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*e weakness of the security measures implemented on IoT devices, added to the sensitivity of the data that they handle, has
created an attractive environment for cybercriminals to carry out attacks. To do so, they develop malware to compromise devices
and control them.*e study of malware samples is a crucial task in order to gain information on how to protect these devices, but
it is impossible to manually do this due to the immense number of existing samples. Moreover, in the IoT, coexist multiple
hardware architectures, such as ARM, PowerPC, MIPS, Intel 8086, or x64-86, which enlarges even more the quantity of malicious
software. In this article, a modular solution to automatically analyze IoTmalware samples from these architectures is proposed. In
addition, the proposal is subjected to evaluation, analyzing a testbed of 1500 malware samples, proving that it is an effective
approach to rapidly examining malicious software compiled for any architecture.

1. Introduction

*e appearance of the Internet of *ings (IoT) has greatly
improved the application of technology in the everyday lives
of people. Years ago, digital interaction between an indi-
vidual and technology was in general only through a
computer. With the development of smartphones, that
communication became a more mobile, personal, and
continuous task. And then, the IoT appeared to change all
the previous concepts and insert technology into almost
every imaginable object. Smart houses, eHealth, or smart
cities are just a few examples of contexts that have their
origin in the application of the IoT. *us, not only has it
helped to complement existing scenarios but it has also given
rise to the ones in which technology is applied.

As a consequence, the volume of data that is now dig-
itally handled has vastly increased as well. However, al-
though the emergence of the IoT has clearly benefited
people, the same positive verdict cannot be passed when
speaking of the security measures implemented on the
devices. Unfortunately, developers opted to prioritize

usability over security, especially during the IoT’s concep-
tion, when the thought of someone compromising an entire
network by simply attacking a switch was unthinkable.

*erefore, there was a huge underestimation of the
requirements that these devices and the information that
they handle demand. Nowadays, this issue is being ac-
knowledged, and companies are working on improving
the protection, but they are still quite vulnerable, added to
the fact that a great number of old devices is still being
used. *is makes the IoT the perfect environment for
cybercriminals to operate in. *ey can gain access to very
sensitive and valuable information with little effort. Re-
cent studies [1] show the magnitude of the problem. Only
in the first quarter of 2019, a hundred million attacks were
detected on smart devices, a figure seven times greater
than the number found in 2018. Unsurprisingly, theMirai
malware family was behind 39% of them, taking advantage
of old devices with unpatched vulnerabilities. Another
sample which exploits a trivial attack, namely, the brute-
force, Nyadrop, closely followed Mirai and reached a
percentage of 38.57%.
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*ese attacks were the result of poorly designed security
measures on the devices and could have been easily miti-
gated by just changing the default user and password of the
device for a more secure one. Instead, they ended up af-
fecting companies such as Twitter, Amazon, Spotify, and
Netflix, costing them millions of dollars and affecting their
customer’s trust [2].

As mentioned above, most IoT attacks do not have their
origin in new malware samples, but are based on previous
ones that were successful. New versions of old attacks appear
every day with minor modifications, but the way they work
remains almost identical. Having information about how a
sample interacts with the compromised device, and what
actions it carries out, allows investigators to protect the
device or, at least, limit its expansion over the network. For
this reason, the ability to identify which malware samples are
alike, that is, those that belong to the same family, can have a
huge impact when determining what actions to be taken in
order to reduce the impact of a cyberincident.

In addition, besides the existence of multiple operating
systems, there are also several architectures used by IoTdevices,
such as ARM, PowerPC, MIPS, and x86. With the aim of
expanding the range over which cybercriminals can carry out
their attacks, they develop samples for more than one. *is
means that numerous pieces of malware have their origin in a
sample, and then it is adapted to work on other architectures.
Consequently, its behaviour remains similar, with only its
structure varying in order to be compatible with them. *is
allows the malware analyst to analyze malware families inde-
pendently of the architecture for which the sample was designed.

*is analysis is neither a trivial task nor a speedy one.*e
number of existing samples, added to the appearance of new
ones almost every minute, makes it impossible for an in-
vestigator to study all of them. *erefore, it is necessary to
develop automatic solutions, such as architectures or
frameworks, which can speed up the process and be able to
examine multiple samples at once. In order to achieve that, a
change of approach is needed: instead of focusing on the
features that differentiate a sample, now it is mandatory to
determine which characteristics allow a piece of malware to
be grouped with another, as well as selecting the ones that
can be collected and interpreted automatically.

*erefore, the contributions of this study are as follows:

We study the current state of malware analysis, fo-
cusing on the development of automatic solutions to
perform examinations
We present a series of static and dynamic character-
istics that are useful to automatically categorize mal-
ware samples
We propose a modular framework for the automatic
analysis and clustering of malware samples from the
most widely used architectures, based on the evaluation
of their static and dynamic features
We evaluate the proposal with a testbed of nearly 1,500
pieces of malware, confirming its usefulness when
analyzing and clustering samples from different IoT
architectures

*e rest of the paper is organized as follows. Section 2
describes the IoT’s architecture, its malware threats, and how
to obtain useful characteristics from them. An architecture
to automatically cluster malware samples from different IoT
architectures is presented in Section 3. An evaluation of the
proposal through the analysis of 1500 malware samples is
carried out in Section 4. Finally, our conclusions are pre-
sented in Section 5.

2. Background

As discussed in the previous section, the IoTenvironment is
the perfect target for cybercriminals to attack. *is section
presents the problem related to the large number of devices
with different architectures connected to the Internet, lists
the reasons for the rise of IoTsecurity threats, and defines the
concepts of malware analysis and characterization.*en, the
Service-Oriented Architecture (SOA) software paradigm
used in the design of the framework is introduced. In ad-
dition, we present a review of the proposals from the re-
search community in regard to this paper.

2.1. 'e IoT Environment. *e IoT allows developers to
model use cases that in the past were not feasible due to the
specific limitations of traditional client-server architectures:
resource centralization, expensive devices, and high laten-
cies, among others. *e IoT environment creates room for
new contexts such as Industry 4.0 [3] and smart homes [4].
Its structure can be divided into three fundamental building
blocks: the Cloud Layer, the Network Layer, and the Devices
Layer. Figure 1 shows the hierarchy formed by these layers.
Frequently, end devices interact with other IoT devices as
well as with large data centers in the cloud layer to carry out
the tasks (sometimes computationally intensive ones)
assigned to these end devices. Accordingly, more and more
end devices are exposed to the Internet every day, so it is
important to adopt appropriate security measures if we do
not want to expose our end devices to external attackers.

Another main problem of the IoT environment is the
considerable heterogeneity of the devices that comprise it.
Although it is important to define security, analysis, and
clustering mechanisms against malware layer by layer, our
work focuses on the constrained-resource devices of the
device layer. *ese devices are built with different hardware
specifications and run different operating systems. One of
the most significant specifications is the processor archi-
tecture used by such devices. Each processor and its in-
struction set are designed in a specific way. For example,
ARM is a more energy-usage-concerned architecture than
x86-64. In our case, the proposed framework focuses spe-
cifically on modelling Intel 80386, x86-64, MIPS, ARM, and
PowerPC architectures.

2.2. 'reats. By scrutinizing the aforementioned recent
studies focused on evaluating new trends in IoTmalware,
a drop in the number of attacks via Telnet can be observed
for the second quarter of 2019. Now, the value almost
reaches 60%, 20% less than in the previous one. *is
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statistic can be seen as an encouraging one if we deduce
that the decrease was due to developers no longer using
that service, which is well-known to be deprecated and
unsafe. *e most worrisome data are that there are few
changes in the most common malware families with
respect to previous years, meaning that old attacks are
still being successful. In addition, the number of malware
samples is still growing and expanding into more areas
[1]. Some of the main causes of the rapid growth in
cybercrime in the IoT are the following:

Number of connected devices: during the year 2020,
this figure is forecasted to reach 20.4 billion [5], with 5.8
billion of them being used in the enterprise and au-
tomotive market [6]. *is means that there are more
IoT devices than conventional ones, e.g., smartphones
or computers. *erefore, it is preferable for cybercri-
minals to perform large-scale attacks in this environ-
ment rather than in the traditional one, as they can
target more victims.
Implemented security measures: as briefly mentioned
above, IoT devices can be easily compromised by
carrying out simple brute-force or dictionary attacks.
*is is mainly due to the usage of weak default login
credentials. Although it may seem ludicrous, the
combination of user and password such as “admin-
admin” or “admin-1234” is not that uncommon.
Data handled: the application of the IoT has led to the
generation of data that previously did not exist or only
did so in a smaller quantity. eHealth is a good example
of this circumstance: metrics such as heart rate, blood
pressure, or oxygen levels were only stored in special
facilities such as hospitals or medical centers and were
only available to restricted personnel. Nowadays, these

data are also measured and stored by smart watches or
smart bracelets that are connected to the cloud and
create personal profiles for each user.
Limited computational capacity of the devices: this
makes them easy to crash, which is quite convenient
when a cybercriminal wants to perform a DoS (Denial
of Service) attack. *e number of petitions that can be
handled by these devices is far more limited than in
conventional ones. In addition, it hinders the task of
using antiviruses or cryptography algorithms, since the
current versions are only supported by more powerful
devices.

2.3. Malware Characterization. Characterization can be
explained as a process in which a set of features are
extracted from someone or something. *is makes it
possible to describe each item in an unambiguous way.
*us, malware characterization is the process of identi-
fying and extracting these features from each malicious
sample. In this field, the characteristics are divided into
the following categories:

Static features: here, the focus is on the analysis of the
intrinsic characteristics of a binary file without exe-
cuting its code in the system. Information such as the
strings that appear in it, its sections, architecture,
opcodes, cyclomatic complexity, or entropy belongs to
this category. *e main advantage is that static char-
acteristics are quick to extract automatically. On the
other hand, the usefulness of the features may be af-
fected if the sample is packed or obfuscated (i.e., dis-
assembly code and strings).
Dynamic features: here, the target is the analysis of the
behavior of the sample at runtime by monitoring the
different actions that it carries out in the system. *e
data are extracted from the communication that the
malware performs through the network and its inter-
action with the system, such as system calls or open
files, among others. One of its disadvantages is that only
characteristics of the executed portions of code are
captured, so the criminals include monitoring detec-
tion techniques that prevent the sample from executing
entirely. In addition, the extraction of dynamic features
is more time consuming than the retrieval of static
features due to the fact that the sample must be exe-
cuted for a short period of time.

2.4. SOA. SOA is a software design paradigm in which
modules work as independent services providing a specific
interface to be called upon. *ey communicate through an
Enterprise Service Bus (ESB) which is formed of one or
several protocols, allowing the addition of services with little
effort. In order to call each service when it is needed, an
orchestration process is used [7]. Under this scheme, it is
possible to add new components or new protocols. In ad-
dition, this architecture allows the easy integration of
multiple SOA-based applications.

Devices layer

Network layer

Cloud layer

Figure 1: IoT environment architecture.
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2.5.RelatedWork. As far as the authors are aware, there are no
approaches available in the literature that jointly tackle the task
of analyzing large numbers of malware samples specifically
designed for the IoTand that of classifying or clustering them.
On the contrary, most of the approaches try to describe specific
malware samples or families, as mentioned in Section 2.5.1. In
terms of automatically analyzing a great number of malware
samples, there are some articles, but they focus only on Linux-
based operating systems for x86 architectures, as is shown in
Section 2.5.2. Finally, Section 2.5.3 covers approaches focused
on classifying IoTmalware, but these do not take into account
all IoTarchitectures or families and neither do they study both
static and dynamic features.

2.5.1. Malware Survey. Pa et al [8] presented a Telnet
honeypot for different IoT architectures. *ey conducted a
study of the malware that was aimed at this service, showing
the problem that it suffers fromwhen it is accessible from the
Internet. *e authors also presented the first sandbox that
supported different architectures and executed the binaries
and commands received through their honeypot.

Cozzi et al. [9] presented a complete malware study
aimed at Linux-based operating systems. *ey statically and
dynamically analyzed more than 10,000 samples distributed
among the main architectures, namely, ARM, PowerPC, and
MIPS, among others. *ey presented the main techniques
used by malware and numerically expressed their use in the
samples that made up their dataset. To carry out their
analysis, they introduced the first malware analysis frame-
work aimed at analyzing Linux-based malware.

Costin et al. [10] introduced a study of 60 families of IoT
malware. *e authors studied the timeline of events related
to each family as well as the most relevant vulnerabilities
used by them. For the dynamic analysis, the authors pre-
sented a sandbox compatible with the main IoTarchitectures
based on the open source project Cuckoo Box [11].

2.5.2. Linux-Based Sandbox. Limon [12] is a sandbox for
analyzing Linux-based malware. It collects calls to the op-
erating system as well as capturing network traffic. Its main
problem is that it only supports binary analysis in x86 ar-
chitectures, and the operating system used to perform dy-
namic analysis is based on Ubuntu, which is not a very
common operating system in the IoT. Similar problems are
present in Detux [13], which, although it supports five ar-
chitectures, is based on the Debian operating system. Detux
only performs basic static analysis and network analysis,
ignoring malware behavior within the operating system.

Chang et al. [14] proposed a sandbox for analyzing
malware samples in the IoT. It is able to collect network
packages and malware behavior in the system. To test the
functionality of their sandbox, they experimented with the
Zollard botnet.

2.5.3. Classification. Nghi Phu et al. [15] presented a
framework for analyzing and classifying malware in the IoT.
*eir framework supports the MIPS architecture and

extracts features related to malware interaction with the
system in order to train a machine learning model.

Alhanahnah et al. [16] suggested a new approach to
classifying IoTmalware compiled for different architectures.
Its method is based on generating signatures at a high level
since these are more robust and vary less between
architectures.

Su et al. [17] introduced a method for malware classi-
fication in IoT environments. It is based on converting
malware into an image and a convolutional neural network
for classification. It is able to classify a sample into malware
or goodware and recognizes twomalware families: Mirai and
Gafgyt.

Kumar et al. [18] proposed a new approach to differ-
entiate between malicious and benign applications based on
a ranking of permissions used in Android IoTdevices. *eir
methodology included an improvement on the random
forest algorithm, achieving an increase in the accuracy of
malware detection.

Lei et al. [19] presented a system for malware detection
on Android-based IoT devices. *ey proposed the use of
event groups instead of API calls to capture malware be-
haviour at a higher level than in API level. *ey trained and
evaluated their system with a dataset of around 15,000 and
29,000 benign and malicious Android apps, respectively.

3. Proposed Architecture

*is section describes the proposed SOA-based modular
framework for analyzing and classifying malware samples
from different IoT architectures. It consists of six modules
which are invoked as services by the orchestrator of the
system, which is responsible for using each module and
processing the information extracted in each of the stages.
Due to its modular structure, each of the modules that make
up the system can be used independently (i.e., deploying a
virtual machine to execute commands from a honeypot or
even for adding new components). *ese services use our
Enterprise Service Bus (ESB), which allows us to integrate
any new component easily. Figure 2 shows a global view of
our architecture.

3.1. System Overview. *e system uses an executable file
from any of the architectures supported as input, analyzes it,
and produces a cluster based on the similarity that it has with
other previously examined files as output. Although the
proposal is designed formalware analysis purposes, it is valid
for clustering other types of executables. *e following
sections describe in detail the modules of which our system
is composed.

3.2.'eOrchestrator. *is is the main module of the system
and the one in charge of making the pipeline that inter-
connects the rest of the modules. Once it obtains a sample, it
uses the static analysis module to obtain the information
necessary to continue with the next phase. *en, it uses the
deployment module to check whether the architecture of the
analyzed file is supported, that is, whether there is a virtual
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machine that supports that architecture, and if it is, it starts
the virtual machine instance.

Once the virtual machine is on, it connects to it through
the connectivity module and then proceeds with dynamic
analysis, executing the file with the monitoring tool indi-
cated in the configuration files.*en, the file is executed for a
certain time which is indicated through the configuration
commands of the framework. Once that timeout has elapsed,
it obtains the result in the form of execution traces, destroys
the virtual machine, and recovers the previous snapshot of
the machine.

Finally, it calculates the similarity with other analyzed
samples and adds it to the corresponding cluster if the
similarity index is greater than the established threshold.*e
sample will be added to the cluster in which the most similar
sample is located. If the threshold is not reached, a new
cluster will be created to include the analyzed file.

Additionally, if the display parameter is active, it will
calculate the similarity between all the samples and generate
a graph connecting all of them.

3.3. StaticAnalysis. *is module is responsible for obtaining
and parsing the Executable Linkable Format (ELF) files. It is
built upon radare2 [20], a reverse engineering suite, and
automates the process of obtaining information contained in
the headers of the ELF files, as well as data regarding their
sections. *e static analysis module collects the following
information.

Information file: characteristics of the headers of the
executable file, such as architecture, whether the binary has

been stripped of the symbols or not, and whether it was
compiled with static or dynamic libraries.

Entropy: this measures the lack of predictability of a
data set. In binary analysis, a high entropy value in-
dicates that the sample is obfuscated or packed.
Cyclomatic complexity: this is a metric used in software
engineering to calculate, in a quantitative way, the
complexity at a logical level of a program or function
[21]. Cyclomatic complexity is calculated for each of the
functions found in the disassembled code.
Opcodes: the sequence of operation codes (opcodes) of
all the functions present in the disassembly of the
program are extracted and stored.
Libraries: the name of the shared libraries used by the
program.
Sections: the sections into which the executable is di-
vided are extracted, also determining their permissions
and entropy.
Functions: the name of the functions imported from
the libraries and used by the program.
Strings: all text strings present in the sample.
Hash: the hash to uniquely identify the executable.

3.4. Deployment Module. *is module is responsible for
starting the virtual machine, shutting it down, or restarting
it. Its input is the architecture for which the malware was
developed, which is searched for in the library in order to
determine whether it can be emulated or not. It uses libvirt

Orchestator Static analysis Deployment Connection

Dynamic analisysClustering samplesVisualization

Virtual machines

Applications
and process
Data store
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document
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processing for
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Figure 2: *e proposed architecture for the analysis and clustering of IoT malware.
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[22] to manage the virtualization platforms and the QEMU
[23] emulator as hardware virtualizer. To emulate an ar-
chitecture, it has to be supported by QEMU, and a guest
domain in an eXtensible Markup Language (XML) must be
defined. *is file contains the configuration of the machine
in libvirt, that is, its storage, CPU architecture, kernel image,
and network properties. Once the machine has been started,
the module returns a handler, which allows you to shut
down or restart the machine as well as to see whichmachines
are currently active. Finally, when a machine is stopped, a
previous snapshot of the machine is recovered in order to
have a malware-free image for the next analysis. In this way,
this module provides the flexibility to add user-defined
virtual machines and uses them in our framework.

3.5. Connectivity and Dynamic Analysis. *is is the module
responsible for establishing connection with the virtual
machine. It allows the upload and download of files through
the Secure Copy Protocol (SCP) and the execution of
commands through the Secure SHell (SSH). It provides the
flexibility to upload any file type and execute commands in
the virtual machine. For example, it can upload an exe-
cutable file or script and use any type of monitoring tool
available in the virtual machine for extracting information
about its behavior, such as strace [24] or systemtap [25].
Finally, download the monitored traces and parses the
collected data. *e parsing function is responsible for
extracting the executed syscalls from the execution traces as
well as their parameters and results. Table 1 shows an ex-
ample of a run sequence and the syscall data.

3.6. Clustering of Samples. *is is in charge of clustering the
binary files based on some of the previously extracted fea-
tures. Given two executable files, it calculates the index of
similarity between them and, if this is greater than a set
threshold (set through the configuration parameters), these
samples are considered to be related and, therefore, will be
part of the same cluster. To calculate the similarity, the
module uses the following approaches:

Dynamic approach. We use the execution traces ob-
tained in the dynamic analysis to generate sequences of
syscall names of size n (set through the configuration
parameters), which are known as n-grams. An example
for a sequence of size n� 4 is shown in Table 1, resulting
in the following set of n-grams: (brk, socket, fcntl64, and
fcntl64), (socket, fcntl64, fcntl64, and setsockopt), and
(fcntl64, fcntl64, setsockopt, and brk). In order to de-
termine the similarity, we use the Jaccard index [26] as
a metric, which, for two sets of n-grams, is calculated as

jaccard s1, s2( 􏼁 �
s1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌∩ s2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

s1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌∪ s2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (1)

where the numerator indicates the number of unique
subsets that are present in both sets, and the denom-
inator indicates the total number of unique subsets
between s_1 and s_2.*e result is a value between 0 and
1 which indicates the degree of similarity between two
sets of n-grams.
Static approach. We use two metrics to measure the
similarity between two executable files. *e first is
based on sequences of opcodes of size n extracted from
the disassembled code. *is is calculated in the same
way as in the dynamic approach but using opcodes
instead of syscalls. *e second is based on the cyclo-
matic complexity of each of the functions present in the
disassembled binary. A distance function is used for the
calculation of the similarity between two executable
files. *is function is formalized as follows:

distance s1, s2( 􏼁 � 􏽘

|F|

i�0

min f
s1
i , f

s2
i( 􏼁

max f
s1
i , f

s2
i( 􏼁

x
1
F

. (2)

For example, let us consider two executables with five
and seven functions, the first with cyclomatic complexities 3,
5, 3, 7, and 4 and the second with complexities, 3, 3, 6, 6, 4, 5,
and 2. *e first sample has two functions with cyclomatic
complexity 3, one with 5, one with 7, and another with 4. In
the second sample, we have two functions with cyclomatic
complexity 3, two with 6, one with 4, one with 5, and another
with 2. We normalize the vectors so that they have the same
number of elements, and the vectors (0, 2, 1, 1, 0, 1) and (1, 2,
1, 1, 2, 0) are obtained. *erefore, the similarity index be-
tween the two vectors is 0.5 and is calculated as follows: ((0/
1 + 2/2 + 1/1 + 1/1 + 0/2 + 0/1)/6).

Hybrid approach. *e hybrid approach allows clus-
tering using the indexes described above. To do this, it
assigns a weight to each of the indexes to calculate the
final similarity index. *e weight of each index can be
configured in the framework configuration files.

3.7. Visualization. Its function is to visually represent the
groupings generated based on the approaches described
above. We denote f as a function that defines whether two
malware samples are similar or not using the following
expression:

Table 1: Format execution trace.

Syscalls Parameters Results
Brk 0x32000 0x32000
Socket AF_INET, SOCK_RAW, IPPROTO_TCP 0
fcntl64 0, F_GETFL 0x2
fcntl64 0, F_SETFL, O_RDWR|O_NONBLOCK 0
Setsockopt 0, SOL_IP, IP_HDRINCL, [1], 4 0
Brk 0x33000 0x33000
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f x � metric s1, s2( 􏼁s1, s2( 􏼁 �
1, x≥ z

0, x< z
􏼨 ; z x ∈ [0, 1]; s1, s2 ∈ D, (3)

where z being the selected threshold for determining the
similarity between two samples, namely, s1 and s2, both
belonging to the dataset of samples, which is defined as D. It
generates a graph file in dot format [27] in which the nodes
represent the executable files, and an edge between two
nodes represents the fact that between them there is a
similarity greater than the established threshold. *e gen-
eration of the graphs is computationally expensive since it
calculates the similarity for each different pair of samples.

4. Experiments and Results

In this section, the experiments and results obtained using
our malware analysis and clustering framework are
presented.

4.1. Overview. In order to test the platform described in
Section 3, we built different custom virtual machines using
buildroot [28], which automates the process of building an
embedded Linux system. In total, we built machines for the
five most widely used architectures in the current IoT
market, namely, Intel 80386, x86-64, MIPS, ARM, and
PowerPC, generating a file system and a compilation of a
kernel image for each one. We used strace as a monitoring
tool to obtain the execution traces.

To perform the analysis, we used different samples of
Linux-basedmalware which targets IoTdevices.*e samples
are distributed among the five architectures mentioned. *e
malware samples are labeled using AVClass [29], which
categorizes them using a ranking of the labels provided by
different antivirus engines. Table 2 summarizes the number
of pieces of malware used for each architecture and how
many of them are packed and labeled.

Finally, we used our framework to analyze all the samples
and visualize the relationships between them according to the
metrics described in Section 3.4. *e following sections show
the results obtained after analyzing the entire set of samples
described above in terms of static and dynamic points of view.

4.2. Static. In this section we present the results of the analysis
and clustering processes using the static features described in
Section 3. We use a threshold, which can be adjusted by the
user, of 0.8 to determine whether two samples are related for
both metrics. *is value selection is based on an empirical
study which is out of the scope of this paper.

4.2.1. n-grams. We use the n-grams of the operation codes
extracted in the static analysis process.*e size was empirically
determined to be four by using cross validation. Since the
operation codes are architecture dependent, we generated
clusters for each of the architectures independently. Figure 3
shows the graphic for all architectures in the study, namely,
MIPS, PowerPC, x64, x86, and ARM. *e nodes represent
malware samples and the edges indicate whether there is a

similarity greater than 0.8 at the n-gram level. Gray is used to
represent malware samples that do not have a label and the rest
of the colours represent each of the families that have been
labeled (AVClass) in the dataset. As can be seen, there are
different clusters formed mainly of samples from the same
family. In some cases, there are related samples from several
families. *is may be because some of the samples are packed
and, if they use the same packer, they may share the same code
routines to unpack the executable at run time. One of the
disadvantages of using static features is that they can be affected
by code obfuscation.*ismetric can also be affected depending
on whether the executable is compiled with static linking or
with dynamic linking, since those binaries compiled with static
linking could have more unique n-gram sequences because the
functions imported from the libraries are included in the binary
itself. In general terms, the proposed architecture detects well
the families of malware samples for all the architectures.

4.2.2. Cyclomatic Complexity. We use cyclomatic complexity
to cluster the samples. Since the metric is extracted from
disassembled programs and depends on the assumptions of the
compiler and the assembly code that it generates, we cluster the
samples for each of the architectures independently. *is is
because, after looking at several executable files available for
different architectures (e.g., busybox), we observe that the
cyclomatic complexity for the same functions varies according
to the architecture. Although it is not very different between
one and the other, it does change even if they have been
compiled with the same compilation options. Figure 4 shows
the graph for all the architectures used in this paper. As we can
see, the clusters generated belong to the same family, and there
are several small clusters for the same family, such as Gafgyt,
Tsunami, or Mirai for the ARM architecture. *is is due to the
fact that this metric measure similarity at a structural level
between two samples. *erefore, it can also be affected by
obfuscated code. In addition, if a sample is compiled in a static
way and another in a dynamic way, there will not be a
structural similarity between them (those compiled with static
linking have imported library functions within the executable
instead of being resolved at runtime as in binaries compiled
with dynamic linking).

Observing the graphs generated for both metrics (Fig-
ures 3 and 4), it can be seen that, in general, the clusters
created using n-grams are made up of more samples than
those produced using cyclomatic complexity. In either case,
most of the connected samples are related to others from
their own family without producing many false positives.

4.2.3. Dynamic. In this section, we present the results ob-
tained in the clustering process using the dynamic char-
acteristics extracted in Section 3.5 and the metric described
in the same section. As was done in Section 4.2.2, we use a
threshold of 0.8 to match two malware samples. We use
sequences of n-grams of size four for the syscalls executed for
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Figure 3: Continued.

Table 2: *e number of malware samples distributed for each of the architecture.

Arch Samples Packed Labeled
Intel 80386 279 58 211
X86-64 344 168 134
MIPS 318 63 288
ARM 246 24 200
PowerPC 275 12 258

1462 325 1091
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Figure 3: Clusters generated for theMIPS (a), PowerPC (b), x64 (c), x86 (d), and ARM (e) architectures using n-grams and the Jaccard index
to calculate the similarity.
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Figure 4: Continued.
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each of the samples. Since the syscalls are petitions to the
operating system to request a service (e.g., create a socket
and kill a process), and these have the same name in any
Linux-based operating system, using them for clustering
allows us to find similarities between the execution traces of
samples from different architectures.

Figure 5 shows the clusters generated using the syscalls
traces as features. On the left, each sample is colored
depending on the architecture to which it belongs. On the
right, each sample is colored depending on the family to

which they belong, with gray indicating the unlabelled
ones. It can be observed that there are clusters that are
formed of samples from different architectures, such as
MIPS, PowerPC, and Intel 80386. If we observe these same
clusters in the family-categorized image, it can be seen
that the samples belong to a particular malware family. In
addition, it can be noticed that the clusters are made up of
samples from the same family, and that, based on their
behavior, pieces of malware from different architectures
have been categorized into the same cluster.
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Figure 4: Clusters generated for the MIPS (a), PowerPC (b), x64 (c), x86 (d), and ARM (e) architectures using cyclomatic complexity and
the custom function described in Section 3.
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Finally, we observe that there are different clusters for the
same family. Unlike the previous case, in which the samples
may appear different depending on the architecture for which
they were compiled or the different compilation options, now it
may indicate that they belong to different campaigns of the
same family. Malware is constantly evolving, and its creators
add new functionalities or use existing ones from other pieces
of malware that have proven effective and beneficial. Also, it
should be noted that the original source code of some of the
most widely used malware families is available on the Internet,
such as Gafgyt orMirai [18], and there may be variants created
by different authors.

5. Conclusions

In this proposal, we have addressed IoT malware analysis,
focusing on the automatization of the examining process.
Our motivation for this is the huge increase in cyberattacks
that have been carried out in this environment over recent
years, which has led to the impossibility of manually
studying the samples as the number is too immense. After
evaluating the proposals from the community, it has been
observed that there were none that focused on both ana-
lyzing (statically and dynamically) a large number of IoT
malware samples at once and providing compatibility with
several architectures.

Consequently, a multiarchitecture framework for au-
tomatic malware analysis and clustering has been presented.
*e proposal, which is based on a modular approach and
supports samples from five different IoT architectures,
namely, ARM, PowerPC, MIPS, Intel 8086, and x64-86, is
able to extract static and dynamic features from a sample and
compare it with previous analyzed ones, categorizing it into

families depending on the similarity. In addition, besides
saving a considerable amount of time when examining
pieces of malware, it offers flexibility to the user, allowing
them to define their own emulated architectures and to
adapt the threshold used to determine whether a sample is
categorized into a family or not.

*e proposal has been evaluated through the exami-
nation of nearly 1,500 malware samples from the five ar-
chitectures that are supported by the framework, offering
promising results and proving its effectiveness when clus-
tering malware samples. Especially relevant is the outcome
of the dynamic analysis, in which the proposal has been able
to cluster samples frommultiple malware campaigns, even if
they were designed for different architectures. In addition, it
has been detected that, when clustering using the static
features, samples may appear different depending on the
architecture for which they were compiled or the different
compilation options. Other factors, such as code obfusca-
tion, also hinder the task, although the results generated by
the static analysis are also satisfactory.

Given the good results offered by the framework when
tested and knowing the importance of improving the
analysis of malware samples, there are several lines of re-
search that could be followed to complement this proposal.
Some such projects could be to

Study the network communications made by the
malware samples when they are executed and use them
as a feature to cluster them
Expand the visualization features, offering the user an
interactive representation of the results, allowing them
to directly browse through the different samples or
filter them by selecting certain characteristics.
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Figure 5: Clusters generated for all architectures using the execution traces obtained in the dynamic analysis. *e n-gram size used for the
syscalls sequence is four. *e edges connect those samples with a similarity index greater than 0.8.
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Add other IoT architectures so that samples designed
for them could also be examined.
Employ other metrics to determine sample similarity,
and even to use advanced machine learning techniques
to add a layer of intelligence to the framework.
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