functional mechanism (FM) [9] con-
trols the noise magnitude by the sensitivity of function itself
instead of the weight vector.

However, there are few studies on differential privacy
principal component analysis. Blum et al. [10] first proposed
the early input perturbation framework SULQ, but not for
data publishing. Chaudhuri et al. [11] proposed a privacy-
preserving PCA algorithm MOD-SULQ based on the ex-
ponential mechanism, which can be used for data pub-
lishing. Kapralov and Talwar [12] argued that the algorithm
(Chaudhuri et al.) lacks convergence time guarantee, and
they also designed a complex algorithm using the expo-
nential mechanism, but it is complicated to implement for
high-dimensional data. Dwork et al. [13] provided the al-
gorithms for (ε, δ)-DP, adding Gaussian noise to the original
sample covariance matrix. Inspired by Dwork, Imtiaz et al
[14, 15] and Jiang et al. [2] designed their algorithms for
(ε, 0)-DP. Both of them added Wishart noise with param-
eters chosen to have a better utility bound.

3. Preliminaries

Given a dataset X � [x1, x2, . . . , xn]T where xi ∈ Rd is the i-
th record.(ematrixX ∈ Rn×d contains information about d
attributes of n individuals (generally d< n). Following
previous work on privacy-preserving PCA, we also assume
‖xi‖2≤ 1, ‖·‖2 denotes the l2 norm. For a vector a ∈ Rd,

‖a‖2 �

������


d
i�1a

2
i



.
(e covariance matrix of the original data is

A �
1
n

X
T
X �

1
n



n

i�1
x

T
i xi, (1)

where A is a d × d symmetric matrix.
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(e principal components are obtained by computing
the eigenvalues and corresponding eigenvectors of the co-
variance matrix A:

Avi � λivi, (2)

where λi(1≤ i≤d) is the eigenvalue, denoting the pro-
portion of information that corresponding component in-
cludes. Larger λi means the component is more important.
We assume λi are ordered decreasingly, i.e., λ1 ≥ λ2 ≥ · · · ≥
λd ≥ 0. vi is the corresponding eigenvector.

In order to reduce the data to low dimension, a target
dimension k is needed. We want to select first k eigenvectors
which correspond to the top k eigenvalues. Given a threshold
α(0≤ α≤ 1), α denotes accumulative contribution rate of the
principal components [16]. Target dimension k can be de-
cided by


k
i�1λi


d
i�1λi

≥ α. (3)

Suppose Vk � (v1, v2, . . . , vk) is the first k eigenvectors of
A, vi and vj are orthonormal. We project the original data X
to the Vk to get low-dimensional data:

Y � XVk, (4)

where Y ∈ Rn×k; we can also get the rank-k approximation
[17] of X:

Z � XVkV
T
k. (5)

Our algorithms want to keep the statistics of X as much
as possible, and the approximation error between Z and X
can be measured by

MSE � ‖Z − X‖F. (6)

Lower MSE provides better data utility. ‖·‖F denotes
the Frobenius norm. For a matrix C ∈ Rm×n, ‖C‖F �����������


m
i�1

n
j�1c

2
ij


.

Now, we introduce the definition of differential privacy.

Definition 1 (differential privacy) [18]. A randomized
mechanism M is differentially private if for any neigh-
bouring datasets D and D′ (with at most one different re-
cord) and for all output O(O⊆Range(M)),

Pr[M(D) ∈ O]≤ e
ε

× Pr M D′(  ∈ O , (7)

where ε is the privacy budget controlling the strength of
privacy guarantee; lower ε ensures more privacy.

Sensitivity is the key parameter that determines how
much noise is required.

Definition 2 (sensitivity) [19]. For a function f : D⟶ R d

and any neighbouring datasets D and D′, the sensitivity of f

is defined as
Δf � max

D,D′
f(D) − f D′( 

����
����1. (8)

(e sensitivity describes the largest change due to an data
entry replacement. Sensitivity Δf is only related to the
function f.

(e Laplace mechanism adds independent noise to the
data; we use Lap(b) to represent the noise sampled from
Laplace distribution with a scaling of b.

Definition 3 (Laplace mechanism) [19]. Given a dataset D,
for a function f : D⟶ R d, with sensitivity Δf, the
mechanism M provides ε-DP satisfying

M(D) � f(D) + Lap
Δf
ε

 . (9)

Here, Lap(·) is a random variable. Its probability density
function is

p(x) �
1
2b

e
− (|x|/b)

. (10)

4. Proposed Algorithms and Analysis

In this section, we describe two differential privacy principal
component analysis algorithms: LIP and LOP. (rough
theoretical analysis, we prove the two algorithms satisfy
(ε, 0)-DP. Meanwhile, we investigate the utility of proposed
algorithms.

4.1. AlgorithmDescription. In algorithm LIP, we use Laplace
distribution to generate symmetric noise matrix and then
add it to the data covariance matrix. After computing the
eigenvalues and corresponding eigenvectors of the noised
covariance matrix, we select first k eigenvectors to make up
principal components space. In the end, we obtain low-
dimensional data by projecting the original high-di-
mensional data to the principal components space. Algo-
rithm LIP is described in Algorithm 1.

Vk
′ are the first k eigenvectors of the noised covariance

matrix A′, which is close to the true first k eigenvectors Vk of
covariance matrix A [13].

Besides adding noise prior to computing PCA, we also
add noise to the output of PCA. According to differential
privacy parallel composition [20], the whole dataset is
private as long as each record is private; a simple idea is
adding noise to each record to protect private information.
However, if this privacy preservation method is directly
applied to big data, the introduced noise will significantly
increase so that data utility dramatically drops. In order to
reduce noise without decreasing the level of privacy pres-
ervation, we can add noise to fewer but most important parts
of data. Algorithm LOP projects the original high-di-
mensional data to the principal component space to get low-
dimensional data. (e low-dimensional data are important
data, so we add noise to them to protect data privacy. Al-
gorithm LOP is described in Algorithm 2.

4.2. Privacy Analysis. Before proving that LIP and LOP
satisfy (ε, 0)-DP, we should analyze the sensitivities of these
two algorithms. Suppose there are two neighbouring data-
sets X � [x1, . . . , xi, . . . , xn]T ∈ Rn×d and X′ � [x1, . . . ,
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xi
′, . . . , xn]T ∈ Rn×d where xi ≠ xi

′, we assume the normalized
data vector ‖xi‖2≤ 1.

Lemma 1. In algorithm LIP, for all the input data, denote
f(X) � (1/n)XTX; then, the sensitivity of the function f(X)

equals 2d/n.

Proof. Suppose that A1 and A2 are the covariance matrices
of X and X′, respectively. □

A1 �
1
n

X
T
X,

A2 �
1
n

X′TX′.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

According to Definition 2, the sensitivity of function
f(X) is maxA1 − A21. (en, we have

A1 − A2
����

����1 �
1
n

X
T
X −

1
n

X′
T
X′

�������

�������1
�
1
n

x
T
i xi − x

′T
i xi
′

�����

�����1
,

(12)
where ‖·‖1 denotes the l1 norm, for a matrix C ∈ Rm×n,
‖C‖1 � max

j


m
i�1|cij|(1≤ j≤ n). For the normalized ‖xi‖2≤ 1,

we have

A1 − A2
����

����1 �
1
n

x
T
i xi − x′Ti xi

′
����

����1

≤
1
n

x
T
i xi

����
����1 + x′Ti xi

′
����

����1 

≤
2d

n
.

(13)

Theorem 1. Algorithm LIP satisfies (ε, 0)-DP.

Proof. For A′ derived from algorithm LIP on X and X′, we
obtain A′ � A1 + N1 and A′ � A2 + N2 where N1 and N2
are the corresponding noise matrices. □

f A′ ∣ X( 

f A′ ∣ X′( 
�

p N1( 

p N2( 
� e

(nε/2d) N2‖ ‖1− N1‖ ‖1( ), (14)

where p(N1) and p(N2) are the density functions of the
output functions at neighbouring datasets X and X′.
According to Lemma 1, we have

N2
����

����1 − N1
����

����1≤ N2 − N1
����

����1 � A1 − A2
����

����1≤
2d

n
. (15)

Combining equations (14) and (15), we can obtain
P A′ ∣ X( 

P A′ ∣ X′( 
≤ e

ε
. (16)

(erefore, algorithm LIP satisfies (ε, 0)-DP.

Lemma 2. In algorithm LOP, givenVk, denote g(X) � XVk;
then, the sensitivity of the function g(X) equals 2d.

Proof. Suppose that Y1, Y2 and Vk, Vk
′ are the low-di-

mensional data and first k orthogonal eigenvectors of X and
X′, respectively. □

Y1 � XVk,

Y2 � X′Vk
′.

 (17)

According to Definition 2, the sensitivity of function
g(X) is max ‖Y1 − Y2‖1. (en, we have

Input: matrix X ∈ Rn×d, number of samples n, attributes d, privacy parameter ε;
Output: Z1: the rank-k approximation matrix

(1) Compute covariance matrix A � (1/n)XTX;
(2) Noise matrix E1 ∈ Rd×d is a symmetric matrix where the upper triangle is (d2 + d)/2 i.i.d. sample from Lap(2d/nε), and each lower

triangle entry is copied from the opposite position;
(3) Add noise A′ � A + E1;
(4) Compute eigenvalues and corresponding eigenvectors of the noised covariance matrix A′vi

′ � λi
′vi
′;

(5) Given a threshold α, select top k eigenvectors Vk
′ of A′, low-dimensional data Y1 � XVk

′ ;
(6) (e rank-k approximation matrix Z1 � Y1Vk

′T;

ALGORITHM 1: Laplace input perturbation (LIP).

Input: matrix X ∈ Rn×d, number of samples n, attributes d, privacy parameter ε;
Output: Z2: the rank-k approximation matrix

(1) Compute covariance matrix A � (1/n)XTX;
(2) Compute eigenvalues and corresponding eigenvectors Avi � λivi;
(3) Given a threshold α, select top k eigenvectors Vk of A, low-dimensional data Y2 � XVk;
(4) Noise matrix E2 is a n × k matrix where the whole elements are i.i.d. samples from Lap(2d/ε)
(5) Add noise Y2′ � Y2 + E2;
(6) (e rank-k approximation matrix Z2 � Y2′V

T
k ;

ALGORITHM 2: Laplace output perturbation (LOP).
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Y1 − Y2
����

����1 � XVk − X′Vk
′

����
����1. (18)

Since Vk � (v1, . . . , vk) and Vk
′ � (v1′, . . . , Vk

′) are both
composed of k unit orthogonal eigenvectors,

Y1 − Y2
����

����1 � XVk − X′Vk
′

����
����1≤ X − X′

����
����1 ≤ xi − xi

′
����

����1.

(19)

For the normalized ‖xi‖2≤ 1, we have

Y1 − Y2
����

����1≤ xi − xi
′

����
����1≤ xi

����
����1 + xi
′

����
����1

≤ 2d.
(20)

Theorem 2. Algorithm LOP satisfies (ε, 0)-DP.

Proof. For Y′ derived from algorithm LOP on X and X′, we
obtain Y′ � Y1 + N1 and Y′ � Y2 + N2, where N1 and N2
are the corresponding noise matrices. □

g Y′ ∣ X( 

g Y′ ∣ X′( 
�

p N1( 

p N2( 
� e

(ε/2d) N2‖ ‖1− N1‖ ‖1( ), (21)

where p(N1) and p(N2) are the density functions of the
output functions at neighbouring datasets X and X′.
According to Lemma 2, we have

N2
����

����1 − N1
����

����1≤N2 − N1
����

����1 � Y1 − Y2
����

����1≤ 2d. (22)

Combining equations (22) and (23), we can obtain

P Y′ ∣ X( 

P Y′ ∣ X′( 
≤ e

ε
. (23)

(erefore, algorithm LOP satisfies (ε, 0)-DP.

4.3. Utility Analysis. In Section 4.2, we proved that algo-
rithms LIP and LOP both satisfy (ε, 0)-DP. Next, we evaluate
the performance of the two algorithms. In order to protect
data privacy, we add noise to covariance matrix and low-
dimensional matrix in LIP and LOP, respectively. Adding
noise may have effect on the performance of algorithms, and
noise magnitude directly determines the magnitude of effect.
In addition, approximation error also describes the per-
formance of algorithms. Better data utility means less noise
and lower approximation error, so we evaluate algorithms
LIP and LOP in terms of noise magnitude and approxi-
mation error.

Theorem 3. For a given privacy parameter ε, algorithm LIP
adds less noise than LOP. Fe larger the samples n and target
dimension k are, the less noise the algorithm LIP adds than
LOP.

Proof. In algorithm LIP, noise matrix E1 has d2 elements,
each element adds noise Lap(2d/nε), and the variance of
noise is about N1 � O(d4/n2ε2). □

In algorithm LOP, noise matrix E2 has n · k elements,
each element adds noise Lap(2d/ε), and the variance of noise
is about N2 � O(nkd2/ε2).

Now, we compare N1 and N2 to measure the noise
magnitude of two algorithms:

N1 � O
d4

n2ε2
  � O d

2
·

d2

n2ε2
 <O d

2
·

n2

n2ε2
 <O

d2

ε2
 

<O
nkd2

ε2
  � N2,

(24)

where d< n. From formula (24), we observe N1 <N2, that is,
algorithm LIP adds less noise than LOP.

Let θ � N1/N2 � O(d4/n2ε2)/O(nkd2/ε2) � O(d2/n3k)

<O(1) be the noise ratio. We observe that θ< 1. Further-
more, θ and n, k show strong negative correlation. (at is, if
we take a larger sample n and target dimension k, LIP will
add less noise than LOP.

Theorem 4. For a given privacy parameter ε, algorithm LIP
has lower error than LOP in the rank-k approximation of raw
data.

Proof. In algorithm LIP, the rank-k approximation of X is

Z1 � XVk
′V′Tk. (25)

□

In algorithm LOP, the rank-k approximation of X is

Z2 � XVk + E2( V
T
k. (26)

Let

MSE1 � Z1 − X
����

����F
� XVk
′V′Tk − X

�����

�����F
, (27)

MSE2 � Z2 − X
����

����F
� XVk + E2( V

T
k − X

����
����F

. (28)

MSE1 and MSE2 denote approximation errors in X and
Z1, X and Z2, respectively. Now, we compare MSE1 and
MSE2 to measure the approximation errors of two algo-
rithms. Based on linear algebra, we have

XVkV
T
k − X

����
����
2
F

�
λk+1 + · · · + λd

λ1 + · · · + λd

‖X‖
2
F. (29)

In equation (29), Vk and λ1, . . . , λd are computed with
the accurate matrix A while Vk

′ is computed based on the
matrix A′ with noise in equation (27). (eorem 6 in Dwork
et al. [13] provides the closeness between Vk and Vk

′. Vk
′ not

only captures large amount of variance, but is also close to
the Vk of A. (eorem 6 in Dwork et al. [13] also gives the
upper bound between Vk and Vk

′; when σk − σ2k � ω(
�
n

√

Δε,δ), there is

VkV
T
k − Vk
′V′Tk

�����

�����F
� O

��
kn

√
Δε,δ

σ2k − σ2k+1
 , (30)

whereΔε,δ �
����������
2ln(1.25/δ)


/ε is the noise parameter inGaussian

distribution. In Gaussian mechanism [13], noise matrices are

Security and Communication Networks 5



samples from N(0,Δ2ε,δ), equalling Lap(0, (2 d/nε)) in our
Algorithm 1. σk is a singular value in SVD; according to the
relationship between PCA and SVD, we have σ2k � λk.

From equation (30), we know that Vk and Vk
′ are very

close but still have little difference. Under the effect of
difference and noise, we have

XVk
′V′Tk − X

�����

�����F
> XVkV

T
k − X

����
����F

. (31)

Combining equations (29) and (31), we have

MSE1 � XVk
′V′Tk − X

�����

�����F
>

������������
λk+1 + · · · + λd

λ1 + · · · + λd



‖X‖F. (32)

From equation (28), Vk is computed based on the ac-
curate matrix A.

MSE2 � XVk + E2( V
T
k − X

����
����F

� XVkV
T
k − X + E2V

T
k

����
����F

.

(33)

According to ‖A + B‖F ≤ ‖A‖F + ‖B‖F, we have

MSE2≤ XVkV
T
k − X

����
����F

+ E2V
T
k

����
����F

≤

������������
λk+1 + · · · + λd

λ1 + · · · + λd



‖X‖F + E2V
T
k

����
����F

.

(34)

Let η � MSE1/MSE2; η< 1 indicates algorithm LIP has
lower approximation error than LOP:

η �
MSE1
MSE2

>

��������������������������
λk+1 + · · · + λd( / λ1 + · · · + λd( 


‖X‖F

��������������������������
λk+1 + · · · + λd( / λ1 + · · · + λd( 


‖X‖F + E2V

T
k

����
����F

>
1

1 + E2V
T
k

����
����F
/

��������������������������
λk+1 + · · · + λd( / λ1 + · · · + λd( 


‖X‖F 

.

(35)

E2 is a n × k matrix. With the increase of target di-
mension k, the value of ‖E2V

T
k ‖F will increase, while��������������������������

(λk+1 + · · · + λd)/(λ1 + · · · + λd)


will decrease. (us, ap-
proximation error ratio η decreases and max η< 1. Since
η< 1, LIP has lower error than LOP in the rank-k ap-
proximation of raw data.

(eorem 3 and (eorem 4 prove that algorithm LIP
adds less noise and has lower approximation error than
LOP, that is, algorithm LIP outperforms LOP in data
utility.

5. Experimental Results and Analysis

In this section, we will give some experimental results to
verify that algorithm LIP outperforms LOP in data utility.
We compare algorithms LIP and LOP in terms of noise
magnitude and approximation error. In addition, we in-
vestigate the variation of performance of the two algorithms
with different key parameters such as number of samples n,

target dimension k, and privacy parameter ε. Five UCI
datasets are used in our experiments: Secom [21], Covtype
[22], Musk [23], Handwritten [24] and Waveform [25]. We
preprocess the data by subtracting the mean and normal-
izing data to meet the condition xi2 ≤ 1. We select target
dimension k so that the accumulative contribution rate of
the principal components α is at least 85%. In all cases, we
show the average performance over 100 runs of each
algorithm.

5.1. Experiments for Noise Magnitude. In this section, we
evaluate the performance of algorithms LIP and LOP by
comparing the magnitude of introduced noise. In (eorem
3, the ratio of introduced noise θ � N1/N2 � O(d2/n3k)

indicates that θ and n, k have strong negative correlation and
θ< 1. In the experiment, we verify that above conclusions are
correct (we use the Frobenius norm of noise matrices E1 and
E2 to represent N1 and N2).

In order to better present the experimental results of all
datasets in one figure, we unify the noise ratio θ, and all the
objects are scaled to same size (θ in datasets Secom, Covtype,
Musk, Handwritten, and Waveform are 1, 105, 102, 102, and
103 times the original value, respectively). For this experi-
ment, we keep number of samples n fixed to investigate the
relationship between the ratio of introduced noise θ and
target dimension k. In Figure 1 we observe that even
expanding the value of θ, θ is always less than 1; with the
increase of value k, the ratio of introduced noise θ on five
datasets continuously decreases. (at is, θ and k are nega-
tively correlated; the larger the target dimension k is, the less
noise the LIP adds than LOP. (e result is consistent with
(eorem 3.

(en, we explore the effect of samples n on the ratio of
introduced noise θ. In case of fixing target dimension k,
Figure 2 shows θ is always less than 1, and θ decreases as the
value of n increases in five datasets. (at is, θ and n are
negatively correlated; the larger the samples n are, the less
noise the LIP adds than LOP. (e result is consistent with
(eorem 3.

5.2. Experiments forApproximationError. In this section, we
evaluate the performance of algorithms LIP and LOP by
comparing the approximation error. In (eorem 4, the ratio
of approximation error η � MSE1/MSE2 indicates that η< 1.
(us, in the experiment, we verify (1) η is less than 1 and (2)
η and k are negatively correlated while η and ε are positively
correlated.

In (eorem 3 and Section 5.1, we observe that the larger
the target dimension k is, the less noise the algorithm LIP
adds than LOP. Less noise results in lower error. In addition,
we further explore mathematical expression of η in(eorem
4 and find that η< 1, and η and k are negatively correlated.
Similarly, we unify the approximation error ratio η, and all
the objects are scaled to same size (η in each dataset is 103,
102, 103, 102, and 102 times the original value). For this
experiment, we keep privacy parameter ε fixed to investigate
the relationship between the ratio of approximation error η
and target dimension k. As shown in Figure 3, when the
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value of k increases, the ratio of approximation error η
decreases and max η< 1. In other words, η and k are
negatively correlated, which means when k is larger, LIP
has lower error than LOP in the rank-k approximation of
raw data. (e experimental result is consistent with
(eorem 4.

Finally, we explore the variation of η with privacy pa-
rameter ε. Similarly, we unify the approximation error ratio
η, and all the objects are scaled to same size (η in each dataset
is 10, 10, 103, 103, and 102 times the original value). In
Figure 4, for all the datasets, we observe that as ε increases,
the ratio of approximation error η increases. Furthermore, η
and ε are positively correlated, even in the case of no privacy
preserving, i.e., ε � 10, η is still less than 1. It can be
explained as follows: Dwork et al. pointed out that Vk

′ is close
to the true top k eigenvectors eigenvectors Vk in input
perturbation [13], that is, algorithm LIP is not very sensitive
to privacy parameter ε. Output perturbation due to directly
adding noise to the output and privacy parameter ε plays a
negative role in data utility. Lower ε means more noise and
higher approximation error. (us, when ε increases, MSE1
decreases slightly while MSE2 decreases greatly and
η � MSE1/MSE2 increases. (erefore, at the same privacy
protection level, algorithm LIP has lower error than LOP in
the rank-k approximation of raw data.

5.3. Experiments for Accuracy. In Sections 5.1 and 5.2, we
verify that algorithm LIP outperforms LOP in data utility.
To verify the effectiveness of algorithm LIP compared with
the existing algorithms AG [13] and PPM [26], we eval-
uate the classification accuracy on Handwritten and
Waveform datasets. (e classifier used in the experiment
is linear support vector machine (SVM). In SVM, there are
many parameters that can affect accuracy; we mainly
consider the influence of privacy parameter ε on the
accuracy.

In Figure 5, we show the variation of accuracy with
different values of ε. For all the datasets, we observe that as ε
increases (higher privacy risk), the accuracy increases sig-
nificantly, which indicates that the value of ε has an im-
portant effect on accuracy. On the other hand, the accuracy

of algorithms AG and LIP are higher than that of PPM on the
two datasets. In addition, algorithm AG outperforms LIP in
accuracy; it can be explained as the utility gap between
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Figure 2: Variation of θ with different values of samples n. (a) Secom. (b) Covtype. (c) Musk. (d) Handwritten. (e) Waveform.
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(ε, δ)-DP and (ε, 0)-DP (AG satisfies (ε, δ)-DP and LIP
satisfies (ε, 0)-DP). (ε, 0)-DP provides stronger privacy
guarantee and weaker data utility than (ε, δ)-DP. For large
enough ε, our algorithm LIP can match the performance of
AG. More important, it can provide a stronger privacy
guarantee than AG. In conclusion, algorithm LIP achieves
both strong privacy guarantee and good data utility.

6. Conclusions

In this paper, we propose two algorithms Laplace input
perturbation (LIP) and Laplace output perturbation
(LOP) for differential privacy principal component
analysis. We compare the performance of LIP and LOP in
terms of noise magnitude and approximation error via
theoretical analysis. (en we conduct many experiments
to verify the performance of two algorithms on five data
sets. In the experiments, we show the variation of per-
formance of the two algorithms with different parameters
such as privacy parameter, target dimension and samples.
Our theoretical and experimental results indicate that
algorithm Laplace input perturbation (LIP) adds less noise
and has lower approximation error than Laplace output
perturbation (LOP). Last, to verify the effectiveness of
algorithm LIP, we compare our LIP with other recent
algorithms AG and PPM, the experimental results show
that algorithm LIP can provide strong privacy guarantee
and good data utility.
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