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-e SEND uses CGA as its address configurationmethod. CGA binds the IPv6 address withmultiple auxiliary parameters, thereby
making the dependency relationship between IPv6 address and host provable, which prevents address embezzlement. Owing to
the considerable overhead in CGA parameter verification, the malicious host can use this point to carry out DoS attacks. To
prevent DoS, the paper proposes a new duplicate address detection method in an SDN environment called FDAD. Two additional
mechanisms are added to the FDAD, namely, query and feedback; messages used by the new mechanisms are also designed.
-rough these twomechanisms, on the one hand, the host can query theMAC address of the suspect host to the controller. On the
other hand, if the CGA parameter verification fails, the controller will use feedback information to suppress malicious host from
its source port in order to prevent subsequent attacks. Experiments show that the CPU overhead of FDAD is much lower than the
normal CGAwhen suffering Denial of Service attack.-e increased CPU consumption andmemory overhead of the controller are
also within acceptable range, and the network communication overhead is greatly reduced.

1. Introduction

People use modular approach in dealing with complex
problems. In complex network communication, people
utilize a hierarchical method to simplify its design and
implementation. Regardless of the TCP/IP structure or the
OSI structure, both expressed modularity [1]. To simplify the
design, each layer employs different independent commu-
nication addresses, such as, Internet layer (layer 3) uses IP
address as the communication address of the packet,
whereas data-link layer (layer 2) utilizes the Media Access
Control (MAC) address as its communication address to
forward the frame.

A hierarchical network should solve two problems: one
is how the network entity obtains its communication address
and ensures its uniqueness, and the other one is how to
determine the correspondence of communication addresses
between layer N+1 and layer N when data are encapsulated
and forwarded. For example, when layer 3 encapsulates the
data using the IP address and forwards it to data-link layer,

the data-link layer needs to determine what the MAC ad-
dress should be used to complete the current layer’s
encapsulation.

At present, there are two main protocols for solving the
aforementioned problems: Address Resolution Protocol (ARP)
and Neighbor Discovery Protocol (NDP) [1, 2]. -e ARP is
employed to solve the corresponding relationship between IP
and MAC addresses in IPv4. IPv6 uses NDP to carry out the
same thing [3].-eNDP protocol has a functional extension to
ARPwhich includes some new functions, such as the Duplicate
Address Detection (DAD), Neighbor Unreachable Detection
(NUD), and Stateless Address Auto Configuration (SLAAC)
[4]. However, manyweaknesses in ARP have not been properly
solved and persisted in NDP, such as Denial of Service (DoS) in
the DAD process.

As shown in Figure 1, when host A is accessed in a LAN,
it has to obtain a network address for future communication,
and DAD should be completed before a new address is
utilized to ensure its uniqueness. -us, malicious host C can
use it to carry out attacks with two basic methods:
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(i) Send a reply to host A, declaring that the address has
been occupied

(ii) Perform a DAD, and the target address is the same as
host A wants to use

Both of these attacks can cause host A to believe that IPx
was occupied, and it should choose other addresses and
repeat DAD. If the attack of malicious hosts persists, then
victim host A will have no address to use.

Although IPv6 recommends using Internet Protocol
Security (IPSec) to fully protect IPv6 messages, the chicken-
and-egg problem is bothersome when IPSec is employed to
protect NDP messages [5]. IPsec should establish a point to
point Security Association (SA) before security communi-
cation. However, the neighbor discovery process should be
completed before SA is set up. -erefore, IPsec cannot be
used to protect NDP [6]. In this regard, IETF proposes
SEcure Neighbor Discovery (SEND) as an enhancement for
NDP. SEND uses four options, namely, Cryptographically
Generated Address (CGA), Timestamp, Signature, and
Nonce to prevent IPv6 address embezzlement [7]. Even so,
DoS attack still bothers SEND [8].

In order to improve the security of DAD, we propose a
new method which is called Feedback Duplicate Address
Detection (FDAD). FDAD’s query and feedback mecha-
nisms have the ability to record information of Neighbor
Solicitation (NS) and Neighbor Advertisement (NA) in
DAD process and thus make DAD process stateful.-e node
can use its computing ability to identify the NA with forge
CGA parameters, and then feedback the results to the
FDAD-Server. -ese will make controller have ability to
inhibit malicious NA from the entrance, thereby preventing
DoS attacks. Section 2 introduces the DoS principle in DAD
and related research. Section 3 introduces the principle of
feedback mechanism and shows the FDAD workflow
through an instance. Section 4 is the experiment and result
analysis; Section 5 summarizes the article.

2. Related Works

To prevent address deception, the Internet Engineering Task
Force (IETF) proposed SEND. To enhance NDP, SEND uses
CGA [9, 10], digital signature, and timestamp to protect
NDP messages and to prevent IP address embezzlement.

CGA is a unique address format for SEND, and its gener-
ation method has two steps: first is to find an appropriate
Modifier through multiple times hash operations on public
key, zero bit, Modifier, and extension field resulting in
hahs2; second is to create a hash operation on Modifier,
Collision Count, public key, and extension field leading to
hash1; the left 64 bits of 160 bit hash1 is then combined with
Security Level (Sec) and other parameters to form the final
CGA address. -e CGA calculation process is presented in
Figure 2.

Although SEND uses complex security technologies,
some problems still exist. First, the CGA computation and
verification process requires a lot of CPU resources. Second,
additional options expand the NDP message and increase
communication overhead. -ird, CGA generation time is
related to the Sec bit, in which the larger the Sec value is, the
longer the time is. Furthermore, when a new address is
generated, DAD is still necessary.

In view of the aforementioned issues, Alsa’deh et al.
[11] proposed stopping time algorithm for CGA process,
which limits time consumption on CGA, and an appro-
priate Sec value is obtained by determining the upper limit
of resource, to ensure that the CGA address is generated
within a specified time. Rafiee et al. [12] indicated a
parallel computing algorithm by using a multicore pro-
cessor to shorten CGA computing time. Cheneau et al.
[13] suggested using Elliptic Curve Cryptography (ECC)
key and ECDSA to replace the RSA key and corresponding
signature algorithm in order to reduce CGA computing
time, but the same security can be achieved. Due to the
ECC’s key is shorter, so the NDP message generated is
smaller. Qadir and Umar Siddiqi [14] make a performance
evaluation of the deployments of CGA in mobile envi-
ronment, and it shows that, in addition to the Sec field
should not be greater than 0, the choice of public key is
also crucial.

Su et al. [15] added a high-performance server in LAN
for key computing, and it is recommended to use Dy-
namic Host Configuration Protocol (DHCP) server to
manage CGA. -e DHCP protocol is improved so that
CGA parameters can be broadcasted in the network.
When a host needs to compute CGA, the computing
process is handed over to the DHCP server for comple-
tion. Certainly, this makes the DHCP server single point
of failure. CS-CGA recommends using ECC instead of
RSA to speed up calculation, and subnet prefix is also
encrypted to counter the spatiotemporal balance algo-
rithm [16]; however, this undoubtedly has a negative
impact on routing and forwarding. Reshmi and Murugan
[17] used the entropy of system state to generate Interface
IDentifier (IID), which overcomes the centralized com-
putation of CGA, reduces address calculation time, and
prevents privacy leakage.

Owing to technical and cost reasons, most operating
systems and communication device vendors have only
implemented the partial function of SEND. -us, the SEND
protocol still has abundant work to complete from actual
deployment [18, 19]. -e CGA verification process is de-
scribed in Figure 3 as follows:
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Figure 1: DAD attack.
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(1) If the collision count is not equal to 0, 1, or 2, then
CGA verification fails; otherwise, proceed to Step 2.

(2) Check whether the subnet prefix in CGA parameters is
equal to the subnet prefix of the address; if it is unequal,
then CGA verification fails; else go to Step 3.

(3) Calculate hash1; compare hash1 with IID (ignoring
left 1, 2, 3, 6, and 7 bit). If unequal, then CGA
verification fails; otherwise, proceed to Step 4;

(4) Calculate hash2, combined with the Sec; if the left 16
× sec bits in hash2 are zero, the verification passed;
otherwise, CGA verification fails.

In theory, CGA can effectively prevent address deception.
-e one-way feature of the hash function means that, for a
given y, finding an x to satisfy equation hash(x)� y is com-
putationally infeasible [20]. -erefore, malicious hosts cannot
embezzle other hosts’ address by forgery parameters; simul-
taneously, digital signatures further increase deception diffi-
culty. However, a host should complete verification whether
CGA parameters are right or not. -erefore, a malicious host
can send numerousNAwith false CGAparameters to consume
the computing resources of a victim, forming DoS [21]. -us,
the manners in which DoS attacks are prevented and host CPU
overhead is reduced to remain a major challenge for SEND.

3. FDAD

In traditional Ethernet, solving Denial of Service (DoS)
attacks in the DAD process is difficult due to the equivalence
between hosts and incompleteness of knowledge with single
host [22]. However, the emergence and development of
Software Defined Network (SDN) have injected new vitality
into modern network. -e characteristics of its forwarding
and control separation and programmability provide new
ideas for solving the network problem [23–26], such as the
NDP message authentication scheme in SDN environment
[27]. In SEND, network device has no ability to distinguish
NA which is constructed by malicious host using false CGA

parameters, but the host has the ability to distinguish them
by hash calculation; therefore, we propose FDAD as a so-
lution. In FDAD, the computing-intensive tasks are per-
formed by various hosts, and the control plane prevents DoS
attacks from the data plane. -e characteristics of FDAD
include the following aspects:

(i) FDAD designs a feedback mechanism for duplicate
address detection in SDN environment, which
contained two parts: FDAD-S (FDAD-Server) and
FDAD-C (FDAD-Client).

(ii) FDAD-C can take advantage of host’s computing
power to identify malicious message, then feedback
to the FDAD-S.
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(iii) FDAD-S can then suppress malicious attacks from
the source based on feedback information, thereby
avoiding meaningless CGA verification consuming
the CPU resources of the host.

-e architecture of FDAD is shown in Figure 4. It mainly
includes four modules: Monitor, Status, FeedBack, and
Suppression. -e functions of each module are as follows:

Monitor module: it includes two functions. On the one
hand, it is responsible for initializing switches to
monitor NDP messages; on the other hand, it classifies
received messages, forwards NDP messages to Feed-
back module, and forwards OpenFlow statistical
messages to Status module.
Status module: it is responsible for statistical queries of
switch flow tables and forwards the query results that
satisfying specific conditions to Feedback module for
processing.
FeedBack module: it is responsible for maintaining and
recording the behavior of DAD process in NDP, ini-
tiating MAC address statistics, and sending NDP
message suppression rules. To achieve the above
functions, it includes four tables: TNS, TNA, TQuery, and
TFeedBack.
Suppression module: it generates flow tables and sends
them to the corresponding switches according to the
suppression rules generated by Feedback module.

FDAD-C is mainly responsible for CGA validation,
MAC query, and feedback in the SEND process of the client.

In the following description, we assume that all the DAD
messages include CGA, Signature, Nonce, and Timestamp
options and that the network is consisted by OpenFlow-
enabled switches. To implement FDAD, we designed three
new messages: FDAD-Request, FDAD-Reply, and FDAD-
Feedback. -eir formats are basically the same as that of
NDP messages, whereas the differences are as follows:

(1) Unlike NS and NA, their ICMPv6 “type” field is 200
(2) -ree new options are used, detailed formats are

presented in Figure 5, and the descriptions of each
field in options are shown in Table 1

3.1. FDAD-S. -e FDAD-S is an app running over the SDN
controller. In FDAD-S, we added a feedback module to
control the FDAD workflow. -e feedback module contains
four tables: TNS, TNA, TQuery, and TFeedback; their formats are
the same as in Tables 2–5, respectively. -e TNS table is used
to record the NS in the DAD and the TNA table is used to
record the NA that corresponds to the NS.-e TQuery table is
utilized to note the query initiated by the hosts that pre-
viously sent NS, and it is constrained by the TNS and TNA.
-e TFeedback table is employed to record the feedback of the
host that has carried out DAD before, and it is constrained
by the TQuery.

FDAD-S monitors the NS and NAmessages in the DAD
process by the preset flow tables in switch. -e processing of
different messages is as follows:

(1) NS: if the entry, which meets the condition
Entry’.NS.Tgt� �NS.Tgt, does not exist in the TNS,
then a new entry is added to the TNS (fields NS.Dpid
and NS.Port are extracted from the Dpid and
In_Port fields of the Packet_In message. NS.MAC,
NS.Tgt, NS.Ts, NS, and Nonce are extracted from the
corresponding NA fields carried by the Packet_In
message. -ese methods are also used in TNA).
Otherwise, discard the NS.

(2) NA: if it satisfies Conditions 1–3, then a new entry is
added to TNA; otherwise, discard NA.

Condition 1. -e receiving NA is not duplicated with all the
entries in TNA.

Condition 2. -ere is an Entry’ in TNS that satisfies
Entry’.NS.Tgt� �NA.Tgt.

Condition 3. Nonce and Timestamp field of Entry’ is related to
the corresponding fields ofNA (NA.Nonce� �Entry’.NS.Nonce,
and NA.Timestamp-Entry’.NS.Timestamp≤ 3).

(3) FDAD-Request: if there is an Entry’ in TNS and an
Entry” in TNA satisfy Condition 4–7, then a new entry
is added in TQuery, and it means the query is legal. -e
various fields of the new entry are extracted fromEntry’
and Entry”. -en, MAC query is then carried out. -e
query algorithm is shown in Algorithm 1.

(i) If the query is successful, then the flag of the new entry
is set to T; otherwise, the flag should be set to F. -e
message is discarded if the conditions are not satisfied.

Condition 4. Entry’.NS.Dpid� �Packet_In.Dpid.

Condition 5. Entry’.NS.Port� �Packet_In.InPort.

FDAD-S

Switch Switch

Monitor Status

C
ontroller

Packet_In/Out Flow_Mod Stats_request
/reply

Feedback

TNATNS

TQuery TFeedback

FDAD-C FDAD-C FDAD-C

NS/NA Request/reply Feedback

Data 
plane

Suppression

Figure 4: Architecture of FDAD.
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Condition 6. Entry’.NS.MAC� � FDAD-Request.SrcMAC.

Condition 7. Entry’.NA.MAC� � FDAD-Request.Option.
MAC.

(4) FDAD-Feedback: if there is an Entry’ in the TQuery
that satisfies the conditions 8–13, then a new entry is
added in TFeedback, and the various fields of the new
entry are extracted from Entry’. Related entries in the
TNS, TNA, and TQuery should be deleted; else discard
the FDAD-feedback.

Delete procedure: if feedback is successful, it means that
a NA is malicious; then, first it deletes the entries related to
the NA in TQuery, then deletes the entries related to the NA in
TNA, and finally deletes the entries related to the NA in the
TNS.

Condition 8. Entry’.NS.Dpid� �Packetin.Dpid.

Condition 9. Entry’.NS.Port� �Packetin.InPort.

Ethernet header IPv6 header

Dst MAC
Src MAC

Type

Version = 6, traffic class
Flow label, 

Payload,length
Next header = ICMPv6

Src IPv6 ,Dst IPv6

ICMPv6

Type =2 00
Code = 0x0
RSO, target

Options

MAC
Pad

Qtype = 0 QLen Reserved

Create_time

MAC
Pad

Qtype = 1 QLen Reserved

Datapath_Id

Port_No.

(a) FDAD-request

(b) FDAD-reply

MAC
Pad

Qtype = 2 QLen Reserved

Datapath_Id

Port_No.

(c) FDAD-Feedback

Figure 5: FDAD-request, -reply, and -feedback.

Table 1: Descriptions of each field.

Field Description
QType 8 bits; 0, query message; 1, reply message; 2, feedback message
QLen 8 bits, the length of the message, and unit is bytes
Reserved 16 bits, reserved, all is zero
MAC 48 bits, the queried MAC address, all zero in reply message indicate MAC not exist
Datapath_Id 64 bits, the ID of OpenFlow switch which MAC table contains the queried MAC
Port_No. 32 bits, the port number corresponding to queried MAC
Create_time 64 bits, creation time of the queried MAC

Table 2: TNS (first update).

NS.Dpid NS.Port NS.MAC NS.Tgt NS.Ts NS.Nonce
0×1 1 0000-0000-0001 CGAX T1 R1

Table 3: TNA.

NA.Dpid NA.Port NA.MAC NA.Tgt
0× 2 3 MACC CGAX

Table 4: TQuery(first update).

NS.Dpid NS.Port NS.MAC NA.Dpid NA.Port NA.MAC Flag
0×1 1 MACA 0× 2 3 MACC

Table 5: TFeedback (first update).

NS.Dpid NS.Port NS.MAC NA.Dpid Mm,NA.Port NA.MAC
0×1 1 MACA Ox2 3 MACC

Security and Communication Networks 5



Condition 10. Entry’.NA.Dpid � � FDAD.Feedback.Option.
Datapath_Id.

Condition 11. Entry’.NA.Dpid� � FDAD.Feedback.Option.
Port_No.

Condition 12. Entry’.NA.MAC� � FDAD.Feedback.Option.
MAC.

Condition 13. Flag is T.

3.2. FDAD-C. From the view of Ethernet, the DoS can be
divided into two categories, such as using real and forged
MAC addresses. For the first class, the blacklist will be a good
choice. It means that the victim host can write the MAC
address of the malicious host in a blacklist to prevent the
DoS attack. For the second class, only the blacklist is in-
sufficient because malicious hosts can randomly change
values of the fields related to its MAC address.

When the MAC frame is forwarded in Ethernet, the
same MAC address will form a forwarding path on multiple
switches. If a host uses a newMAC address to communicate,
then a new forwarding path will be formed on the switches.
Corresponding to the SDN network, if the host adopts a new
MAC address, no matter the switch is reactive or proactive,
and then it will generate the flow table related to the new
MAC address. -erefore, we can determine the authenticity
of the MAC address by analyzing the generation time of the
flow table related to the MAC address. -e DAD process of
the host in FDAD-C is shown in Figure 6, described as
follows:

(1) After the host generates a new CGA address, suppose
it is CGAX, the host should broadcast NS to carry out
DAD and record start time as T1.

(2) Within a specified time (usually 3 seconds), if the
host receives an NA responding to the NS, then it will
record the receiving time as T2 and check whether
the MAC address in the Option field is consistent
with that at the head of NA and whether it is in the
blacklist. If any of these conditions are met, then the
NA will be discarded, and go back to Step 2. If all the
conditions are not satisfied, then go to Step 3.

(3) Send FDAD-Request message to query the switch
identity, port number, and MAC address generation
time of the NA.

(4) Receive FDAD-Reply message: if no record matches
its MAC address, then the NA should be discarded;
otherwise, go to Step 5.

(5) Determine whether MAC is added within T2-T1; if it
is, go to Step 6; otherwise, go to Step 7.

(6) Add the switch’s Dpid and Port_No. to the blacklist,
set its flag to F and then perform the CGA
verification.

(7) -e host carries out the CGA verification, if the
verification fails, then Step 8 is executed; otherwise,
Step 9 is executed.

(8) Using NA.srcMAC as a key search in the blacklist, if
no Entry’ satisfies condition Entry’s MAC�

�NA.srcMAC, then the NA’s SrcMAC, Dpid, and
Port_No. should be added to the blacklist, and set the
flag as T. If it exists, then its flag should be updated to
T, and send FDAD-Feedback message to FDAD-S to
report the source MAC, switch Dpid and Port_No of
the NA, and then go back to Step 2.

(9) DAD failed and CGAX is in conflict. If the blacklist
has an entry corresponding to the NA.SrcMAC field,
then remove it.

-e blacklist contains five fields: Switch Dpid, Port No.,
MAC, Idle_time, and Flag. -e Idle_time field is used to
record the idle time of the entry, field value plus 1 per
second; if the entry is not matched within 3minutes, then the
entry will be removed from the blacklist. -e Idle_time field
is cleared each time the entry is matched.

3.3. FDAD Instance. Suppose the network is composed of
one SDN controller, two Openflow switches, and three hosts.
-e network has been running for a period of more than
3minutes. -e topology is shown in Figure 7, and the
configuration of each host is presented in Table 6.

First, the controller should dispatch the flow table
toOpen vSwitch1 (OVS1) and OVS2 in order to monitor
DAD message in the network. -e items in the flow table
related to monitor are shown in Table 7.

Assume that host A generates a new link-local address
CGAX using CGA as the address configuration method (for
illustrative purposes, supposing the last 32 bits of CGAX is

Algorithm 1: Create time searching
Input: MACx
Output: Create time
Time�MAX

For each Flow-Table in Switch do
For each entry in Flow-Table do

IfMACx exist in entry then
Ifentry.CreateTime<Time then

Time� entry.CreateTime
Switch_Dpid�OVS.ID
Port_No.� entry.Ingress_Port

End if
End if

End for
End for

If Time� �MAX then
Return False

Else
Return Time, Switch_Dpid, Port_No.

ALGORITHM 1: In FDAD, when the FDAD-S receives the FDAD-
Request message from the host, the former inquires the OpenFlow
switch and finds the earliest generation time of a specific MAC by
traversing flow tables of each switch.
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“cc00-aabb”), then host A broadcasts NS for DAD, and the
details of the NS are shown in Figure 8.

When OVS1 receives this NS, it will encapsulate the
message and send a Packet_In to FDAD-S. After the FDAD-
S gets the NS contained in Packet_In, it will check it and add
a new entry in TNS. -e result is shown in Table 4.

After host B receives NS, it finds that CGAX does not
conflict with its own IPv6 address, thus, host B discards the
NS. After the host C receives the NS, considering that C is

malicious, C forges the NA to attack host A, and the NA
detail is shown in Figure 9. According to the flow table,
OVS2 generates a Packet_In message and forwards it to
FDAD-S after receiving the NA. After FDAD-S checks the
NA, it is found that Conditions 1–3 are satisfied, and then it
updates the TNA. -e result is shown in Table 3.

After the NA is received, host A does not verify the
parameters immediately but checks the consistency of the
MAC and blacklist; if the check is passed, the FDAD-Request
message will be sent. -e detail of the message is shown in
Figure 10. After OVS1 receives the message, it uses Pack-
et_In to forward the message to the FDAD-S.

FDAD-S checks the TNS and TNA, and it finds two entry
corresponding to the FDAD-Request and satisfies Condi-
tions 4–7, and thus, it updates the table TQuery (see the
update results in Table 4). -en, FDAD-S queries to the
OVS2 for the generation time of MACC. Once the query is

Broadcast NS for DAD,
record current time as 

T1

CGAx is valid

NA

Query the controller 
for the switch’s Dpid, Port 
No. and MAC generation 

time. Query success?

CGAx is 
invalid

timeout

Wait

Discard NA

Record receiving time as 
T2. Is MAC consistent and 

not in blacklist?

Created in
T1-T2

CGA verification 
passed?

Discard NA

Feedback

N

Update the blacklist 
with switch

Dpid, Port No. and 
MAC and set flag to T

Y
Y

Y

Y

No records match the address

N

N

If there exists a entry 
related to the NA in 
blacklist, remove it

 Add a new entry to 
blacklist and set its 

flag to F

Figure 6: Workflow of FDAD-C.

Controller

A B C

OVS1
Dpid: 0x1

OVS2
Dpid: 0x2

1 2 3

FDAD-S

Figure 7: Network topology.

Table 6: Basic information of hosts A, B, and C.

Host IPv6 address MAC address Connection Remarks
A IPv6A MACA OVS1-Port1 Normal host
B IPv6B MACB OVS1-Port2 Normal host
C IPv6C MACC OVS2-Port3 Attack host

Table 7: Flow table of the OVS1.
OFPST_FLOW (OF1.3) (Dpid� 0×1):

1
cookie� 0× 0, duration� 100s, table � 0, n_packets� 0,

n_bytes� 0, priority� 50,icmp6,icmp_type� 200
actions�CONTROLLER:65535

2

cookie� 0× 0, duration� 100s, table � 0, n_packets� 0,
n_bytes� 0, icmp6, dl_dst� 33 : 33 : 00 : 00 : 00 : 00/33 : 33 : 00 :

00 : 00 : 00, icmp_type� 135 actions�CONTROLLER:
65535,resubmit(,1)

3
cookie� 0× 0, duration� 100s, table � 0, n_packets� 0,

n_bytes� 0, icmp6, icmp_type� 136 actions�CONTROLLER:
65535, resubmit(,1)

Security and Communication Networks 7



successful, the flag field of the entry in TQuery is set to T (see
Table 8). -e controller then sends FDAD-reply message to
OVS1 and indicates OVS1 use port 1 to forward the

message, and the detail of FDAD-Reply is shown in
Figure 11.

Once host A receives the FDAD-reply, it finds that the
MACC existed for a long time and a new address does not
appear in time T2-T1. -us, host A verifies CGA parameters
contained in NA. Because the parameters are fabricated by
host C, the result fails, and so it sends a FDAD-feedback
message which will be forwarded to FDAD-S by OVS1, and
the detail of FDAD-feedback is shown in Figure 12.

After receiving the FDAD-Feedback, FDAD-S finds
that the message meets Conditions 8–13, so it updates
TFeedback (see Table 5). It then delivers the flow tables to
suppress the NA that accessed in through OVS2 port 3 and
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Table 8: TQuery (second update).

NS.Dpid NS.Port NS.MAC NA.Dpid NA.Port NA.MAC Flag
0×1 1 MACA 0× 2 3 MACC T
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deletes the entries that related to the NA in the TNS, TNA,
and TQuery.

4. Experiment and Analysis

4.1. Experiment. In order to verify FDAD, we implement it
in Mininet. OpenFlow switch is Open vSwitch, and the
controller is RYU. -e operating system is Ubuntu Mate
(virtual machine: CPU 2GHz× 2, Memory 2GB). -e
specific version of each software is shown in Table 9. -e
network has three hosts, namely, A, B, and C. Hosts A and C
simulate normal and malicious hosts, and B is used for
monitoring.

C is assumed to have the following computing and
communication capabilities.

(i) Computing capability:

(1) -e computing power is limited. For any hash
value y, C cannot find the original image x
satisfying the equation hash (x)� y in a limited
time (3 seconds).

(2) C can build NA with false CGA parameters in
accordance with the NS but cannot make a
forged NA pass the CGA verification of the other
side.

(ii) Communication capability:

(1) C can receive broadcast and unicast.
(2) C can change its protocol stack to send any NDP

message, e.g., sending NA with false MAC ad-
dress and CGA parameters and sending a large
number of NA to consume the target’s resource
and carry out DoS.

(3) C cannot sniff peer-to-peer communication,
such as the switch forwards a unicast frame from
port 1 to port 2.

(4) C is aware of the FDAD mechanism and has the
ability to send fake FDAD-Request and FDAD-
Feedback to the controller or fake FDAD-Reply.

Scenario 1. Testing overhead of DAD in NDP and SEND
and in SEND under attack

Scenario 1 simulates the host which continuously gen-
erates a new IPv6 address and performs DAD. It records
CPU consumption and carries out the following three
experiments.

Experiment 1. A conducts address configuration and DAD
using NDP method; B and C monitor.

Experiment 2. A carries out address configuration and DAD
utilizing SEND method; B and C monitor.

Experiment 3. A conducts address configuration and DAD
using SEND method; C sends a false NA with random MAC
address and fake CGA parameters to attack (we define this
kind of attack as DoS1). -e experiment results are shown in
Figure 13. -e figure presents that the CPU overhead of NDP
is the lowest. CGA which is used by SEND will cause CPU
overhead slight increase of approximately 4.15%.When SEND

CPU utility per second

0

5

10

15

20

25

30

CP
U

 u
til

ity
 (%

)

10 20 30 400
Time (sec)

NDP
SEND
SEND-DoS1

Figure 13: CPU utility comparisons among NDP, SEND, and
SEND under DoS1.

Table 9: Configuration of network environment components.
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receives a false NA, its CPU consumption has no evident
increase compared with normal state, and an increase of about
0.369%.

Scenario 2. Testing CPU overhead of SEND and FDAD
when suffering DoS

Scenario 2 simulates the host that suffered DoS attacks
during CGA address configuration and DAD, and the at-
tacker uses random MAC address and forged CGA pa-
rameters, and records its CPU overhead; it also carries out
the following four experiments.

Experiment 4. Host A carries out CGA address configu-
ration and DAD. For each NS that host C receives, it sends
ten times NA which contains false parameters to respond
(DoS10).

Experiment 5. Host A conducts CGA address configu-
ration and DAD. C sends out NA 100 times which

contains false parameters for each NS it received
(DoS100).

Experiment 6. Host A carries out CGA address configura-
tion and DAD; C sends out NA 200 times which contains
false parameters for each NS it received (DoS200).

Experiment 7. Host A conducts address configuration and
DAD using FDAD; C sends out NA 200 times which
contains false parameters for each NS it received
(DoS200).

-e experiment results are shown in Figure 14. We can see
that when host A suffers DoS attack in the CGA DAD process,
its CPU consumption increases as attack frequency increases.
When the attack frequency reaches 200, the host’s CPU has
been exhausted. In contrast, the figure also shows that the CPU
utility of FDAD is much lower, stable, and insensitive to high-
frequency attacks.

Figure 15 shows the comparison of controller’s CPU
and memory overhead between Experiments 6 and 7. As
the figure shows, the controller’s CPU overhead in FDAD
is stable but fluctuant in SEND, with average increases of
approximately 1.59%. In FDAD, memory overhead av-
erage increases about 0.402% because the controller
needs to maintain four additional state tables.

In terms of communication overhead, at the beginning of the
experiment, FDAD-S needs to query the switch for MAC in-
formation and host communicate with switch frequently; these
lead to FDAD communication overhead a slightly higher than
normal environment. However, when the suppression mecha-
nism of FDAD works, it effectively suppresses the DoS attack
packets sent by themalicious host C. As a result, network traffic is
reduced significantly, far below the normal environment, as
shown in Figure 16.

Figure 17 shows the overhead comparison of switch
bandwidth and RTT in Experiments 6 and 7. -e
FDAD’s bandwidth is relatively stable when suffering
from DoS. Even though some fluctuations exist, the
amplitude is very small. Under the same attack inten-
sity, SEND’s bandwidth gradually increases over time
and finally reaches the peak. -e RTT of SEND also
increases significantly higher than that of FDAD due to
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hundreds of times increase in network packets caused
by DoS.

4.2. Security Analysis

4.2.1. Attack Mode Analysis

(1) Malicious hosts use real MAC addresses to attack.
Attack mode: when the attack host receives a DAD
NS sent by a normal host, it sends a fake NA which
contains its real MAC in response to declare a
conflict.
In FDAD, after the host receives the NA which
declares an address conflict, it will not carry out
parameter verification immediately. Instead, it will
query the controller for the generation time of NA’s
source MAC. If MAC exists on a switch for more
than 1 second, the host will further verify the CGA
parameters. Given that the NA is a forgery, the
parameter verification step will fail, and the host will
write themalicious host’s information to the blacklist
and feed it back to the FDAD-S. -e result is that the
subsequent NA of the malicious host will be blocked
by a flow table and cannot enter the network. Even if
the subsequent forged NA reaches the normal host, it
will also be shielded from host’s blacklist.

(2) Malicious host uses fake Mac to perform Denial of
Service attack.
Attack mode: when the attack host receives the DAD
NS sent by normal host, it sends a fake NA which
contains random MAC for responding to declare a
conflict.
Its residence time on switch is less than 1 second
because the random MAC address is newly gener-
ated. In FDAD, if the host receives the NA con-
taining the new generated MAC, then it will
immediately write it into the blacklist, then verify
and discard it, and send feedback to the FDAD-S.
-us, the subsequent NA of the malicious host will
be suppressed and cannot cause an effective attack.

(3) Host uses the FDAD-Request message to consume
the controller resources.

Attack mode: the malicious host uses FDAD
mechanism to send a large number of FDAD-Re-
quest messages to consume controller resources.
In FDAD, the controller does not allow a host which
has not carried out DAD before to query other hosts’
MAC information. For a host that has initiated DAD,
MAC queries will not be allowed and only a host who
responds the NS exists. -e query is limited to
specific entries in the TQuery. When an entry is
queried, it will bemarked up, that is, repeated queries
are prohibited.

(4) Host uses FDAD-Feedback messages to attack other
hosts.
Attack mode: the malicious host uses FDAD
mechanism to send a large number of FDAD-
Feedback messages to suppress normal host’s
communication.
-e feedback is allowed only when Conditions 8–13
are satisfied because the TFeedback is limited by TNS,
TNA, and qTQuery, and even if the feedback is suc-
cessful, the related entries in these three tables will be
cleared, and all these means, for a specific NA, the
host can feedback only once in the DAD process.

(5) C sends forged FDAD-Reply to other hosts.
Attack mode: in the process of DAD, if C receives a
NS, it sends a forged NA and FDAD-Reply to the
response, which contains forged Dpid and port
information.
-e switch does not forward the FDAD-Reply
generated by the normal host. -us, the FDAD-
Reply does not arrive at host A but directly arrives at
the controller and is discarded. Furthermore, the
fake NA cannot pass the CGA verification and is fed
back to the controller by host A. -erefore, this kind
of attack is invalid. Subsequent attack message is
suppressed; it cannot enter the network.

4.2.2. Storage and Communication Overhead Analysis

(1) Switch Storage Overhead. In Ethernet, the switch is ca-
pable of learning the MAC address. When a frame arrives,
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the switch learns the source MAC address and accesses the
port of the frame. A forwarding entry is then generated in
the cache; its format is like<mac, inport, ttl, type>.-en, the
frame is forwarded in unicast or broadcast. In SDN, the
frame forwarding mode of OpenFlow-enabled switch is
similar to that of Ethernet switch. -erefore, in SDN, when
the host uses a random MAC address for DoS, a large
number of garbage flows are generated in the switch, oc-
cupying a large amount of storage space.

In FDAD, if a malicious node responds to NS with a
random MAC address, since the forwarding entry is newly
generated, the time of existence on the switch is less than
1 second.-erefore, the node is directly written in the blacklist
of the host. After CGA verification, the host discards it and
feeds back to the controller. -erefore, the subsequent NA of
the malicious host is suppressed at its entry port by the
controller. Even if the malicious host sends numerous frames
with randomMAC address, it does not form a DoS attack and
generate additional flows on the switch.

(2) Communication Overhead. -e three options undoubtedly
increase the size of NDP packets and the communication
overhead of DAD in some cases. -e size of the original NDP
message is 78 bytes, and the sizes of FDAD-Request, FDAD-
Reply, and FDAD-Feedback are 90, 102, and 110bytes,

respectively. -e size of NDP with CGA option is 238 bytes.
-erefore, the new messages adopted by FDAD are larger than
the original NDP, with increased ratios of 15.4%, 30.8%, and
41%, respectively, but still less than the messages of SEND.-e
increased overhead is mainly used to reduce the additional
consumption caused by DoS. -e communication overhead is
analyzed in several typical scenarios.

(1) Normal DAD process (no address conflict):
-e normal FDAD process is shown in Figure 18.
Host A generates the address CGAX and then
broadcasts the NS_CGAX. No host answers because
an address conflict does not exist. After the timeout,
the DAD process is completed and CGAX is avail-
able. In this case, the communication overheads of
SEND and FDAD are the same, that is, both have one
NS broadcast. -e specific number is determined by
number n, which refers to the hosts in the LAN:

TSEND_Normal � TFDAD_Normal � NS × n. (1)

(2) Address conflict in SEND:
(i) When the address of B is also CGAX, an address

conflict exists. -e DAD process is shown in
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Figure 18: Normal DAD process with CGA.
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Figure 19(a). A sends NS_CGAX in broadcast, B replies
to NA_CGAX after detecting the address conflict, and
then A regenerates a new address CGAY and broad-
casts NS_CGAY again without conflict. -e commu-
nication overhead of the whole process is as follows:

TSEND_Conflict � NS × n + NA + NS × n. (2)

(3) DoS attack in SEND:
-e DoS process in SEND is shown in Figure 19(b).
In DAD, C sends m NA to reply and consume A’s
resources after receiving the NS_CGAX sent by A.
-e communication overhead is as follows:

TSEND_DoS � NS × n + NA × m. (3)

(4) Address conflict in FDAD
-e communication process is shown in
Figure 20(a). In DAD, A sends the FDAD-Request
message to the controller and receives the FDAD-
Reply after receiving the NA_CGAX sent by B. -en,
CGA parameters are verified for NA. After the ad-
dress conflict is found, host A needs to generate a
new address CGAY and then broadcasts NS_CGAY.
At this time, no address conflict exists, and the DAD
process is completed. -e communication overhead
is as follows:

TFDAD_Conflict � NS × n + FDADRequest + FDADReply

+ NS × n.

(4)

(5) DoS attack in FDAD:
-e communication process is shown in
Figure 20(b). Host A receives the forged NA_CGAX
sent by C after NS_CGAX broadcast. -en, host A
sends FDAD-Request to the controller and receives
FDAD-Reply message. Host A sends the FDAD-
Feedback to the controller because the forged NA
cannot pass the CGA verification, and then FDAD-S
performs NDP message suppression on the port
connected to C. -erefore, the subsequent NA_C-
GAX can no longer enter the network. -e com-
munication overhead is as follows:

TFDADDoS
� NS × n + NA + FDADRequest

+ FDADReply + FDADFeedback.
(5)

-e following is a quantitative analysis of the above-
mentioned situations.

(1) Normal DAD process (no address conflict):

TSEND_Normal � TFDAD_Normal � NS × n � 238 × n. (6)

(2) Address conflict:

TFDAD_Conflict >TSEND_Conflict. (7)

-e difference between the two is

TFDADConflict
− TSENDConflic

� FDADRequest + FDADReply

� 200.
(8)
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(3) Under DoS attack:

TSENDDoS
� NS × n + NA × m � 238 ×(m + n),

TFDADDoS
� NS × n + NA + FDADRequest + FDADReply

+ FDADFeedback,

TFDADDoS
� 238 × n + 302.

(9)

For a LAN with n nodes, the total length of CGA address
is 64 bits. If Sec bits (3 bits), u bit, and g bit are removed, the
remaining 59 bits are random values. If each node generates
k IPv6 addresses for a specific network prefix, then the
probability of address conflict P is as follows:

P � 1 − 􏽙
n×k

i�1
1 −

i

259
􏼒 􏼓,

P � 1 − e
− n×k×(n×k−1)/260

.

(10)

-e size of a general LAN is less than 29to prevent
broadcast storm. For the same network prefix, the number of
IPv6 addresses generated by each node does not exceed 25 (only
one address is usually generated).When n is set to 29and k to 25,

P � 1 − e
− 1/232( ). (11)

-e probability of real address conflict is very small.
-us, the communication overheads of FDAD and SEND
are almost the same.

Assuming h attack nodes exist in the LAN and each node
sends m NA during the DAD process, the overhead com-
parison is as follows:

TSEND_DoS � 238 × n + h × m × 238,

TFDAD_DoS � 238 × n + 302 × h.
(12)

As long as m> 1.3, the expression TSEND_DoS >TFDAD_DoS
is satisfied. -erefore, the communication overhead of
FDAD is much less than that of SEND when attacked by
DoS.

4.3. Strengths and Limitations of FDAD. FDAD is the
combination of the host’s computing capability and SDN’s
control capability. Although network protocols can be
implemented in hosts and network devices, in the traditional
network, both of them detect attacks from their own point of
view and adopt different methods. For example, distributed
hosts have powerful computing power, but they are unable
to prevent the generation and access of attack packets in DoS
attack. -e network device has the ability to prevent the
packets from coming into the network but lacks the com-
puting ability to verify the attack. FDAD combines the both
abilities effectively, and its advantages are as follows:

(1) It protects the security of the host’s DAD process for
the host to generate IPv6 address smoothly

(2) It could suppress DoS attack from the source and
reduce the generation of useless flow in SDN

(3) When suffering fromDoS attack, the amount of LAN
packets could be greatly reduced

FDAD also has some limitations:

(1) It adds three new NDP messages to the network, and
the new message is larger than the original NDP
message. -us, in some cases, the communication
overhead increases.

(2) It is not suitable for traditional Ethernet because its
mechanism needs the support of a control layer.
Otherwise, FDAD-Query, FDAD-Reply, and FDAD-
Feedback messages could not play their roles.

(3) FDAD mechanism increases the memory and CPU
cost of the controller, but this cost is greatly reduced
when DoS attack occurs in the network.

5. Conclusion

DoS attacks are difficult to eliminate, largely because the
attack hosts are concealed. In the DAD process, for the CGA
parameters in NA, the host cannot identify its authenticity
before verification is completed. However, even if the host
identifies a false NA through verification, it is unable to
prevent subsequent attacks from the same host because a
malicious host can send a message using other false source
address. In FDAD, the host can use the FDAD-Request to
retrieve specific MAC’s generation time and evaluate the
authenticity of the NA in advance. For a false NA, the host
can use FDAD-Feedback message to send the feature of the
attack host to the control part. -e controller can suppress
the attack message from the source by dispatching a flow
table, breaking the concealment of the attack host. Exper-
iments show that FDAD greatly reduces the CPU and
communication overhead of the host that suffering DoS. Of
course, feedback mechanism causes the controller’s CPU
and memory consumption to increase slightly in s some
scenarios, but its security cannot be matched by the tradi-
tional method.
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