Hindawi

Security and Communication Networks
Volume 2020, Article ID 6726147, 10 pages
https://doi.org/10.1155/2020/6726147

Research Article

WILEY

Hindawi

Combat Mobile Evasive Malware via Skip-Gram-Based

Malware Detection

Alper Egitmen ®," Irfan Bulut,” R. Can Aygun,’ A. Bilge Gunduz,' Omer Seyrekbasan,’

and A. Gokhan Yavuz'

'Computer Engineering Department, Yildiz Technical University, Istanbul, Turkey
2OM Partners, Koralenhoeve 23, 2160, Wommelgem, Belgium
3University of California, Engineering VI, Los Angeles, CA 90095, USA

Correspondence should be addressed to Alper Egitmen; aegitmen@yildiz.edu.tr

Received 11 November 2019; Revised 19 February 2020; Accepted 28 March 2020; Published 20 April 2020

Academic Editor: Petros Nicopolitidis

1. Introduction

Copyright © 2020 Alper Egitmen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Android malware detection is an important research topic in the security area. There are a variety of existing malware detection
models based on static and dynamic malware analysis. However, most of these models are not very successful when it comes to
evasive malware detection. In this study, we aimed to create a malware detection model based on a natural language model called
skip-gram to detect evasive malware with the highest accuracy rate possible. In order to train and test our proposed model, we
used an up-to-date malware dataset called Argus Android Malware Dataset (AMD) since the AMD contains various evasive
malware families and detailed information about them. Meanwhile, for the benign samples, we used Comodo Android Benign
Dataset. Our proposed model starts with extracting skip-gram-based features from instruction sequences of Android applications.
Then it applies several machine learning algorithms to classify samples as benign or malware. We tested our proposed model with
two different scenarios. In the first scenario, the random forest-based classifier performed with 95.64% detection accuracy on the
entire dataset and 95% detection accuracy against evasive only samples. In the second scenario, we created a test dataset that
contained zero-day malware samples only. For the training set, we did not use any sample that belongs to the malware families in
the test set. The random forest-based model performed with 37.36% accuracy rate against zero-day malware. In addition, we
compared our proposed model’s malware detection performance against several commercial antimalware applications using
VirusTotal API. Our model outperformed 7 out of 10 antimalware applications and tied with one of them on the same
test scenario.

In the application market arena, there are two main
players, namely, Apple’s App Store and Google’s Play Store.
According to the Statista report in [6], Android OS has the

Advancements in mobile device technology led developers
to make rich content applications for different purposes such
as social media, health care, finance, and government.
Consequently, mobile device usage increased drastically, and
malicious software (malware) developers turned their at-
tention to mobile application markets [1-4]. Malware may
have many different goals such as encrypting personal data,
using device resources (cryptocurrency), stealing sensitive
information (financial information, pictures, contacts, etc.),
converting victim’s machine into a bot, and restricting access
to critical services [5].

highest market share worldwide on mobile devices since
2011. Moreover, as of May 2017, Android has over two
billion monthly active users, and as of December 2018 the
Google Play store features over 2.6 million apps [6].

Also, it is a well-known fact that applications published in
Google Play Store do not undergo a rigorous review process
[7]. As a result, Android OS has become one of the OS most
preferred by malware developers [5]. Therefore, the require-
ment of a robust malware detection approach for the Android
Platform has become more imminent than ever before.

mailto:aegitmen@yildiz.edu.tr
https://orcid.org/0000-0001-9249-3700
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6726147

The widespread malware detection technique is often
based on signature detection techniques. In signature de-
tection-based techniques, the signature of an application,
namely, its fingerprint, is compared against a database
consisting of the fingerprints of known malware. So, these
techniques are only limited to detect previously encountered
malware and are vulnerable against zero-day malware and/
or malware equipped with evasion capabilities. In order to
deal with evasive and/or zero-day malware, it is essential to
design an effective malware detection approach.

In recent years, security researchers have improved
malware detection techniques by analyzing malware both
statically and dynamically. In static analysis methods, im-
portant features such as application permissions, library
dependence, and binary code structure are extracted from
malware without requiring execution. On the other hand, in
dynamic analysis, malware is run in a sandbox environment
in order to observe and investigate its runtime behavior such
as system calls, file access, network access, and registry
activities. Dynamic analysis approach could potentially
provide a wider view of malicious code capability referred to
as modern malware. Modern malware either employs
methods such as code obfuscation, call indirection, and
string encryption to misguide static analysis tools or senses
the runtime environment in order to apply countermeasures
to avoid dynamic analysis.

In this study, we present an efficient malware detection
method which counterbalances the evasion techniques
employed by modern malware. Our proposed malware
detection method is based on static analysis. We apply se-
mantic analysis in contrast to syntactic analysis on the
source code of a given application in order to classify it as
benign or malicious. Our proposed model decompiles an
application and extracts opcode sequences. Then, it uses a
state-of-the-art NLP word embedding algorithm, which is
called skip-gram, to generate the word embedding vectors
for each unique opcode to obtain semantic relations among
them. By using these word embedding vectors, we generate
dense vectors to achieve a high-level representation of the
opcode sequences. Then, we use these dense vectors as input
to our detection model, which detects malware with an
accuracy of 95.64%. Also, as a result of using dense vectors,
we were able to decrease training time, memory usage, and
processing power significantly.

The remainder of this manuscript is organized as follows:
Section 2 gives information about related works. Section 3
describes our model and methods. In Section 4, the ex-
perimental results are discussed and analyzed. Finally,
Section 5 concludes the work and describes future
directions.

2. Related Work

Static malware analysis methods have been widely used for
malware detection problem. Some of the security researchers
who focused on static malware analysis used natural lan-
guage processing approaches called n-gram or skip-gram for
the feature extraction. These methods were applied to
malware detection problem since malware analysis of

Security and Communication Networks

bytecode/opcode sequences of malware is similar to text and
document classification problem. Meanwhile, other re-
searchers focused on more noticeable features such as API
calls, call graphs, and user permissions for malware detec-
tion problem. In this study, our proposed model was built on
a natural language processing approach called skip-gram.
Because of that, we focused on existing NLP-based static
malware analysis studies for the related work. It is important
to note that even though we mention the detection accuracy
rates for all of the previous studies given below, these results
are not comparable with each other due to lack of a standard
dataset to evaluate the proposed models’ performances.

Moskovitch et al. extracted opcode n-gram from Win-
dows executable binaries and applied feature selection
methods like fisher score, gain ratio, and document fre-
quency to determine the most critical n-gram terms [8].
They created a dataset based on 5677 malware and 20416
benign files. Their proposed method performs with 94.43%
accuracy on a 2-gram feature-based dataset with Boosted
Decision Tree (DT) method.

McLaughlin et al. proposed a method based on word
embeddings obtained from opcodes to detect malware [9].
Convolutional Neural Network (CNN) classifier was used
for malware detection. They have multiple datasets varying
from 2,123 to 48,000 samples. The maximum accuracy of the
malware detection rate is 98% with opcode 3-gram and small
dataset. Nevertheless, the minimum accuracy of malware
detection rate is 69% with large dataset, which contains
24,000 malware and 24,000 benign Android applications.

Karbab et al. proposed a method that extracts word
embeddings from API call sequences, which were obtained
from applications’ assembly codes, to distinguish malware
from benign [10]. The dataset consists of 33066 malware
(20089 MalDozer, 5555 Drebin, and 1258 Malgenome) and
37627 benign applications. The maximum accuracy of the
malware detection rate is 96%, and minimum malware
detection rate is 95% on the entire dataset. The 99% accuracy
was achieved by using only Drebin dataset with 5-fold cross-
validation. This study focused on Android malware detec-
tion that relies on API call sequence-based features and CNN
classifier.

Awad et al. focused on the effectiveness of word2vec
feature extraction methods in malware detection area
[11, 12]. Experiments done with 10,868 Windows malware
contain nine different families. They extracted skip-gram
and Continuous Bag-of-Words (CBOW) features from
opcodes only and opcodes with abstract parameters. The
maximum accuracy is 98% with CBOW with the window
size of five, while the minimum accuracy is 76% with skip-
gram with the same window size. This study was not focused
on malware detection but effectiveness of the Natural
Language Processing (NLP) methods on Windows malware
classification.

Xu et al. proposed a method that includes two different
detection stages and a user-provided threshold value. Ap-
plications are either classified at the first detection layer or
passed to the second detection layer [13]. The first layer
consists of XML feature vectors and uses Multilayer Per-
ceptron (MLP) as a classifier. Meanwhile, the second layer

Security and Communication Networks

consists of word embeddings’ representation of application
opcodes. Over 200 unique opcodes were grouped under 15
distinct categories for simplifying preprocessing cost. The
dataset includes 62915 malware and 47525 benign appli-
cations. The 10-fold cross-validation was applied for the
evaluation, and there was a validation set for the fine-tuning
of deep learning hyperparameters. Their proposed model
performed with an accuracy of 97.74%.

Yousefi-Azar et al. proposed an n-gram method to
distinguish malware from benign. In their study, they used a
malware dataset called PDF Share. The dataset consists of
10980 malicious PDF and 8999 benign PDF. The n-gram-
based features were acquired from malware opcodes. Skip-
gram and CBOW were created over n-gram instead of
opcodes [14]. They applied a variety of machine learning
algorithms to detect malware such as K-Nearest Neighbor
(KNN), Extreme Learning Machine (ELM), Support Vector
Machine (SVM) [15], and XGBoost (also known as GBDT,
GBM) [16, 17]. The maximum accuracy of the malware
detection rate is 98% yet, and the minimum malware de-
tection rate is 92%.

In [18], Fan et al. especially focused on the sly malware.
Both context and relation-based features were used to
characterize malware. Different types of entities and their
semantic relationships were modeled and a metagraph-
based approach, which is called as heterogeneous infor-
mation network (HIN), was proposed to describe these
relationships. The authors also propose a new HIN em-
bedding model meta-graph2vec to lower the training cost by
forming low dimensional representations for the nodes in
HIN. Consequently, a classification model was created by
feeding SVM with low dimensional representations of
Windows portable executable files. Moreover, an experi-
mental study was carried out on real malware collections
from Comodo Cloud Security Center to measure the per-
formance of the proposed approach against already existing
malware detection approaches. The accuracy of the model
was obtained as 0.97. The authors name their malware
detection software as Scorpion.

Wang et al. proposed a malware detection approach that
uses URLs visited by applications to identify a malware [19].
First, skip-gram approach was used to represent the features
as vectors; then a multiview neural network was used to
create a malware detection model that emphasizes depth and
width. Experimental studies were carried out to measure the
performance of the model. In addition, a comparison be-
tween the detection results of the approach and wild ap-
plications was made with 10 popular antivirus scanners.
When compared with other traffic-based studies, both
F-Measure and accuracy are reported as 0.98. Moreover, this
study was carried out using only the URLs in the http traffic,
so the other URLs were considered out of scope.

Ye et al. proposed a real-time malware detection ap-
proach for Android malware by using heterogeneous graph
[20]. In this study, first, runtime Application Programming
Interface (API) call sequences were extracted from Android
applications, and then their high-level semantic relation-
ships in the ecosystem were analyzed. A heterogeneous
graph (HG) structured for modeling was prepared to model

different types of assets (i.e., application, API, device, sig-
nature, and connection) and the relationships between them.
In order to efficiently classify the nodes (e.g., applications) in
the created HG, training was carried out using the HG
learning method. It was then given to a deep neural network
classifier, taking the learned HG representations as input for
real-time Android malware detection. The authors call their
approach as AIDroid and report its accuracy as 0.99.

On the other hand, ANDRE [21], is an approach based
on clustering to detect malware. It uses multiple sources of
information, such as static code analysis results, meta-data of
the applications, and raw tags from antivirus vendors of
weakly tagged Android malware. Malware, whose malicious
behavior is close to that of existing families on the network,
was also classified using a three-tier Deep Neural Network
(DNN). Unknown malware was clustered using a standard
density-based clustering algorithm. The authors evaluated
their approach using 5,416 ground-truth malware from
Drebin and 9,000 malware from VirusShare consisting of
3324 weakly labeled malware. The maximum accuracy value
was reported as 0.91 with the MLP classifier. In this study,
obfuscated malware was not taken into consideration, and
the white-list method was used to exclude common Android
application third party libraries.

Ge et al. proposed an approach called AMDroid, which
uses function call graphs (FCGs) that represent the behavior
of applications and uses graph kernels to automatically learn
the structural meaning of applications from FCGs [22]. The
performance of AMDroid was evaluated on the Genome
Project and experimental results show that AMDroid de-
tected Android malware with 97.49% accuracy with the SVM
classifier.

In [23], the authors used the API call chart as a graph
representation of all possible execution paths that malware
can follow during its execution. The embedded API call
graphs converted into a low dimensional numerical vector
feature set are then introduced to a deep neural network.
Then, the similarity detection approach was effectively
trained and tested for each binary function. Experimental
results show that the accuracy of malware classification is at
98.86%. However, this study was carried out by using API
call graphs, by focusing on the general success without
taking into account the malware families according to the
dynamic analysis principles.

Table 1 summarizes the related work studies based on the
methods, dataset, and feature types used and gives obtained
accuracies.

3. Evasion Techniques Used by Modern Malware

Modern malware uses a variety of techniques to fight against
antimalware systems. Some of this malware apply techniques
that help to avoid detection from antimalware systems, while
the others develop and/or use some antianalysis methods for
a specific malware detection system. Some techniques used
by the malware are used to avoid detection while other
techniques are used to prevent analysis. Most well-known
and most frequently used evasion techniques used by
modern malware are summarized below.

4 Security and Communication Networks
TaBLE 1: Summary of related work.

Research Acc. (%) Dataset size Methods Feature types

(8] 94.4 26,093 Boosted DT Opcode n-gram

[9] 69 48,000 CNN Opcode word embedding

[9] 98 2,123 CNN Opcode word embedding

[10] 96 70,693 CNN Embedding

[11] 98 10,868 KNN API call sequence opcode skip-gram CBOW

[13] 97.7 110,438 MLP + LSTM APK XML opcode embedding

[14] 98 19,979 XGBoost Skip-gram-based opcode n-gram

[18] 97 59,749 SVM HIN metagraph2vec

[19] 98 — Multiview NN Skip-gram

[20] 99 190,696 HG learning API call graph heterogeneous graph

[21] 91 14,416 Clustering + DNN Skip-gram CBOW

[22] 97.49 2520 SVM Skip-gram

[23] 98.86 58,139 DNN API call graph skip-gram

@

Renaming is one of the most basic techniques to
get through antimalware software. In this tech-
nique the malware renames either itself or the
names of the variables and functions used.

(ii) Repacking is an easy yet eflicient evasion tech-

nique. In this technique, to look like inscrutable to
others, malware authors either compress, encrypt,
or rearrange some part of their malware [24].
When the malware is run, first it unpacks itself and
then begins execution.

(iii) String encryption is a technique that malware uses

(iv)

)

(vi)

to complicate the static analysis. Any significant
string which could lead to the fingerprinting of the
malware is encrypted using a custom encryption
scheme. Static analysis will only be able to fin-
gerprint the malware after proper decryption of
such string.

Source code encryption is an obfuscation tech-
nique to hide malware from antimalware software.
It can be applied either at program level or at class
level. When applied at program level, the whole
malware is encrypted; whereas when it is applied at
class level, either selected classes or all classes are
encrypted. Source code encryption will defeat the
correct fingerprinting of the malware.

Call indirection and reflection technique is a kind
of transformation to manipulate the call graph of
the application. In this way an automatic matching
of the calls is avoided. A method call is converted
to a call which is then invoked to the original call
[25].

dynamic loading technique, malware externally
loads data and/or code dynamically, from an ex-
ternal server at startup time. This external sourcing
at runtime effectively evades a static analysis. Also,
it is customary that the externally sourced pieces of
data and code are also encrypted.

(vii) Resource obfuscation is another antidetection

antianalysis technique malware that authors use.
They obfuscate the way program resources, such as
strings and graphical images, which are stored on

disk, and then deobfuscate them at runtime so they
can be used by the malware.

(viii) Antidisassembly is another technique used by
malware authors. Anti disassembly aims at
exploiting the inherent limitations of state-of-the-
art disassembly techniques to hide code from
malware analysis.

(ix) Antidynamic analysis method is specifically de-
veloped for avoiding dynamic analysis. There are
two main categories regarding the determination
of the run-time environment. The first category
does not necessarily require to know if it is being
run on analysis environment. These kinds of
malware attacks wait for a fixed amount of time or
event such as specific user interaction to activate
malicious code. The second group has various
methods to sense the environment that it is being
run currently. This type of malware never activates
malicious code if it senses that it is being run on
analysis environment; thus it is identified as a
benign application. It can obtain this information
by various methods such as accessing global var-
iables (contacts, picture counts, etc.), measuring
inconsistency of cache memory access times, or
even finding a side channel which leaks sensitive
information about analysis environment that
should not be known by malware.

4. Raw Datasets

When the datasets in the studies mentioned in the related
work section were examined, two basic problems appeared.
First, most publicly available datasets are outdated. Second,
these datasets contain limited amount of different malware
families. Modern malware has complex evasion techniques
that give them robustness against static and dynamic
analysis. Because of that, it is important to use datasets that
contain complex malware families to be able to evaluate the
performance of malware detection model accurately. An-
other problem is that to the best of our knowledge there is no
public benign dataset available. In this study to tackle with
these problems we created our own malware detection

Security and Communication Networks

dataset comprised AMD Argus Lab Malware Dataset,
Comodo Benign Dataset [26], and hand-crafted benign
applications from Google Play Store. The total size of dataset
is about 107 GB. Argus Lab Malware Dataset was publicly
released in 2017 by Argus Laboratories [27]. It contains 71
different malware families and a large set of unique malware
instances for each family. Total of 24,553 Android Packages
(APKs) was collected between 2010 and 2017. Behavioral
analysis was applied to each family and several attributes
were obtained such as installation method, composition,
activation, antianalysis methods, monetization, information
stealing, and detailed graphs that show how actually the
malware works. To extract antianalysis attribute, each family
was tested against renaming, string encryption, dynamic
loading, native payload, and several dynamic analysis eva-
sion methods to explore their capabilities. Having this de-
tailed meta-data information, we can tell robustness of our
model against such evasion techniques. The dataset is very
large and detailed, which fills modern and large dataset gap
for researchers. Size of the APKs in this dataset varies from
10KB to 48 MB. In this dataset, we were able to obtain
opcodes from 24.304 samples using Apktool. The remaining
samples were discarded from the final dataset due to diffi-
culties in decompilation phase [27]. On the other hand, ISL
Benign Dataset contains 16,630 benign applications. Half of
them were collected from Google Play Store in different
categories, and the other half were obtained from Comodo
Security Group. The half obtained from Google Play Store
contains applications from 34 different categories, as clas-
sified by Google, whereas the dataset provided by Comodo
Security Group contained applications of only 12 different
categories. The applications selected from Google Play Store
were all marked as benign by Google Play Protect. To be on
the safe side, each sample in the benign dataset was validated
for its benignity by using VirusTotal API. Via VirusTotal API
each sample was scanned with the top 15 antimalware
software and only samples which were indicated as benign
by all the antimalware software were added to the benign
dataset. ISL Benign Dataset contains applications from
completely different categories and varies in size from 2 KB
to 50 MB.

5. Preprocessing

Our dataset consists of raw APK archives. APK is a specific
archive format for Android applications. It contains Dalvik
Executable Files (DEX), resources, user permissions, meta-
data, and various configuration files. DEX files are like class
files in Java but they are converted to DEX format since a
different bytecode format is used in Dalvik or Android
Runtime (ART) Virtual Machine. Opcode sequences were
obtained from DEX files belonging to each APK within the
dataset and then they were written to respective text files.
This process caused a significant growth in the size of the
dataset, so, we encoded the opcodes using Huffman
encoding [28]. Consequently, the amount of space required
to store the preprocessed APK files was reduced and as a
result much less IO operations execution times for training,
validation, and testing were significantly diminished.

Extracting of opcode-based features from APK files consists
of several stages. As depicted in Figure 1 Apktool was used to
obtain corresponding DEX files for each APK file [29]. Then,
each DEX file was converted into Android opcode
sequences(smali) using baksmali decompiler [30]. The
resulting decompiled files were then processed with Huff-
man encoder in order to represent the opcodes space effi-
ciently. Finally, the files were merged into a single file. This
process was repeated for each APK instance within the
dataset.

6. Malware Detection Model

We consider opcode sequences from Android applications
as artificial language. In this language, unique opcodes are
language words, functions as sentences and whole sequence
as part of the corpus. To build semantic relations between
opcodes, we used the skip-gram method which is a part of
the Word2Vec model [31].

Word2vec is a group of related models that are used to
produce word embeddings. These models are shallow, two-
tier neural networks that are trained to reconstruct linguistic
contexts of words. Word2vec takes a large text corpus as
input and produces a vector space, typically of several
hundred dimensions, for each unique word in the corpus.

6.1. Skip-Gram. Word vectors are positioned in the vector
space such that words that share common contexts in the
corpus are located in close proximity to one another in the
space. Skip-gram is a feature extraction model that is used to
predict the potential words that might come before and after
a selected word. We refer to this selected word as a target and
words around it in certain window size as a context. The
skip-gram model is trained in an unsupervised fashion for
each target and context tuples. After the training part is
completed, the corresponding weights are considered as a
word embedding vector for each word in the vocabulary. In
Figure 2 this process is explained.

6.2. Apk2Vec. Applications in our dataset have a great di-
versity in terms of opcode sequence length. This creates an
inconsistent input layer dimension problem for the training
of machine learning-based models. One possible solution to
this problem is to put padding to input layers for all samples
in the dataset. This solution may work in spoken languages
where the sentence or document lengths have significantly
low variance. However, in our dataset, input layer dimen-
sions vary from several hundreds to three millions. So,
padding creates a sparse dataset problem. To overcome this
problem, we used a simple but efficient method, which is
called “Apk2vec,” to describe every smali file with a fixed size
vector. We represent every opcode in the smali file with its
corresponding embedding vector; then we sum embedding
vectors for each opcode. Then we calculate the average
embedding vector. We consider this vector as fingerprint of
the APK (Figure 3). We repeated this process for each APK
archive in our dataset to create our final malware detection

Huffman

Security and Communication Networks

Smali merge|

APKTool
encoder

Baksmali .
script

merged
M smali file

FIGURE 1: Preprocessing of an Android application.

Input Output
layer layer
and-int : Embedded and-int
div-long () \ ; div-long
rem-int . \\\ ' rem-int
\\‘\ 7 “
\“ll~

move-object () 7/

invoke-interface ()

cmpg-double
return-void

X
// \‘\% if-eqz
NN

FIGURE 2: Skip-gram learning process for target word and-int and context words div-long, cmpg-double, and return-void. Input is one hot
vector of target word while output tries to predict correct context words. Dense vector for each word is weighted from corresponding input

neuron to embedded layer neurons.

Apky, ApkM

KR “Apk;
~ Word embedding__ Apk,

vectors

WE,

WE,;

Apkl
1 Apk,

Opcode,,

Opcode,,

Skip-gram training

_>

WE

Opcode,

Average word embedding vectors for
each Apk

AWE,
Apk

0
Apk,

fori=0toM

N
1/N2j=OWEij

Machine learning
algorthims

—»

(Apk2Vec)

AWE,,

Apk,,—]

FIGURE 3: Proposed malware detection model. The output M is used as malware; B is used as benign.

dataset, which is suitable for machine learning-based
classification.

7. Experiments and Results

Application of skip-gram method on opcodes is a new
concept. Skip-gram was designed to create models for
speaking languages, which has very large size of vocabulary
but small sentence size. But opcode sequences have com-
pleted opposite characteristics. We have found 219 unique
actively used opcodes in the complete Android opcode set,
which contains 238 different opcodes. We consider opcodes
as words and functions as sentences of our language model.
This made us have significantly long sentences with a very
small vocabulary. Thus, using prevalent hyperparameters for
skip-gram training in natural language classification may
hurt our final detection performance. To eliminate this, we
conducted a prior classification test to obtain the best
performed hyperparameters. For this test, we created a small

dataset containing only 1500 malware and 1500 benign
applications from our large dataset pool. During the com-
pilation of the instances for the 1500 malware, we paid
special attention to include instances from all of the 71
malware families with the homogeneous distribution. As to
the 1500 benign samples they were randomly selected from
the benign dataset. There exist no families among benign
instances.

We then split this small dataset into the test and training
dataset with ratio of 70% and 30%, respectively. We tried to
create a balanced dataset that contains at least one instance from
every malware family with window sizes of 2 and 3 and word
embedding sizes of 50, 300, and 500. Random forest [32], de-
cision tree [33], Naive Bayes, and SVM were used as classifiers.

7.1. Malware Detection and Zero-Day Performance. We
explored two different scenarios to test our model’s per-
formance and its robustness against zero-day malware. For

Security and Communication Networks 7
TaBLE 2: Subset of dataset trained for tuning of different hyperparameters of skip-gram, window size, and embedding size.
J48 Naive Bayes Random forest SVM
Window size — 2 3 2 3 2 3 2 3
50 79.77% 78.91% 60.51% 60.44% 83.89% 83.56% 60.01% 59.78%
Embedding size 300 81.93% 81.50% 60.81% 62.37% 87.08% 87.14% 59.61% 60.04%
500 82.63% 82.82% 61.60% 65.99% 86.51% 88.54% 59.21% 57.25%

TaBLE 3: Dataset samples split 30% and 70% for test and training, respectively, for scenario 1 and scenario 2. 1999 samples from 21 families

are excluded from training set for simulating zero-day attack.

Scenario 1 Scenario 2
Training set Malware 16982 15593
Benign 11641 11641
Test set Malware 7322 6712
Benign 4988 4988
Zero-day Malware — 1999

TABLE 4: Scenario 1 test results for different machine learning methods. Ensemble 1 is majority voting of all other methods shown in this

table. Random forest bested other methods with 95.64% accuracy.

Malware Benign
o o Total accuracy
Precision Recall F1 measure Precision Recall F1 measure
SVM 86.5 79.7 82.9 73.2 81.7 77.2 80.48%
Random forest 97 95.6 96.3 93.7 95.7 94.7 95.64%
Decision tree 91.9 93.6 92.7 90.3 87.9 89.1 91.25%
Random subspace 95.7 94.4 95.1 92 94.8 92.9 94.18%
SGD 82.9 93.4 87.8 88.8 71.7 79 84.58%
KNN 93.4 96.9 95.1 95.2 90 92.5 94.09%
Ensemble 1* 95 96.5 95.7 94.7 92.5 93.7 94.88%

the first scenario, we tried to create the training and test
datasets to contain at least one instance from each of the 71
malware families, whereas for the zero-day performance 21
malware families were left out during the composition of the
corresponding datasets. Since we have a large and well-
balanced number of instances, we opted for 70% to 30%
balance among training and test datasets instead of using
cross-validation. We created the corresponding training
datasets to contain at least one instance from each included
malware family. Later we preprocessed the training and test
datasets to obtain Huffman encoded opcode sequences for
the instances. This encoding resulted in a reduction of more
than 80% of the raw datasets which approximately corre-
sponds to 500 GB. For each scenario, we considered the
training dataset as the corpus to be used in the skip-gram
model and generated an embedding matrix with a window
size of 3 and an embedding size of 500. For the window size,
we tried the values two and three; for the embedding size we
tried the values 50, 300, and 500. The obtained accuracies for
the selected classifiers with varying window and embedding
sizes are summarized in Table 2. Consequently, the afore-
mentioned values for the respective sizes were chosen as they
resulted in the best accuracy values. Using the embedding
matrix obtained from the previous step, we ran Apk2vec
algorithm for each test scenario and obtained the respective
fixed size vector representations. These vectors were used as
inputs to the machine learning classifiers. We used decision
tree (DT), random forest (RF), 1-NN neighborhood,

random subspace, SVM, and gradient descent. The instances
from the left-out 21 malware families were used to test the
zero-day performance using the model generated with the 50
malware families as a part of scenario 2. The number of
instances and their distribution for each scenario are given in
Table 3.

7.2. Results. For performance evaluation, F1 measure,
precision, recall, and accuracy metrics were calculated.
Since, our overall dataset contained balanced number of
benign and malware instances, we chose the accuracy metric
as the decisive criteria to reflect the performance of our
proposed model. Tables 4 and 5 summarize the obtained
accuracy values for the generated models. For both of the
models, RF algorithm gave the best precision with 97% and
97.4%, respectively. The 1999 instances from the left-out
malware families were tested for malwareness using the RF-
based model from the second scenario. Our model suc-
cessfully detected 747 instances as malicious.

We also compared our model’s performance to the
performances of top 11 reliable antimalware software ap-
plications. As these antimalware software use accuracy as the
performance metric, we compared our accuracy value to
their corresponding values. The results of the comparison
are given in Table 6, which shows that our model out-
performed seven out of 11 commercial software applications
and tied in with one.

8 Security and Communication Networks

TaBLE 5: Dataset used in scenario 2 contains 21 less malware families which was excluded for zero-day testing; this caused small increase in
detection performance. RF bested other methods with 96.12% accuracy.

Malware Benign
o o Total accuracy
Precision Recall F1 measure Precision (%) Recall (%) F1 measure (%)
SVM 87.6 79.8 83.5 75.8 84.8 80 81.94%
Random forest 97.4 95.8 96.6 94.4 96.6 95.5 96.12%
Decision tree 92.5 93.9 93.2 91.6 89.7 90.6 92.04%
Random subspace 96.4 94.6 95.5 92.9 95.2 94 94.86%
SGD 70.4 97.4 81.7 92.7 45 60.6 75.04%
KNN 93.5 97.1 95.3 95.9 90.9 934 94.48%
Ensemble 1* 94.8 96.9 95.8 95.7 92.8 94.2 95.15%

TasLE 6: Comparison of our model against commercial antimalware software; we used VirusTotal API to evaluate our test dataset. Our
proposed method bested 7 of 10 commercial antimalware software applications.

Commercial software True positive False negative Accuracy
Avast 2900 4422 0.39
AVG 2902 4420 0.39
Avira 6797 525 0.92
Comodo 6367 955 0.86
Eset-Nod32 7304 18 0.99
F-secure 6311 1011 0.86
Kaspersky 4144 3178 0.56
McAfee 7265 57 0.99
Microsoft 4075 3247 0.55
Sophos 7074 248 0.96
Symantec 7225 97 0.98
Proposed model 7066 256 0.96

TaBLE 7: Robustness of our model against evasion methods; this table shows malware families, their evasion capabilities, and their sample
counts in test set. Final column shows our model detection performance of corresponding malware family.

Evasion methods Results

Family name Renaming String encryption Dynamic loading Native payload Antidynamic analysis Total count Accuracy (%)

Airpush v 2353 95
Andup v v 14 92
BankBot v v v v 195 99
Bankun v 21 90
Bogx v 65 75
Boxer 4 v 14 100
Cova v 6 100
Dowgin v v v v 1015 91

DroidKungFu v v v 164 98
FakeAngry v v 3 66
FakeDoc v 7 100
Fakelnst v v 651 100
FakePlayer v 7 85
FakeUpdates v v 2 0

Finspy v v 3 100
Fobus v v v 2 100
Fusob v v v 383 100
GingerMaster v v 39 97
GoPro v v v 11 63
Gumen v v 44 88
Koler v v 21 100
Ksapp v 11 90
Kuguo v 360 98
Kyview v v 53 86
Leech v v v v 39 100
Lotoor v v 95 96

Security and Communication Networks

TaBLE 7: Continued.

Evasion methods

Family name

Results

Renaming String encryption Dynamic loading Native payload Antidynamic analysis Total count Accuracy (%)

Minimob
Mseg
Mtk
Obad
Opfake
Ogel
Roop
RuMMS
SlemBunk v v
Simplelocker
SmsKey
Stealer
Svpeng

Tesbo

Triada
UpdtKiller
Utchi

Viking Horde
Winge
Youmi

Zitmo

Ztorg v v
Total count 6462 2856 1796
Accuracy (%) 95 96 94

ANANIN AN SSNSS
ANANIN

SSSS

SSSS

61 88

71 53

21 100

v 3 100

3 66

v 2 100

155 99

121 100

v 52 100

48 100

50 98

8 100

v 4 75

2 100

v 63 95

v 8 100

4 100

v 3 33

6 16

390 97

8 87

6 100

433 1432 6667 —
93 92 — 95 (total)

Moreover, we also evaluated the performance of our
model in terms of its robustness against evasive malware. In
the first scenario 48 out of 71 malware families were marked
as evasive by the dataset owners, which resulted in 6667
instances of evasive malware in the test dataset. The accuracy
distribution of our model based on the evasiveness of the
malware is given in Table 7. It can be seen that our proposed
model was able to determine 95% of all evasive instances
within the test dataset.

8. Conclusions

In this research, we proposed a novel and an efficient way to
classify modern Android malware. In our proposed method
we approached Android software as an artificially generated
text but applied skip-gram technique, which was composed
for NLP, to extract useful features.

We also proved that NLP-based static analysis approach
to the application source codes has promising results. We
used newly published Argus AMD dataset. This dataset
provides malware behavior by their families such as evasion
method. This detailed information let us evaluate the ro-
bustness of our model against certain evasion methods using
machine learning algorithms. In conclusion, an accuracy of
95.64% was achieved without having to run target appli-
cation and risking system stability.

Data Availability

The dataset is provided by Comodo and AMD Argus Lab.
AMD Argus Lab dataset is public; however, Comodo dataset
is private, and authors do not have the sharing privilege.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank both Comodo Corporation
and AMD Argus Labs for providing them with necessary
datasets. Thanks are due to VirusTotal, which allows them to
use their services to verify their dataset. Special thanks are
due to BURAK TAHTACI and ONUR OZTUNC for their
efforts in providing the working environment.

References

[1] V. Chebyshev, “Mobile malware evolution 2018,” 2019,
https://securelist.com/mobile-malware-evolution-2018/
89689/.

[2] gdatasoftware, “Mobile malware evolution 2017,” 2017,
https://www.gdatasoftware.com/blog/2018/03/30610-
malware-number-2017.

[3] gdatasoftware, “Mobile Trends 2017,” 2017, https://www.
gdatasoftware.com/blog/2018/03/30610-malware-number-
2017.

[4] Statista.com, “Mobile android version share worldwide 2018-
2019 | Statistic,” 2019, https://www.statista.com/statistics/
921152/mobile-Android-version-share-worldwide/.

[5] R. Benzmiiller, “Malware statistics in 2017,” 2017, https://
www.gdatasoftware.com/blog/2018/03/30610-malware-
number-2017.

[6] Statista, “Number of available applications in the google play
store,” https://www.statista.com/statistics/266210/number-
of-available-applications-in-the-google-play-store/.

[7] Google, “Google play store,” https://play.google.com/store.

https://securelist.com/mobile-malware-evolution-2018/89689/
https://securelist.com/mobile-malware-evolution-2018/89689/
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.statista.com/statistics/921152/mobile-Android-version-share-worldwide/
https://www.statista.com/statistics/921152/mobile-Android-version-share-worldwide/
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://play.google.com/store

10

[8] R. Moskovitch, C. Feher, N. Tzachar et al.,, “Unknown mal-
code detection using opcode representation,” European
Conference on Intelligence and Security Informatics, pp. 204-
215, Springer, Berlin, Germany, 2008.

N. McLaughlin, J. Martinez del Rincon, B. Kang et al., “Deep

android malware detection,” in Proceedings of the Seventh

ACM on Conference on Data and Application Security and

Privacy, ACM, New York, NY, USA, pp. 301-308, March

2017.

[10] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“MalDozer: automatic framework for android malware de-
tection using deep learning,” Digital Investigation, vol. 24,
pp. S48-859, 2018.

[11] Y. Awad, M. Nassar, and H. Safa, “Modeling malware as a

language,” in Proceedings of the 2018 IEEE International

Conference on Communications (ICC), pp. 1-6, IEEE, Kansas

City, MO, USA, May 2018.

Dav, “word2vec.,” 2019, https://github.com/dav/word2vec.

K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deep refiner: multi-

layer android malware detection system applying deep neural

networks,” in Proceedings of the 2018 IEEE European Sym-

posium on Security and Privacy (EuroSeP), pp. 473-487,

IEEE, London, UK, April 2018.

[14] M. Yousefi-Azar, L. Hamey, V. Varadharajan, and S. Chen,
“Learning latent byte-level feature representation for malware
detection,” in International Conference on Neural Information
Processing, pp. 568-578, Springer, Berlin, Germany, 2018.

[15] S. Amarappa and S. Sathyanarayana, “Data classification using
support vector machine (svm), a simplified approach,” In-
ternational Journal of Electronics and Computer Science En-
gineering, vol. 3, pp. 435-445, 2014.

[16] D. Opitz and R. Maclin, “Popular ensemble methods: an
empirical study,” Journal of Artificial Intelligence Research,
vol. 11, pp. 169-198, 1999.

[17] H. Robbins and S. Monro, “A stochastic approximation
method,” The Annals of Mathematical Statistics, vol. 22, no. 3,
pp. 400-407, 1951.

[18] Y. Fan, S. Hou, Y. Zhang, Y. Ye, and M. Abdulhayoglu,

“Gotcha-sly malware! scorpion a metagraph2vec based

malware detection system,” in Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery &

Data Mining, Association for Computing Machinery, Lon-

don, UK, pp. 253-262, July 2018.

S. Wang, Z. Chen, Q. Yan et al., “Deep and broad url feature

mining for android malware detection,” Information Sciences,

vol. 513, pp. 600-613, 2020.

[20] Y. Ye, S. Hou, L. Chen et al, “Out-of-sample node repre-

sentation learning for heterogeneous graph in real-time an-

droid malware detection,” in Proceedings of the 28th

International Joint Conference on Artificial Intelligence,

pp. 4150-4156, AAAI Press, Macao, China, August 2019.

Y. Zhang, Y. Sui, S. Pan et al., “Familial clustering for weakly-

labeled android malware using hybrid representation learn-

ing,” IEEE Transactions on Information Forensics and Security,

p. 1, 2019.

[22] X. Ge, Y. Pan, Y. Fan, and C. Fang, “Amdroid: Android-

malware detection using function call graphs,” in Proceedings

of the 2019 IEEE 19th International Conference on Software

Quality, Reliability and Security Companion (QRS-C),

pp- 71-77, IEEE, Sofia, Bulgaria, July 2019.

A. Pektag and T. Acarman, “Deep learning for effective an-

droid malware detection using api call graph embeddings,”

Soft Computing, vol. 24, pp. 1027-1043, 2020.

[9

[12
(13

[19

[21

[23

Security and Communication Networks

[24] J. Saxe and H. Sanders, Malware Data Science:Attack De-
tection and Attribution, No Starch Press, San Francisco, CA,
USA, 2018.

[25] M. Ikram, P. Beaume, and M. A. Kaafar, “DaDiDroid:an
obfuscation resilient tool for detecting android malware via
weighted directed call graph modelling,” 2019, https://arxiv.
org/abs/1905.09136.

[26] Comodo, “Comodo anti-malware database,” 2019, https://
www.comodo.com/home/internet-security/updates/vdp/
database.php.

[27] ArgusLab, “Android malware dataset,” 2016, https://amd.
arguslab.org/.

[28] D. Huffman, “A method for the construction of minimum-
redundancy codes,” Proceedings of the IRE, vol. 40, no. 9,
pp. 1098-1101, 1952.

[29] ApkTool, “Apktool - a tool for reverse engineering 3rd party,
closed, binary android apps,” 2019, https://ibotpeaches.
github.io/Apktool/.

[30] J. Freke, “Baksmali is an assembler/disassembler for the dex
format,” 2019, https://github.com/JesusFreke/smali.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” 2013,
https://arxiv.org/abs/1301.3781.

[32] L. Breiman, “Random forests,” Machinelearning, vol. 45,
pp. 5-32, 2001.

[33] J. R. Quinlan, C4.5: Programs for Machine Learning, Elsevier,
Amsterdam, Netherlands, 2014.

https://github.com/dav/word2vec
https://arxiv.org/abs/1905.09136
https://arxiv.org/abs/1905.09136
https://www.comodo.com/home/internet-security/updates/vdp/database.php
https://www.comodo.com/home/internet-security/updates/vdp/database.php
https://www.comodo.com/home/internet-security/updates/vdp/database.php
https://amd.arguslab.org/
https://amd.arguslab.org/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://github.com/JesusFreke/smali
https://arxiv.org/abs/1301.3781

