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*e functionalities, such as connectivity and communication capability of complex networks, are related to the number and length
of paths between node pairs in the networks. In this paper, we propose a new path connectivity measure by considering the
number and length of paths of the network (PCNL) to evaluate network path connectivity. By comparing the PCNL with the
typical natural connectivity, we prove the effectiveness of the PCNL to measure the path connectivity of networks. Because of the
importance of the shortest paths, we further propose the shortest paths connectivity measure (SPCNL) based on the number and
length of the shortest paths. *en, we use edge-betweenness-based malicious attacks to study the relationship between the SPCNL
and network topology in five types of networks.*e results show that the SPCNLs of the networks have a significant corresponding
relationship and similar changing trend with their network topology heterogeneities with the increase of the number of deleted
edges.*ese findings mean that the SPCNL is positively correlated with the heterogeneity of the network topology, which provides
a new perspective for designing complex networks with high path connectivity.

1. Introduction

Complex networks such as power grids, transportation net-
works, and telecommunication networks provide the flow of
current, products, and information essential to develop the
economy and protect social security. Vast information col-
lected from the wireless sensor networks has brought great
convenience to the production and life of human society
[1, 2]. *erefore, it is important to ensure that such networks
continue to function properly for the normal operation of
society. However, more and more attacks on and failures of
complex networks have caused huge losses to people’s pro-
duction and lives. As some rare occurrences in the past have
shown, complex networks are still vulnerable to diverse at-
tacks [3–6]. To prevent these losses, it is necessary to design
robust networks to combat these malicious attacks.

*e node connectivity of a network is an important
property concerning the ability of the network to maintain
its functionality after being attacked by the removal of nodes

or edges from the network [7, 8]. Albert et al. [9] studied the
changes of the maximal connected component (MCC), i.e.,
the size of the largest connected subgraph in the remaining
network, after a small fraction of the nodes are removed
from an exponential network and scale-free network under
random attacks and targeted attacks, respectively. *ey
found that scale-free networks display surprising connec-
tivity against random attacks but are extremely vulnerable to
targeted attacks, while the exponential networks do not
exhibit this property. Schneider et al. [10] introduced a new
connectivity measure and used it to devise a method to
reconstruct networks against malicious attacks. *eir results
showed that networks with an “onion-like” structure have
significantly high robustness against malicious targeted at-
tacks. Louzada et al. [11] proposed a new measure based on
communication efficiency and outlined a procedure to
modify any given network to enhance its connectivity via an
optimization approach using simulated annealing. *eir
results showed that high assortativity and the onion-like
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structure are the characteristics of networks with high node
connectivity. Zeng and Liu [12] proposed a link-robustness
index to measure the node connectivity of a network by
different malicious attack strategies.

*e above robustness measures are mainly considered
from the view of node connectivity. In fact, the number of
paths in the network is also a very important connectivity
index. Path diversification in networks is an important
mechanism that can be used to select multiple paths between a
given node pair to achieve maximum flow robustness. Mul-
tipath routing is one way of improving the robustness of the
transmitted information [13, 14]. Multi-path selection, control,
and other related algorithms have been widely studied against
various malicious attacks [15–17]. *erefore, networks with a
large number of paths can provide a solid physical path
foundation for these algorithms. Furthermore, the shortest
paths, where the length of the shortest path is the smallest of all
paths between two nodes, are the most efficient for the
transmission of flow, for example, electrical current, trans-
portation, and communication packets in complex networks
from a source node to a termination node. *erefore, the
number of shortest paths is also an important topological index
for the functionality of a network. Many classical routing al-
gorithms and robustness measures are designed for networks
according to the shortest paths [6, 18–24].

For a source node and a termination node, there may be
several paths between them. When one path is broken, the
two nodes can still be connected through other alternative
paths. *erefore, the greater the number of paths is, the
higher the path connectivity between the two nodes is. With
the same number of paths, the shorter the path length, the
higher the network efficiency. *erefore, we propose a new
measure (PCNL) in this paper to evaluate the network path
connectivity by considering the number and length of the
paths.*e shortest paths between two nodes are of particular
importance for a network to provide the fastest and strongest
interaction. We also propose the shortest path connectivity
(SPCNL) by only considering the number and length of the
shortest paths simultaneously. We study the SPCNL of BA
networks and ER networks for four groups with different
network sizes, where each group has the same average de-
gree. We find that the BA networks have the higher SPCNL.
Furthermore, we use Monte Carlo simulations to analyze the
path connectivity of the above networks and three other
types of networks, which are generated from the BA net-
works by edge rewiring algorithm, against edge-between-
ness-based malicious attacks. *e results demonstrate that
the SPCNL is positively correlated with the heterogeneity of
the network topology.

*e rest of the paper is arranged as follows. Section 2
summarizes the related work. In Section 3, we show the
effect of the number and length of the paths on the path
connectivity and propose the new network path connectivity
measure. In Section 4, we study the SPCNL of BA networks
and ER networks for four groups with different network
sizes. In Section 5, we study the SPCNL of BA networks, ER
networks, and three types of networks against edge-be-
tweenness-based malicious attack. We finally give some
conclusions in Section 6.

2. Related Work

For any two nodes in a connected network, there may be
several paths between them.*erefore, the number of the paths
has a great impact on the measurement of network connec-
tivity. Oyama and Morohosi [22] proposed a quantitative
method for evaluating the stable connectivity of the network-
structured system by shortest-path-counting methods.
Morohosi [23] proposed a connectivity measure based on the
shortest path length distribution and used Monte Carlo
methods for the computation of the measure to find the ro-
bustness properties of networks. Kobayashi et al. [24] proposed
a quantitative robustness measure of a network. *ey defined
the connectivity function and estimated expected edge deletion
and node deletion connectivity functions when an arbitrary
number of edges or nodes are deleted from the original net-
work by the Monte Carlo method. *e above studies set the
number of the shortest path between two nodes as one and
ignored the fact that there may be multiple shortest paths
between two nodes. In reality, the number and length of the
shortest paths will have a great impact on the measurement of
network connectivity (Section 3).

If the source and destination of a path are the same
nodes, the path is called as closed path.*e number of closed
paths is an important index for complex networks. Wu et al.
[25] proposed a connectivity measure by considering the
number and length of the closed paths simultaneously. *e
connectivity measure was defined as follows:
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where nl is the number of closed paths with length l and λi is
the eigenvalue of the adjacency matrix for a network. *e
authors scaled equation (1) and denoted it by

λ � ln
1
N

􏽘
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e
λi⎛⎝ ⎞⎠, (2)

where N is the number of nodes in a network. *ey call
equation (2) the natural connectivity (Na_C). *e authors
considered the influence of the number and length of closed
paths on the connectivity measure simultaneously. However,
the traffic or information in a network is mainly transmitted
between two different nodes, not the node itself. *erefore,
the number of closed paths from node to node itself may not
accurately reflect the path connectivity of the networks.
Moreover, to obtain this measure in the form of a graph
spectrum, the authors scale the contribution of closed walks
by the factorial of the closed path length. *e factor of the
factorial of the closed path length will lead to inaccurate
measurement of network connectivity. In Section 3, we will
give an example to demonstrate this problem.

3. Path Connectivity Measure

Given an undirected simple graph G� (V, E), V is the set of
nodes and E is the set of edges. A path is a sequence of
vertices P� v1, v2, . . ., vk, where vi∈V, i� 1, 2, . . ., k. P is also
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called a path from v1 to vk. *e length of a path is defined as
the number of edges it contains.*erefore, the length of path
P is k − 1. *e distance between two nodes is defined as the
length of the shortest path between the two nodes. *e
maximum distance between any two nodes in a network is
called the diameter (D) of the network. *e average path
length (Avg_L) of a network is defined as the average dis-
tance between any two nodes. Path connectivity refers to the
ability of a network to make the paths with the same length
connected under disturbances caused by paths change. An
intuitive notion of path connectivity can be interpreted as
the redundancy of paths between nodes. *e greater the
number of paths is, the less the risk of disconnection is when
the paths between nodes are broken by the removal of edges.

Figure 1 shows the three path scenarios between node i
and node j, and the length of all paths is l. Figure 1(a) shows
that there is only one path between node i and node j, but
Figures 1(b) and 1(c) show that there are n paths between
node i and node j. Letting the probability that an edge is
removed be p, one can obtain the probabilities that the paths
with length l between node i and node j are disconnected for
the three path scenarios in Figure 1 as follows:

1 − (1 − p)
l
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where l> 2. When l� 2, it is noted that Figures 1(b) and 1(c)
become the same scenarios. From equation (3), one can
deduce the probability q that all paths with length l and
number n between node i and node j are disconnected
belongs to the following range:

q ∈ 1 − (1 − p)
l− 2 1 − 1 − (1 − p)

2
􏼐 􏼑

n
􏼐 􏼑, 1 − (1 − p)

l
􏼐 􏼑

n
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(4)

Note that q decreases with the increase of n or the de-
crease of l. One can intuitively understand that the more
alternative and disjoint paths there are, the stronger the
connectivity and the function of communication or trans-
mission between the two nodes are. *erefore, one can
consider the number of paths as a measure for the path
connectivity of the networks. For simplicity, we do not
distinguish the two scenarios of Figures 1(b) and 1(c) in this
paper. Considering the influence of path length on network
path connectivity, we propose a path connectivity measure
between a pair of nodes based on the number and length of
the paths in a connected network as follows:
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where Lij is the length setting for the paths between node i
and node j, |pij| is the length of the shortest paths, and n

ij

l is
the number of paths with length l. R

ij
p represents the path

connectivity ability between node i and node j. *e greater

the R
ij
p is, the stronger the robustness of connectivity and the

function of communication between node i and node j are. It
is noted that different settings of Lij will produce different
R

ij
p . One can set Lij according to the actual situation of the

networks, for example, the restriction distance in network
transmission and the diameterD limitation of a network. For
a connected network, it has N(N − 1)/2 node pairs. One can
obtain the mean value of the R

ij
p of all node pairs as follows:
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We call Sp the path connectivity based on the number
and length of paths (PCNL). One can use Sp to measure the
path connectivity of a network. Sp can change monotonically
as edges are added or deleted. To prove this, given a network
G0, letG1 be the network after adding an edge between node i
and node j. Let R

ij
p (0) be the path connectivity of G0 and

R
ij
p (1) be the path connectivity of G1 between node i and

node j. Sp(0) and Sp(1) are the PCNLs of G0 and G1, re-
spectively. For the same Lij � K, one can obtain R

ij
p (0) and

R
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p (1) from equation (5) as follows:
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where |pij(0)| is the length of the shortest path between node
i and node j in G0. For the same l, nl

ij(1)≥ nl
ij(0). *erefore,

one can obtain R
ij
p (1)>Rij

p (0). For any other node pair (m,
n), one can deduce that
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*us, Sp(1)> Sp(0).
Figure 2 shows two networks with the same degree dis-

tribution. Table 1 shows the characteristic parameters of the
two networks, where Tri_num denotes the number of tri-
angles in a network, r denotes the correlation coefficient, D
denotes the diameter, and Avg_L denotes the average shortest
path length. We denote P_num as the sum of the number of
the shortest paths and denote Na_C as the natural connec-
tivity. We obtain the PCNLs of the two networks by setting
Lij � 6. For network A, if we remove node 1 or 2, network A
will become disconnected. If we remove the edge between
node 1 and node 2, the paths in network A will change
dramatically. For example, D of network A increased dra-
matically from 4 to 7. For network B, the removal of any node
cannot make it disconnected. In addition, it is intuitive that
the removal of any edge will not change the paths of the
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network significantly. *erefore, it is obvious that the node
connectivity and path connectivity of network B are better
than those of network A. However, according to Na_C, we
draw the opposite conclusion (Table 1).*is shows thatNa_C
has limitation in evaluating path connectivity of the network.
From equation (1), one can find that a closed walk of length
l� 2 corresponds to an edge. Because the degree distributions
of two networks are identical, the contribution of l� 2 to their
Na_C is the same for the two networks. For l� 2, 3, 4, and 5 in
network A, one can obtain S from equation (1) as follows:

SA(3) �
12
2
! � 6.000,

SA(3) �
2
3
! � 0.333,

SA(4) �
13
4
! � 0.541,

SA(5) �
10
5
! � 0.083.

(9)

One can find that the factor of the factorial of the closed
path length sharply reduces the contribution of path lengths
greater than 2 to Na_C. *e effect of path length on Na_C is
amplified by the factorial. From equation (1), one can find
that a closed walk of length l� 3 represents a triangle. *ere
are two triangles in network A and zero in network B. *is
may be because the Na_C of network A is larger than that of
network B.*erefore, one can infer thatNa_C has too strong
a correlation with the short closed path lengths of the
networks. *is will lead to inaccurate measurement of path
connectivity by Na_C. From Table 1, one can see that the
PCNL of network B is larger than that of network A. *is
shows the effectiveness of the PCNL to measure the path
connectivity of networks.

Next, we take the PCNL (Lij � 6) as an objective function
to optimize network A by the degree-preserving rewiring
algorithm [26], which can keep the degree distribution of the
network unchanged after rewiring the network. Figure 3
shows the process of network optimization by degree-pre-
serving rewiring. One can find that network B can be ob-
tained from network A with the optimization of the PCNL.
However, one cannot obtain this optimization result
through Na_C. *is shows that the performance of the
PCNL for evaluating the path connectivity is better than that
of Na_C.

For the PCNL, it is noted that the length setting Lij�K
needs to be greater than the network diameterD; otherwise, the
path information of node pairs that their distance is greater
than K will be neglected. From equation (3), one can find that
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Figure 2: Two networks with the same degree distribution. (a) Network A. (b) Network B.
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Figure 1: *ree path scenarios between node i and node j.

Table 1: Characteristic parameters for network A and network B.
r Tri_num D Avg_L P_num PCNL Na_C

Network
A − 0.1250 2 4 2.2444 52 1.0230 1.1062

Network
B − 0.5000 0 3 2.0222 60 1.3407 1.0031
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the complexity of the PCNL will increase with the increase of
Lij. Considering the influence of shortest paths on network
functionality [6, 18–24] and the complexity of the PCNL,we set
Lij� |pij| to calculate the shortest path connectivity of a net-
work. *en, equations (5) and (6) are shown as follows:
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where |pij| is the length of the shortest paths and n
ij

l is the
number of paths with length l between node i and node j. Rij

sp

represents the shortest path connectivity ability between
node i and node j. Ssp is the mean value of the R

ij
sp of all node

pairs. We call Ssp the path connectivity based on the number
and length of shortest paths (SPCNL). Note that Ssp may not
change monotonically as edges are added or deleted. *e
reason is that, when one adds or deletes an edge in a net-
work, the number of shortest paths in the network may
decrease or increase. *erefore, it is possible to reduce or
improve the SPCNL of a network by adding or deleting an
edge. One can also find similar examples, and many re-
searches studies have also obtained similar results [27]. For
example, when drivers choose the shortest path indepen-
dently, opening some new road sections may lead to overall
traffic network congestion and capacity decline. Although
the complexity of SPCNL is much lower than that of PCNL, it
contains the shortest path information between all node
pairs. According to equations (5) and (6), the contribution of
the shortest path to PCNL is relatively larger than that of
other paths. *erefore, we can use SPCNL to evaluate the
path connectivity of a network.

4. Relationship between Path Connectivity and
Network Topologies

Some natural questions arise: what is the relation between
path connectivity and network topologies? How can we
obtain a network with high path connectivity under a given

average degree or degree distribution? We will try to answer
these questions in this section.We first generate BA networks
(heterogeneous networks) [28] and ER networks (homoge-
neous networks) [29] with sizes of 1000, 2000, 3000, and
4000. For BA networks and ER networks, we generate ten
networks of each size, respectively. All networks have the
same average degree <k>≈6. Figure 4 shows the average
value of each of the ten networks for BA networks and ER
networks, respectively. From Figure 4(a), one can see that the
SPCNLs of the BA networks are the larger that those of ER
networks. Figures 4(c) and 4(d) show that this is because the
P_nums of BA networks are greater than those of ER net-
works and the Avg_Ls of BA networks are smaller than those
of ER networks. From Figure 4(c), under the same average
degree, one can see that the BA networks can generate the
many shortest paths than ER networks. In Figure 4(b), one
can see that Na_Cs of BA networks are far greater than those
of ER networks. One can infer that the reason is that the
Avg_Ls of BA networks are smaller than those of ER networks
(Figure 4(d)). From Figures 4(b) and 4(d), one can obtain
that the effect of path length on Na_C is amplified. By the
results shown in Figure 4, one can answer the questions at
the beginning of this section, namely, under the same av-
erage degree condition, the heterogeneous networks have
the larger number of shortest paths and the stronger path
connectivity than homogeneous networks.

To further confirm the above conclusion, we need more
networks with the same average degree and different net-
work topologies. We use random edge rewiring for one of
the ten BA networks to obtain a new network. *en, taking
the new network as the initial network, we use the degree-
preserving rewiring algorithm to generate three network sets
and denote them as Ran networks (uncorrelated network),
Dis networks (disassortative network), and Ass networks
(assortative network), respectively.*ere are ten networks in
each network set.*e networks in the same network set have
the same degree distribution and degree correlation coef-
ficient. Note that all of the networks in the three sets have the
identical average degree as the BA networks and ER networks.
*e characteristic parameters of the network sets are shown
in Table 2, where <k2> is the mean of the sum of the squares

Na_C = 1.1062
PRNL = 1.0230

Na_C = 1.1042
PRNL = 1.0259

Na_C = 1.0718
PRNL = 1.0811

Na_C = 1.0829
PRNL = 1.1552

Na_C = 1.1674
PRNL = 1.2056

Na_C = 1.0031
PRNL = 1.3407

Na_C = 1.0085
PRNL = 1.3111

Na_C = 1.0195
PRNL = 1.2800

Na_C = 1.0248
PRNL = 1.2459

Na_C = 1.0371
PRNL = 1.2222

Network A

Network B

Figure 3: Process of network optimization by degree-preserving rewiring.
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Figure 4: (a)*e SPCNL of two types of networks, BA networks and ER networks. *e average degree of all networks is 6.N is the number of
nodes of the networks, 1000, 2000, 3000, and 4000, respectively. (b) *e Na_C of two types of networks. (c) *e P_num of two types of
networks. (d) *e Avg_L of two types of networks.
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Table 2: Characteristic parameters for the five network sets.
<k> <k2> r Tri_num D Avg_L P_num SPCNL Na_C

Ran networks 5.99 50.882 0.002 57.3 8 4.026 1772066 0.818 3.132
Dis networks 5.99 50.882 − 0.560 21.6 6.4 3.917 1715478 0.787 2.600
Ass networks 5.99 50.882 0.600 407.2 8.7 4.284 1750788 0.777 7.510
BA networks 5.99 93.052 − 0.076 301 6 3.437 1953483 1.034 8.306
ER networks 5.99 41.566 0.010 37 7 4.064 1374022 0.630 2.375
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Figure 5: Continued.
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of the degrees. <k2> can represent the heterogeneity of a
network topology. For Ran networks, Dis networks, Ass
networks, BA networks, and ER networks, each characteristic
parameter in Table 2 is the average value of the characteristic
parameters of the corresponding ten networks.

In Table 2, one can see that the <k2> and P_num of the BA
network are both larger than those of the other networks.*is
shows that the heterogeneity significantly increases the
number of shortest paths in a network. One can also obtain
that the SPCNL of the BA network is larger than that of the
other networks. *is means that the shortest path connec-
tivity and the function of communication of the BA network
are better than those of the other networks. For Ran networks,
Dis networks, and Ass networks with the identical <k2>, they
have almost the same SPCNLs.Note that the SPCNL of the BA
networks with the largest <k2> is significantly larger than the
SPCNL of the ER networks with the smallest <k2>. *e order
of SPCNL is consistent with the order of <k2> among the Ran
networks, Dis networks, Ass networks, BA networks, and ER
networks. One can also see that the order of SPCNL is in-
consistent with the order of r among all the networks. *ese
mean that the SPCNL may be positively correlated with the
heterogeneity of a network topology and independent of the
degree correlation coefficient. One can see that the Tri_nums
and NA_Cs of Ass networks and BA networks are far larger
than those of the other networks, and this may suggest that
NA_C is positively correlated with the Tri_nums in a network.
*is confirms the conclusion drawn in Section 2 that the
Na_C has too strong a correlation with the short closed path
lengths of the networks. Next, we will carry out edge-be-
tweenness-based malicious attacks on these networks to
further verify these conclusions in Section 5.

5. Simulations

In the actual situation, edges are more vulnerable than nodes
in a network [30]. In particular, edges with high betweenness
play an important role in the network path connectivity [31].
*e larger the betweenness of an edge is, the greater the
number of shortest paths between node pairs passing
through the edge is. If the edges with high betweenness are
attacked and removed from a network, the shortest paths of
a network will change dramatically. To verify the above
conclusion on the relation between network topology and
path connectivity, we use edge-betweenness-basedmalicious
attacks to study the SPCNL and Na_C of the above five types
of networks and draw some conclusions. *e process edge-
betweenness-based malicious attack is as follows: (1) the
edge betweenness of each network is calculated; (2) the edge
with themaximal betweenness is removed from the network.
We repeat the process 1000 times to remove 1000 edges one
by one for each network. Each data point is the average of the
ten networks for BA networks, ER networks, Ran networks,
Dis networks, and Ass networks under the edge betweenness-
based malicious attack.

Figure 5(a) shows Na_C as a function of the number of
deleted edges, and Figure 5(b) shows Tri_num as a function
of the number of deleted edges. From Figures 5(a) and 5(b),
one can see that Na_C showed a significantly corresponding
relationship and similar changing trend with Tri_num. One
can see that the relative changing laws of the Na_C of Ass
networks are consistent with the changing laws of the
Tri_num of Ass networks in that the curves both decrease
slowly with the increase of the number of deleted edges. For
BA networks, as Tri_num drops rapidly, Na_C also exhibits a
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Figure 5: (a) Na_C is shown as a function of the number of deleted edges. (b) Tri_num is shown as a function of the number of deleted
edges.(c) SPCNL is shown as a function of the number of deleted edges. (d) <k2> is shown as a function of the number of deleted edges. (e)
P_num is shown as a function of the number of deleted edges. (f ) Avg_L is shown as a function of the number of deleted edges. When two
nodes are disconnected, the number and length of the shortest paths between them are set to 0. Each data point is the average of the ten
networks for BA networks, ER networks, Ran networks, Dis networks, and Ass networks under the edge betweenness-based malicious attack.
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rapid decline. From Figures 5(a) and 5(b), we can obtain that
NA_C is positively correlated with Tri_nums in a network.
*is validates the previous conclusion that the Na_C has an
overly strong correlation with the short closed path lengths
of the networks to limit the performance to evaluate the path
connectivity.

For Ran networks, Dis networks, and Ass networks in
Figures 5(d) and 5(e), the <k2> and P_num of the three types
of networks have little difference with the increase of the
number of deleted edges. One can also see that the SPCNL of
the three types of networks have little difference. Note that
the SPCNL of the Ass networks is slightly less than Ran
networks and Dis networks. One can speculate the reason
from the Figure 5(f) that theAvg_L of theAss networks is still
larger than Ran networks and Dis networks with the increase
of the number of deleted edges. For BA networks, the <k2>
decreases rapidly with the deletion of edges until it is close to
that of the other networks. From Figure 5(c), one can see that
the changing trend for the SPCNL of BA networks is the same
as that of the <k2>. For ER networks, the <k2> is still smaller
than those of the other networks in the Figure 5(d), and the
same scenario for SPCNL can be seen in the Figure 5(c). One
can see that the SPCNLs of all networks show an obviously
corresponding relationship and similar changing trend with
<k2> (see Figure 5(d)). In general, we can obtain that the
SPCNL is positively correlated with the heterogeneity of a
network topology.

6. Conclusions

*e number and length of the shortest paths are important
topological indexes for the functionality of complex net-
works. *e greater the number and the shorter the length of
paths in a network, the better the path connectivity of the
network is. Considering the number and length of the
shortest paths, a new measure called the PCNL has been
proposed in this paper to assess network path connectivity.
Compared with the classical natural connectivity Na_C, the
effectiveness of the proposed measure has been verified. In
view of the importance of the shortest paths, we further
propose the SPCNL based on the number and length of
shortest paths. We have studied the SPCNL for two types of
networks, namely, the BA networks and ER networks. *e
results show that the BA networks have the larger number of
shortest paths and the stronger path connectivity than ER
networks with identical average degree. We have drawn the
same conclusion with the two types of networks with dif-
ferent sizes. To explore the relationship between network
topology and path connectivity, we have generated three
types of networks with the same degree distribution but
different degree correlations, namely, Ran networks, Dis
networks, and Ass networks and carried out edge-between-
ness-based malicious attacks on the above five types of
networks to obtain various conclusions. In general, the
results show that the NA_C is positively correlated with
Tri_num and that the SPCNL is positively correlated with the
heterogeneity of a network topology, which provide a new
perspective to design complex networks with high path
connectivity.

As we all know, the measures based on finding network
paths are extremely complex. If one uses these measures as
an objective function to optimize the network, the com-
putational complexity will grow larger with the increasing
scale of a network. Under the same degree distribution (keep
network heterogeneity unchanged), increasing the number
of shortest paths and limiting path length simultaneously
can effectively increase SPCNL. However, it is a challenge to
achieve this goal by existing optimization methods. *ere-
fore, seeking an appropriate algorithm is an important study
for optimizing network by using these measures as an ob-
jective function in the future.
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