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Despite the efforts of information security experts, cybercrimes are still emerging at an alarming rate. Among the tools used by
cybercriminals, malicious domains are indispensable and harm from the Internet has become a global problem. Malicious
domains play an important role from SPAM and Cross-Site Scripting (XSS) threats to Botnet and Advanced Persistent *reat
(APT) attacks at large scales. To ensure there is not a single point of failure or to prevent their detection and blocking, malware
authors have employed domain generation algorithms (DGAs) and domain-flux techniques to generate a large number of domain
names for malicious servers. As a result, malicious servers are difficult to detect and remove. Furthermore, the clues of cybercrime
are stored in network traffic logs, but analyzing long-term big network traffic data is a challenge. To adapt the technology of
cybercrimes and automatically detect unknownmalicious threats, we previously proposed a system calledMD-Miner. To improve
its efficiency and accuracy, we propose theMD-MinerP here, which generates more features with identification capabilities in the
feature extraction stage. Moreover,MD-MinerP adapts interaction profiling bipartite graphs instead of annotated bipartite graphs.
*e experimental results show thatMD-MinerP has better area under curve (AUC) results and found new malicious domains that
could not be recognized by other threat intelligence systems.*eMD-MinerP exhibits both scalability and applicability, which has
been experimentally validated on actual enterprise network traffic.

1. Introduction

Cybercrimes are becoming increasingly serious with the
proliferation of Internet devices and applications. One of the
most frequently used tools for cybercrimes is malicious
domains to perform phishing, XSS, and other attacks. In-
ternet attack organizations generally use code obfuscation
techniques to generate a large number of polymorphic
variants with the same malware [1] before establishing more
than one command and control (C&C) server. Cybercri-
minals and malware authors leverage not only hidden and
slow APTattacks but also various techniques, such as DGAs
and domain-flux, to make them successful. By adopting
technologies such as DGAs, these servers change their do-
main names and corresponding IP addresses over time to
prevent being blocked by antivirus software or intrusion
prevention systems [2]. *e detection of malicious domains

is difficult because of the defense dilemma caused by the
long-term attack and the volatility of their domain names.
However, malware generally exhibit footprints that show
where they have been. *e clue to tracking cybercrimes is in
the network traffic; the challenge is how to analyze the huge
amount of network traffic. Of the applications in malicious
domains, botnets are considered the most damaging by
enterprises.

A set of infected and controlled entities can be viewed as
a botnet [3]. *e botnet structure is composed of three main
components: (1) the bots, (2) the command and control
servers (C&C), and (3) the threat actor, or bot herder itself;
bot, which refers to a remote victim computer, usually
without the victim’s knowledge; and C&C server, respon-
sible for managing the trunk host that controls the entire
botnet and passes along the bot herder’s instructions. Once
the botnet deployment is complete and launches a cyber-
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attack, the distributed denial-of-service (DDoS) shuts down
the victim organization’s Internet service, and the APT leads
to additional damage. Compromised hosts need the Internet
as a communication bridge to perform cybercrimes, such as
receiving instructions or stealing sensitive data and
returning it to the C&C servers [4, 5]. *e impact of botnets
is great enough that several studies have focused their at-
tention on the discovery of botnets, which has continued to
be a hot topic [6–10].

To defend against cyber-attacks, many organizations
have established systems such as intrusion detection systems
(IDS) to detect and log suspicious traffic, but these produce
many false alarms that dull their vigilance [11]. Unlike
advanced traffic analysis techniques that require large
amounts of computational resources and time, the domain
blacklist matching method can instantly detect malicious
domains and further disrupt their communications. How-
ever, the methods to perform string changes to domain
names are simple, cheap, and fast, indicating that using
domain blacklists to prevent attacks is effective but difficult
to update in real time. *erefore, automating the mainte-
nance of the domain blacklist is indispensable to improve the
information security of organizations.

As described in our previous research [12], discovering
botnets is important, and detecting C&C servers is vital to
analyze APT events. Malicious domain names commonly
require an Internet connection to communicate with
compromised hosts, but tracking or mining them from the
global public Internet has been a difficult problem. Fortu-
nately, such processes leave footprints, and most enterprises
leverage proxy servers as intermediate HTTP communica-
tions between internal computers and the Internet that result
in logging footprints. *us, systems can take advantage of
packet capturing systems to obtain the HTTP communi-
cation records. However, one of the bottlenecks in analyzing
network traffic is a single workstation can easily have mil-
lions of packets each day, which inhibits manually analyzing
such traffic without automated intelligence systems.
*erefore, we proposed the MD-Miner (MD stands for
malicious domain) that adapts big data analysis with a
scalability framework. *e process utilizes network traffic to
build a Process-domain annotated graph that discovers who
is connecting with what.*eMD-Miner uses user-agent plus
client-IP as a feature to distinguish the distinct processes and
incorporates this into the annotated bipartite graph to be-
come the Process-domain annotated graph. *e evaluation
in [12] shows that the MD-Miner can determine a part of
unknown domains that has a high probability of being
malicious and demonstrates great identifiability, but there is
still room for further improvement.

Inheriting from our previous research [12], we built a
new scalable network-level behavior system called MD-
MinerP (P represents Plus) that is based on the Hadoop and
Spark cluster architecture. *e design effectively uses an
incremental clustering algorithm to handle large amounts
of data. *e MD-MinerP has evolved unique analytic ca-
pabilities that constantly examine the subtle clues left in
proxy or network traffic logs to discriminate malicious
domains.

*is article demonstrates the steps to convert the MD-
Miner to the MD-MinerP through two key points. First, the
MD-MinerP replaces the annotated bipartite graph with an
interaction profiling bipartite graph that better represents
the association of Internet interactions. Second, the MD-
MinerP exploits more connection factors to construct fea-
tures with classification capabilities. In addition to the user-
agent plus client-IP (Process), the MD-MinerP uses HTTP
requests, domain IP addresses, and domain name lexical
characteristics. *e MD-MinerP leverages the user-agent
plus client-IP building Process-domain interaction profiling
graph to acquaint process queries that leverage HTTP re-
quests to build the Trace-domain interaction profiling graph
and determine the interactions between the client-server.
*e system also leverages the IP address of the destination
domain to build the IP-domain interaction profiling graph
to identify corresponding relations of the IP used by the
domain name. *e lexical algorithm is also used to extract
variations in the domain string. Finally, these features are
aggregated to frame the malicious domain detector. Related
works and observations related to improvements of theMD-
MinerP are detailed in Section 2.

*e evaluation stage in Section 4 uses the CyberGraph
[13] to verify new malicious domains found by the MD-
MinerP in addition to the previously used K-fold cross-
validation. *e CyberGraph is a novel potential malicious
domain verification analysis platform that retrieves different
types of observable intelligence from different sources to
produce a series of observations over time. *is allows users
to judge threats on the Internet. *e CyberGraph is com-
mitted to integrating standardized and structured infor-
mation through a vast and complex network intelligence.

*e remainder of this paper is organized as follows.
Section 2 describes the background and the assumptions and
observations of our approach. Section 3 provides imple-
mentation detail ofMD-MinerP and formulates the research
contribution. Moreover, our design goals and core concepts
are introduced and a simple example is used to illustrate the
data flow of the framework. Section 4 shows the results from
our evaluation using ISP-confirmed real-world network
traffic to determine the effectiveness of the proposed system.
Finally, a summary of the contributions and future research
developments are presented in Section 5.

2. Background and Related Work

*e principles of related techniques used by theMD-MinerP
to generate the domain features are described in this section.
*eMD-MinerP has two major evolutions: improvements to
the annotated bipartite graph and additional significant
features. *ere are different annotated bipartite graphs
imported for feature extraction. In [14, 15], two systems
called Segugio and Doctrina are built from different anno-
tated bipartite graphs with the DNS logs. *ese systems
extract DNS answer-based features, time-based features,
domain name-based features, and TTL value-based features
of the DNS traffic to detect malicious domain activities. We
used annotated bipartite graphs to develop a system, called
MD-Miner, that monitors the network traffic to build a
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Process-domain annotated graph, as shown in Figure 1, to
represent who is connecting to what [12].*eMD-Miner has
abundant DNS logs available and is a scalable architecture.
As shown in Figure 1, there are only malicious, benign, and
unknown labels in the annotated bipartite graph, but the
content of the network traffic log is not as simple as the DNS
log. *erefore, the MD-MinerP replaces the annotated bi-
partite graph with an interaction profiling bipartite graph,
which is detailed in Section 3 and has experimental results
that show promise for its application.

2.1. User-Agent. *e first factor in the network traffic log is
the user-agent in the HTTP header sent along with a request
for an Internet server, which is often but not always sent
from a web browser. *e intent is to inform the server of the
capabilities of the software used by the client. *e imple-
mentation of a classifier for user-agent strings with support
vector machines is described in [16]. On the other hand, as
mentioned in [12], the text area of a binary-analyzed result
for malware suggests that when the user-agent string is hard-
coded in the malware’s text area, the user-agent and mali-
cious activities have a considerable degree of correlation.
Anomalous user-agent strings were considered in [17] to
determine the association with malware activities. However,
dedicated user-agent strings that define attackers can easily
evade detection by changing their form. *erefore, the MD-
Miner [12] proposed a Process-domain annotated graph that
uses user-agent strings and the client-IP in the network
traffic as a feature to differentiate the network activity that
was emitted from the same process and stores the infor-
mation about who is connecting to what. In this annotated
bipartite graph, the nodes represent either the Process nodes
(p1∼p4) or domain nodes (d1∼d5), and an edge connects a
Process to a domain if the connection occurred during the
considered traffic observation time window. *e classifica-
tion results are used here to construct more effective bi-
partite graphs based on its composition using the factors
described below.

2.2. HTTP Request. *e HTTP network traffic contains
significant important information to detect malicious in-
teractions between malware-controlled domains and mal-
ware-compromised machines. HTTP is an application layer
protocol that uses headers to transfer metadata over a client-
server model where the client sends a request to a server,
which responds with the available appropriate resource. *e
HTTP requests are important in Internet interactions,
making this the second factor used to extract domain fea-
tures. Many works have confirmed that the vast majority of
malware leverages HTTP as a communication bridge with a
cybercriminal’s C&C server to perpetrate malicious activities
[18, 19]. Such tricks are not only used in the majority of
SPAM botnets but also operated on the APT [20–25]. In
addition, the malware sample network activity experiments
in [26] indicate that approximately 75% of malware samples
trigger network activities and generate HTTP traffic. A
malware clustering system was introduced in [26] to analyze
the structural similarities between malicious HTTP requests

in network traffic and used the application path and query
string to calculate the distance between malware to clus-
teringmalware to obtain its signature. In addition, the HTTP
request contained in the headers includes the path (e.g.,
/path/data) and query (e.g., ?key� value&key2� value2) as
ensconced interactive information between the client and
server. References [27, 28] tried to detect malicious phishing
web sites using path and query keywords by comparing the
relevancy of terms within their URLs. One risk level is the
similarity between the path and query terms based on
Google Trend and Yahoo Clue. In studies that use HTTP
protocols to detect suspicious packets [29, 30], the similarity
from the URL path, parameter, and value could identify the
packet as malicious or benign.

*e MD-MinerP refers to the Trace-Channel interaction
profiling graph proposed by our previous research on the
CC-Tracker [19], which extends similar observations to [26].
*e observation is that different malware samples that rely
on the same web server application have similarly structured
queries and related URL sequences. To reduce the com-
plexity of the computing similarity between HTTP requests,
we simplified the HTTP request as Trace, as shown in
Figure 2. *e upper part of Figure 2 shows that the Trace
takes a raw HTTP request of “GET /web page.php?
key1� value1&key2� value2&k3� v3” as an example, where
m indicates the method to query the URL and p denotes the
queried page. *e remaining terms used to query the URL
are n and v, which are after the question mark and are in the
form of a key� value pair, where n indicates the parameter
name of the queried URL and v denotes the parameter. As
the parameter values are relatively easy to change, all pa-
rameter values are replaced with the same symbol, which
ignores the parameter values [19]. *erefore, the original
HTTP request can be simplified to “GET_/web page.php?|
key1|key2|k3|,” as shown in the lower part of Figure 2.

2.3. IP Address. *e Internet protocol (IP) address is a
unique logical digital address assigned to each hardware-
equipped network and is recognized by the other devices
through the IP address. Benign and malicious domains also
have their own IP address and the correspondences are
recorded in the network traffic files. *e IP addresses are
more stable than other metrics, such as the URL and DNS.
*at is, the domain string can easily change while the IP
address is generally fixed. Cybercrimes create a specific
technique called obfuscation to change the domain name
string, which has been identified and summarized as having
four basic types [31]. In contrast, the IP address holds two
inborn traits that make it more difficult to change: stability
with time and address space skewness [32–34]. If it can be
proven that the IP address used by a domain name d is
positively related to a known malicious activity, then the
domain name may be considered as malicious. Considering
these two characteristics, the Segugio [14] and Doctrina [15]
approaches successfully transformed the correspondence
between the IP and domain names into features to mine for
malicious domain names from the DNS logs. Moreover,
some research used domain IP mapping as a trait to find
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network threats [35, 36]. While these detection methods can
still be improved, they prove that IP addresses could be an
effective identification factor. *e MD-MinerP takes ad-
vantage of the mapping between the domain and IP address
to become the third factor. *is approach employs the in-
teraction profiling bipartite graph concept to construct the
IP-domain interaction profiling graph from network traffic
logs to produce effective detection features.

2.4. Lexical Analysis. Manipulating the domain name is
another common practice for cybercrimes. Previous re-
search [37] has shown that nearly one-third of all websites in
the world are potentially malicious. Many malicious URLs
follow obfuscation methods that make the URL strings
similar to benign URLs to avoid detection. However,
studying various detection methods by analyzing the di-
versity of domain strings allows designing effective mali-
cious URL detection solutions [38]. *ese develop lexical
features that excavate the divergence of URLs by analyzing
the statistical properties of URL strings. *e adjective lexical
describes the relation to a vocabulary of words and the
associated lexical analysis is based on the characteristics of
the URL string to determine the lexical features that rep-
resent the features of a URL name. Lexical features refer to
the actual text without other external information of the
URL string. *e intention is to make malicious URLs “look”
different to experts when compared with benign ones [27].

Most lexical features commonly used for such classifi-
cations include the statistical properties of the URL string,
like the numerical information regarding the feature lengths
(URL length, top-level domain length, primary domain
length, etc.) and the number of special characters [39]. *e
extracted information is obfuscation-resistant and useful.
One lexical analysis approach is called the bag-of-words
(BoW), which builds a dictionary as a feature set by referring
to all the different types of words in all URLs. When a URL
includes a word in the dictionary, the value of the feature is 1;
otherwise, it is 0. *e MD-MinerP developed a kind of BoW
approach to adapt to big data and accelerate the computing,
which is described in detail in Section 3.

Due to the lack of scalability of previous research
[26–30], this was restricted to a small amount of material.
*erefore, this paper proposes aMD-MinerP system which is
mainly used to extract hidden malicious threats from long
period and large amount of network traffic logs. Our ap-
proach takes full advantage of the concept that Internet

communications for a specific purpose will invoke similar
interactions. *e MD-MinerP uses attributes in the network
traffic log to create representative characteristics for each
domain, which answers four important questions. (1)Who is
connecting what (Process-domain interaction profiling
graph)? (2) How to interact with what (Trace-domain in-
teraction profiling graph)? (3) What domain name used
what IP (IP-domain interaction profiling graph)? (4) What
does it “look” like (lexical analysis)? An exhaustive de-
scription of how to use the unique methodologies proposed
in this paper to establish effective classification features for
each domain is given in the following section.

3.MD-MinerP Implementation

*e concept of the MD-MinerP is to track known and
discover unknown malicious network domains, which are
designated as a channel for attackers to perform malicious
acts. Looking at network communications from this per-
spective allows finding similar traces of connections, and the
victim machine generally attempts to connect to malicious
or newly created domains. *erefore, the MD-MinerP is
based on the following main intuitions:

(1) Victim clients tend to connect malicious domain
families.

(2) Malware belonging to the same family tend to
connect to partially overlapping malware-controlled
domains.

(3) Benign applications rarely connect to domains that
exist only to provide malicious functionality.

(4) Cybercriminals prepare multiple malicious domains
to prevent single-point failure.

(5) Malicious domains reuse the same IP addresses.
(6) Domain names with the same purpose often “look

the same.”

To take advantage of these points, we proposed a new
malicious domain detection system called MD-MinerP. *e
first part of this section gives a detailed explanation for the
capture of network domain features. *e second part
elaborates on the implementation details of the MD-MinerP
based on the MapReduce framework.

3.1. Domain Features. For each domain in the network
traffic, the MD-MinerP creates four feature vectors. *ree

d1 d2 d3 d4 d5

p1 p2 p3 p4

Figure 1: Process-domain annotated graph.

GET/webpage.php?key1=value1&key2=value2&k3=v3

GET_/webpage.php?key1|key2|k3|

Replace parameter values
by same symbol “|” 
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n

pm n

v

v

Figure 2: Common indication to simplify the HTTP request to
Trace.
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feature vectors are generated based on the interaction pro-
filing bipartite graph, and the other feature vector is generated
based on the lexical analysis. *e intuitions described in
Section 2 are used to generate relevant features through the
interaction profiling bipartite graph, as shown in Figure 3.

In the interaction profiling bipartite graph, the domain
represents the node on one side of the binary graph, and the
CF stands for “connection factor,” which is the node on the
other side. *e connection factors include the Process, Trace,
and Address used by the domain. *e Process indicates the
user-agent plus client-IP, Trace indicates the simplified
HTTP request, and Address indicates the domain IP address.
*e MD-MinerP defines three interaction profiling bipartite
graphs using these connection factors, where GP � (P, D,
EPD) represents the interaction profiling bipartite graph for
Process,GT � (T,D, ETD) is for Trace, andGA � (A,D, EAD) is
for Address. Node set D represents the domain nodes with
di ∈D, node set P represents the Process nodes with pi ∈P,
node set T represents the Trace nodes with ti ∈T, and node
set A represents the Address nodes with ai ∈A. *e edge sets
are called EPD inGP, ETD inGT, and EAD inGA. *e Process pi
connects a domain dj with an edge eij ∈EPD, the Trace ti
connects a domain dj with an edge eij ∈ETD, and the Address
ai connects a domain djwith an edge eij ∈EAD.*e features of
different aspects of the network domain can be described
from the interaction profiling bipartite graphs for different
CFs. Communications with the same purposes interact
through similar CFs. For example, the d1 and d2 conduct
similar communications as shown in Figure 3. Once the
interaction profiling bipartite graph is constructed, the next
step is to extract the domain feature vectors from each graph,
as detailed below.

Each domain name needs to go through three phases to
extract the feature vector by analyzing the interaction
profiling bipartite graph. *e first phase is to mark the
domain node, which obtains benign and malicious domain
intelligence (whitelist/blacklist) from a public or private
reputation database. If the domain exists in the whitelist, it is
marked as DomainWhite; if it exists in the blacklist, it is a
known malicious domain and marked as DomainBlack. All
remaining domains are marked as DomainUnknown, which
are the primary targets for further classification to mine
malicious domains that are not recorded in the threat in-
telligence but are actually hidden.

*e second phase is to label each CF node as White,
Black,Mix, Unknown, or Leaf. *e labeling method is based
on the labeled domain nodes where each CF node is linked.
*ree numbers are counted for each CF node, namely,
Whitesum, Blacksum, and Unknownsum, *ese are the number
of edges of a CF node connected to different DomainWhite,
the number of edges for different DomainBlack, and the
number of edges for different DomainUnknown. Each CF
node in the interaction profiling bipartite graph is then
labeled with its own Whitesum, Blacksum, and Unknownsum.
*e labeling method is as follows, where the CF nodes in the
lower part of Figure 4 illustrate the labeling method.

(1) White: Whitesum > 0 & Blacksum � 0 (circle)
(2) Black: Blacksum > 0 & Blacksum>Whitesum (cross)

(3) Mix: Blacksum > 0 &Whitesum>Blacksum (circle sign
combined with cross)

(4) Unknown: Blacksum � 0 & Whitesum � 0 (question
mark)

(5) Leaf: Connect to a single domain only (triangle)

*e third phase is to compute the feature values for each
domain node. Figure 4 shows the interaction profiling bi-
partite graph GP, where the Process feature values of the
domain node d3 are calculated using the GP as an example.
Five values are counted from the attributes of the labeled
Process nodes to which d3 is linked: SP, WP, BP, MP, and UP,
where SP is the total number of Process nodes linked to d3;
WP is the number of Process nodes linked to d3 and labeled as
White; BP is the number of Process nodes linked to d3 and
labeled as Black;MP is the number of Process nodes linked to
d3 and labeled asMix; andUP is the number of Process nodes
linked to d3 and labeled as Unknown. *e six following
Process feature values of d3 are calculated using the following
formulas.

(1) Fraction of White Process nodes, wP � |WP|/|SP|
(2) Fraction of Black Process nodes, bP � |BP|/|SP|
(3) Fraction of Mix Process nodes, mP � |MP|/|SP|
(4) Fraction of Unknown Process nodes, uP � |UP|/|SP|
(5) Fraction of Leaf Process nodes, lP � |LP|/|SP|
(6) Fraction of total Process nodes, sP � |SP|

*e feature values for d3 obtained from the above six
formulas are 1⁄6, 2⁄6, 1⁄6, 1⁄6, 1⁄6, and 6. Following the same
pattern applied to the interaction profiling bipartite graph GT
allows using d3 to obtain wT, bT, mT, uT, lT, and sT. Applying
this to the interaction profiling bipartite graphGA allows using
d3 to obtain wA, bA, mA, uA, lA, and sA. All the domain nodes
are assigned their own 18 feature values in the same way.

*e lexical features are those acquired based on the
properties of a domain name or string.*emotivation is that
the domain-based “appearance” should be able to identify
the malicious nature of a domain. *e MD-MinerP directly
uses the BoW model, which loses information on the order
of tokens that belong to the top-level and primary domains.
*is is done by creating a separate dictionary for each
fragment. *e lexical features also include the statistical
properties of the domain, such as the length of its name and
the number of “.” characters.

3.2.MapReduce Algorithm. *eMD-MinerP is based on two
important phases to detect potentially malicious domains, as
shown in Figure 5: domain feature extraction and random
forest classifier. First, theMD-MinerP constructs the domain
node feature vector by taking the network traffic log and
benign\malicious domain intelligence stored in the domain
threat intelligence database as inputs. *e domain feature
extraction phase consists of four parts that extract 22 fea-
tures of each domain node: (1) Process, (2) Trace, (3)Address,
and (4) lexical feature extractions. Second, the MD-MinerP

adopts Spark parallel processing to build a random forest
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(1) Process feature extraction

(2) Trace feature extraction

(3) Address feature extraction
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Random forest
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new malicious
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Figure 5: Flow diagram for the MD-MinerP process.
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Logged

Network traffic logs

Internet

d1 d2 d3 d4 d6d5

CF1 CF2 CF3 CF6 CF7CF5CF4

Figure 3: An illustration of the conversion of network traffic into the interaction profiling bipartite graph.

d1 d2 d3 d4 d5

p1 p2 p3 p4
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p5 p6 p7

Figure 4: Illustration of the process feature vector generated from the interaction profiling bipartite graph.
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classifier based on the decision tree model, which is
employed to detect malicious domains.

Parts (1)–(3) of the domain feature extraction are based on
a similar concept of using the interaction profiling bipartite
graph to obtain adjacent information as features. *e MD-
MinerP designs four MapReduce jobs to realize feature ex-
traction of the interaction profiling bipartite graph: (1) domain
node labeling, (2) CF node labeling, (3) interaction profiling
bipartite graph building, and (4) behavior feature calculating.
Taking part (1) as an example, the following is a detailed
description of the MapReduce jobs for the Process feature
extraction when the Process nodes are used as CF nodes.

*e domain node labeling job first utilizes multiple input
mechanisms of the map phases with the network traffic and
whitelist/blacklist as the input and domain as the key.
Parallel label domain nodes are either DB (DomainBlack),
DW (DomainWhite), or DU (DomainUnknown) in the re-
duce phase based on shuffle and sorting mechanisms. An
example of the data flow for domain node labeling is shown
in Figure 6.

*e next job after labeling the domain nodes is to label
the CF nodes. As described in Section 3.1, the label of a CF
node is determined from the connected domain nodes. *e
five label types are White, Black, Mix, Unknown, and Leaf.
*e input to the CF node labeling job is the output of the
domain node label from the previous step. *erefore, the
MapReduce job at this step takes the CF (e.g., Process) node
as the key and the domain node as the value in the map
phase. In the reduce phase, the number of occurrences for
DB, DW, and DU for each CF node are counted and the
corresponding labels are calculated. *e Process nodes are
taken as the CF nodes as an example, and Figure 7 shows the
data flow of the labeled CF nodes.

*e next job is to build the interaction profiling bipartite
graph to aggregate the labeled domain nodes and labeled CF
nodes into a dataset. In the map phase, the output of the
domain and CF node labeling jobs are taken as the inputs to
use the advantages of multiple input mechanisms with the
identity of the CF (e.g., Process) node as the key.*eCF node
labels are annotated for each record to obtain the interaction
profiling bipartite graph in the reduce phase. Figure 8 shows
an example of the data flow to build an interaction profiling
bipartite graph during this job.

*e interaction profiling bipartite graph constructed in
the above jobs allows calculating the behavior features for
each domain node. In the map phase, the constructed in-
teraction profiling bipartite graph output from the previous
job is taken as the input, where the domain node is the key.
In the reduce phase, each domain node obtains its neighbor’s
information (labels of CF nodes) through the shuffle and
sorting mechanism.*erefore, theMD-MinerP can compute
the behavior features of each domain node in parallel.
Figure 9 shows an example of the parallel computing be-
havior features in the job.

Parts (2) and (3) can be implemented as similar Map-
Reduce jobs for GT and GA. *e only difference is that Part
(1) uses the Process (user-agent + client-IP) and domain
nodes to construct the interaction profiling bipartite graph
GP, Part (2) uses the Trace nodes instead of the Process nodes

to build the interaction profiling bipartite graphGT, and Part
(3) uses theAddress (destination IP address) nodes to replace
the Process nodes and construct the interaction profiling
bipartite graph GA.

*e lexical feature extraction in Part (4) uses distributed
caching mechanisms to store dictionaries for both the
primary and top-level domains and gives each term an index
number. *e distributed caching mechanism allows calcu-
lating the lexical features in a single map phase, including the
length of the domain, the number of “.” characters, and the
index numbers of the top-level and main domains.

Once each domain in the dataset has its own 22 feature
values based on the above steps, the MD-MinerP performs
two steps to employ the random forest classifier based on
Spark, which is a unified analytics engine for large-scale data
processing.*e first step constructs a classifier RFC by taking
all the DB, DW, and their feature values in the dataset as the
training set and inputs them into the random forest algo-
rithm. *e second step is to use the classifier RFC to identify
all unknown domains labeled as DU in the dataset.

4. Evaluation

*e MD-MinerP mines stealthy malicious domains for en-
terprise-scale big network traffic data. *erefore, the MD-
MinerP is deployed for enterprise network environments.
*e deployed network environments are called ENTN1 and
ENTN2, which are both real-world companies based in
Taiwan with thousands of networked clients that install and
run antivirus software. *e ENTN1 is a medium-scale
company and its compliance with security management
rules is relatively relaxed. *e organization’s network traffic
was collected for 8 months (Jan 1, 2018, to Aug 31, 2018).*e
ENTN2 is a large-scale company that follows strict security
and information management regulations with a collected
network traffic period of 2 weeks (Aug 1, 2018, to Aug 15,
2018). Table 1 gives further details for both datasets.

*e experiment presented in this paper is based on the
two large network traffic datasets ENTN1 and ENTN2 and
evaluates the overall performance of the MD-MinerP from
three perspectives. First, k-fold cross-validation was
employed to evaluate the classification capabilities of MD-
MinerP. Second, the actual instances demonstrate the ability
of MD-MinerP to mine hidden malicious domains. Finally,
the ability ofMD-MinerP to handle big data is demonstrated
by adjusting the number of nodes in the parallel computing
cluster and observing its operational performance.

To perform the k-fold cross-validation, we begin by
marking all the known samples in the dataset as n (negative)
or p (positive), where n is interpreted as benign and p is
interpreted as malicious. A prediction result produced from
classifying a sample with the model is divided into four
types. First, true positive (TP) indicates the result of the
classifier to predict the sample is p when it is; second, false
positive (FP) indicates the result of the classifier predicts the
sample is p when it is n; third, true negative (TN) indicates
the result when the classifier predicts the sample is n when it
is; and fourth, false negative (FN) indicates the result when
the classifier predicts the sample is n when it is p.
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*e above description indicates that the first step to
prepare the benchmark is to label the ENTN1 and ENTN2
datasets. Labeling DW required employing commercial and
public intelligence as whitelists, such as Bluecoat, and the
collection of the top 1 million most famous domain names

from alexa.com. Labeling the DB data required checking if
the entire domain name string matches an existing domain
from a commercial domain blacklist. When the tagged
datasets (ENTN1 and ENTN2) are ready, we can generate
evaluation criteria for different feature vectors. To conduct a
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comprehensive evaluation, different metrics are needed:
precision, recall, F-measure, accuracy, and AUC. Further-
more, each metric is calculated through a cross-validation
process.

*e k-fold cross-validation is a resampling procedure
used to evaluate machine learning models for limited data
samples. *e original samples are randomly divided into k
equally sized subsamples, where a single subsample is
retained as the data for the validation model, while the other
k-1 subsamples are used to train the model. *e cross-
validation process is then repeated k times (called folds),
with each k subsample being used only once as the verifi-
cation data.*e results of the k-folds can then be averaged to
produce a single estimate. *e advantage of the k-fold cross-
validation process is that each data sample only needs to be
tested once and used to train k-1 times [40]. *is paper
adopts the 10-fold cross-validation procedure.

4.1. 10-Fold Cross-Validation for MD-MinerP. *e first ex-
periment deployedMD-MinerP to the real-world ENTN1 and
ENTN2 datasets and determined their 10-fold cross-valida-
tion results. *e MD-MinerP constructed three interaction
profiling bipartite graphs (GP, GT, and GA) by applying the
feature extraction method described in Section 3. *e three
feature vectors were then generated using GP, GT, and GA;
each feature vector contained six feature values. Moreover,
we used the proposed lexical analysis method to generate the
fourth feature vector that contains four feature values. In
addition, a feature vector containing 22 feature values was
generated by merging the above four feature vectors. *e
performance of each feature vector was confirmed by ob-
serving the classification results calculated by different
metrics as shown in Table 2. In addition, we used the ROC
curve to show the ability of the classification model to all
classification thresholds as shown in 10 and 11

*e above experimental results show that when theMD-
MinerP was deployed to the ENTN1 dataset, the Address
feature vector performed the best, which the AUC and
F-measure were as high as 0.99. Although the AUC of the
other three feature vectors is greater than 0.8, the recall
metric is low, indicating that these features are only ap-
plicable to partial data. However, combining feature vectors
can improve the overall ability of classification. When MD-
Minerp was deployed in ENTN2 dataset, the characteristic of
combining features resulted in a more significant increase in
overall classification capacity. Since ENTN2 belongs to a
relatively diversified dataset, the recall value of general
feature vectors is low. However, by combining the feature
vectors, the recall can be significantly improved. Further-
more, in both the ENTN1 or ENTN2 datasets, the AUCs of the
feature vectors that combined the other four were above
0.98, which indicates outstanding discrimination.

4.2. Interaction Profiling Bipartite Graph versus Annotated
BipartiteGraph. *e second experiment was to prove that the
interaction profiling bipartite graph leveraged here is better
than the annotated bipartite graph adopted in previous studies
[12, 14, 15], which are compared in Figure 12. *e annotated
bipartite graph only considers the benign and malicious at-
tributes of the connected domain when extracting features, as
described in Section 3.*e interaction profiling bipartite graph
further considers additional aspects, such as outlier domains.
*erefore, for the same CF, the annotated bipartite graph
exports three feature values, while the interaction profiling
bipartite graph brings out six feature values.

*e experiment also utilized the ENTN1 and ENTN2
datasets. *e annotated and interaction profiling bipartite
graphs were formed using the same datasets and the sameCF
(selected from Process, Trace, and Address) to generate three
feature vectors, which were combined into a fourth feature
vector. Comparing the 10-fold cross-validation AUCs of the
four feature vectors generated from the annotated bipartite
graph and interaction profiling bipartite graph shows which
bipartite graph had a better recognition effect. It is noted that
the lexical feature vector is not included in the experiment
because it only compares two bipartite graphs. *e imple-
mentation of the annotated bipartite graph is based on
previous studies [12, 14, 15], and the interaction profiling
bipartite graph is defined in Section 3.

Figures 13–16 are the results of experiments based on the
ENTN1 dataset. Figure 13 shows that, for the Process CF, the
annotated bipartite graph had an AUC of 0.85 and the
interaction profiling bipartite graph had an AUC of 0.85.
Figure 14 shows that, for the Trace CF, the annotated bi-
partite graph had an AUC of 0.74 and the interaction
profiling bipartite graph had an AUC of 0.80. Figure 15
shows that, for theAddress CF, the annotated bipartite graph
had an AUC of 0.62 and the interaction profiling bipartite
graph had an AUC of 1.00. Figure 16 shows the experiment
that combined the feature values generated by the Process,
Trace, and Address CFs gave AUCs for the annotated bi-
partite graph and interaction profiling bipartite graph of 0.94
and 1.00, respectively.

Figures 17–20 are the results of experiments based on
the ENTN2 dataset. Figure 17 shows that, for the Process
CF, the annotated bipartite graph had an AUC of 0.79 and
the interaction profiling bipartite graph had an AUC of
0.97. Figure 18 shows that, for the Trace CF, the annotated
bipartite graph had an AUC of 0.54 and the interaction
profiling bipartite graph had an AUC of 0.75. Figure 19
shows that, for the Address CF, the annotated bipartite graph
had an AUC of 0.68 and the interaction profiling bipartite
graph had an AUC of 0.96. Figure 20 shows the experiment
that combined the feature values generated from the Process,
Trace, and Address CFs. *e annotated and interaction

Table 1: Attributes of the experimental datasets.

Size (GB) No of Client-IPs No of destination domains No of HTTP requests
ENTN1 34.2 2,336 4,912,810 230,350,760
ENTN2 172.7 13,829 11,946,898 442,036,055
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profiling bipartite graphs had AUCs of 0.83 and 0.95, re-
spectively. Table 3 summarizes the AUC value of the feature
vector generated by the annotated bipartite graph and in-
teraction profiling bipartite graph in respect of classification
assessment, which is used to evaluate the ability of
classification.

*e experiments in this section show that the data for the
proposed interaction profiling bipartite graph are superior to
the annotated bipartite graph in either deployed network
environments of ENTN1 or ENTN2.

4.3. Identified Malicious Domain Analysis. *is section
demonstrates the effectiveness of the MD-MinerP at mining
potentially malicious domains. With unknown domains in
the ENTN2 dataset as the objects for detection, Table 4 shows
the top 10 domains with the highest malicious probability as
detected with the MD-MinerP. *ese 10 domains were an-
alyzed using the VirusTotal, and four were identified as
malicious while the remaining six were classified as clean.
Due to the limited space for digital forensics content of the
domain name “folder[.]maroon91[.]com,” this section

Table 2: Cross-validation results of MD-MinerP for different feature vectors of ENTN1 and ENTN2.

Dataset Feature vectors Precision (%) Recall (%) F-measure (%) Accuracy (%) AUC (%)

ENTN1

Process feature 97.42 28.41 43.96 95.42 83.93
Address feature 100.00 99.72 99.86 99.98 99.97
Trace feature 97.35 21.27 34.88 94.98 79.61
Lexical feature 64.57 20.20 30.54 94.23 85.89
Merged feature 100.00 99.85 99.92 99.99 99.97

ENTN2

Process feature 63.19 10.85 17.74 99.82 96.88
Address feature 100.00 48.05 63.60 99.90 95.86
Trace feature 84.44 28.90 42.70 99.86 75.29
Lexical feature 85.83 12.67 21.45 99.83 71.29
Merged feature 94.04 64.38 75.28 99.93 97.34

ENTn1_Interaction_Profiling_Bipartite_Graph-Merged.csv AUC (area = 1.00)
ENTn1_Interaction_Profiling_Bipartite_Graph-Address.csv AUC (area = 1.00)
ENTn1_Interaction_Profiling_Bipartite_Graph-Trace.csv AUC (area = 0.80)
ENTn1_Interaction_Profiling_Bipartite_Graph-Lexical.csv AUC (area = 0.86)
ENTn1_Interaction_Profiling_Bipartite_Graph-Process.csv AUC (area = 0.85)
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Figure 10: Illustration of the ROC curves for the five feature vectors generated from the ENTN1 dataset.

10 Security and Communication Networks



describes the digital forensics as an example. *e evidence to
classify the domain as malicious is collected from external
threat intelligence, including the file communication records
and passive DNS records, and the relationship graph regarding
the domain based on the collected information is created.

*e relationship graph of the domain “folder[.]maroon91
[.]com” is constructed using CyberGraph [13], as shown in
Figure 21. *e figure shows the direct and indirect rela-
tionship between the domain and malicious files, malicious
IP, and malicious domains. *e domain “folder[.]maroon91
[.]com” is not a malicious site in VirusTotal, but the malicious
files are directly connected to the domain.*e domain is then
resolved as “221[.]228[.]214[.]69,” “58[.]215[.]186[.]83,” “118
[.]193[.]145[.]130,” and “118[.]193[.]187[.]35.”*e records of
these IP addresses that communicate with malicious files are
observed from the graph. Moreover, the domains “dsc[.]
maroon91[.]com,” “app[.]maroon91[.]com,” “usjzx[.]ma-
roon91[.]com,” “upgrade[.]maroon91[.]com,” and “folderhw
[.]maroon91[.]com” were discovered to communicate with
the malicious files, which have a domain sibling relationship
with each other. A series of outward relationships helped
identify the domain “folder[.]maroon91[.]com” as malicious.
As a consequence, this section demonstrates that the MD-
MinerP can detect malicious domains that are not recognized
by other reputable intelligence systems.

4.4. Performance Evaluation. From a complexity theory
viewpoint, the MapReduce framework is unique in that it
combines bounds on time, space, and communication. Each
of these bounds would be very weak on its own: the total
time available to processors is polynomial; the total space
and communication are slightly less than quadratic. In
particular, even though arranging the communication be-
tween processors is one of the most difficult parts of de-
signing a MapReduce algorithm, classical results from
communication complexity do not apply since the total
communication available is more than linear [41].*erefore,
we use fixed dataset to measure the execution performance
and scalability of MapReduce through the execution time of
different cluster sizes.

*e performance and scalability of the MD-MinerP are
verified by adjusting the number of nodes in the Hadoop
cluster, which were two, four, and six. Each node had 24
CPUs (each is an Intel (R) Xeon (R) CPU E5-2620 2.00GHz
processor) with 32GB of RAM. *e dataset used as a
benchmark to analyze theMD-MinerP runtime is the ENTN2
dataset described in Table 1, which is sized at 172.7GB.

*e flow of the MD-MinerP can be divided into three
parts: data preprocessing, feature extraction, and domain
classification. *e feature extraction stage of theMD-MinerP
can be classified into two parts: interaction profiling bipartite
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Figure 11: Illustration of the ROC curves for the five feature vectors generated from the ENTN2 dataset.
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Figure 13: Illustration of the ROC curve for the two Process feature vectors generated from two kinds of bipartite graphs for the ENTN1
dataset.
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Figure 15: Illustration of the ROC curve for the two Address feature vectors generated from two kinds of bipartite graphs for the ENTN1
dataset.
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Figure 14: Illustration of the ROC curve for the two Trace feature vectors generated from two kinds of bipartite graphs for the ENTN1
dataset.
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Figure 17: Illustration of the ROC curve for the two Process feature vectors generated from two kinds of bipartite graphs for the ENTN2
dataset.
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Figure 16: Illustration of the ROC curve for the combined three feature vectors generated from the two bipartite graphs for the ENTN1
dataset.
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Figure 19: Illustration of the ROC curve for two Address feature vectors generated from the two kinds of bipartite graphs for the ENTN2
dataset.
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Figure 18: Illustration of the ROC curve for the two Trace feature vectors generated from two kinds of bipartite graphs for the ENTN2
dataset.
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Table 3: Comparison of AUC values generated by annotated bipartite graph and interaction profiling bipartite graph in classification
evaluation.

Dataset Feature vectors Interaction profiling bipartite graph (AUC) (%) Annotated bipartite graph (AUC) (%)

ENTN1

Process feature 84.93 85.17
Address feature 99.97 62.01
Trace feature 79.61 74.37
Merged feature 99.97 96.31

ENTN2

Process feature 96.88 79.87
Address feature 95.86 68.84
Trace feature 75.29 54.69
Merged feature 95.34 83.55

Table 4: Top 10 detected malicious domains with higher detected probability.

Domain Detection probability Detection rate of VirusTotal
grjxr.snap-affairs.com 0.994728257 0/67
Mdaka.fbhookup.club 0.99454585 0/67
Adserver-g.juicyads.com 0.993425958 0/67
app4.getmacsoft.site 0.991589101 0/67
nofreezingmac.click 0.991547806 2/67
www.por.tw 0.985447549 1/67
extcoolff.com 0.984869145 0/67
urlspirit.spiritsoft.cn 0.981827519 1/67
bak1.spiritsoft.cn 0.981827519 1/67
folder.maroon91.com 0.981491668 0/67

ENTn2_Annotated_Bipartite_Graph-Sum.csv ROC (area = 0.83)
ENTn2_Interaction_Profiling_Bipartite_Graph-Sum.csv ROC (area = 0.95)
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Figure 20: Illustration of the ROC curve of the combined three feature vectors generated from the two bipartite graphs for the ENTN2
dataset.
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graph mining and lexical feature extraction.*eMD-MinerP
designed fourMapReduce jobs to accomplish the interaction
profiling bipartite graph mining: (1) domain node labeling,
(2) CF node labeling, (3) interaction profiling bipartite graph
building, and (4) behavior feature calculation. *e lexical
feature extraction can be divided into threeMapReduce jobs:
(1) creation of primary domain dictionary, (2) creation of

top-level domain dictionary, and (3) calculation of lexical
features. On the other hand, both the data preprocess stage
and domain classification stage have only one MapReduce
job. Figure 22 shows the runtime analysis of theMD-MinerP.
We observe that the data preprocess stage and the domain
node labeling of the feature extraction are the primary
bottleneck of theMD-MinerP process. As the above two jobs
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Figure 22: Runtime analysis of the MD-MinerP.
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Figure 21: An example of the domain relation graph constructed from external threat intelligence.
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mainly involve I/O operations, the I/O is the primary
performance bottleneck in processing the massive data.
However, with an increased number of nodes, the com-
putation time of the data preprocess stage and domain node
labeling decreases substantially. *e experiments show that
theMD-MinerP tends to possess a superior scalability for the
MapReduce.

5. Conclusions

*is paper proposes a malicious domain detection system
based on a novel bipartite graph called MD-MinerP. *e in-
teraction profiling bipartite graphs and lexical analysis adopted
by the MD-MinerP can handle big data. *e mining of un-
known malicious domains is accomplished by analyzing net-
work interaction behaviors between clients and domains in big
network traffic data. *e MD-MinerP is designed as a scalable
system to monitor and analyze big network traffic data to find
illegal network activities. Two big network traffic datasets
(ENTN1 and ENTN2), three validation aspects, and four ex-
periments were proposed to inspect the performance of MD-
MinerP. *e experiments used ROC curves and 10-fold cross-
validation with known domains. *e experimental results
confirm that the feature extraction method proposed by MD-
MinerP as applied to ENTN1 obtained an AUC of 1.00 and
applied to the ENTN2 obtained an AUC of 0.98. *e experi-
mental results of the direct comparison showed that the feature
vectors extracted from the interaction profiling bipartite graph
are superior to the annotated bipartite graph for both the single
andmerged feature vectors. In addition, verifying the unknown
domain predicted as malicious by the MD-MinerP allows the
verification method to shape the relationship diagram of the
domain. *e relationship diagram shows that the domain is
directly and indirectly associated with the IP and the domain
with malicious behavior. Finally, controlling the number of
nodes in the Hadoop cluster verifies that the MD-MinerP is a
system that fully satisfies the parallel computing conditions,
even if the enterprise’s network traffic data is large. *erefore,
the MD-MinerP is applied to conduct malicious domain data
mining.

*is paper has confirmed the contribution of MD-
MinerP, but it has some limitations. As described in
Section 3, interaction profiling bipartite graph requires
domain threat intelligence to label known domain nodes as
black and white. *erefore, the quality and quantity of
ground truth affect the performance of MD-MinerP.
Fortunately, collecting public and commercial domain
intelligence can effectively overcome this problem. In
addition, MD-MinerP may not be suitable for DHCP
network environment. *is is because the proposed bi-
partite graph uses client-IP to locate individual hosts, and
DHCPmay cause different hosts to be assigned to the same
IP. *e solution to this challenge is to correlate DHCP logs
with network traffic data to obtain the network behavior of
each individual host.*e final challenge is thatMD-MinerP
needs to be retrained periodically to maintain detection
accuracy. As cybercriminals’ technology is constantly
evolving, it is necessary to regularly employ MD-MinerP
and through the latest network traffic data and network

threat intelligence to obtain updated domain classification
model.

Future work will focus on two areas. First, for detecting
malicious domain from big network traffic data, it will be
considered whether this approach applies to other large log
data, such as firewall and DNS logs. Furthermore, the
proposed bipartite graph algorithm can be used to perform
correlation analysis for multiple types of network traffic logs
to optimize the detection capability. Second, the proposed
algorithm is applied to the analysis of other malicious
threats. For example, treat the smartphone application’s
dynamic analysis data (e.g., system call) and static analysis
data (e.g., opcode) asCF, andmatch the threat intelligence of
applications to build the interaction profiling bipartite graph
of applications to mine hidden malicious applications. In
addition, the MD-MinerP mechanism can be used as the
basis for a bilateral market service model [42] to collect
malicious traffic. We have provided a website, https://
netflowtotal.firebaseapp.com/, to prove this concept [43].

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.
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