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SKINNY is a tweakable lightweight block cipher algorithm. In order to test its security, this paper performs optimal differential
trail search analysis on all SKINNY-64 versions under single-key setting based on the MILP (Mixed Integer Linear Programming)
algorithm. Firstly, SKINNY round function is abstracted equivalently by precise constraints, and the objective function is set as the
minimum number of active S-box number to optimize SKINNY-64MILPmodel. Experiments show the differential trail searched
by this method is not necessarily optimal. In order to directly search for the optimal differential trail, the S-box differential
probability coding information is added to the optimized SKINNY-64 MILP model, the S-box differential characteristic is
reconstructed, and the objective function is set to the minimum value of the probability coding information, which improves the
SKINNY-64 MILP model. ,e results of experimental show that the improved MILP model can directly search for the optimal
differential trail, and the complexity is slightly increased, but the search efficiency is significantly improved. Under single-key
setting, this method has obvious advantage in searching the optimal differential trails of SKINNY-64 with low round number.

1. Introduction

SKINNY is a SPN-structured tweakable lightweight block
cipher algorithm proposed by Beierle [1] at American
Cryptography Conference in 2016. SKINNY is divided into
six different versions, namely, SKINNY-64-64, SKINNY-64-
128, SKINNY-64-192, SKINNY-128-128, SKINNY-128-256,
and SKINNY-128-384.

Since the announcement of the SKINNY algorithm,
some scholars have used various methods to analyze its
security. Tolba et al. [2] performed impossible differential
attack analysis on 18, 20, and 22 rounds of SKINNY-n-n,
SKINNY-n-2n, and SKINNY-n-3n, respectively. Sadegh
Sadeghi et al. [3] obtained the 12-round impossible differ-
ential trails of SKINNY-64-64 and SKINNY-64-128 in
SKINNY’s TK1 and TK2 models, respectively, using the
method of intermediate encounter. Hong Dou [4] used the
intermediate encounter technology to search out all 16
truncated impossible differential trails of the 11 rounds of
the SKINNY encryption algorithm and used one of them to
analyze 20 rounds of SKINNY-64-128 using the impossible
differential technique under a single key setting. ,e main
approach of these papers is to find trails that are impossible

to occur in the ciphertext, leaving only a reasonable number
of differential trails to consider.

Unlike methods that search for more impossible dif-
ferential trails, Mixed integer linear programming(MILP) is
a method that can search for differential trails directly.
Mouha [5] and Wu [6] converted the minimum active
S-boxes number of block ciphers into a MILP problem and
applied the MILP method to cryptanalysis. However, this
method has two shortcomings. One is that it cannot be
directly applied to the SPN block cipher with a bit per-
mutation layer because it does not consider the diffusion
effect formed by the S-boxes replacement layer and the bit
permutation layer. ,e second is that, for a given crypto-
graphic algorithm, the MILP constraint set listed cannot
fully describe the differential propagation characteristics of
the linear diffusion layer [7]. Professor Sun [8] supple-
mented and optimized the method of Mouha and applied
the method of obtaining the minimum number of active
S-boxes to a bit-oriented block cipher. A linear inequality
was generated based on the differential characteristics of
S-boxes. Constraint inequality generated by XOR operation
builds an MILP model to search for the differential char-
acteristics of block ciphers under single-key and related-key
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setting [9], and the MILP model uses only partial linear
inequality, making it solvable in real time.

In recent years, some scholars have applied the MILP
method to the research of SKINNY cryptographic algo-
rithms. ,e designers of SKINNY performed a security
evaluation of SKINNY. Using the MILP method, they ob-
tained the lower bound of the minimum number of active
S-boxes under the single-key and related-key setting.
According to the lower limit of the number of differential
active S-boxes in SKINNY, they further assumed that each
S-box used the maximum differential probability to evaluate
the security boundary of SKINNY. However, it is not clear
whether such a difference trail with maximum probability
that satisfies the lower bound exists.,erefore, Sun et al. [10]
proposed a method to obtain stricter boundaries, verified
whether the optimal differential trail using the maximum
differential probability for all active S-boxes exists, and
proposed the method of finding the optimal differential trail
of the block cipher algorithm based on MILP. Liu et al. [11]
firstly proposed the method of searching the actual differ-
ential trail of SKINNY under the relevant tweakable secret
key model and used the indirect search method based on
MILP to search the optimal differential trail of SKINNY-64
and SKINNY-128. ,e results show that the probability of
the optimal differential trail is much smaller than that ob-
tained from the lower bound of the active S-boxes in
SKINNY with the increase of the number of rounds.
However, their work is to analyze SKINNY under the re-
lated-key setting. Zhang et al. [12] proposed a method based
on MILP to automatically search the number of 11 mini-
mum active S-boxes of SKINNY-64/192 and obtained the
number of 11 active S-boxes and the corresponding dif-
ferential trail under this number, but their differential trails
are no guarantee that are the optimal trails and other ver-
sions of SKINNY-64 are not considered.

In this paper, we analyze the differential propagation
characteristics of all SKINNY-64 versions under the single-
key setting model by using MILP and obtain the optimal
differential trails. ,e basic method is to establish the MILP
model of SKINNY-64 under the single key setting and use
the LPSolve optimizer to obtain an optimized solution with
the objective function as the minimum number of active
S-boxes. Combined with the differential probability coding
information of S-boxes, the model was further improved to
obtain the optimal differential trail.

,e rest of this paper is organized as follows. In Section
2, the MILP model of all SKINNY-64 versions is proposed
first. To search the optimal differential trails directly, an
improved MILP model of SKINNY-64 and an experimental
plan are introduced in Section 3, and also the two experi-
mental results are discussed and analyzed. Finally, Section 4
concludes the work.

2. Analysis of SKINNY Differential Trail
Based on MILP

2.1. SKINNY Differential Characteristic Optimization Based
on MILP. Due to the differential analysis of single-key

setting, the key is assumed to be fixed, the round key dif-
ference is not considered, and only the state difference is
considered. ,erefore, the MILP model of all SKINNY-64
versions can be uniformly optimized by using the S-box
constraint part, the Row Shift constraint part, and the
column mixed constraint part. MILP model optimization is
mainly carried out by reducing constraint inequalities and
the number of variables. ,e specific parameters of a round
of difference analysis before and after MILP optimization are
shown in Table 1. It can be seen that the optimization re-
duces the calculation amount and improves the operation
efficiency.

In Figure 1, Xi andYi represent the state difference of the
ith round and Yir is the state difference of Yi after Row
Shifting, each containing 16 difference cells and a total of
64 bit difference. For example, Xi represents the output
difference of the (i − 1)th or the plaintext pair difference
(x0, ‥K., x63) when i� 1. Each state Xi andYi contains 16
difference cells, each cell is a nibble, respectively, represented
by Xj and Yj, where j ∈ (0, ‥K., 15). Each difference cell can
be expressed as Xj � (x4j, x4j+1, x4j+2, x4j+3).

2.1.1. S-Box Differential Characteristic Optimization. ,e 1st
round of SKINNY’s differential feature changes for each
S-box has a total of 97 differential characteristics, as shown
in Table 2.

A set of truncated inequality describing these effective
difference modes are obtained by computing the finite
multipoint convex closure H-representations in a com-
putational geometry system. ,rough the inequality
generator function in the sage.geometry.polyhedron
class of the SageMath, a convex closure of a specific S-box
can be obtained and 202 inequalities are calculated. Our
implementation follows the details presented in Ap-
pendix A. To obtain the optimal linear inequalities de-
scribing the SKINNY-64 S-box, we use the greedy
algorithm to remove the invalid difference to optimize
the model. Finally, it only needs 24 valid truncation
inequalities (see Table 3) to solve SKINNY-64, which can
accurately describe the difference feature of an S-box.
,e associated source codes of our implementation are
listed at Appendix B.

2.1.2. Shift Row Differential Characteristic. In the difference
analysis, the Row Shift operation process is the same as the
Row Shift process of the SKINNY round function; only the
1st row of the internal state value needs to be fixed, and the
2nd, 3rd, and 4th rows are shifted to the right by 1, 2, and 3
bits, as shown in Figures 1(b) and 1(c).

2.1.3. Mix Column after Optimizing MILP Model. After
optimizing the MILP model, the basic process of Column
Mixing is shown in Figures 1(c) and 1(d).

Considering the difference of each bit, the 4× 4Mmatrix
of SKINNY is transformed into a 16 × 16 matrix:
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M �

1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Output difference Xi +1 � M × Yir for the 1st round,
corresponding to the 2nd round of input is shown in Table 4.

Based on the XOR method of MILP modeling, the
constraint conditions of Column Mixing can be obtained. If
the input is tri-XOR, the intermediate variable ui,
i ∈ (0, ..., 15), is introduced. In the column mixed operation,
64 sets of inequalities are generated. Let a⊕b � c, where a

and b and c are the input and output differences of the XOR.
Virtual variable d⊕ is introduced, when input a and b and
output c are all zero, the variable d⊕ is zero. In any other
cases, the variable d⊕ is 1. It introduces 64 d⊕.,erefore, a
total of 336 constraint inequalities need to be listed in the 1st
round of Column Mixing. Due to the large number of linear
inequalities involved, representative constraint inequalities
are listed in Table 5.

2.2. Analysis of SKINNY-64 4-Round MILP Model Results.
SKINNY-64 1st difference analysis contains 800 constrained
inequalities involving 288 variables,erefore, a total of 2864

Table 1: Constraint conditions and number of variables of SKINNY-64 differential analysis before and after MILP model optimization.

Before optimization ,e optimized
,e constraint inequalities 3712 800
,e number of variables 352 288
,e ith round SKINNY-64 state differential transition after optimization is shown in Figure 1.
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Figure 1: ,e ith round SKINNY-64 state differential transfer diagram after MILP optimization.

Table 2: 97 possible differential characteristics of the 1st round of the SKINNY-64 S-box.

(x4i, x4i+1 + x4i+2 + x4i+3) (y4i, y4i+1, y4i+2, y4i+3)i ∈ (0, ‥K., 15)

0000 0000
0001 1000 1001 1010 1011
0010 0001 0011 0101 0110
0011 1000 1001 1010 1011 1100 1101 1110 1111
0100 0010 0110 0111 1011 1100 1101
0101 0010 0110 0111 1010 1100 1101
0110 0001 0011 0100 0111 1000 1010 1101 1110
0111 0001 0011 0100 0111 1001 1011 1100 1111
1000 0100 0101 1100 1101 1110 1111
1001 0100 0101 1100 1101 1110 1111
1010 0101 0110 1000 1001 1010 1011
1011 0001 0011 1100 1101 1110 1111
1100 0010 0110 0111 1000 1110 1111
1101 0010 0110 0111 1001 1110 1111
1110 0001 0011 0100 0111 1001 1011 1101 1110
1111 0001 0011 0100 0111 1000 1010 1100 1111
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Table 3: 24 efficient truncation inequalities generated.

24 effective truncation inequalities Number of invalid difference modes removed/inequalities
− 2x0 + 3x1 − 3x2 − 2x3 + 5y0 + 4y1 + y27y3 ≥ 0 27
− x0 + x1 � 2x2 + x3 + y0 + 3y1 − 2y3 ≥ 0 24
4x0 + 3x1 + 2x2 + 3x3 − y0 − y1 − y2 − y3 ≥ 0 18
2x0 − x1 + 2x2 + 3y0 − y1 + 3y2 − y3 ≥ 0 13
x0 + 3x1 + x2 − 2x3 + 2y0 − y1 − 2y2 ≥ − 2 9
− 3x0 + 2x1 + x2 − 2x3 − y0 + 3y1 + y3 ≥ − 3 8
x1 − 2x2 + 2x3 − y0 − 2y1 + y2 + y3 ≥ − 3 7
− 2x0 − 3x1 + 2x2 + x3 + y0 − y1 + 3y2 − y3 ≥ − 4 7
− x1 − 2x2 − x3 + y0 − y1 − 2y2 + 2y3 ≥ − 5 6
− x1 − x2 − x3 + y0 − 2y1 + 2y2 − 2y3 ≥ − 5 5
2x0 + x1 + 3x2 + 4x3 − 3y0 + 2y1 − y2 + 3y3 ≥ 0 5
x0 − 2x1 + 2x2 − 2x3 − y0 + y1 − y2 − 2y3 ≥ − 6 5
x1 − 2x2 + 2x3 − y0 − 2y1 − y2 − y3 ≥ − 5 4
x0 − x1 − x3 + y0 + 2y1 + 2y2 + 2y3 ≥ 0 3
x0 − x2 + x3 − y0 + y1 − y3 ≥ − 2 3
− x0 − x2 − x3 − y0 + y1 − y3 ≥ − 4 3
− x0 − x1 − x2 + x3 + y1 + y3 ≥ − 2 2
3x0 + x1 + x2 − 2x3 + 2y0 − y1 + 2y2 − y3 ≥ − 1 2
x1 + x2 + y0 − y2 ≥ 0 2
x0 − x1 − 2x2 − x3 + y0 − 2y2 + 2y3 ≥ − 4 2
x0 + x1 + x2 + 2x3 − 2y0 + y1 + y2 ≥ 0 2
− x0 − x1 + x2 − y1 + y2 ≥ − 2 1
x0 + x1 + x2 − y1 ≥ 0 1
x0 + x2 − y0 − y1 − y2 ≥ − 2 1
Total 159

Table 4: ,e 2nd round input.

x64 � y0 + y40 + y52 x80 � y0 x96 � y28 + y40 x112 � y0 + y40
x65 � y1 + y41 + y53 x81 � y1 x97 � y29 + y41 x113 � y1 + y41
x66 � y2 + y42 + y54 x82 � y2 x98 � y30 + y42 x114 � y2 + y42
x67 � y3 + y43 + y55 x83 � y3 x99 � y31 + y43 x115 � y3 + y43
x68 � y4 + y44 + y56 x84 � y4 x100 � y16 + y44 x116 � y4 + y44
x69 � y5 + y45 + y57 x85 � y5 x101 � y17 + y45 x117 � y5 + y45
x70 � y6 + y46 + y58 x86 � y6 x102 � y18 + y46 x118 � y6 + y46
x71 � y7 + y47 + y59 x87 � y7 x103 � y19 + y47 x119 � y7 + y47
x72 � y8 + y32 + y60 x88 � y8 x104 � y20 + y32 x120 � y8 + y32
x73 � y9 + y33 + y61 x89 � y9 x105 � y21 + y33 x121 � y9 + y33
x74 � y10 + y34 + y62 x90 � y10 x106 � y22 + y34 x122 � y10 + y34
x75 � y11 + y35 + y63 x91 � y11 x107 � y23 + y35 x123 � y11 + y35
x76 � y12 + y36 + y48 x92 � y12 x108 � y24 + y36 x124 � y12 + y36
x77 � y13 + y37 + y49 x93 � y13 x109 � y25 + y37 x125 � y13 + y37
x78 � y14 + y38 + y50 x94 � y14 x110 � y26 + y38 x126 � y14 + y38
x79 � y15 + y39 + y51 x95 � y15 x111 � y27 + y39 x127 � y15 + y39

Table 5: Column hybrid constraint example.

,ree XOR inputs Position replacement Two XOR inputs

x64 � y0 + y40 + y52
y0 + y40 � u0
y0 + y40 + u0 ≥ 2d⊕

d⊕ ≥y0, d⊕ ≥y40, d⊕ ≥ u0
y0 + y40 + u0 ≤ 2
x64 + y52 + u0 ≥ 2d⊕

d⊕ ≥ x64, d⊕ ≥y52x64 + y52 + u0 ≤ 2

x80 � y0
x81 � y1
x82 � y2
x83 � y3

...

x92 � y12
x93 � y13
x94 � y14
x95 � y15

x96 � y28 + y40
y28 + y40 + x96 ≥ 2d⊕

d⊕ ≥y28, d⊕ ≥y40, d⊕ ≥x96
y28 + y40 + x96 ≤ 2
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constraint inequalities and 816 variables are included in the
four rounds of skinny-64 differential trail MILP analysis
model.

To find the differential trail, the number of active S-boxes
needs to be determined. S-boxes with nonzero input and
output differences are called active S-boxes. Generally, when
the number of active S-boxes is determined, the greater the
state differential probability in the S-box, the higher the
probability of the differential trail. Similarly, the smaller the
number of the minimum active S-boxes, the higher the
probability of the differential trail [13]. In order to solve the
minimum number of active S-boxes, the objective function
is set:

min 
i�63

i�0
Ai. (2)

Among them, Ai �
1, the S − box is active,
0, otherwise, , i is the

number of the difference units in each round.

Using the LPSolve software to solve the model, the
minimum number of active S-boxes for four rounds is finally
found to be 8, and the total probabilities of four 4-round
differential trails are 2− 18(A0 �1), 2− 18(A1 � 1), 2− 21(A2 �1),
and 2− 18(A3 �1), and the result is shown in Figure 2.

,e average successful search time is 16.0465s (the main
configuration of the computer: Intel i7 8700, CPU frequency
3.2GHz, memory 32G, hard disk 2 TB 7200RPM+512GB
SSD). However, the experimental results show that these
four trails are not optimal. ,is method is not conducive to
the direct search of the optimal differential trail, which needs
further improvement.

3. Improved SKINNY Differential Trail
Search Method

,e above method can search multiple differential trails with
the minimum number of active S-boxes, but the trails with
the minimum number of active S-boxes are not all optimal
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Figure 2: Four 4-round SKINNY-64 differential trails searched after optimizing the model.
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differential trails. ,erefore, the MILP model of SKINNY-64
needs to be improved to make it directly find the optimal
differential trail.

3.1. New S-Box Differential Characteristic Based on Improved
MILP Model. ,e improved MILP model is mainly to
modify the S-box differential feature analysis of the above
model, add probability coding information to the optimized
MILP model, and reconstruct the S-box differential
characteristic.

Each valid differential characteristic of 16 S-boxes
(x4i, ..., x4i+3, yi, ..., y4i+3), i ∈ (0, ..., 15), in the 1st round is
combined with the corresponding probability information
coding, to construct a new difference pattern
(x4i, ..., x4i+3, yi, ..., y4i+3, pi, qi) ∈ R10.,e coding method of
probability information is shown in Table 6:

According to Table 6, the probability information of the
S-box differential characteristic can be expressed as
2− (pi + 2qi). ,e main idea of the improved method lies in the
constraint of S-box difference mode and the choice of ob-
jective function. ,e constraints of the improved S-box
model are combined with the coding information of the

difference probability, which is closely related to the
probability of the difference trail.

So, set the objective function to

min 
i�63

i�0
pi + 2qi( . (3)

Although the S-box difference mode is changed after the
probability coding information is added, the solution
method is the same. Ninety seven new differential charac-
teristics are available with the addition of probabilistic
coding information, as shown in Table 7:

3.2. Analysis of Improved SKINNY-64 Four-Round MILP
Model. After improving the model, the 1st round of
SKINNY-64 difference analysis process contains 816 con-
straint inequalities and 320 variables.,erefore, SKINNY-64
four round differential trail MILP analysis model contains a
total of 2928 constraint inequalities and 944 variables.

After the improvement, the optimal differential trail for
SKINNY-64 4-round can be found directly. When the
minimum number of S-box number in the 4-round is 4, the

Table 6: Probability information coding.

(pi, qi) Pr(x4i, ..., x4i+3, yi, ..., y4i+3), i ∈ (0, ..., 15)

(0, 0) 2− 0

(0, 1) 2− 2

(1, 1) 2− 3

Table 7: All possible new differential characteristics for 1st round of SKINNY-64 S-box.

25 effective truncation inequalities Number of invalid difference modes removed/inequalities
− x0 − x1 − x3 − y0 + y2 − y3 − p0 + 5q0 ≥ 0 484
− 2x1 − x2 − x3 − 2y1 − y2 − y3 + 4p0 + 4q0 ≥ 0 127
x1 + x2 + y0 + y1 − p0 − q0 ≥ 0 97
x1 − x2 + x3 − 3y0 − y1 + 2p0 + 2q0 ≥ 0 62
x0 − 2x1 − 4x2 − x3 + y1 + 2y2 + 3y3 + 5p0 + q0 > � 0 30
x0 + 2x1 + x2 + y0 − p0 − q0 ≥ 0 24
2x2 + y0 + y1 + y2 − p0 − q0 ≥ 0 20
− x2 + 2y0 + y1 − y2 + 2y3 − p0 + q0 ≥ 0 16
− 3x0 + 3x1 + x2 + 3x3 − 2y0 + 2y1 − 2y2 − y3 + 5p0 + 2q0 ≥ 0 11
x2 + y1 − p0 ≥ 0 8
− 3x1 + 2y0 − y1 + y2 − y3 + 2p0 + 2q0 ≥ 0 7
3x0 + 2x1 + x2 + 2x3 − y0 − y2 − p0 ≥ 0 6
x1 + y0 − p0 ≥ 0 6
− 2x0 + x1 − 2x3 − y0 + 2y1 − y3 − p0 + 5q0 ≥ 0 5
− 3x0 − x1 − x2 − 2x3 − 3y0 − 2y1 − y2 + 2y3 + 5p0 + 7q0 ≥ 0 4
− x0 − x1 + x2 − y1 + y2 + 2q0 ≥ 0 3
x0 − x1 − 3x2 − 2x3 − y2 + y3 + 2p0 + 4q0 ≥ 0 3
x0 − x1 + x3 − y0 + y1 + 2y2 − y3 + p0 + q0 ≥ 0 3
− x2 + x3 − y0 − y1 − y2 − y3 + p0 + 3q0 ≥ 0 2
− x0 − x1 − 3x2 + x3 − 2y0 + 2y1 − 2y2 + y3 + 4p0 + 4q0 ≥ 0 2
x0 + 2x2 − y0 − 3y1 − y2 + 2p0 + 2q0 ≥ 0 2
− x0 − x1 − 3x2 + x3 − y0 + y2 + y3 + 2p0 + 3q0 ≥ 0 2
− x1 − x2 − x3 − y1 + y2 − y3 + p0 + 3q0 ≥ 0 1
2x0 + x1 + 2x3 − y0 − y2 − y3 − p0 + 2q0 ≥ 0 1
x0 − x2 + x3 − y0 − y1 + 2y2 + 2y3 + 2p0 ≥ 0 1
Total 927
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maximum probability of 4 optimal difference trails is 2− 16,
which just satisfies the upper bound of the differential
probability in the 4-round is shown in Figure 3. ,e ex-
perimental results show that the average successful search
time is 19.8945s, which is only 3.848s more than the former
(the main configuration of the computer: Intel i7 8700, CPU
frequency 3.2GHz, memory 32G, hard disk 2 TB
7200RPM+512GB SSD). Obviously, compared with the
previous method, this direct search method has advantages
in low rounds.

4. Conclusion

In this paper, mainly analyze all SKINNY-64 versions’
differential trails under single-key setting. During the dif-
ferential analysis, the key is assumed to be fixed, the round
key difference is not considered, and only the state difference
is considered. ,erefore, the MILP model of all SKINNY-64

versions can be uniformly constructed. ,e state difference
process of SKINNY is equivalently abstracted by specific
constraints and variables to construct a MILP model. In
order to improve the operation efficiency, the MILP model
was optimized from two aspects: on the one hand, reducing
the number of constraint inequalities, and on the other hand,
reducing the number of variables. ,e optimized model
reduces the number of constraints by 2912 and the number
of variables by 64. However, the optimal trail cannot be
searched directly in this scenario. In order to search the
optimal trail more accurately, the MILP model is improved.
,e differential features of the S-box are reconstructed by
adding the differential probability coding information of the
S-box, and the model under the new difference mode of the
S-box is obtained. Finally, the optimal difference trail of
skinny-64 4-round is searched successfully. Our model has
obvious advantages in searching the low rounds of SKINNY-
64 the optimal differential trails under single-key setting.
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Figure 3: Four 4-round SKINNY-64 optimal differential trails searched after improving the model.
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Appendix

,e partial procedure for generating efficient truncation
inequality for S-box is given below.

A. Get 202 Linear Inequalities Describing the
SKINNY-64 S-Box

Enter these difference vectors in SageMath 8.6 to achieve

myPoints�
[
[97 possible difference vectors]
]
poly_test�Polyhedron (vertices�myPoints)
for v in poly_test.inequality_generator():
print v

Finally, we can get the result.

B. Obtain the Optimal Linear Inequalities
Describing the SKINNY-64 S-Box

//We reduce the 202 linear inequalities describing the
SKINNY-64 S-box obtained in A, using the greedy algorithm
and finally, we get the optimal linear inequalities describing
the SKINNY-64 S-box. And an S-box only needs to be
accurately described by 24 linear inequalities.

#include <stdio.h>
# define N1 300
# define N2 200
# define M 9
int choose(int x[N1][M],int y[N2][M-1])
{
int i, j, temp�0;
int z[N1]�{0};

//How many points are not satisfied for each inequality.

for (i�0;i<N1;i++)
{
for(j�0;j<N2;j++)
if((x[i][0]∗y[j][0]+x[i][1]∗y[j][1]+x[i][2]∗y[j][2]+x[i]
[3]∗y[j][3]+x[i][4]∗y[j][4]+x[i][5]∗y[j][5]+x[i][6]∗y
[j][6]+x[i][7]∗y[j][7]+x[i][8])<0)
z[i]++;
}
temp�z[0]; j�0;

//Finding the inequality and its count is the largest.
//Number of differential modes removed for each in-

equality: z [i]

for(i�1;i<N1; i++)
{
if(z[i]>temp)

{j�i;temp�z[j];}
}

//,e maximum number of differential modes removed
is saved in temp

if(temp!�0)
{

//Delete the points corresponding to the largest
inequality.

for(i�0;i<N2;i++)
{
if(x[j][0]∗y[i][0]+x[j][1]∗y[i][1]+x[j][2]∗y[i][2]+x[j]
[3]∗y[i][3]+x[j][4]∗y[i][4]+x[j][5]∗y[i][5]+x[j][6]∗y
[i][6]+x[j][7]∗y[i][7]+x[j][8]<0)
{
y[i][0]�0;y[i][1]�0;y[i][2]�0;y[i][3]�0;y[i][4]�0;y[i]
[5]�0;y[i][6]�0; y[i][7]�0;
}
}

//A corresponding inequality deletes the corresponding
useless difference

//Output inequality and the number of points that are
not satisfied.

for(i�0; i<8; i++)
{
if(x[j][i]<0||i�0)
printf(“%d∗x%d”,x[j][i],i);
else
printf(“+%d∗x%d”,x[j][i],i);
}
printf(“+%d%6d”,x[j][8],temp); printf(“\n”); x[j][0]�0;
x[j][1]�0; x[j][2]�0; x[j][3]�0; x[j][4]�0; x[j][5]�0; x[j]
[6]�0; x[j][7�0; x[j][8]�0;
return temp;
}
else
return 0;
}
int main()
{

//In SageMath, the coefficients of the inequality of the s1-
box are obtained.

//202 effective truncation inequalities

int a[N1][M]�{{0,-1,0,0,0,0,0,0,1},{-1,0,0,0,0,0,0,0,1},
. . ., {-1,-2,-1,-2,-1,-1,2,-2,8}};

//It does not satisfy the s-box.
//Because there are so many points, I’ll just list some of

them here.
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int b[N2][M-1]�{{0,0,0,0,0,0,0,1},{0,0,0,0,0,0,1,0},. . .,
{1,1,1,1,1,1,1,0}};
printf(“inequalities counting\n”);
while(choose(a, b)�0)
choose(a, b);
return 0;
}
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