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In order to improve the accuracy and efficiency of Android malware detection, an Android malware detection model based on
decision tree (DT) with support vector machine (SVM) algorithm (DT-SVM) is proposed. Firstly, the original opcode, Dalvik
opcode, is extracted by reversing Android software, and the eigenvector of the sample is generated by using the n-gram model.
,en, a decision tree is generated via training the sample and updating decision nodes as SVM nodes from the bottom up
according to the evaluation result of the test set in the decision path. ,e model effectively combines DT with SVM. Under the
premise of maintaining a high-accuracy decision path, SVM is used to effectively reduce the overfitting problem in DT and thus
improve the generalization ability, and maintain the superiority of SVM for the small sample training set. Finally, to test our
approach, several simulation experiments are carried out, and the results demonstrate that the improved algorithm has better
accuracy and higher speed as compared with other malware detection approaches.

1. Introduction

In recent years, mobile Internet has played a leading role in
the evolvement of the Internet, and smartphones have be-
come almost an indispensable tool in people’s daily life.
Smartphone penetration among adults in developed coun-
tries will reach 90 percent by the end of 2023, compared with
85 percent in 2018, and global smartphone sales will reach
1.85 billion units, 19% increase over 2018 [1]. According to
[2], worldwide sales of smartphones to end users are on track
to reach 1.57 billion units in 2020, an increase of 3% year
over year. Although the market sales of smartphone went
through a slight declination in 2019, Gartner forecasts that
sales of 5G mobile phones will total 221 million units in
2020, and more than double in 2021, to 489 million units;
there is no doubt that the gradual maturity of 5G technology
will also push the demand of smartphones rise considerably.

Currently, the common operating systems of smart-
phone terminals include iOS, Android, and Windows
Phone, among which Android, in particular, became the
dominating operating system with the highest market share
on a global scale because of its open-source nature, which

gives users and developers the flexibility to customize basic
functionality [3]. According to survey data released by
Gartner, the share of the Android system in 2017 was as high
as 85.9% [4]. However, the increasing popularity of Android
is also accompanied by the proliferation of malware. In 2018,
360 Internet Security Center intercepted about 4.342 million
new malicious samples on the mobile terminal, with an
average of about 12,000 new ones added every day. ,e new
malware types are mainly tariff consuming, accounting for
about 63.2%, followed by privacy theft 33.7%, malicious
deduction 1.6%, rogue behavior 1.2%, and remote control
0.3% [5]. ,e terminal application endangers the users’
interests by allowing unauthorized access to privacy-sensi-
tive information, rooting devices, monitoring their daily
behaviors, etc. [6]. ,e amount of malware continues to
grow at a faster rate each year and poses a serious security
threat, antivirus vendors detect thousands of new malware
samples daily, and there is still no end in sight [7]. In
particular, with the gradual maturity of 5G technology,
which marks the arrival of the era of intelligent networking
and industrial Internet, the Internet of everything will lead to
more lethal and wider harm caused by malware, and hence,
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malware detection has been and will be a critical topic in
computer security.

In this study, we develop a DT with the SVM algorithm
(DT-SVM) for improving the detection efficiency and ac-
curacy of malware on the Android platform. ,e major
contributions of this work can be summarized as follows:

(i) We develop an advanced machine learning algo-
rithm, which firstly extracts the opcode of samples;
then, n-gram is utilized to vectorize and train the
sample to generate the decision tree; and, finally, the
nodes with high error are updated from the bottom
up as SVM nodes. ,e algorithm combines the
advantages of DT and SVM; on the premise that
high accuracy is maintained, the SVM node is
employed to reduce the overfitting problem caused
by DT.,erefore, the algorithm takes full advantage
of the SVM in a small sample set and has a better
classification effect than merely using DT or SVM
separately.

(ii) We design an Android malware detection frame-
work based on DT-SVM algorithm. ,e framework
is trained based on the improved learning algorithm
with the malicious and benign applications utilized,
and feature vectors of these applications are gen-
erated by Android reverse engineering, feature
engineering, and n-gram, which are used as the
input of the proposed algorithm for malicious de-
tection. In this way, users can employ our proposed
framework to distinguish whether the application is
malicious or benign before installation; thus, the
Android platform security issues can be greatly
improved.

(iii) We verify the effectiveness of our advanced algo-
rithm based on real-word benign applications and
malware, perform malicious detection on the same
dataset of the proposed algorithm with the shallow
learning algorithms DT and SVM and the deep
learning algorithms CNN and LSTM, and use four
evaluation metrics (Precsion, ACC, Recall, F1) as
well as time consumption to measure the perfor-
mance of the algorithm. ,e results demonstrate
that our proposed algorithm performs better than
SVM, DT, and LSTM almost in all metrics and
performs better than CNN in some metrics. All the
fourmetrics, that is, Precision, Recall rate, ACC, and
F1, increase by nearly 0.01% compared with SVM,
while the time consumption reduces to one-tenth,
as well as increasing by nearly 0.03% separately
compared to DT with time consumption not
changed much. Compared with CNN, although
ACC and F1 are lower, Precision and Recall are
higher; furthermore, our algorithm takes less time,
and the implementation process is much simpler. In
terms of LSTM, our method performs better than it
in all metrics.

,e remainder of this paper is organized as follows.
Section 2 states some current work of Android malware

detection. Section 3 depicts the related methodology. Section
4 describes the proposed classification algorithm. Section 5
illustrates the Android malware detection framework and
explains the specific process of applying the proposed al-
gorithm to the detection of malicious applications. Section 6
verifies the effectiveness of the advanced algorithm based on
Android applications. Section 7 concludes the paper and
points out the main limitations and future directions.

2. Related Work

,ere have been a lot of achievements in terms of detecting
malware on the Android platform, which can be divided
into two analysis approaches, that is, static analysis and
dynamic analysis [8]. Static analysis is the process of an-
alyzing the code or binary without executing it. Dynamic
analysis is the process of studying traces of the malware
(API, system calls, permission, etc.) through running the
sample in a controlled and isolated environment [9].
Traditionally, malware detectors have been built on
handmade detection patterns that are not usually appli-
cable to new instances of malware; however, the increasing
number and diversity of these applications make tradi-
tional defenses largely ineffective; Android smartphones
often fail to protect themselves from new malware [10].
Owing to the emergence of machine learning technology,
which can potentially detect never-before-seen attacks or
variants of known malware with its strong generalization
and prediction ability, machine learning-based methods
are increasingly applied to Android malware detection by
researchers, and the improvement of classic algorithms has
always been the tireless work of scholars. ,e shallow
learning model and the deep learning model are the two
main types of machine learning techniques [11]. ,e
shallow learning model usually includes SVM, DT, and
k-means as well as k-nearest neighbor (KNN) algorithms,
etc. [12]. Reference [13] improved the accuracy of the
classifier by using machine learning to extract features from
the system call of Android malware. Due to the high feature
dimension in Dalvik opcode-based detection, [14, 15]
utilized two strategies of probability statistics and feature
extraction to effectively reduce the dimensionality of
extracted features, and the linear SVM was employed for
classification, and therefore, the inspection efficiency was
improved. Based on the characteristics of permission in-
formation and Intent information in AndroidManifest.xml
file, a random forest improvement algorithm based on
weighted voting was proposed in [16], and the inability to
distinguish strong and weak classifiers was solved. Nancy
and Sharma [17] compared the network traffic of malware
with that of benign applications to find out the charac-
teristics that distinguish the two types of traffic and built a
DT classifier to detect normal and malicious applications
from the test dataset. ,e results showed that the network
traffic analysis method was efficient in detecting Android
malware, with an accuracy rate of more than 90%. Nev-
ertheless, most of the work mentioned above has not
achieved decent performance. Recently, Android malware
researchers have also been exploring deep learning
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classifiers for malware analysis to increase detection ac-
curacy [18]. Cui et al. [19] took the advantage of the
performance of deep learning in image recognition; the
malicious detection code was converted into a grayscale
image as the input of CNN under the condition of the fixed
image size, which was not realistic in a real scenario.
,erefore, this method suffered from fluctuating in per-
formance when processing different sizes of images. To
improve the accuracy of malware detection and reduce the
training time, Wang et al. [20] proposed a hybrid model
based on deep autoencoder (DAE) and convolutional
neural network (CNN); the experiments demonstrated a
significant improvement compared with traditional ma-
chine learning methods in Android malware detection.
Wang et al. [21] ranked the permissions w.r.t. their risk to
the Android system and evaluated the feasibility of using
permission requests for malapp detection with different
subsets of risky permissions and classification algorithms;
the detection rate can achieve 94.62%. Furthermore, the
author considered the issue of user privacy information
leakage in literature [22] and implemented a framework
called ‘Alde’ to detect the users in-app actions collected by
analytics libraries; experimental results show that some
apps indeed leak users personal information through an-
alytics libraries. Lei et al. [23] adopted more advanced
features than the API event behavior model as a data
source, using different behavior patterns of events and the
semantic relationships between events to detect malicious
software. ,is method can effectively solve the problem of
confusion deformation. However, the results of the ex-
periment performed quite well only in the malware dataset
provided in 2013. As the complexity of the malware in-
creased, the detection ability declined.

In summary, it can be concluded that there are two ways
to improve the detection accuracy and efficiency of Android
malware; the first is through optimization of feature selec-
tion and detection model, and the second is to optimize
classification algorithms. We mainly focus on the latter and
improve the classic classification algorithm in this study.
SVM is simple and can achieve high classification accuracy.
However, it is merely suitable for small samples; if the
sample set is large, it will consume a lot of time and have a
high false positive rate. DT is easy to overfit, leading to weak
generalization ability of prediction results. To overcome
these limitations, our work proposes an advanced learning
algorithm based on static features and combines the ad-
vantages of SVM and DT algorithm, and the experimental
results are quite good. In the next section, we explain the
methodology.

3. Methodology

3.1. N-Gram. N-gram model is derived from Natural Lan-
guage Processing (NLP), commonly used in large-scale
continuous speech recognition, which believes that the
appearance of the Nth word must be related to the first N− 1
words, but not to other words. Hence, the probability of the
entire sentence should be equal to the probability product of

the occurrence of each word. N-gram can also be used in
malware detection. As early as 2008, Moskovitch et al. [24]
proposed the opcode n-gram scheme and achieved good
detection results.

3.2. Support VectorMachine (SVM). SVM [25] is a two-class
model whose basic model is a linear classifier that defines the
interval maximization in the eigenspace. Meanwhile, it can
also solve the nonlinear problem employing kernel trick
[26]. ,e learning strategy of SVM is to maximize the in-
terval, which can be formalized as a problem of solving
convex quadratic programming, also called the maximum
edge algorithm, whose advantage lies in strong generaliza-
tion ability, which can solve the issues of nonlinear, small
samples, high dimension, etc. Taking the linear separable
SVM as an example, the principle of SVM is to search for a
separable hyperplane in given eigenspace and then divide the
sample space into two categories, one is a positive class and
the other is a negative class, corresponding to two different
categories of samples. ,e hyperplane H in the support
vector machine can be represented by the equation of
w · x + b � 0, where w is the normal vector and b is the
intercept, as shown in Figure 1.

When the training samples are linearly separable, there
are many straight lines that can correctly classify the two
types of samples, and SVM is to find the line that can
correctly divide them with the largest interval. SVM also
supports nonlinear problem classification, whose main
character is the utilization of kernel trick, the basic idea
behind which is to match the input space to an eigenspace, so
that its hypersurfacemodel in the input space corresponds to
the hyperplane model in the eigenspace through a nonlinear
transformation. ,e radial basis function (RBF) is one of the
commonly used kernel functions.

Definition 1. Gaussian kernel function

K(x, z) � exp −
‖x − z‖

2
2

2σ2
􏼠 􏼡. (1)

Here, ‖x − z‖22 is the square Euclidean distance of two ei-
genvectors, and σ is a free parameter.

3.3. Decision Tree. Decision tree [27] is a basic classification
and regression method, which classifies samples into a tree
structure, represents the process of classifying samples based
on features in classification problems, and can also be
considered as a collection of if-then rules. DT is widely used
because of its intuitive feature description, high classification
accuracy, and simple implementation [28]. ,e learning
process of DT is to find a mapping relationship between the
object attribute and the object value, enabling it to generalize
a set of classification rules represented by tree structure from
random samples. ,e decision path of DT has important
properties: mutual exclusion and completeness; that is, each
instance is covered by the one and the only one path. ,e
learning algorithm of DT includes feature selection, decision
tree generation, and pruning process. ,e widely used
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generation algorithms of DT are ID3, C4.5, and CART. ,e
Gini index is used for optimal feature selection in CART
algorithm.

Definition 2. Gini index
In the classification problem, suppose that there are K

classes and the probability that the sample belongs to the kth
class is pk; then, the Gini index of the probability distri-
bution is defined as

Gini(p) � 􏽘

K

k�1
pk 1 − pk( 􏼁 � 1 − 􏽘

K

k�1
p
2
k. (2)

In the dichotomy problem, the Gini index of the sample
set D is expressed as

Gini(D) � 1 − 􏽘
K

k�1

Ck

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|D|
􏼠 􏼡

2

. (3)

Here, |Ck| represents the number of samples in category
k, and |D| represents the total number of samples. ,e Gini
index indicates the uncertainty of the sample set. ,e larger
the Gini index, the greater the uncertainty of the sample set.

4. DecisionTreewithSVMAlgorithm(DT-SVM)

To overcome the problem of overfitting and weak gener-
alization ability in DT algorithm, DT-SVM is proposed.
SVM is embedded into DTfor node optimization, which not
only ensures the high accuracy of the decision path and
improves the generalization ability of DT, but also takes
advantage of SVM in small sample training. DT-SVM aims
to create a decision model as shown in Figure 2. ,e process
of the algorithm is to generate a decision tree based on the
sample set and then update the decision node from the
bottom up.

DT is a supervised learning algorithm. ,e sample set
S � (x1, y1), (x2, y2), . . . , (xN, yN)􏼈 􏼉 is divided into the
training set and the test set, denoted by TrainSet and TestSet.

Definition 3. Assume that the decision tree is as shown in
Figure 3, where the leaf nodes are instance sets, represented
by S � d1, d2, . . . , dn􏼈 􏼉, where n is the number of leaf nodes.
,e nonleaf node is a feature set and is denoted by
C � c1, c2, . . . , cn􏼈 􏼉. Each leaf node corresponds to a decision
path, the decision path corresponding to the leaf node j is
defined as dpj � c1, ck, . . . , dj􏽮 􏽯, and h � len(dpj) indicates
the depth of the path. ,e details of our suggested DT-SVM
algorithm for Android malware detection are presented in
Steps 1 to 8.

According to the algorithm process, assume that the
initial decision tree is shown in Figure 4 and the DT-SVM
tree generated by the algorithm is shown in Figure 5.

,e algorithm has a good performance in the example
illustrated by Figure 6, in which the sample set cannot be
effectively segmented, adopting DT and SVM algorithm
separately, but the DT-SVM algorithm can preserve the high
precision decision path and optimize nodes with low pre-
cision as SVM nodes.

5. DT-SVM-Based Malware
Detection Framework

5.1. Model Overview. ,e DT-SVM-based malware detec-
tion framework is shown in Figure 7. ,e framework
consists of four modules, that is, instruction extraction,
feature engineering, classifier training, and result evaluation.

5.2. Sample Instruction Extraction. Firstly, those samples are
labeled as two categories, positive and negative. ,en, opcode
extraction is performed for each apk. After apk decompression,
the core classes.dex file of the appwill be obtained.,e classes.dex
file is the executable file of theAndroid system, which contains all
operation instructions and data required by the runtime.,e dex
file can be parsed by 010Editor, and its structure is shown in
Figure 8. ,e Methods structure contains all the methods of the
app, represented by the DexMethod structure.

struct DexMethod{

/∗ Index pointing to the list of DexMethodId∗/
u4 methodIdx;
u4 accessFlags;
/∗ offset to the DexCode structure ∗ /}

H2

H1

H

Label 1
Label 2

Figure 1: ,e hyperplane of SVM.

C1

C2 C3

C5d1

d7

d5 d6

d8

d2′ d3′

SVM1
SVM2

Figure 2: Decision tree with SVM nodes.
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C1

C2 C3

C5

d2 d3 d4 d5

C4d1 d4

(C1, C2, d1) (C1, C3, d4)

(C1, C2, C4, d2) (C1, C2, C4, d3) (C1, C3, C5, d5) (C1, C3, C5, d6)

Figure 3: Traditional decision tree labeled with decision path.

Step 1. According to the training set TrainSet, the Gini index is used for feature selection and prepruning, and the decision tree T is
constructed.

Step 2. Use the test set TestSet to evaluate the decision tree and calculate the Precision of each decision path pi, then constitute the
decision object do � (dpi, pi, hi), and set the decision path accuracy threshold Th.

Step 3. Initialize the queue Q � { }, sort the decision objects generated in step 2 in descending order according to the path depth h of the
decision path dp, and sequentially add them to the queue Q.

Step 4. Determine if the queue is empty. If it is, the algorithm ends. Otherwise, go to step 5.
Step 5. Fetch the element q � (dp, p, h) from the queue, and compare the decision path Precision rate p with the preset threshold Th. If

it is less than the threshold, go to step 6; otherwise, retain the decision path and go to step 4.
Step 6. Determine whether the sibling node of q is a leaf node. If it is, go to step 7; otherwise, go to step 8.
Step 7. Determine whether the Precision of the path of q’s sibling nodes is lower than the threshold Th. If it is, all the samples passing

through the two decision paths (both path of q and q’s siblings) are taken as a training set, which is trained with the SVMmodel and
then merged and updated as SVM nodes; thereafter, the process proceeds to step 4.

Step 8. Take out all the training sets of the path of p, train them with the SVMmodel, and update them to SVM nodes.,en, go to step
4 and continue to traverse so as to update nodes.

ALGORITHM 1: ,e detailed procedure of DT-SVM.

C1

C2

C4

C3

C5
d4d1

d2 d3 d5 d6

(C1, C2, d1), 0.86 (C1, C3, d4), 0.75

(C1, C2, C4, d2), 0.70 (C1, C2, C4, d3), 0.65 (C1, C3, C5, d5), 0.9 (C1, C3, C5, d6), 0.89

Figure 4: An instance with traditional decision tree.
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u4 codeOff;
}

struct DexCode{

/∗ the number of used registers ∗/
u2 registersSize;
/∗ the number of parameters ∗/
u2 insSize;
/∗ the number of used registers when calling other
methods ∗/
u2 outSize;
/∗ the number of try and catch ∗/
u2 triesSize;
/∗ offset to debug information ∗/
u4 debugInfoOff;
/∗ the number of Instruction Set ∗/

u4 insnsSize;
/∗ Instruction Set ∗/
u2 insns [1];

}

In this structure, the last field insns[1] contains all the
instruction sets of the method, namely, the corresponding
Dalvik opcode. By going through all the methods, all opcode
instructions can be fetched according to the Dalvik opcode
instruction list in Table 1.

5.3. Feature Engineering. Since there are more than 200
Dalvik instructions, if all of them are directly input into the
n-grammodel, the feature dimension will be too high. In this
paper, first of all, the Dalvik instruction sets are simply

DT

SVM

Label 1

Label 2

Y

X

Figure 6: Classification of samples with DT-SVM algorithm.

C2

C1

d1

d7 d8

d5d3′d2′ d6

C3

C5SVM1
SVM2

(C1, C2, d1), 0.86

(C1, C3, C5, d5), 0.9 (C1, C3, C5, d6), 0.89

Node
update

Figure 5: Updating decision tree with SVM nodes from the bottom up.
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classified; then, irrelevant instructions are removed; and,
finally, only eight types are left. ,e opcode and its corre-
sponding identifier are shown in Table 2.

After simplifying the Dalvik instruction sets, all of them
can be input to the n-gram model to generate sample
eigenspace. ,e extracted opcode for each sample in
Section 5.2 is mapped to the identifier, and the n-gram
vector is constructed. Assuming that the Dalvik instruction
is G, P, V, I, J, R, M, C{ }, when N � 3, the 3-gram vector is
[ GPV{ }, PVI{ }, VIJ{ }, JRM{ }, RMC{ }].

After the n-gram model of samples is obtained, the
n-gram types are counted. If a feature appears in the sample,

Samples set

Benign
Unzip apk Get opcodeDex module parse

Extract opcode 

Simplified feature 

Feature engineering 

Feature vector Normal DT

DT– SVM train

DT-SVM

Test

Test set verification

Benign

Optimization
decision 

node
N-gram

Classification
result

Result
evaluation Malware

Malware

Reverse

Figure 7: Android malware detection model based on DT-SVM algorithm.

Table 1: Dalvik opcode.

Opcode (hex) Opcode name Length
00 nop 2
01 move vx, vy 2
02 move/from16 vx, vy 4
03 move/16 6
04 move-wide 2
05 move-wide/from16 vx, vy 4
06 move-wide/16 6
07 move-object vx, vy 2
08 move-object/from16 vx, vy 4
09 move-object/16 6
0A move-result vx 2
0B move-result-wide vx 2
0C move-result-object vx 2
0E return-void 2
0F return vx 2
10 return-wide vx 2
. . . . . . . . .

Header

String_ids

Type_ids

Proto_ids

Fields

Methods

Classes

Data

Dex structure

Figure 8: Android dex file structure.
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the value of the feature is set to 1; otherwise, it is set to 0; the
feature vector of the sample is finally obtained.

5.4. EvaluationMetrics. Four metrics are employed to verify
the performance of our proposed algorithm, namely, Pre-
cision, Recall, classification accuracy ACC, and F1 value,
which are broadly used in machine learning. ,e Precision
can be denoted as

Precision �
TP

TP + FP
, (4)

where TP (true positive) indicates the number of Android
malware samples which are correctly detected and FP (false
positive) indicates the number of benign applications that
are wrongly detected as Android malware [29]. In this study,
the Precision refers to the ratio of the identified malicious
samples to the real malicious samples. ,e Recall can be
formulated as

Recall �
TP

TP + FN
, (5)

where FN (false negative) indicates the number of Android
malware samples that are not detected (predicted as benign
applications) [29]. In this study, Recall reflects the pro-
portion of malicious samples identified in the real malicious
sample. ,e ACC can be formulated as

ACC �
TP + TN

TP + TN + FP + FN
, (6)

where TN (true negative) represents the number of benign
applications that are correctly classified and ACC is an
overall evaluation of the classifier, representing the pro-
portion of the total number of the applications that are
correctly classified whether as benign or malicious. ,e
higher the ACC is, the better the performance will be. F1 is
the harmonic mean between the Precision and Recall; it can
be denoted as

F1 �
2∗ precision∗ recall
precision + recall

. (7)

6. Experimental Simulation

6.1. Datasets. In the experimental simulation environment,
the malicious sample set was obtained from the malicious

sample database in the Drebin project of the University of
Gottingen, Germany [30], in which the malware samples are
5560 in total, and the time range was from August 2010 to
October 2012. An overview of the top 20 malware families in
the dataset is provided in Table 3, including several families
that are currently actively distributed in application markets.
,ere are 4414 benign samples, and the benign samples were
randomly selected from the applications, which were
downloaded from the Google Play app store in order of
ranking through the crawler module. ,e tools used in the
experiment include unzip, dexParser, scikit-learn, etc. Scikit-
learn is an excellent Python programming machine learning
library, which has a variety of classification, regression, and
clustering algorithms, including support vector machine,
random forest, and gradient enhancement.

6.2. Experimental Procedure. ,e sample set was divided
into a training set, a pseudo test set, and a test set in the
ratio of 6 : 2:2. ,e training set feature vector was input
into the DT-SVM model for training. ,e pseudo test set
was used to update the decision node and obtain the DT-

Table 2: Feature simplification mapping.

Identifier Description Opcode
G Fetching data aget—iget—sget—aget-wide—aget-object—aget-boolean—aget-byte—aget-char
P Storing data aput—iput—sput—aput-wide—aput-object—aput-boolean—aput-byte—aput-char
V Method call invoke-virtual—invoke-super—invoke-direct—invoke-static
I Judgement if-eq—if-ne—if-lt—if-ge—if-gt—if-le—if-eqz—if-nez—if-ltz—if-ltz—if-gez—if-gtz—if-lez
J Goto goto—goto/16—goto/32
R Return return—return-void—return-wide—return-object
M Move move—move-wide—move-object—move-result—move-exception
C Compare cmpl-float— cmpg-float— cmpl-double— cmpg-double—cmp-long

Table 3: Top malware families in our dataset.

ID Family Number
A FakeInstaller 925
B DroidKungFu 667
C Plankton 625
D OpFake 613
E GingerMaster 339
F BaseBridge 330
G Iconosys 152
H Kmin 147
I FakeDoc 132
J Geinimi 92
K Adrd 91
L DroidDream 81
M Linux/Lotoor 70
N GoldDream 69
O MobileTx 69
P FakeRun 61
Q SendPay 59
R Gappusin 58
S Imlog 43
T SMSreg 41
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SVM tree. Finally, the test set was employed to evaluate
the performance of the classifier.

,e experiment used 1638 malicious samples and 1324
normal samples. 60% of the training sets and 20% of the
pseudo test sets were used to generate the DT-SVM model,
and then the remaining 20% were used to evaluate the
classifier performance. 3-gram was used for feature selec-
tion. Since different sampling will affect the classification
results, the experiment will perform 10-fold cross-
validation.

In order to ensure that the decision leaf node has suf-
ficient sample capacity for SVM training, the decision tree
needs to be prepruned. In the experiment, the minimum
sample number of the leaf node min_samples_leaf is 40, the
maximum depth of the decision tree max_depth is 5, and the
Precision threshold is set to 0.9.,e decision tree path below
the threshold is shown in Table 4, where the field of ‘Path
matrix’ is the binary representation of decision path. ,e
encoding process is to sort all nodes of a decision tree from
left to right and from top to bottom, and then map them to a
multidimensional vector. ,e position of this multidimen-
sional vector represents the sort of decision tree node, and
the value represents whether the decision path contains this
node. If it is 1, the node is included; otherwise, it is not
included.

For these decision paths with higher error, the samples
under each path are taken out for SVM training to generate
SVM nodes. ,e Gaussian kernel function is used to process
the feature space during training. At this time, there are two
essential parameters that need to be adjusted, namely, the C
(Penalty factor) and gamma (RBF kernel width). In general,
a larger C leads to higher tolerance, but fewer errors, so as to
eliminate overfitting. Otherwise, it is easy to result in
underfitting. Gamma is a parameter of the Gaussian kernel
function.,e larger the gamma is, the less the support vector
is, and the simpler the model is.

After training, the parameters of each SVM node are
shown in Table 5.

6.3. Experimental Results

6.3.1. Scenario I: =e Impact of Different N-Gram Types on
the Classifier. DT and SVM classifiers were trained sepa-
rately applying different n-gram models, and the predictive
Precision results are shown in Table 6.

,e results show that DT and SVM can get good eval-
uation results on the basis of 3-gram and 4-gram, demon-
strating the feasibility of the modeling method. When n> 3,
the Precision of DT only increases by 0.7%; SVM increases
by 2%, but it consumes a lot of time. SVM takes 1002.23
seconds under 4-gram and 113.65 seconds under 3-gram, so
n � 3 gives the best performance for sample vectorization.

6.3.2. Scenario II: Results Comparison with Shallow Learning
Algorithm. ,e sample was vectorized based on 3-gram, and
Table 7 demonstrates a comparison of the proposed algo-
rithm with SVM and DT for Android malware detection.

,e results show that the Precision, ACC, Recall, andF1 of
the DT-SVM algorithm are apparently higher than traditional
DTand slightly higher than SVM. In terms of efficiency, SVM
takes the longest time, while DT-SVM is trained by DT first,
and then the small sample is trained by the SVM node. Hence,
the time dramatically reduces compared with SVM, albeit a
little longer than DT.

6.3.3. Scenario III: Results Comparison with Deep Learning
Algorithm. We also compared the CNN [31] and LSTM [32]
using the same sample set for training. ,e results show that
ACC and F1 of CNN are relatively high, but other metrics
are lower than our proposed model, which means that there
would be a lot of false positives of CNN. In addition, CNN is
time consuming and requires high machine configuration.
,e performance of the LSTMmodel for malicious detection
of Android is not so good as that of DT-SVM algorithm, and
the time consumption is 117s higher than that of our al-
gorithm. ,e results are detailed in Table 8.

6.3.4. Scenario IV: Comparison of DT-SVM Results with
Different Sample Sizes. We randomly select 507 samples
from the 2962-sample set for experiment. ,e effects of
different sample sizes on DT-SVM classifier are shown in
Table 9 .

,e experimental results show that the sample size has a
certain influence on the detection effect. ,e number of
samples increases, and Precison, ACC, Recall, and F1 in-
crease by 0.03. Hence, we can conclude that the larger the
sample size is, the better the overall performance will be.

6.4. Analysis. Decision tree is a prediction model, which
represents a mapping relationship between object attributes
and object values. Its branches classify objects of this type
based on attributes. It is a decision tool using a decision
model, which can help determine a strategy most likely to
achieve the goal. DT is easy to understand and implement,
the advantage of which lies in its ability to make accurate and
feasible predictions for large data sources in a short time.,e
basic principle of DT-SVM is to first extract some high-
accuracy decisions through DT model and quickly find the
strong correlation between the results and the attributes, and
then the kernel technique of SVM is used to solve nonlinear
prediction for some weakly correlated samples and at the
same time give full play to the advantages of SVM in small
sample prediction. Hence, the prediction accuracy of the
samples is largely improved through the combination of DT
and SVM.

,e time complexity of DT is O(n log n), and SVM is
O(n3). However, DT-SVM first generates a decision tree,
selects the optimal path, and then uses SVM for training for
the remaining samples, so the time complexity is O(n log n)

+ O(m3), where n is the total number of samples and m is the
number of samples that cannot be distinguished with high
accuracy after training the sample using the decision tree;
m≪ n; thus, the value falls in the interval
(O(n log n), O(n3)). In this experiment, decision tree was
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first used to train samples, and it can be found from Table 4
that the Precision of paths 1, 2, 3, 4, 5 is low, indicating that
DTcannot accurately separate positive and negative samples.
Taking path 2 (C296, C9, C120, d1) as an example, by mapping
and restoring, the opcode sequence corresponding to path 2
is JRG,GPP,PCG, where it is observed that JRG is a jump
return to obtain data sequence, GPP is a data acquisition and
storage sequence, and PCG is a data dump sequence. ,ese
sequences are often used for both positive and negative
samples; therefore, merely using DTcannot distinguish them
effectively (the accuracy is only 57.1%). Based on this, this
paper trains these undifferentiated samples using SVM, and

the Precision reaches as high as 96%. In summary, the
proposed algorithm improves detection accuracy, while the
time consumption is relatively low.

7. Conclusion and Future Work

Taking the sample Dalvik opcode as the research object, the
n-gram model is utilized to generate the sample eigenvector,
and DT-SVM is proposed. Based on the original DT, the
proposed algorithm uses SVM to update the decision nodes
from the bottom up. ,e advantages of DTand SVM can be
combined through DT-SVM, and the disadvantages of
overfitting of DTand low accuracy of SVM for large samples
are overcome. Finally, the superiority of the algorithm is
demonstrated by simulation experiments, and good results
are obtained in Android malicious apps detection.

However, in addition to the above advantages, there are
some limitations to our study. ,is paper only performs
static analysis on the sample; if the sample is hardened or
confused, the unzip file will no longer be the sample’s
classes.dex, but the hardened executable file. ,e Dalvik
opcode will be virtualized, and all instructions will be ex-
ecuted by a hardened virtual machine. At this time, opcode
will no longer correspond to the Dalvik instruction list, and
only the dynamic behavior analysis method can be used for
malicious code detection. In addition, the proposed DT-
SVM algorithm can still be improved by, for example, using
the random forest to further improve the classification
ability of DT-SVM and extending DT-SVM algorithm to the
multiclassification decision model.

Data Availability

,e data in this paper are divided into benign samples and
malicious samples. ,e malicious sample data that support
the findings of this study are available but restrictions apply
to the availability of these data, which were used under
license for the current study, and so they are not publicly
available. ,ese data are however available from the cor-
responding author upon reasonable request and with per-
mission of the Drebin project of the University of Gottingen,
Germany. ,e benign sample data generated and/or ana-
lyzed during the current study are available from the cor-
responding author upon reasonable request.
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Table 4: Decision tree path with Precision.

Path ID Decision path Path matrix Precision
1 (C296, C9, C313, C304, C308, d7) 1100000110001010000000000 0.737
2 (C296, C9, C120, d1) 1111000000000000000000000 0.571
3 (C296, C9, C313, d8) 1100000100000001000000000 0.590
4 (C296, C307, C223, d10) 1000000000000000101100000 0.685
5 (C296, C307, d9) 1000000000000000110000000 0.850

Table 5: SVM node parameters.

SVM node ID C gamma
1 7 0.03
2 7 0.003
3 1 0.04
4 5 0.04
5 5 0.04

Table 6: ,e results of scenario I.

N-gram DT SVM
2-gram 0.79 0.76
3-gram 0.92 0.95
4-gram 0.94 0.97

Table 7: ,e results of scenarios II.

Classifier Precision ACC Recall F1 Time consumption
DT 0.92 0.93 0.93 0.93 8.01s
SVM 0.96 0.96 0.94 0.95 105.79s
DT-SVM 0.96 0.96 0.96 0.96 18.9s

Table 8: ,e results of scenario III.

Classifier Precision ACC Recall F1 Time consumption
LSTM 0.893 0.938 0.556 - 117.8s
CNN 0.944 1 0.944 0.971 357.24s
DT-SVM 0.96 0.96 0.96 0.96 18.9s

Table 9: ,e results of scenario IV.

Samples size Precision ACC Recall F1
507 0.93 0.93 0.94 0.93
2962 0.96 0.96 0.96 0.96
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