
Research Article
On-Device Detection of Repackaged Android Malware via
Traffic Clustering

Gaofeng He,1,2 Bingfeng Xu,3 Lu Zhang,4 and Haiting Zhu 1

1College of Internet of �ings, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education,
Nanjing, China
3College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
4College of Information Engineering, Nanjing University of Finance & Economics, Nanjing 210046, China

Correspondence should be addressed to Haiting Zhu; htzhu@njupt.edu.cn

Received 3 July 2019; Revised 14 March 2020; Accepted 18 May 2020; Published 31 May 2020

Academic Editor: Pino Caballero-Gil

Copyright © 2020 Gaofeng He et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Malware has become a significant problem on the Android platform. To defend against Android malware, researchers have
proposed several on-device detection methods. Typically, these on-device detection methods are composed of two steps: (i)
extracting the apps’ behavior features from the mobile devices and (ii) sending the extracted features to remote servers (such as a
cloud platform) for analysis. By monitoring the behaviors of the apps that are running on mobile devices, available methods can
detect suspicious applications (simply, apps) accurately. However, mobile devices are typically resource limited. .e feature
extraction and massive data transmission might consume substantial power and CPU resources; thus, the performance of mobile
devices will be degraded. To address this issue, we propose a novel method for detecting Android malware by clustering apps’
traffic at the edge computing nodes. First, a new integrated architecture of the cloud, edge, and mobile devices for Android
malware detection is presented. .en, for repackaged Android malware, the network traffic content and statistics are extracted at
the edge as detection features. Finally, in the cloud, similarities between apps are calculated, and the similarity values are
automatically clustered to separate the original apps and the malware. .e experimental results demonstrate that the proposed
method can detect repackaged Android malware with high precision and with a minimal impact on the performance of
mobile devices.

1. Introduction

Recently, Android platforms (e.g., smartphone, smartwatch,
and tablet) have become increasingly popular worldwide.
According to Statista, Android is accounted for more than
74% of the global mobile OSmarket as of December 2019 [1].
One of the most important reasons for Android’s popularity
is that mobile users can conveniently download various
types of apps from app stores [2]. For example, an official
Android market, namely, the Google Play store, already had
more than 2.9 million apps in January 2020 [3]. .ese
feature-rich apps make the Android platform attractive and
vibrant.

Android apps, i.e., Android Package Kit (APK) files, are
archives in ZIP format, which include developer bytecodes,
resource files, and a manifest file. Unfortunately, in contrast
to traditional executable software, Android apps are easy to
repackage. With open-source tools such as apktool (https://
github.com/iBotPeaches/Apktool) and jadx (https://github.
com/skylot/jadx), one can easily add code or modify re-
source files to realize various objectives. For instance,
malware writers can graft ad code on popular apps to make
money or graft malicious code to steal user privacy infor-
mation (for example, the Xavir malware has infected over
800 android apps. .ese repackaged apps are often self-
signed and do not require mobile devices to be rooted).

Hindawi
Security and Communication Networks
Volume 2020, Article ID 8630748, 19 pages
https://doi.org/10.1155/2020/8630748

mailto:htzhu@njupt.edu.cn
https://github.com/iBotPeaches/Apktool
https://github.com/iBotPeaches/Apktool
https://github.com/skylot/jadx
https://github.com/skylot/jadx
https://orcid.org/0000-0002-5840-2251
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8630748

According to [4–6], most Android malware programs are
repackaged apps, and the majority of new Android malware
samples are polymorphic variants of known malware.
Repackaged Android malware is becoming a substantial
threat to Android security.

Researchers have extensively investigated the detection
of (repackaged) Android malware, and several methods have
been proposed and evaluated [7–14]. Previous works can be
generally divided into off-device and on-device detection.
Off-device detection is typically adopted by security ana-
lyzers who analyze APK files at a dedicated analysis server.
.e analyzers can check the APKs with signatures or dy-
namically run them in a real or virtual execution environ-
ment to record their behaviors [15]. If malicious code or
behaviors are identified, the apps will be judged as malware.
Off-device detection can also be conducted via network
monitoring [14]. We will refer to off-device detection
methods of this type as network-based methods in the
following.

On-device detection is implemented partially or com-
pletely locally, namely, at users’ mobile devices. .e rec-
ognition of malware from the installed apps is attempted.
Technically, on-device detection also identifies malware by
analyzing the behaviors of the apps. Compared to off-device
detection, on-device detection can detect malware that is
running on mobile users’ devices and identify more so-
phisticated malicious apps, such as those which are triggered
by specified events. For example, by observing the deviations
of app network behaviors at the mobile device, one can
detect self-updating malware that may be triggered by a
specified geo-location, device type, or OS version [8].
Nevertheless, on-device detection is more challenging due to
the limited resources of mobile devices.

Typically, several steps should be conducted to detect
malicious Android apps at mobile devices. First, detection
features such as the user’s operating behaviors, API usages,
and application network behaviors should be defined and
extracted. .en, based on the extracted features, detection
models are constructed, and, finally, new apps are compared
with the constructed models for malware detection.
Depending on where these steps are performed, current
approaches can be categorized into two main groups: client-
side detection and server-side detection [14]. For client-side
detection, these steps are all conducted at the mobile devices,
while for server-side detection, the main steps (model
construction and malware detection) are conducted on
remote servers.

In practice, the application of the client-side approaches
could be restricted because they consume substantial
amounts of resources and power. According to reference [8],
the storage of 10 Android malware detection models re-
quires 7272 kB ± 15 memory consumption and the learning
of these models requires 13% ± 1.5 CPU consumption.
Worse, the moremodels that are trained and saved, the more
resources and power are consumed. .erefore, the server-
side methods are typically adopted [16]. However, the re-
source and power consumptions of the server-side methods
remain high (e.g., 7% performance overhead and approxi-
mately 3% battery overhead [17]). .is is because the

detection features are still mainly collected and processed at
the mobile devices [10, 17].

In this paper, we propose a novel method for detecting
repackaged Android malware based on clustering apps’
traffic in the edge computing platform. Although Android
malware can use emulator/sandbox detection [18] and
packing [19, 20] to impede dynamic and static analysis, it is
difficult for them to hide the traffic to be inspected..e basic
strategy of our method is that the feature extraction and
preprocessing can be offloaded to the edge. .us, the
workloads of mobile devices are reduced. .e designed
architecture for Android malware detection consists of three
components: mobile devices, edge servers, and the cloud.
.e mobile devices are used normally, and an additional
edge-client app will be installed and run in the background.
.e edge-client app operates identically to an Android VPN
app such as Packet Capture (https://play.google.com/store/
apps/details?id�app.greyshirts.sslcapture&hl�en US), ex-
cept it only records the flow metainformation, such as the
flow starting time and flow protocol, and it does not need to
save and manipulate the packet contents. Hence, it is
lightweight and imposes a negligible burden on the mobile
devices.

.e edge servers collect mobile network traffic and extract
detection features from the traffic. .e traffic preprocessing
that is conducted by the edge servers not only reduces the
amount of data to be sent but also protects the mobile users’
privacy because the cloud can only observe the coarse-grained
features. .e extracted network traffic features are sent to the
cloud for final processing. In the cloud, similarities between
apps are calculated based on the received features. After that
these similarity values are automatically clustered to separate
original apps and repackaged malware. We conducted an
extensive set of experiments, and the results demonstrated
that the average detection accuracy was 96.9%.

Our main contributions are as follows:

(i) A lightweight and efficient framework that is based
on edge computing for the detection of Android
malware is proposed. Compared to the typical
server-side approaches, the proposed framework
will have minimal impact on the performances of
the mobile devices. In addition, compared to the
network-based methods, the detection accuracy can
be increased, and the privacy of mobile users can be
better protected.

(ii) A traffic clustering method for the identification of
repackaged Android malware is proposed. We
cluster the network traffic that is generated by the
same apps to determine which one have been
repackaged. First, we use the plaintext contents and
flow statistical features to calculate the similarities
between the apps. .en, the similarity values are
clustered to separate the original apps and the
repackagedmalware automatically. Via clustering, it
is unnecessary tomodel the apps’ network behaviors
or extract matching signatures for malware detec-
tion in advance. Hence, this approach will be more
efficient in practice.

2 Security and Communication Networks

https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture&hl=enUS
https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture&hl=enUS

(iii) Extensive experiments are conducted on public
datasets.

.e remainder of this paper is organized as follows.
.e preliminaries of Android malware and edge com-
puting are introduced in Section 2. In Section 3, we
discuss relevant related work. Section 4 describes the new
integration architecture of the cloud, edge, and mobile
devices for Android malware detection. .e methodology
is presented in Section 5. An experimental evaluation of
our method in terms of accuracy and performance is
presented in Section 6. We discuss the limitations of the
proposed method in Section 7. Finally, in Section 8, we
present the conclusions of the paper and discuss potential
future work.

2. Preliminaries

In this section, we introduce important concepts regarding
Android malware and edge computing, which form the basis
of this work.

2.1. Android Malware. As discussed in Section 1, Android
apps (APKs) are easy to repackage, which is convenient for
attackers who would like to create Android malware. In fact,
most Android malware is produced by repackaging benign
apps, especially favorite apps to ensure a wide diffusion of
the malicious code [4]. As evidence, MalGenome [21], which
is a reference dataset in the Android security community,
80% of the malicious samples were built via repackaging
other apps. Repackaged apps can be distributed through
third-party markets, which do not typically require
screening or integrity evaluation of the uploaded apps [22].
For example, many of the apps in F-Droid are found to be
repackaged by the same developer [23]. Consequently, we
detect mainly malicious repackaged Android apps in this
study.

Repackaged Android malware can be efficiently detected
by analyzing its network traffic [7, 14]. .is is because the
repackaged apps are typically functionalized to interact with
remote servers to receive commands or return sensitive data,
and their network behaviors will differ from the original
network behaviors. To better explain this, we decompile two
apps, namely, 00575DE650F78413C91E8E613ADF909981
2F325AA9CF36C72E81C79B230F58F4 and A55EA58072
03CE31470D1905ED30F9267AE3459809DDA25C4F3391
97DE6486FE, and compare their corresponding folders to
identify the newly added files. .e added files are further
analyzed (by reading the Java code) to investigate their
network behaviors. In this example, the app’s name is the
SHA256 value of the APK file, and 00575∗ corresponds to
the original app and A55EA∗ is the repackaged app. We
used Jadx to decompile APKs and the file comparison is
conducted with WinMerge (http://winmerge.org/). Fig-
ure 1 presents the comparison results.

As shown in Figure 1, there are a total of 250 additional
Java code files, and these code files are distributed in the
sources/com folder. We read these added Java codes care-
fully and determine that Android API HttpPost is invoked 8

times and HttpGet is invoked 5 times. Hence, there are at
least 13 flows that would never be produced by the original
app, namely, 00575∗. .erefore, the original app can be
efficiently distinguished from the repackaged version by
comparing their network traffic. Inspired by these obser-
vations, we propose clustering the mobile apps’ traffic to
separate original apps and repackaged malware
automatically.

2.2. Edge Computing. Edge computing can be defined in
terms of the technologies that enable computations to be
performed at the edge of the network, on downstream
data on behalf of cloud services, and on upstream data on
behalf of Internet of .ings (IoT) services [24]. Perhaps
the most important concept of edge computing is that the
edge can consist of any computing and network resources
along the path between mobile/IoT devices and cloud
data centers. For example, the edge could be a phone
between a smart bracelet and the cloud or a wireless
router between the smart TV and the cloud if the phone
or the wireless router performs computations on behalf
of the smart devices or the cloud. In these examples, the
computations could be data anonymization for privacy
protection or content caching for performance im-
provement. Figure 2 illustrates the paradigm of edge
computing.

As illustrated in Figure 2, cloud computing-like capa-
bilities, i.e., edge servers are deployed at the edge of the
network for data (pre) processing and forwarding. In edge
computing, the mobile/IoT devices could send computation
tasks to the edge servers, namely, the devices can distribute
code to the edge to be executed; hence, the mobile/IoT
devices can be designed to conduct complicated operations,
such as machine learning or encryption. Similarly, the cloud
may push services to the edge servers, and the edge can be
deployed and updated online. In most cases, the devices
should be connected to the edge and the cloud

Figure 1: Folders and files that were only present in repackaged
app A55EA∗, as indicated by left only in the third column.

Security and Communication Networks 3

http://winmerge.org/

simultaneously, as represented by the solid and dotted lines
in Figure 2..is is because, not all data must be preprocessed
by the edge servers, and, more importantly, the robustness of
the entire system can be improved. If the edge breaks down,
the cloud can continue to provide services. In this study, we
obey the edge computing paradigm that is illustrated in
Figure 2 in the design of the Android malware detection
system.

3. Related Work

Repackaged Android apps are one of the major sources of
mobile malware, and extensive studies have been conducted
on Android malware detection. In this section, we will re-
view the most closely related studies. .e typical studies of
edge computing are also reviewed to provide more detailed
background information.

3.1. Off-Device Detection. Repackaged Android apps and
malware can be efficiently detected via code comparison of
APKs. DroidMoss [25] focuses on app code and conducts
pairwise similarity comparisons for the detection of
repackaged apps in Android markets. .e detection results
demonstrate that 5% to 13% of apps that are hosted on third-
party marketplaces were repackaged. However, the pairwise
comparison approach cannot be scaled up because millions
of Android apps are now available in markets. To resolve this
issue, Shao et al. [26] proposed ResDroid for the detection of
repackaged apps in Android markets via a divide-and-
conquer strategy. First, they built a k-d tree and inserted
clusters that contained one or more apps into the k-d tree.
.en, the apps were compared with their neighbors in the k-
d tree, and the number of comparisons was reduced. As-
suming that the apps from the official market were benign,
Massvet [27] downloaded all apps from Android markets in
advance and constructed v-core (a geometric center of a view
graph) andm-core (mapping the features of a Java method to
an index) databases for repackaged Android malware de-
tection. Both databases were used to vet new apps that were
submitted to the market. New apps would be reported as
repackaged malware if their v-cores or m-cores were similar
to records in the databases and the code was not legitimately
reused.

In addition to code comparison, behavior-based and
UI-based detection methods are also emerging. Droid-
Chain [28] constructs a behavior chain model that is
composed of typical behavior processes of Android apps

for the detection of malware. In DroidChain, the typical
behaviors include privacy leakage, SMS financial charg-
ing, malware installation, and privilege escalation.
According to Tian et al. [29], repackaged malware was
difficult to detect partly because of their behavioral
similarities to benign apps. To overcome this problem,
they proposed a new repackaged Android malware de-
tection technique that was based on code heterogeneity
analysis. .e code structure of an app was partitioned into
multiple dependence-based regions, and each region was
independently classified according to its behavioral fea-
tures. De Lorenzo et al. [30] proposed VizMal for visu-
alizing the execution traces of Android applications and
highlighting potentially malicious behaviors. Lin et al.
[31] proposed the detection of repackaged Android apps
based on static UI features. .ey detected a total of 3,723
repackaged app pairs in the Anzhi market and 15,856
repackaged pairs in the Mi market. .ese results dem-
onstrate that repackaged malware still poses a severe
threat to the security of mobile users even though various
types of detection methods have been proposed and
adopted by Android markets [32].

Recently, several network-based approaches have been
proposed for the detection of repackaged apps and malware.
Arora and Peddoju [33] demonstrated the effectiveness of
using network traffic to detect Android malware. Wu et al.
[34] divided app HTTP traffic into 2 categories: primary
module traffic and nonprimary module traffic. For primary
module traffic, the HTTP flow distance algorithm and the
Hungarian Method were used to calculate the traffic simi-
larity and identify similar app pairs. CREDROID [35]
identified malicious apps on the basis of Domain Name
Server (DNS) queries and the data that are transmitted to
remote servers. Zulkifli et al. [36] proposed a method for
detecting Android malware that is based on seven network
traffic features and the J48 decision tree algorithm. Chen
et al. [37] introduced the imbalanced data gravitation-based
classification algorithm for the classification of imbalanced
data of malicious apps. He et al. [14, 38] proposed the
identification of encrypted apps’ flows via traffic correlation
and the detection of repackaged Android apps via com-
parison of the network behaviors of similar apps. In these
methods, the detection is conducted mostly in the router or
at the network monitoring node; hence, the performances of
mobile devices are not affected. However, the network be-
haviors of malware must be modeled in advance, which is
challenging in practice.

Edge servers

Data/computations

Data

Data

Data

Data/services
IoT devices

Cloud

Figure 2: Paradigm of edge computing.

4 Security and Communication Networks

3.2.On-DeviceDetection. .e detection of Android malware
can also be conducted at users’ mobile devices [39].
Alzaylaee et al. [40] extracted features from real devices and
used a deep learning system to detect malicious Android
apps. Shamili et al. [41] proposed a distributed Support
Vector Machine (SVM) algorithm for the detection of
Android malware on a network of mobile devices. .eir
detection features include short duration calls, medium
duration calls, and the number of outgoing SMS (Short
Message Service), among others. .e experimental results
demonstrated that the average computation time per client
during the training phase is nearly 10 seconds. Zhao et al.
[42] implemented a malware detection framework, namely,
RobotDroid, using an SVM active learning algorithm.
RobotDroid monitors all the running apps to identify their
running characteristics. .ese characteristics are later input
into learning modules to generate the behavioral charac-
teristics for the classification of normal apps and malware.
According to their performance evaluation, the time of
accessing the GPS is increased from 80ms to almost 120ms
when the detection system is executed. Hence, the perfor-
mance of a smartphone that utilizes this framework would
be significantly degraded. Shabtai et al. [8] monitored the
apps’ network behaviors at the mobile devices to detect
repackaged Android malware, and the detection accuracy
exceeds 80%; however, the performance overhead of their
method is not negligible. For example, it requires
7272 kB ± 15 memory consumption and 13% ± 1.5 CPU
consumption for learning 10 Android malware detection
models.

To further improve the performance of on-device de-
tection, Crowdroid [10] sends the detection features to a
centralized server for processing. Crowdroid only records
the system calls as the detection features, and it is light-
weight. Talha et al. [43] proposed APK Auditor, which is a
system that uses permissions as static analysis features for
Android malware detection. APK Auditor consists of three
components: (1) a signature database; (2) an Android client;
and (3) a central server. .e Android client sends the app to
the central server for analysis. .e central server extracts the
permissions that are requested by the app and computes the
permission malware score based on the permissions in
malware. If the score exceeds a threshold value, the app is
classified as malware. .e results demonstrate that APK
Auditor achieves 92.5% specificity; however, it lacks the
benefits of dynamic analysis as it cannot detect dynamic
malicious payloads.

Monet [17] also uses backend servers and a client app to
detect Androidmalware..e client app constructs a directed
graph of the app components and the system components,
and it records the potentially dangerous system calls as the
detection features. .ese features are forwarded to the
backend server, which conducts further detection by ap-
plying a signature matching algorithm and returns the
detection results. .e experimental results demonstrate that
Monet can detect Android malware with 99% accuracy.
However, the performance overhead of Monet is high. As
shown in [17], Monet had 8% overhead on memory and I/O
benchmarks and 5.5% overhead for battery. Most recently,

Arshad et al. [44] proposed SAMADroid, which is a 3-level
hybrid model for the detection of Android malware. Sim-
ilarly, SAMADroid has a client app and an analysis server.
.e client app hooks the Strace tool and traces the system
calls that are invoked by the user app. If the user app remains
running on the device, the client app continues tracing the
system calls of the user app and generates a log file of the
system calls. Later, the log file is sent to the SAMADroid
server with the identifier of the user app. At the server, the
same user app is downloaded from stores and statically
analyzed. .en, the static features and the dynamic features
that are extracted from the log file are embedded in a vector
space. Finally, the features are provided as input to the
machine learning tool for classification. .eir experimental
results demonstrate that random forest yields 99.07% ac-
curacy on the static features and 82.76% on the dynamic
features. .e performance overhead of SAMADroid is 1.8%
for memory and 0.6% for CPU. In previous work [45], we
used mobile edge computing to detect malicious apps. We
extend it to the edge computing paradigm and refine the
clustering method in this study.

3.3. Edge Computing Research. .e vision and challenges of
edge computing are introduced in the literature [24]. .e
basic strategy of edge computing is to deploy cloud com-
puting at the edge of the network to improve the perfor-
mance and create new applications for IoT [46]. However,
the deployment location of the edge and the functionalities
of the edge are controversial..erefore, in applications, edge
computing can be implemented as fog computing [47],
mobile edge computing [48, 49], and mobile cloud com-
puting [50]. In the fog computing paradigm, the analysis of
local information is conducted on the “ground,” and the
coordination and global analytics are conducted in the
“cloud.” One can argue that all objects that are outside the
cloud constitute the ground; thus, fog computing is almost
the same as edge computing.

Mobile edge computing deploys cloud services at the
edge of mobile networks such as 5G. Namely, the edge is
deployed in close proximity to the eNodeB, which loops the
traffic through the mobile edge computing servers for fur-
ther data processing. .us, in mobile edge computing, the
edge is fixed, and the edge servers can be provided by
telecommunication companies. Mobile cloud computing
focuses mainly on mobile delegation: mobile devices should
delegate the storage of bulk data and the execution of
computationally intensive tasks to remote entities. A remote
entity can be a centralized cloud or another mobile device.
.erefore, the edge can consist of mobile devices in mobile
cloud computing. Hence, one of the most active areas of
research in the field of mobile cloud computing is the
delegation of tasks to external services, especially to other
mobile devices. Task delegation is also essential for edge
computing [51].

In this study, we provide a lightweight and efficient
framework for the detection of repackaged Androidmalware
that is based on edge computing. In the proposed frame-
work, the mobile devices need only to record the flow

Security and Communication Networks 5

starting time, flow protocol, server-side IP address, server-
side port, app name, and version for each network flow.
Later, these data are sent to the edge servers for traffic
tagging. Since the amounts of data that are saved and sent are
small, the performances of mobile devices are not signifi-
cantly degraded. .e edge servers extract detection features
from the labeled app network traffic and send the extracted
features to the cloud to be clustered. After clustering, the
original and repackaged apps can be efficiently distin-
guished. In our study, only network traffic is considered in
Android malware detection. In contrast to previous net-
work-based methods such as [14, 34–36], we do not need to
model apps’ network behaviors in advance, and our method
is more useful in practice.

4. Framework for Android Malware Detection

.e on-device detection of Android malware is challenging
because mobile devices typically have limited resources. To
alleviate the storage and computing limitations and prolong
the lifetimes of the mobile devices, in this study, we propose
a new framework for on-device detection of repackaged
Android malware. .e proposed framework is illustrated in
Figure 3.

Our framework is composed of three layers: mobile
devices, the edge, and the cloud. First, we explain the
possible locations of the edge; later, we introduce the
functionalities of each component. In our framework, the
only requirement for the edge is that it can monitor and
process the mobile network traffic..e mobile devices could
connect to the Internet via WiFi or 3G/4G; hence, the edge
nodes can be wireless gateways, household security gateways
such as BitDefender Box and LTE eNodeBs. .e edge nodes
can also be routers that are located in the backbone network
if they can observe the traffic that is generated by the mobile
devices. .erefore, the deployment locations of the edge
nodes are flexible in practice. Figure 4 illustrates the possible
deployment scenarios of the edge.

In the proposed framework, the mobile devices must
collect and send flow metaformation to the edge for data
preprocessing. For this, an edge-client app is designed to be
run on themobile devices..e edge-client app operates as an
Android VPN app. Its main objective is to collect and
transfer the flow metainformation, which includes the app
name, flow starting time, and flow protocol, to the edge
iteratively. With the flow metainformation, the edge server
preprocesses the network traffic by adding a label (the app
name) to each flow. After that it extracts detection features
from these labeled flows. .e traffic labeling and feature
extraction are illustrated in detail in Section 5.2. Once the
feature extraction has been completed, the edge server sends
these features to the cloud. With the received features, the
cloud conducts the malware detection tasks and notifies the
mobile devices of the detection results.

To further illustrate the advantages of the proposed
framework, we compare it with the available frameworks.
Since the proposed framework is based on edge computing,
we will refer to it as the edge-computing-based framework in
the following. Similarly, the available frameworks are termed

as the cloud-based framework (the server-side detection
methods that were described in Section 1) and the network-
based framework (the network-based methods that were
introduced in Sections 1 and 3) for differentiation. Com-
pared to the popular cloud-based framework (Figure 5(a)),
the most prominent advantage of the edge-computing-based
framework is that the feature extraction process is offloaded
to the edge and the mobile devices must only save and
transmit the flow metainformation. .us, the proposed
edge-computing-based framework is resource-friendly for
mobile devices.

.e network-based framework (Figure 5(b)) monitors
network traffic without any interference withmobile devices.
However, it is less accurate since the network nodes cannot
know the origins of the network flows precisely, namely, it
cannot identify app traffic with 100% accuracy. As dem-
onstrated in the literature [14], since the network node
cannot identify the app for each flow (e.g., some flows lacks
signatures or are encrypted), the apps’ network behaviors are
incomplete, and the malware detection accuracy is reduced.
In the proposed edge-computing-based framework, we
design a lightweight edge-client app for gathering app in-
formation. Furthermore, mobile users’ privacy can be better
protected in our proposed framework. By deploying one’s
own edge server, a mobile user can control the types of
information that can be used as detection features. In
contrast, in the network-based framework, the network
nodes can observe the full traffic content and extract any
information they want, which severely threatens the privacy
of mobile users.

Android malware
detectionCloud

Edge

Mobile
devices

(1). Flow
metainformation

(2). Extracted
features

(3). Detection
results

Network connection
Data transmission

Figure 3: Framework for android malware on-device detection
that is based on edge computing. Mobile devices send flow met-
ainformation, such as the app name and the server-side IP address,
to the edge. Edge servers capture app network traffic and extract
HTTP contents and flow statistical features from the captured
traffic. Later, the features are sent to the cloud for malware de-
tection. .e cloud also interacts with the mobile devices to return
the detection results.

6 Security and Communication Networks

After introducing the general architecture, we outline the
detection methods that can be used in the edge-computing-
based framework. .e cloud can use various methods to
detect Android malware. For example, it can use conven-
tional signature matching [35] and network behavior
analysis [8, 14] to identify malicious apps. However, these
types of methods require a priori information (such as
signatures or behavior models). In this paper, we propose a
novel repackaged malware detection method that clusters
the network traffic that is generated by the same app from
various mobile devices. Figure 6 presents an example of this
process.

.e motivations behind the traffic clustering are two-
fold: first, most Android malware is produced by repack-
aging popular apps [4], and popular apps are often widely
distributed. Second, the network traffic generated by the
repackaged malware differs from that generated by the
original app (as illustrated in Section 2.1). As illustrated in
Figure 3, many mobile devices would connect to the cloud
for malware detection. Hence, the cloud can observe the
network traffic features of both the original apps and their
repackaged versions with large probabilities due to the wide
distribution of popular apps and the large number of mobile
devices. If we regard the features of the original apps as the
normal data and the features of the repackaged versions as
the abnormal data, the repackaged malware detection
problem is transformed into the abnormal detection

problem. Clustering is an efficient method for solving this
problem [52]. By clustering apps’ network traffic features, we
need not model apps’ network behaviors in advance, and,
more importantly, we can detect various repackaged ver-
sions of the original app, as illustrated in Figure 6..e details
of the proposed malware detection method will be described
in detail in Sections 5.3–5.5.

5. Methodology

In this section, we introduce the technical details of the
proposed clustering method for Android malware detection.
Table 1 defines the main notation that we use in this paper.

(a) (b) (c)

Figure 4: Possible deployments of the edge. .e edge could be the wireless gateways or the dedicated servers that are connected to the
eNodeB or the routers. (a) Wireless gateway. (b) eNodeB+ server. (c) Router + server.

Clustering

Traffic features of an
app collected from

different mobile devices
Original apps

Repackaged
apps

Figure 6: Illustration of traffic clustering for repackaged malware
detection. .e plain circles represent original apps and the circles
with triangles and inverted triangles are repackaged ones.

Network connection
Data transmission

Android malware
detectionCloud

Mobile
devices

(1). Extracted
features

(2). Detection
results

(a)

Network connection
Data transmission

Network node

Mobile
devices

(1). Detection
results

(b)

Figure 5: Available frameworks for android malware detection. Various approaches, such as [10], send the extracted features to a remote
server other than to the cloud. We still regard them as following the cloud-based framework because there is no essential difference for
malware detection. As illustrated in (b), the detection results are typically presented to the network administrator and are not fed back to the
mobile devices. (a) Framework based on cloud. (b) Framework based on network.

Security and Communication Networks 7

5.1. System Overview. Figure 7 illustrates the main proce-
dure of the proposed approach. App i is the app for vetting,
and it has been installed on umobile devices..ese u devices
are connected to e edge servers. We assume that r devices
have installed the repackaged malware (the malware is also
presented as App i to deceive the users), and r< (1/2)u.
Hence, most of the devices have installed the original ver-
sion. .is situation is reasonable because repackaged An-
droidmalware is typically distributed in third-party markets,
which are less popular than official markets [23]. .us, the
numbers of downloads and installations are relatively small.
We will use this characteristic to classify the clustering
results.

To detect the repackaged malware, the edge server labels
the network flows that are generated by App i according to
the flow metainformation. .en, it extracts suitable traffic
features (such as traffic content and statistics) from the
labeled flows and sends the features to the cloud for pro-
cessing. .erefore, there are u feature sets for App i in the
cloud. .e cloud filters these u sets according to the app
versions and removes common traffic. After that it calculates
the pairwise similarities of the feature sets. Finally, it clusters
the similarity values and identifies r repackaged malware
instances.

.e traffic labeling, feature extraction, and filtering
(labels①,②, and③ in Figure 7), the similarity calculation
on the traffic contents and behaviors (labels④ and⑤), and
clustering of similarity values (label⑥) are the core elements
of the proposed method. .ey will be described in detail in
the following sections.

5.2. Traffic Labeling, Filtering, and Feature Extraction

5.2.1. Traffic Labeling. In this study, traffic labeling is
conducted to identify the corresponding app for each net-
work flow, which is known as the app identification problem

[53]. Extensive works have been conducted on the identi-
fication of apps from mobile network traffic [38, 54, 55].
However, the achieved identification accuracies are all lower
than 100%. In our method, we design an edge-client app for
collecting flow metaformation and identifying apps accu-
rately. .e flow metainformation is defined in the following.

Definition 1 (flow metainformation). For flow f, the flow
metainformation includes the client-side IP address C-IPf,
the flow starting time Tf, the flow protocol Pf, the server-side
IP address S-IPf, the server-side port S-Portf, the app name
AppNf, and the app version AppVf..e flow f is bidirectional
and Pf is the transport layer protocol, such as TCP or UDP.

.e edge-client app operates similarly to a VPN app..e
app sends the flow metainformation to the edge server at a
fixed time interval Ti. Once it has received the flow meta-
information, the edge server saves it into a metainformation
database and can label mobile app traffic accurately. Denote
the flow observed by the edge server as fu. .e edge server
labels fu as follows:

Step 1: extract the recording time Tu
f of fu and its flow

protocol Pu
f, client-side IP address C−IPu

f, server-side
IP address S−IPu

f, and server-side port S−Portuf.
Step 2: search the metainformation database with Pu

f,
C−IPu

f,S−IPu
f, and S−Portuf. If records match, the da-

tabase returns the record that has the most recent flow
starting time Tr

f. Otherwise, the edge server waits for a
while and repeats Step 2.
Step 3: if Tu

f is close to Tr
f, the edge server labels flow fu

as <AppNf, AppVf>.Otherwise, it waits for a while and
repeats Steps 2 and 3.

In the above steps, the client-side IP address C−IPu
f is

used to identify a mobile device uniquely, which is correct
when the edge server is the wireless gateway or the eNodeB.
In such scenarios, the mobile devices directly connect to the
edge; hence, the IP address is unique for each device.
However, if the edge server is deployed at the backbone
router, as illustrated in subgraph (c) of Figure 4, the C−IPu

f

may be confusing because mobile devices could be located
behind NATs (Network Address Translations), and they will
share the same public IP address. To solve this issue, the
edge-client app can insert special indicators into the packets
to uniquely represent a device. In this study, we always
assume that C−IPu

f is unique, and we will investigate the
implementation of the device-indicator in future work.

In steps 2 and 3, the edge server utilizes a wait-and-
repeat strategy to ensure that the traffic labeling is fresh and
accurate. .e edge server must wait because the mobile
devices send flow metainformation to the edge server at a
fixed time interval Ti (60 s in our experiments), and the saved
flow metainformation in the database may be outdated. In
our implementations, the waiting time is set to Ti, and if
|Tu

f − Tr
f|> 24 h, the returned flow metainformation is

regarded as obsolete.

5.2.2. Traffic Feature Extraction. After traffic labeling, the
edge server extracts detection features from the labeled

Table 1: Main notation used in this paper.

Notation Meaning
i Android app i
u Number of mobile devices with app i installed
r Number of devices with repackaged app i

f Network flow
C-IPf Client-side IP address of f
S-IPf Server-side IP address of f
S-Portf Server-side port of f
AppNf Name of the app that generates f
AppVf Version of the app that generates f
Ti Set time interval
Tu

f Recording time of flow fu at the edge server
di Feature set of app i
wj Plaintext word in the feature sets
V(di) Numerical vector of traffic contents
F

j

di
Feature vector for the encrypted flow j in di

TBn×m(di) Traffic behaviors of di
CSdik

Content similarity between di and dk
BSdik

Behavior similarity between di and dk
Sdik

Final similarity between di and dk

8 Security and Communication Networks

traffic. .e extracted traffic features are categorized into two
groups: traffic content features and traffic behavior features.
Traffic content features are the plaintext contents that are
extracted from HTTP flows, and traffic behavior features are
the statistics of network flows, such as packet sizes and
intervals. Since Android apps may use an encrypted HTTPS
protocol to transmit data [54], traffic behavior features also
must be considered. .e traffic content and traffic behavior
features are described in detail in Sections 5.3 and 5.4.

5.2.3. Traffic Filtering. After traffic feature extraction, the
edge servers send the extracted features, along with the
client-side IP address, server-side IP addresses, server-side
ports, app name AppNf, and app version AppVf, to the cloud.
Note that App i is installed on u devices; hence, the cloud
eventually has u feature sets for App i. Figure 8 illustrates the
structure of the feature set. .e cloud further filters these u
feature sets to increase the detection accuracy. First, it di-
vides the u sets into v categories according to the app version
AppVf. .erefore, each category contains the feature sets
that are generated by the same version of App i. .en, for
each category, the cloud removes the common traffic from
the feature sets. .e common traffic is defined as network

flows that are contained in all features sets. .ese flows have
the same server-side IP address and the same server-side
port number. .e reason for this step is that the common
traffic will obfuscate the similarity calculations between
apps. Otherwise, the similarity values between features sets
are all high, and they cannot be effectively used to distin-
guish the repackaged malware from the original apps.

After the filtering has been completed, the similarities
between feature sets are calculated, and the similarity values
are clustered to identify the repackaged malware.

Client-side IP address,
App name: AppN_f,
App version: AppV_f,
Flow 1: server-side IP address 1, server-side port 1, flow
features,

Flow f: server-side IP address f, server-side port f, flow
features

Figure 8: Illustration of the feature set. .e set contains the client
IP address, app name, and app version. Each network flow that is
generated by App i in a device is represented by the features
extracted from the flow and by the server IP address and port.

Traffic
labeling

Edge server 1

Traffic feature
extraction

Similarity
calculation of

traffic
behaviors

Similarity
calculation of
traffic contents Clustering of

similarity
values

Original app

Repackaged
malware

Cloud

Mobile device 1, 2 ...
(with app i installed)

Results

Traffic features

Traffic and flow
metainformation

ę

ę

Edge server e

Traffic features

Traffic and flow
metainformation

Filtering

Mobile device .., u
(with app i installed)

1

3

4

5

6

2

Figure 7:.emain procedure of the proposedmethod for Androidmalware detection..e core parts of the proposedmethod are labeled by
circled numbers.

Security and Communication Networks 9

5.3. Similarity Calculation of Traffic Content. Android apps
use mainly HTTP and HTTPS protocols to communicate
with their remote servers [54]. For HTTP traffic, since it is
plaintext based, we can efficiently use the flow content to
calculate the similarity. .e basic strategy is to convert
HTTP traffic to document files, and the document files can
be handled by information retrieval technologies for simi-
larity calculation. HTTP flow content has also been used in
app identification from network traffic [55]. However, in this
study, we only consider partial HTTP header information to
better protect mobile users’ privacy.

In detail, first, we reassemble HTTP flows from packets
and extract the flow contents by saving the corresponding
packet contents into a text file as ASCII code. Figure 9 shows
such an example. .en, we preprocess the text file by de-
leting the HTTP request content and the HTTP request
header, except for the GET (or POST) and HOST fields. .e
HTTP response content is also deleted, namely, only the
HTTP response header, the GET (or POST), and the HOST
filed in the HTTP request header are saved. Via this ap-
proach, the mobile users’ privacy can be protected from the
cloud (for example, the mobile phone information (HUA-
WEI) is leaked by the User-Agent field in Figure 9). After
that, the text file is spilt using special characters (e.g., {/, ., ,, �,
...}), and the processed file becomes the flow content
features.

.e similarity is calculated via the improved TF-IDF
algorithm [56] and the cosine similarity. .e term frequency
measures the count of words in a document. We use the
augmented frequency measurement. Denote the document
(the feature set) as di and the word as wj. Term frequency
tf(wj, di) is calculated as

tf wj, di􏼐 􏼑 � 0.5 +
0.5 × f wj, di􏼐 􏼑

max f w, di(􏼁: w ∈ di􏼈 􏼉
, (1)

where f(wj, di) is the number of occurrences of wj in
document di.

.e inverse document frequency measures of the
amount of information a word provides. Typically, it is the
logarithmically scaled inverse fraction of the number of
documents that contain the word. .e inverse document
frequency of wj is calculated as

idf wj􏼐 􏼑 � log
u

d, wj ∈ d􏽮 􏽯
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
+ 0.01⎛⎝ ⎞⎠, (2)

where u is the number of documents and | d, wj ∈ d􏽮 􏽯| is
number of documents in which the term wj appears.

Denote by p(wj, di) the product of TF(wj, di) and
I DF(wj); it is formulated as

p wj, di􏼐 􏼑 �
log tf wj, di􏼐 􏼑􏼐 􏼑 × idf wj􏼐 􏼑

���������������������������
􏽐

c
j�0 log

2 tf wj, di􏼐 􏼑􏼐 􏼑 × idf2 wj􏼐 􏼑
􏽱 . (3)

After the TF-IDF operation, all documents are converted
into equal-length numerical vectors. We use the cosine
similarity to measure the similarity between two document
vectors. For documents di and dk, the corresponding

numerical vectors are denoted as V(di) and V(dk) and the
length of vector is t. .e similarity between di and dk is
calculated as

CSdik
�

􏽐
t
l�1 V di(􏼁l × V dk(􏼁l(􏼁

����������

􏽐
t
l�1 V di(􏼁

2
l

􏽱

×

����������

􏽐
t
l�1 V dk(􏼁

2
l

􏽱 . (4)

Suppose that, in category vi (we divide the u feature sets
generated by App i in to v categories in the traffic filtering
step), there are c feature sets. For each feature set, we save the
flow features of all HTTP flows into a text file, and c text files
are obtained. .en, we calculate the numerical vector for
each feature set via equation (3). Last, we compare the
numerical vector with each other as equation (4), and gain c
similarity values (CSdii

� 1) for each feature set. We rep-
resent these similarity values of feature set di (i� 1, 2, . . ., c)
as a vector Si

contents and Si
contents � (CSdi1

,CSdi2
, . . . ,CSdic

).
.e vectors Si

contents (i� 1, 2, . . ., c), in combination with the
similarity values of traffic behaviors, will be clustered to
identify the abnormal data points, namely, the repackaged
malware.

5.4. SimilarityCalculation of TrafficBehaviors. In addition to
calculating the similarity values of traffic contents, the
similarity of traffic behaviors must be calculated due to
encrypted flows. We use m (m� 11 in our study) statistical
features as listed in Table 2 to represent the behavior of an
encrypted network flow. .e units of the flow duration and
the packet interval time are milliseconds in our experiments.

With the flow statistical features, for feature set di, the jth
encrypted flow can be represented as a vector in the feature
space:

F
j

di
� f

1
j , f

2
j , . . . , f

m
j􏼐 􏼑, (5)

where fl
j represents the value of the lth statistical feature,

1≤ l≤m. Figure 10 shows an example of feature represen-
tation for encrypted traffic. Consequently, the traffic be-
haviors of di can be represented as a matrix of f

p
j :

Figure 9: Example of converting an HTTP flow to a text file.

10 Security and Communication Networks

TBn×m di(􏼁 � F
1
di

, F
2
di

, . . . , F
n
di

􏼐 􏼑
T
, (6)

where n is the number of encrypted flows that are contained
in di and n≥ 1.

Since different feature sets may differ in terms of the
number of encrypted flows, traffic behaviors TBni×m(di) and
TBnk×m(dk) may differ in terms of different dimension,
namely, the value of ni should not be equal to that of nk. To
efficiently calculate the similarity between TBni×m(di) and
TBnk×m(dk), we calculate the Frobenius norm of TBni×m(di)

and TBnk×m(dk). .e formula is presented in equation (7),
where norm(·) normalizes the value of fl

j to [0, 1]:

FN(d) �

����������������

􏽘

n

j�1
􏽘

m

l�1
norm fl

j􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

.

􏽶
􏽴

(7)

.en, the distance between TBni×m(di) and TBnk×m(dk) is
calculated as

dis di, dk(􏼁 � FN di(􏼁 − FN dk(􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (8)

Finally, the similarity between TBni×m(di) and
TBnk×m(dk) can be calculated by

BSdik
� 1 −

dis di, dk(􏼁

max dis dr, dq􏼐 􏼑, r, q � 1, 2, . . . , u, r≠ q􏽨 􏽩
. (9)

In the above process, ni and nk are assumed to exceed 1.
If ni � 0 (nk � 0) and nk≥ 1 (ni≥ 1), BSdik

is set to 0 to reflect
the significant difference between di and dk. However, if
ni � 0 and nk � 0, namely, there is no encrypted flow in both
di and dk, BSdik

is set to 1 because they exhibit the same
behaviors, i.e., they do not produce any encrypted traffic.

Similarly, we let BSdii
� 1 and represent these similarity

values as a vector Si
behavior � BSdi1

,BSdi2
, . . . ,BSdiu

􏽮 􏽯.

5.5. Clustering of Similarity Values and Malware Detection.
From the traffic content similarity CSdik

and the traffic be-
havior similarity BSdik

, we can determine the final similarity
value BSdik

between the feature sets di and dk, as expressed in
equation (10). In this equation, q is the weight value. In our
experiments, we set q� 0.5, namely, the traffic content
similarity and the traffic behavior similarity are assigned the
same weight. .is is because apps typically produce almost
the same numbers of HTTP and HTTPS flows [57]. We also
evaluate various weighted values in Section 6.2, and the
experimental results support that 0.5 is the most suitable
value. For feature set di, a vector Sdi

� (Sdi1
, Sdi2

, . . . , Sdiu
) is

finally obtained, which contains the similarity values be-
tween di and the other feature sets..e set of vector Sdi

􏽮 􏽯, i �

1, 2, . . . , u will be clustered for the detection of repackaged
malware:

Sdik
� q × CSdik

+(1 − q) × BSdik
. (10)

To be specific, we use the density peak clustering method
[58] to realize our objective. Density peak clustering is based
on the following assumption: cluster centers are charac-
terized by a higher density than their neighbors and by a
relatively large distance from points that have higher den-
sities. Hence, density peak clustering can automatically
identify the correct number of clusters. .is is important
because we do not know whether there is repackaged
malware or how many types of repackaged malware there
are. In other words, we cannot determine the number of
clusters in advance. Density peak clustering can help us
overcome this challenge.

We assume that most mobile devices have installed the
original apps, as discussed in Section 5.1. .erefore, after
clustering, the cluster that has the largest number of voxels
will be recognized as original, and the remaining clusters will
be regarded as suspicious. However, suspicious apps are not
necessarily repackaged malware. For example, apps can be
repackaged to show ads only. Repackaged apps of this type
should not be simply judged as malware. Additionally,
original apps can be suspicious due to different user be-
haviors. To further reduce the frequency of the false alarms,
we can check the server hostnames that are contained in the
repackaged clusters using VirusTotal (the URLs are included
in the HTTP traffic contents). If all of the servers’ hostnames
for a suspicious cluster Cr are judged as clean, it will be
recognized as a cluster of abnormal but harmless apps.
Otherwise, it will be identified as repackaged malware. Via
this approach, we can accurately detect repackaged Android
malware. In this step, we only use VirusTotal as a white list to
exclude false alarms. We do not use it as a backlist (detection
signatures) to detect repackaged malware. Malware detec-
tion is still realized by clustering the similarity values.

Table 2: Flow statistical features.
Bytes sent by the app and bytes sent by the server
Numbers of outgoing and incoming packets
Mean and std. dev. of the outgoing and incoming packet sizes’
flow duration
Mean and std. dev. of the interpacket time

<2761, 16696, 16, 12, 173, 1294, 289, 1177, 3392, 121, 190>

Figure 10: Example of the conversion of an encrypted flow to a
feature vector.

Security and Communication Networks 11

6. Evaluation

6.1. System Implementation and Dataset. Figure 11
illustrates our experimental setup. .e Android phones
were connected to the edge server via WiFi, and each phone
had installed the edge-client app, which sends the flow
metainformation to the edge server using Socket (jav-
a.net.Socket). .e edge is a Dell PowerEdge R730 server
(with 32 processors, 16GB RAM, and 12 TB hard drives)
that is configured as an access point. In the edge server, we
used tcpdump (http://www.tcpdump.org/) to collect network
traffic. .e similarity calculations of traffic contents and
behaviors and the clustering of similarity values were
implemented on the Windows Azure cloud computing
platform..e URL checking was conducted using Virustotal
(https://www.virustotal.com/).

In the implementation, we used aria2c (https://aria2.
github.io/) to download apps from Androzoo (https://
androzoo.uni.lu/). aria2c was encapsulated as commands
in Python code for parallel downloading. After downloading
the apps, we automatically installed them on phones using
the adb shell command. Each phone had 40 tested apps
installed. We have implemented the edge-client app based
on Android VPN service. In our implementations, the edge-
client app correlated network flows and apps by resolving
the ports and PIDs (Process IDs) send the newly collected
flow metainformation to the edge server every 60 seconds.
.e edge server used tcpdump to collect network traffic,
which was saved as pcap files. To extract traffic features, we
used Splitcap (https://www.netresec.com/?page�SplitCap)
to restore tcp flows from pcap files. .en, for HTTP traffic,
we extracted the contents using tshark (https://www.
wireshark.org/docs/man-pages/tshark.html) commands -z
follow, tcp, and ascii. .e packet sizes and packet interval
times were also obtained by tshark with commands -e
frame.len –e frame.time_relative. In the cloud, CSdik

and BSdik

were calculated using scikit-learn (http://scikit-learn.org/)
and Numpy (https://plot.ly/numpy/norm/). .e code of
density peak clustering is available on GitHub (https://
github.com/jasonwbw/DensityPeakCluster), and we have
fixed various bugs that were present in the original code.

We have downloaded 200 pairs of original and
repackaged apps from Androzoo for testing. However, not
all of these downloaded repackaged apps are malicious.
Some apps are only repackaged to show extra ads. To screen
out Android malware from the downloaded repackaged
apps, we further checked the 200 repackaged apps using
Virustotal. If an app was judged as safe by all the antivirus
tools, it was labelled as repackaged_safe in our experiments.
Otherwise, it was labelled as repackaged_malware. In total,
143 repackaged apps were detected as malware by Virustotal.
Nevertheless, in our experiments, we evaluated the proposed
clusteringmethod on all 200 repackaged apps to obtainmore
realistic performance results.

.e downloaded apps were run in 10 rooted Android
phones in parallel to accelerate the experimental process. For
all apps, we used Droidbot [59] to send input events to them
and to generate network traffic automatically. We ran each
repackaged app (repackaged_safe and repackaged_malware

apps) 10 times and the corresponding original app 30 times
to generate sufficient network traffic. .e running times of
the original apps exceeded those of the repackaged apps
because we assume that most of the apps are original, as
discussed in Section 5.1. Consequently, we obtained 40
traffic sets for each repackaged-original app pair. Note that,
from the perspectives of the mobile devices and the edge
server, there are only 200 distinct apps because the
repackaged app has the same name as the corresponding
original app. .erefore, our experiments have simulated
40∗ 200� 8000 mobile devices. For each repackaged-orig-
inal app pair, there were 30 devices with the original app and
10 devices with the repackaged version.

In total, we have gathered almost 89GB network traffic.
.e datasets that are used in our experiments are summa-
rized in Table 3. In the table, the traffic dataset sizes are the
sizes of the captured network traffic, and the feature dataset
sizes are the sizes of the extracted features. In our experi-
ments, the HTTP traffic contents and the flow statistical
features, which are listed in Table 2, were both saved as text
files. As shown in Table 3, the feature datasets are signifi-
cantly smaller than the traffic datasets (25G vs 63G and 9G vs
26G)..us, the edge computing can reduce the data size and
increase the data acquisition speed for cloud computing
[24]. Since the feature dataset sizes are still large (25G+ 9G),
we did not send all these feature data to the cloud simul-
taneously. Instead, we sent the feature data one by one.
When the feature data of an app were successfully received
by the cloud, its traffic similarities were calculated and
clustered immediately. After that the feature data of another
app would be sent and analyzed. .e experimental results
will be presented in the following.

6.2. ExperimentalResults. In this section, wemainly evaluate
the detection efficiency of Android malware by clustering
similarity values. .e performance evaluation of the pro-
posed method in terms of power, memory, and CPU con-
sumptions is elaborated in the following Section 6.3.

Similar to previous studies [8, 14], to measure the
performance of the proposed method, Accuracy and F-
measure metrics are utilized, which are defined in equations
(11) and (12). In equation (11), TP, FN, FP, and TN are
defined in Table 4. In Table 4, repackaged_x represents
repackaged_safe or repackaged_malware. .e precision and
recall in equation (12) are calculated via equations (13) and
(14):

Accuracy �
TP + TN

TP + FN + FP + TN
, (11)

F − measure �
2 × precision × recall
precision + recall

, (12)

precision �
TP

TP + FP
, (13)

recall �
TP

TP + FN
. (14)

12 Security and Communication Networks

http://www.tcpdump.org/
http://www.virustotal.com/
https://aria2.github.io/
https://aria2.github.io/
https://androzoo.uni.lu/
https://androzoo.uni.lu/
http://www.netresec.com/?page=SplitCap
http://www.wireshark.org/docs/man-pages/tshark.html
http://www.wireshark.org/docs/man-pages/tshark.html
http://scikit-learn.org/
https://plot.ly/numpy/norm/
https://github.com/jasonwbw/DensityPeakCluster
https://github.com/jasonwbw/DensityPeakCluster

We have evaluated the Accuracy and F-measure for each
repackaged app. Recall that we ran each repackaged app 10
times and the corresponding original app 30 times.
.erefore, for each app, the number of the original app
traffic sets is 30, and the number of the repackaged app traffic
sets is 10, namely, TP + FN� 10 and TN+FP� 30 for each
app. We have randomly chosen 20 apps from repack-
age_malware, and the experimental results for these apps are
presented in Figures 12 and 13. Detailed descriptions of the
chosen 20 apps are listed in Table 5. In the table, the main
function of each app is determined by analyzing the package
name from the AndroidManifest.xml and from the Google
search results of the package name. As depicted in Figure 12,
100% accuracy was realized on a total of 6 apps (app3, app5,
app9, app10, app13, and app18). .e minimum accuracy is
85% (app2, 34/40) and the average accuracy is 95.2%. Fig-
ure 13 presents the F-measure values. In our experiments,
the maximum F-measure value is 1, and the minimum value
is 0.737. .e average F-measure value is 0.888. .ese results
demonstrate the satisfactory performance of our proposed
clustering method.

We have also calculated the average accuracy and F-
measure values for all repackaged_safe and repack-
aged_malware apps. In these calculations,
TP + FN� 57∗10� 570 and TN+FP� 57∗ 30�1710 for

repackaged_safe apps. For repackaged_malware apps,
TP + FN� 143∗10�1430 and TN+FP� 143∗ 30� 4290.
.is is because in our experiments, 143 apps were identified
as repackaged malware and 57 apps as repackaged safe by
Virustotal. .us, the parameter values differ. .e experi-
mental results are listed in Table 6.

According to Table 6, the average accuracy values for
repackaged_safe and repackaged_malware apps are both
high. However, the average F-measure for repackaged_safe
apps is only 0.78, which is lower than that of repackaged
malware. .is indicates that repackaged safe apps are

Router Windows Azure

Edge server: Dell
PowerEdge R730

10 android phones

Repackaged/original apps

Androzoo

Figure 11: Experimental setup.

Table 3: Datasets used in the experiments.

of apps # of runs # of HTTP flows # of encrypted flows Traffic dataset sizes Feature dataset sizes
Original apps 200 30 340,015 183,452 ≈63G bytes ≈25G bytes
Repackaged apps 200 10 110,670 93,041 ≈26G bytes ≈9G bytes

Table 4: Confusion matrix.

Observed
Detected

Repackaged_x app Original app
Repackaged_x app TP (# of TPs) FN (# of FNs)
Original app FP (# of FPs) TN (# of TNs)

Apps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

A
pp

1
A

pp
2

A
pp

3
A

pp
4

A
pp

5
A

pp
6

A
pp

7
A

pp
8

A
pp

9
A

pp
10

A
pp

11
A

pp
12

A
pp

13
A

pp
14

A
pp

15
A

pp
16

A
pp

18
A

pp
17

A
pp

19
A

pp
20

Figure 12: Detection accuracies for the 20 selected apps.

Security and Communication Networks 13

difficult to distinguish from their original apps. .is is
because repackaged_safe apps only generate small
amounts of additional network flows, and their network
traffic features are not clearly distinguishable from those
of normal traffic. Fortunately, the average F-measure of
repackaged malware apps is outstanding. .is may be due
to the fact that malware typically send stolen data to or
receive commands from remote servers. Hence, their
network traffic features are special and distinguishable.
Figure 14 presents an example of app clustering and il-
lustrates the distinguishability of the repackaged malware
and the original app. .ese results demonstrate that
repackaged Android malware can be effectively detected
by comparing their network traffic with that of original
apps.

For repackaged malware apps, the accuracy results with
different weight values (q in equation (10)) are presented in
Figure 15. As depicted in the figure, when q� 0.5, we realize
the highest accuracy rate, 96.9%. If q� 0, namely, only the
features of encrypted traffic are used, the accuracy result is
75.3%. .e result is 61.7% when q� 1, namely, only the
features of plaintext traffic are considered. .ese results
demonstrate that both the encrypted and plaintext traffic
contribute to the differentiation of the original apps and the
repackaged malware. However, the encrypted traffic con-
tributes more than the plaintext traffic. .is may because
malicious apps usually connect to their servers by security
protocols to evade IDS detection.

In the previous experiments, we checked the servers’
hostnames using VirusTotal to reduce the frequency of the
false positives. For various clusters that contained less than
20 elements, if all the servers’ hostnames were judged as
clean, the cluster was identified as an original app rather than
a repackaged one. As argued in Section 5.5, this process only
reduces the frequency of false alarms. To support this ar-
gument, we list the numbers of true positives and false
positives of the 143 repackaged malware in Table 7 for
comparison. When conducting the hostname checking, the
number of true positives is 1400, and the result is the same
when the hostname checking is turned off. .is finding
supports that the malware is detected by clustering the
similarity values. However, the number of false positives
increased from 47 to 213 when the hostname checking was
turned off. .erefore, we suggest checking the servers’
hostnames after clustering to increase the practicality of the
method. Note that false positives still occur when we check
the hostnames by VirusTotal. Hence, there may be malware
in the original apps. In our dataset, the typical examples are
com.mobo.video.player.pro and cn.cf.shop ele1.taoxiaosan.
We further analyze these two apps by reading their
decompiled codes, and we determine that they indeed es-
tablish connections with suspicious servers. In detail, in
various runs, app com.mobo.video.player.pro connects with
http://www.topappsquare.com,which is judged as malicious
by CyRadar in VirusTotal. App cn.cf.shop ele1.taoxiaosan
visits suspicious URL http://955.cc/jSn9. Since these apps are
the original apps, they are identified as false positives in the
experiments.

In our experiments, we chose density peak clustering as
the clustering method because density peak clustering can
automatically determine the correct number of clusters [58].
Hence, our method can detect various versions of malware
that are repackaged from the same original app. Unfortu-
nately, in the apps that were downloaded from AndroZoo,
no malware was repackaged from the same original app. To
evaluate the efficiency of detecting versions of malware, we
have created two malware instances from a popular game

Apps

A
pp

1
A

pp
2

A
pp

3
A

pp
4

A
pp

5
A

pp
6

A
pp

7
A

pp
8

A
pp

9
A

pp
10

A
pp

11
A

pp
12

A
pp

13
A

pp
14

A
pp

15
A

pp
16

A
pp

18
A

pp
17

A
pp

19
A

pp
20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F-
m

ea
su

re

Figure 13: Detection F-measure for the 20 selected apps.

Table 5: Detailed descriptions of the chosen 20 apps.

Main function of
app

of HTTP
flows

of encrypted
flows

App1 VideoPlayer 453 51
App2 Game 657 1455
App3 Browser 1531 1478
App4 MusicPlayer 341 25
App5 Game 612 289
App6 Game 788 123
App7 Game 1336 524
App8 Fitness 357 892
App9 Email 122 431
App10 Game 963 790
App11 MusicPlayer 1128 547
App12 Game 1598 426
App13 News 2460 1178
App14 News 2891 1543
App15 Chat 171 49
App16 Email 143 368
App17 WeatherForecast 397 120
App18 Game 1832 921
App19 Fitness 732 362
App20 OnlineLearning 2378 834

Table 6: Average accuracy and F-measure.

Average accuracy (%) Average
F-measure

Repackaged_safe 90.3 0.78
Repackaged_malware 96.9 0.94

14 Security and Communication Networks

http://www.topappsquare.com/
http://955.cc/jSn9

app, namely, air.com.aceviral.motox3. One is produced by
grafting AnserverBot’s source code into air.-
com.aceviral.motox3, and the other is created by adding code
for stealing users’ contacts and short messages and sending
them to a remote server. Similarly, each malware is run 10
times and the original app air.com.aceviral.motox3 is also
run 10 times for validation..e clustering result is presented
in Figure 16. Apparently, there are 3 clusters. .e

experimental results show that the value of F-measure for
each malware is 1. Hence, our method can detect various
malware that were repackaged from the same original app.

6.3. Comparison. In this section, we compare our method
with the typical methods that are based on network or cloud,
as illustrated in Figure 5. .e comparative indicators are the
detection accuracy, F-measure, average power, CPU, and
memory consumptions of the mobile device. First, we
compare the proposed method with AppFA [14], which is
implemented completely at the network level. Since AppFA
also must analyze app traffic, we directly use the traffic sets of
the repackaged malware apps for comparison. While testing
AppFA, we deleted the label information that was contained
in the traffic sets and mixed the network flows as a whole.
.en, we used the signature matching and the constrained
K-means clustering algorithm proposed in [14] to restore
app sessions, namely, the label for each flow. .e similar
apps used in AppFA were chosen in Google Play via the
method introduced in [14], and for each repackaged mal-
ware, 10 similar apps were selected as the peer group. .e
peer group apps were run once by Droidbot to generate
network traffic. .e comparison results are listed in Table 8.

Since AppFA need not to install some special apps on
mobile devices, the extra power, memory, and CPU con-
sumptions are 0. However, the detection accuracy is much
lower (86.3% vs. 96.9%) than that of the proposedmethod, as
compared in Table 8. In the proposed method, we use the
edge-client app to record flow metainformation; thus,
network flows can be accurately labeled. However, in
AppFA, flow labeling is realized via traffic clustering, and the
clustering accuracy cannot be 100%. Meanwhile, AppFA
compares the apps’ network behaviors with those of their
similar apps, which also results in errors. In the proposed
method, we directly compare the repackaged malware with
its original app, and the detection accuracy is increased. .e
average power, CPU, and memory consumptions of the
proposed method are also low and acceptable.

In Table 8, the power, memory, and CPU consumptions
for our edge-client app were obtained with the help of app
GT (https://github.com/Tencent/GT). GT is a portable tool
that runs on smartphones for debugging the APP internal
parameters and the code time-consuming statistics. .e
average values for the power, memory, and CPU con-
sumptions are calculated as follows. Before running an app
with Droidbot, we started the edge-client app by GT. When
the Droidbot was stopped, we recoded the power, CPU, and
memory consumptions. We repeated the process until all
apps (including 143 repackaged malware apps and their
original versions) had been tested. Via this way, we obtained
the average power, CPU, and memory consumptions for the
edge-client app. According to Table 8, the edge-client app is
lightweight and has minimal impact on the performances of
the mobile devices.

.en, we compare the proposed method with SAMA-
Droid [44]. SAMADroid monitors Android system calls and
sends the calls to a centralized server for the detection of
Android malware. SAMADroid is a typical cloud-based on-

Decision graph rho-delta-rho

20 251510 35 403050
Sorted rho

0.0

0.2

0.4

0.6

0.8

Rh
o
∗

 d
elt

a

Figure 14: Example of app clustering. Obviously, two clusters are
identified. .e dot in the top left corner is an outlier. .e outlier is
detected as an abnormal but harmless app by our method. .is
figure was generated by the density peak clustering tool.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
Value of q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

Figure 15: Accuracies of various weight values for traffic content
similarity and traffic behavior similarity.

Table 7: True positives and false positives with and without
hostname checking.

of true positives # of false positives
With hostname checking 1400 47
Without hostname
checking 1400 213

Security and Communication Networks 15

https://github.com/Tencent/GT

device detection method. We have implemented the dy-
namic detection according to the description in [44]. In
detail, the APIs that are invoked by the running apps are
monitored by the tool Sensitive API Monitor (https://github.
com/cyruliu/Sensitive-API-Monitor). As done in [44], the
frequency values of 10 system calls (open, ioctl, brk, read,
write, close, sendto, sendmsg, recvfrom, and recvmsg) are
recorded. .ese recorded frequency values are sent to
Windows Azure for malware detection. We evaluate the
dynamic detection performance of SAMADroid on our 143
repackaged_malware apps and their original versions. In the
evaluation, the frequency values of the original apps are used
to create the normality model, and the frequency values of
the repackaged malware apps are used for testing. We also
use the app GT to record the power, memory, and CPU
consumptions of SAMADroid. Note that our phones were
all rooted, and Sensitive_API_Monitor and GT can be used.
.e experimental results are presented in Table 9.

Last, we compare our method with Shabtai’s method [8].
Shabtai’s method detects Android malware at the mobile
devices, and it considers the app’s network traffic patterns
only; the HTTP traffic contents are not considered. .is
gives us an opportunity to compare our method with
methods that have been specially designed for encrypted
traffic. We have implemented Shabtai’s method and chosen
the feature subset #2 as the detection features. Feature subset
#2 includes Avg. Sent Bytes, Avg. Rcvd. Bytes, and Pct. of
Avg. Rcvd. Bytes, among other values, and it is proved to be

the best feature subset for malware detection [8]. .e De-
cision/Regression tree is chosen as the classification algo-
rithm. .e testing dataset is the traffic that was generated by
the 143 repackaged malware instances, and the training set is
the traffic that was generated by the corresponding original
apps. .e classification results are listed in Table 10.
According to the table, the detection accuracy and F-mea-
sure values of our method are significantly higher than those
of Shabtai’s method. .is indicates that the HTTP traffic
provides useful information for Android malware detection.
Since Shabtai’s method is conducted at the mobile devices, it
consumes more resources than our method, as compared in
Table 10.

7. Discussion

.e results of our extensive experiments demonstrate that
repackaged Android malware can be efficiently and effec-
tively detected by clustering network traffic at the edge
devices. However, there are still limitations for our method.
First, we assume the most of the devices have installed the
original apps (r< (1/2)u, as described in Section 5.1). .is is
reasonable in most cases since mobile users typically
download apps from the official markets. However, in areas
where official markets such as the Google play and Amazon
are banned, it is possible that the most mobile devices have
installed the repackaged apps. .is may cause false positives.
Second, if the malware does not generate sufficient traffic,
our method cannot detect it. For example, some malware
only sends fraudulent premium SMS messages. .is type of
malware cannot be detected by monitoring its network
traffic. .ird, we rely on third-party tools such as Virustotal
for the identification of malicious URLs and to reduce the
number of false alarms. If a malicious app rents legal
platforms such as the public cloud as the remote control
server, our method will judge it as a normal app. Hence, false
negatives will be generated.

To overcome these limitations, we could combine the
proposed method with available methods such as SAMA-
Droid. In such cases, the edge-client app will not only record
flow metainformation but also monitor app system be-
haviors. However, the system behavior monitoring does not
need to be conducted all the time. If abnormal but harmless
or lower traffic apps are detected, the edge-client app will be
informed to record the corresponding apps’ system be-
haviors. Similarly, the edge-client app can send the app
system behaviors to the edge server for further processing.
.e performance of this combined method will be evaluated
in our future work. One can also combine the proposed
framework with AppFA [14] for the detection of other types
of Android malware. For example, the edge extracts app
traffic behavior features and the cloud can compare apps’
behaviors with their peer groups to identify abnormalities.
Furthermore, one could first use clustering techniques [60]
to group repackaged apps according to the same malicious
modules and then analyze the behaviors of the representative
repackaged apps in each group to obtain more accurate
behavior features.

y

2D nonclassical multidimensional scaling

0.0–0.2 0.2–0.4
x

–0.4

–0.3

–0.2

–0.1

0.0

0.1

0.2

0.3

0.4

Figure 16: Clustering results of various malware that were
repackaged from air.com.aceviral.motox3..e outlier in the middle
is detected as an abnormal but harmless app. .is figure was
generated by the density peak clustering tool.

Table 8: Comparison of the proposed method with AppFA.

Proposed method AppFA
Accuracy 96.9% 86.3%
F-measure 0.94 0.75
Average power consumption 1.2% 0
Average CPU consumption 0.6% 0
Average memory consumption 6.54MB 0

16 Security and Communication Networks

https://github.com/cyruliu/Sensitive-API-Monitor
https://github.com/cyruliu/Sensitive-API-Monitor

.e paradigms of edge computing are used to detect
Android malware in this study. However, several challenges
would be encountered when deploying it in practice: First,
the mobile devices must install a specified app for the
collection of essential information, which may cause con-
cerns and mobile users may refuse to cooperate. Second, in
edge computing, the data should be preprocessed by the edge
to better protect the users’ privacy. However, the edge server
can observe all the data (including the sensitive informa-
tion), and it threatens the privacy of users. For example, if
the edge is deployed by the cloud provider, the users’ privacy
information is also available to the cloud. .ere is no dif-
ference with the user-cloud model for privacy protection
unless the edge server is deployed by the user..ird, the edge
server should be well protected from network attacks.
Otherwise, it will be convenient for hackers to steal users’
private information.

8. Conclusion

In this paper, we propose a novel method for detecting
Android malware based on edge computing. To the best of
our knowledge, the detection of Android malware by uti-
lizing edge computing and traffic clustering has not been
considered previously. By introducing the edge layer, the
main tasks of the mobile device are offloaded to the edge
server, and the mobile device only needs to record flow
metainformation, which substantially conserves the re-
sources of the mobile device. .e edge server extracts apps’
network traffic features and sends these features to the cloud
platform for further analysis. .us, the users’ privacy can be
better protected. With the received features, the cloud cal-
culates the similarities between apps and clusters these
similarity values to separate the original apps and the
malware automatically. We evaluated our methods on 400
Android apps, and the experimental results demonstrate
that the detection accuracy can reach 100% for several apps,
and the average accuracy is 96.9%. We also tested the
performance of the proposed method and compared it with

the typical approaches. .e comparison results show that
our method can detect repackaged Android malware with
both higher detection accuracy and lower power and re-
source consumptions. In the future, we will continue to work
to overcome the discussed limitations and to evaluate the
proposed method in real world scenarios.

Data Availability

.e downloaded apps used to support the findings of this
study have been deposited in https://pan.baidu.com/s/
1b8vMceIdtdd1gBRC5Gbzvw. Its extraction code is vd5r.
.e clustering code is also in the repository. Since app
network traffic contains users’ sensitive information, it
cannot be publicly shared. However, we have explained all
the steps to generate network traffic automatically. .ese
steps are also described in the instructions.pdf in the
repository.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Acknowledgments

.is work was supported by National Key Technologies
Research and Development Program of China under Grant
2018YFD0401404, National Natural Science Foundation of
China under Grants 61702282, 61802192, and 71801123,
Natural Science Foundation of the Jiangsu Higher Education
Institutions of China under Grants 18KJB520024 and
17KJB520023, Nanjing Forestry University under Grants
GXL016 and CX2016026, and NUPTSF under Grant
NY217143.

References

[1] Statista, Mobile Operating Systems’ Market Share Worldwide
from January 2012 to December 2019, Statista, Hamburg,
Germany, 2009, https://www.statista.com/statistics/272698/
global-market-share-held-by-mobile-operating-systems-
since-2009/.

[2] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A
survey of app store analysis for software engineering,” IEEE
Transactions on Software Engineering, vol. 43, no. 9,
pp. 817–847, 2017.

[3] https://www.appbrain.com/stats/number-of-android-apps,
2020.

[4] L. Li, D. Li, T. F. Bissyande et al., “Understanding android app
piggybacking: a systematic study of malicious code grafting,”
IEEE Transactions on Information Forensics and Security,
vol. 12, no. 6, pp. 1269–1284, 2017.

[5] M. Fan, J. Liu, X. Luo et al., “Android malware familial
classification and representative sample selection via frequent
subgraph analysis,” IEEE Transactions on Information Fo-
rensics and Security, vol. 13, no. 8, pp. 1890–1905, 2018.

[6] J. Zhang, Z. Qin, K. Zhang, H. Yin, and J. Zou, “Dalvik opcode
graph based android malware variants detection using global
topology features,” IEEE Access, vol. 6, pp. 51964–51974, 2018.

[7] S. Garg, S. K. Peddoju, and A. K. Sarje, “Network-based
detection of android malicious apps,” International Journal of
Information Security, vol. 16, no. 4, pp. 385–400, 2016.

Table 9: Comparison of the proposed method with SAMADroid.

Proposed method SAMADroid
Accuracy 96.9% 83.1%
F-measure 0.940 0.793
Average power consumption 1.2% 2.3%
Average CPU consumption 0.6% 0.8%
Average memory consumption 6.54MB 7.73MB

Table 10: Comparison of the proposed method with Shabtai’s
method.

Proposed method Shabtai’s
method

Accuracy 96.9% 77.1%
F-measure 0.940 0.695
Average power consumption 1.2% 7.7%
Average CPU consumption 0.6% 2.3%
Average memory consumption 6.54MB 9.37MB

Security and Communication Networks 17

https://pan.baidu.com/s/1b8vMceIdtdd1gBRC5Gbzvw
https://pan.baidu.com/s/1b8vMceIdtdd1gBRC5Gbzvw
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.appbrain.com/stats/number-of-android-apps

[8] A. Shabtai, L. Tenenboim-Chekina, D. Mimran, L. Rokach,
B. Shapira, and Y. Elovici, “Mobile malware detection through
analysis of deviations in application network behavior,”
Computers & Security, vol. 43, pp. 1–18, 2014.

[9] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu, “pBMDS: a be-
havior-based malware detection system for cellphone de-
vices,” in Proceedings of the �ird ACM Conference on
Wireless Network Security, ACM, New York, NY, USA,
pp. 37–48, 2010.

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in
Proceedings of the 1st ACMWorkshop on Security and Privacy
in Smartphones and Mobile Devices, ACM, Chicago, IL, USA,
pp. 15–26, October 2011.

[11] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra,
“MADAM: a multi-level anomaly detector for android mal-
ware,” in Proceedings of the International Conference on
Mathematical Methods, Models, and Architectures for Com-
puter Network Security, vol. 12, Springer, St. Petersburg,
Russia, pp. 240–253, 2012.

[12] Y. Zhang, M. Yang, B. Xu et al., “Vetting undesirable be-
haviors in android apps with permission use analysis,” in
Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security, ACM, Berlin, Germany,
pp. 611–622, November 2013.

[13] S.Wang, Z. Chen, X. Li, L.Wang, K. Ji, and C. Zhao, “Android
malware clustering analysis on network-level behavior,” in
Proceedings of the International Conference on Intelligent
Computing, Springer, Liverpool, UK, pp. 796–807, August
2017.

[14] G. He, B. Xu, and H. Zhu, “AppFA: a novel approach to detect
malicious android applications on the network,” in Security
and Communication Networks, Wiley, Hoboken, NJ, USA,
2018.

[15] X. Wang, Y. Yang, and Y. Zeng, “Accurate mobile malware
detection and classification in the cloud,” SpringerPlus, vol. 4,
no. 1, p. 583, 2015.

[16] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro,
“.e evolution of android malware and android analysis
techniques,” ACM Computing Surveys (CSUR), vol. 49, no. 4,
p. 76, 2017.

[17] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet: a
user-oriented behavior-based malware variants detection
system for android,” IEEE Transactions on Information Fo-
rensics and Security, vol. 12, no. 5, pp. 1103–1112, 2017.

[18] T. Vidas and N. Christin, “Evading android runtime analysis
via sandbox detection,” in Proceedings of the 9th ACM
Symposium on Information, Computer and Communications
Security, pp. 447–458, Kyoto, Japan, June 2014.

[19] Y. Duan, M. Zhang, A. V. Bhaskar et al., “.ings you may not
know about android (Un) packers: a systematic study based
on whole-system emulation,” in Proceedings of the 2018
Network and Distributed System Security Symposium, pp. 1–
15, San Diego, CA, USA, February 2018.

[20] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, “Adaptive
unpacking of android apps,” in Proceedings of the 2017 IEEE/
ACM 39th International Conference on Software Engineering
(ICSE), IEEE, Buenos Aires Argentina, pp. 358–369, May
2017.

[21] Y. Zhou and X. Jiang, “Dissecting android malware: char-
acterization and evolution,” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy, IEEE, San Francisco, CA,
USA, pp. 95–109, 2012.

[22] N. W. Lo, S. K. Lu, and Y. H. Chuang, “A framework for third
party android marketplaces to identify repackaged apps,” in
Proceedings of the 2016 IEEE 14th International Conference on
Dependable, Autonomic and Secure Computing, 14th Inter-
national Conference on Pervasive Intelligence and Computing,
2nd International Conference on Big Data Intelligence and
Computing and Cyber Science and Technology Congress,
pp. 475–482, Auckland, New Zealand, August 2016.

[23] L. Li, J. Gao, M. Hurier et al., “Androzoo++: collecting
millions of android apps and their metadata for the research
community,” 2017, https://arxiv.org/abs/1709.05281.

[24] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
vision and challenges,” IEEE Internet of �ings Journal, vol. 3,
no. 5, pp. 637–646, 2016.

[25] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting
repackaged smart-phone applications in third-party android
marketplaces,” in Proceedings of the Second ACM Conference
on Data and Application Security and Privacy, ACM, Antonio,
TX, USA, pp. 317–326, February 2012.

[26] Y. Shao, X. Luo, C. Qian, P. Zhu, and L. Zhang, “Towards a
scalable resource-driven approach for detecting repackaged
android applications,” in Proceedings of the 30th Annual
Computer Security Applications Conference, ACM, New
Orleans, LA, USA, pp. 56–65, December 2014.

[27] K. Chen, P. Wang, Y. Lee et al., “Finding unknown malice in
10 seconds: mass vetting for new threats at the google-play
scale,” in Proceedings of the USENIX Security Symposium,
vol. 15, Washington, DC, USA, August 2015.

[28] Z. Wang, C. Li, Y. Guan, and Y. Xue, “Droidchain: a novel
malware detection method for android based on behavior
chain,” in Proceedings of the 2015 IEEE Conference on
Communications and Network Security (CNS), IEEE, Flor-
ence, Italy, pp. 727-728, September 2015.

[29] K. Tian, D. D. Yao, B. G. Ryder, G. Tan, and G. Peng,
“Detection of repackaged android malware with code-het-
erogeneity features,” IEEE Transactions on Dependable and
Secure Computing, vol. 17, no. 1, pp. 64–77, 2017.

[30] A. De Lorenzo, F. Martinelli, E. Medvet, F. Mercaldo, and
A. Santone, “Visualizing the outcome of dynamic analysis of
android malware with vizmal,” Journal of Information Se-
curity and Applications, vol. 50, Article ID 102423, 2020.

[31] M. Lin, D. Zhang, X. Su, and T. Yu, “Effective and scalable
repackaged application detection based on user interface,” in
Proceedings of the 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), IEEE,
Atlanta, GA, USA, May 2017.

[32] G. Meng, M. Patrick, Y. Xue, Y. Liu, and J. Zhang, “Securing
android app markets via modelling and predicting malware
spread between markets,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 7, pp. 1944–1959, 2018.

[33] A. Arora and S. K. Peddoju, “Minimizing network traffic
features for android mobile malware detection,” in Proceed-
ings of the 18th International Conference on Distributed
Computing and Networking, ACM, Hyderabad, India, January
2017.

[34] X. Wu, D. Zhang, X. Su, and W. Li, “Detect repackaged
Android application based on HTTP traffic similarity http
traffic similarity,” Security and Communication Networks,
vol. 8, no. 13, pp. 2257–2266, 2015.

[35] J. Malik and R. Kaushal, “Credroid: android malware de-
tection by network traffic analysis,” in Proceedings of the 1st
ACM Workshop on Privacy-Aware Mobile Computing, ACM,
Paderborn, Germany, pp. 28–36, July 2016.

18 Security and Communication Networks

https://arxiv.org/abs/1709.05281

[36] A. Zulkifli, I. R. A. Hamid, W. M. Shah, and Z. Abdullah,
“Android malware detection based on network traffic using
decision tree algorithm,” in Proceedings of the International
Conference on Soft Computing and Data Mining, Springer,
Senai, Malaysia, pp. 485–494, January 2018.

[37] Z. Chen, Q. Yan, H. Han et al., “Machine learning based
mobile malware detection using highly imbalanced network
traffic,” Information Sciences, vol. 433-434, pp. 346–364, 2018.

[38] G. He, B. Xu, L. Zhang, and H. Zhu, “Mobile app identifi-
cation for encrypted network flows by traffic correlation,”
International Journal of Distributed Sensor Networks, vol. 14,
no. 12, pp. 1–17, 2018.

[39] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: to-
wards on-device non-invasive mobile malware analysis for
ART,” in Proceedings of the 26th USENIX Security Symposium,
pp. 289–306, Vancouver, Canada, August 2017.

[40] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: deep
learning based android malware detection using real devices,”
Computers & Security, vol. 89, Article ID 101663, 2020.

[41] A. S. Shamili, C. Bauckhage, and T. Alpcan, “Malware de-
tection on mobile devices using distributed machine learn-
ing,” in Proceedings of the 20th International Conference on
Pattern Recognition (ICPR), IEEE, Istanbul, Turkey,
pp. 4348–4351, August 2010.

[42] M. Zhao, T. Zhang, F. Ge, and Z. Yuan, “Robotdroid: a
lightweight malware detection framework on smartphones,”
Journal of Networks, vol. 7, no. 4, p. 715, 2012.

[43] K. A. Talha, D. I. Alper, and C. Aydin, “APK auditor: per-
mission-based android malware detection system,” Digital
Investigation, vol. 13, pp. 1–14, 2015.

[44] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and
H. Yu, “Samadroid: a novel 3-level hybrid malware detection
model for android operating system,” IEEE Access, vol. 6,
pp. 4321–4339, 2018.

[45] G. He, L. Zhang, B. Xu, and H. Zhu, “Detecting repackaged
android malware based on mobile edge computing,” in
Proceedings of the 2018 Sixth International Conference on
Advanced Cloud and Big Data (CBD), IEEE, Lanzhou, China,
pp. 360–365, August 2018.

[46] R. Roman, J. Lopez, andM.Mambo, “Mobile edge computing,
Fog et al.: a survey and analysis of security threats and
challenges,” Future Generation Computer Systems, vol. 78,
pp. 680–698, 2018.

[47] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog com-
puting and its role in the internet of things,” in Proceedings of
the First Edition of the MCC Workshop on Mobile Cloud
Computing, ACM, Helsinki, Finland, pp. 13–16, August 2012.

[48] M. T. Beck, M.Werner, S. Feld, and S. Schimper, “Mobile edge
computing: a taxonomy,” in Proceedings of the Sixth Inter-
national Conference on Advances in Future Internet, pp. 48–
55, Lisbon, Portugal, November 2014.

[49] P. Mach and Z. Becvar, “Mobile edge computing: a survey on
architecture and computation offloading,” IEEE Communi-
cations Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[50] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of
mobile cloud computing: architecture, applications, and ap-
proaches,” Wireless Communications and Mobile Computing,
vol. 13, no. 18, pp. 1587–1611, 2013.

[51] X. Lyu, H. Tian, L. Jiang et al., “Selective offloading in mobile
edge computing for the green internet of things,” IEEE
Network, vol. 32, no. 1, pp. 54–60, 2018.

[52] S. Agrawal and J. Agrawal, “Survey on anomaly detection
using data mining techniques,” Procedia Computer Science,
vol. 60, pp. 708–713, 2015.

[53] A. Tongaonkar, “A look at the mobile app identification
landscape,” IEEE Internet Computing, vol. 20, no. 4, pp. 9–15,
2016.

[54] G. He, B. Xu, and H. Zhu, “Identifying mobile applications for
encrypted network traffic,” in Proceedings of the 2017 Fifth
International Conference on Advanced Cloud and Big Data
(CBD), IEEE, Shanghai, China, pp. 279–284, August 2017.

[55] G. Ranjan, A. Tongaonkar, and R. Torres, “Approximate
matching of persistent lexicon using search-engines for
classifying mobile app traffic,” in Proceedings of the 35th
Annual IEEE International Conference on Computer Com-
munications, IIEEE, San Francisco, CA, USA, April 2016.

[56] L. Li and S. Qu, “Short text classification based on improved
ITC,” Journal of Computer and Communications, vol. 1, no. 4,
pp. 22–27, 2013.

[57] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani,
“Toward developing a systematic approach to generate
benchmark android malware datasets and classification,” in
Proceedings of the 2018 International Carnahan Conference on
Security Technology (ICCST), IEEE, Montreal, Canada, Oc-
tober 2018.

[58] A. Rodriguez and A. Laio, “Clustering by fast search and find
of density peaks,” Science, vol. 344, no. 6191, pp. 1492–1496,
2014.

[59] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a lightweight
UI-guided test input generator for android,” in Proceedings of
the Software Engineering Companion (ICSE-C), pp. 23–26,
Buenos Aires, Argentina, May 2017.

[60] M. Fan, X. Luo, J. Liu et al., “Graph embedding based familial
analysis of android malware using unsupervised learning,” in
Proceedings of the 2019 IEEE/ACM 41st International Con-
ference on Software Engineering (ICSE), IEEE, Piscataway, NJ,
USA, pp. 771–782, May 2019.

Security and Communication Networks 19

