Hindawi

Security and Communication Networks
Volume 2020, Article ID 8881760, 19 pages
https://doi.org/10.1155/2020/8881760

Research Article

WILEY

Hindawi

Binary File’s Visualization and Entropy Features Analysis
Combined with Multiple Deep Learning Networks for

Malware Classification

Hui Guo ®,' Shuguang Huang ®,' Cheng Huang (»,” Fan Shi®,' Min Zhang ®,

and Zulie Pan

1

College of Electronic Engineering, National University of Defense Technology, Hefei 230011, China
2College of Cybersecurity, Sichuan University, Chengdu 610065, China

Correspondence should be addressed to Fan Shi; shifan17@nudt.edu.cn

Received 2 September 2020; Revised 6 November 2020; Accepted 20 November 2020; Published 4 December 2020
Academic Editor: Liguo Zhang

Copyright © 2020 Hui Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, the research on malware variant classification has attracted much more attention. However, there are still many
challenges, including the low accuracy of classification of samples of similar malware families, high time, and resource con-
sumption. This paper proposes a new method of malware classification based on multiple visual features of malware and deep
learning algorithms. In prior research, visualization techniques and entropy demonstrated exemplary performance in many areas.
This paper extracts numerous visual features from the raw bytes and entropy sequence of the malware, which makes it more
sensitive to malware samples of similar families and endows it the ability to classify malware variants more accurately. To evaluate
the proposed method, this paper conducted a series of experiments on two malware datasets with a total of more than 20,000
samples provided by the Malware Research Lab and Microsoft Research. Through experiments, the method showed its superiority
compared with some leading malware visual classification methods, achieving good performance on the accuracy with at least 1%
improvement. The accuracy of the method even could reach 99.73% and 99.54%, respectively, on the two datasets.

1. Introduction

In recent years, the exponential growth of malware has posed a
serious threat to cyber security. According to the Symantec
internet security threat report [1], 246,002,762 new malware
variants were monitored in 2018, and the number of new
malware variants has exceeded a billion in the past three years.
Hackers are increasingly inclined to use techniques such as
packing and encryption to slightly modify the original mali-
cious code to create new malware variants. Therefore, the rapid
and accurate identification of malware variants can effectively
assist the cyber security personnel in grasping their harmful-
ness and other attributes, which has significant research value.

With the development of machine learning techniques,
data mining methods are often used to analyze malware, and
many features-based detection methods are proposed [2].
These methods first extract the features of malware and then
detect malware by using these features. This approach has

become the mainstream method of malware detection. Cur-
rently, malware detection methods consist primarily of two
types of approaches: static-feature-based detection and dy-
namic-features-based detection. The malware detection based
on static features mainly analyzes the raw bytes of malware or
disassembles the malware to analyze its opcodes, file structure,
and other file attributes. The dynamic detection methods often
extract behavioral features such as API operation sequence, file
operations, and network communication during its process by
running malware samples in a virtual environment or sandbox.

1.1. Need for This Study. However, code obfuscation tech-
nology could modify malware, increase the difficulty of code
reverse, and reduce the performance of static malware de-
tection. Dynamic detection is more robust, but it is still
disturbed by different kinds of countermeasures (e.g., strict
triggering conditions for malicious behavior or increasing

mailto:shifan17@nudt.edu.cn
https://orcid.org/0000-0003-4537-0710
https://orcid.org/0000-0001-6255-8278
https://orcid.org/0000-0002-5871-946X
https://orcid.org/0000-0003-4533-2706
https://orcid.org/0000-0003-4082-7486
https://orcid.org/0000-0001-5775-5824
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8881760

waiting time to avoid dynamic detection), reducing the
detection performance. Moreover, the time and resources
consumption of malware execution is often expensive.

In recent years, with the rapid development of deep
learning algorithms and image recognition technologies,
rather than focusing on these nonvisual detection methods,
many researchers have proposed new classification methods
based on malware visualization methods [3-7]. They
transform the raw bytes of malware into grayscale images
and extract the malware texture features for classification.
Besides, these visualization methods are also proven to be
more robust than the static method [3] and provided per-
formance roughly equivalent to dynamic detection methods,
but in less time [5].

Although the visualization detection methods can handle
some code obfuscation problems and show some superiority,
they still have some limitations and challenges. The malware
variant has many homologous parts with its ancestors, which
makes it have a strong correlation in visual characteristics.
However, the malware samples of similar families also have
some correlations, showing some similarities in the visual
features, which would cause some interference to the malware
classifier and reduce the performance. The latest related
methods, combined with deep learning algorithms, have
partially alleviated the problem. But it is still not entirely
resolved. Therefore, a critical challenge in the field is how to
effectively distinguish the samples of similar malware families
and improve classification performance.

1.2. Major Contributions of the Study. To address the above
challenges, this paper proposes a new malware classification
method based on malware visual features, entropy features,
and deep learning algorithms. In the field of image recog-
nition, the deep learning algorithm often performs better
than traditional feature extraction algorithms. It can enable
computers to automatically learn important features in
images to improve the performance. Besides, the entropy, as
a measure of randomness or uncertainty, has achieved good
performance in detecting encrypted, compressed malware
[8-11]. Therefore, the entropy feature and deep learning
algorithms may assist us in learning more detailed features
contained in malware samples to classify the malicious code
more accurately and improve the classification performance
of malware samples of similar families. Based on this hy-
pothesis, this paper extracts multiple features of the raw
bytes and entropy features of malware based on the deep
learning algorithms.

First, we transform the raw bytes of malware into RGB
images in bytes sequence order and extract bottleneck
features based on the convolutional layer of a deep learning
network. Then, the malware is converted into another RGB
images using a visualization method containing location
information, and the bottleneck feature is also extracted.
Besides, this paper extracts the entropy sequence of the
malware and then extracts the visualization features of the
entropy sequence based on the grayscale image visualization
method. At last, a machine learning malware classifier is
trained based on these three types of features.

Security and Communication Networks

To evaluate the proposed method, this paper conducted
cross-validation experiments on two different malware
datasets with a total of more than 20,000 samples provided
by the Malware Research Lab and Microsoft Research. The
experimental results show that the proposed method could
significantly improve the classification performance of
malware samples of similar families and achieve better
performance on the accuracy with at least 1% and 2% im-
provement on two datasets compared with the leading
malware visual classification methods, and the accuracy of
the method even could reach 99.73% and 99.54%, respec-
tively, on the two datasets.

Overall, we make the following contributions:

A new malware classification method was proposed
based on the raw bytes of malware. It transforms
malware into three kinds of images based on multiple
visualization methods, including visualization methods
containing location information and entropy features.
The combination of these three types of features could
effectively improve the performance of malware
classification.

This paper introduces a visualization method of the
entropy sequence. Unlike other traditional methods, we
mine entropy features based on deep learning algo-
rithms, and the experimental results show that it can
play an essential role in malware classification.

Extensive experimental results showed that the pro-
posed method almost solved the problem of confusion
of similar family samples in malware classification and
effectively improved the performance of malware
classification, which is of great significance for the
future research.

2. Related Work

In this section, the related research of malware classification
is presented, mainly including malware detection methods
based on static features, dynamic features, and visualization
features.

2.1. Malware Detection Based on Static Features. The static
feature of malware includes raw bytes feature, opcode, PE
header features, import and export table, CPU register
features, and static API sequence. The malware static de-
tection method extracts these features to train a classifier for
malware classification. Piyanuntcharatsr et al. [12] processed
the byte sequence and opcodes with the N-gram algorithm
and trained a malware classifier based on the decision tree
algorithm. Feng et al. [13] extracted the bytes features of the
malware and trained the malware classifier based on the
support vector machine (SVM) algorithm. Raff and Nicholas
[14] processed the raw bytes of malware based on the
k-nearest-neighbor (KNN) algorithm to train a malware
classifier. Kong and Yan [15] disassembled the malware
samples and extracted the function call graphs for malware
classification. Upchurch and Zhou [16] extracted the raw
bytes and disassembly features of malware and classified the

Security and Communication Networks

malware based on multiple methods. The static detection
method does not need to run malicious code files and would
not cause harm to the system. However, it relies heavily on
the file features of malware, which is less robust and vul-
nerable to code obfuscation technologies.

2.2. Malware Detection Based on Dynamic Features.
Aiming at the problem of low robustness of static features,
researchers have executed malware samples in virtual ma-
chines, sandboxes, and other virtual environments. They
extract the malware behavioral features, including file op-
eration behaviors, network communication behaviors, and
runtime API call sequences, and train malware classifiers
based on machine learning algorithms. Kawaguchi and
Omote [17] extracted the dynamic API features of malware
samples and classified the malware based on the features of
the functions and machine learning algorithms. Vadrevu
and Perdisci [18] proposed a novel malware testing
framework and executed the malware samples in an analysis
environment and extracted the network activity for malware
classification. The experimental results in the paper showed
that using their framework, they could reduce the malware
execution time. Kim et al. [19], Dai et al. [20], and Lin et al.
[21] also proposed malware classification methods based on
the behavior features of malware samples. Malware detec-
tion technology based on dynamic features overcomes the
impact of code obfuscation technology and has stronger
robustness. However, these methods are still challenged by
different kinds of countermeasures [5] (e.g., set waiting time
measures and operation environment detection measures).
Moreover, dynamic detection is time-consuming because it
usually consumes time to execute malware samples, making
it unsuitable for large datasets.

2.3. Malware Detection Based on Visualization Features.
With the rapid development of image recognition tech-
nology, many scholars have utilized visualization technology
for malware detection. Nataraj et al. [3] proposed a new
method to extract malware visualization features and classify
malware based on the k-nearest-neighbor (KNN) algorithm.
They transformed the malware samples into grayscale im-
ages and extracted the texture features based on the GIST
algorithm. Compared with the traditional feature-based
methods, their method could provide more improved results
[5]. Kosmidis and Kalloniatis [22] conducted more research
on the visualization feature of malware and evaluated the
performance of different machine learning algorithms. In-
spired by these studies, Naeem et al. [6, 23], Xiaofang et al.
[24], and Hashemi and Hamzeh [25] proposed many new
malware classification methods based on different visuali-
zation features of malware images (e.g., DSIFT, LBP, and
SURF). Moreover, the researchers also combined visuali-
zation technology with other malware characteristics for
malware detection. Zhang et al. [26] visualized the opcode
sequences of malware and achieved good accuracy for a
small training set. Han et al. [27] visualized the dynamic
features and opcode sequences of malware and extracted
visualization features for malware classification.

Besides, with the rapid development of deep learning
technology, Cui et al. [4], Rezende et al. [28], and Tang et al.
[7] proposed better methods of malware classification based
on deep learning algorithms. Cui et al. [4] visualized the
malware samples and classified the malware based on
convolutional neural networks. They also propose a method
to improve the classification performance in the case of
insufficient training samples. Tang et al. [7] also proposed a
malware classification method based on deep learning al-
gorithms. They significantly alleviated the lacking data
problem and improved the performance of malware clas-
sification. Rezende et al. [28] proposed a malware classifi-
cation method based on transfer learning algorithms. They
extracted the visualization features of the malware based on
the VGG16 network and achieved good performance. The
visualization-feature-based detection methods are efficient
and provide better performance relative to some traditional
methods, but they still have some challenges. For example,
the classification accuracy of malware samples of similar
families is relatively poor. The latest related methods,
combined with deep learning algorithms, have partially
alleviated the problem. But it is still not entirely resolved,
and the accuracy of classification needs to be further
improved.

2.4. Malware Detection Based on Entropy Features.
Besides, many scholars have detected the malware based on
the entropy features. Wojnowicz et al. [8], Bat-Erdene et al.
[9], and Liu et al. [10] proposed different kinds of methods for
malware classification based on the entropy features of
malware. Wojnowicz et al. [8] proposed a method for the
detection of parasitic malware based on the entropy features
and achieved good performance. Bat-Erdene et al. [9] pro-
posed a method to detect the packing algorithm of malware
based on the entropy features. Liu et al. [10] extracted the
entropy sequence of malicious documents and detected the
malware based on the machine learning algorithms. More-
over, Canfora et al. [11] extracted the entropy features of
Android malware and proposed a malware detection method.
Therefore, the entropy features of malware should also be one
of the critical attributes, which may play an essential role in
the research of malware classification.

3. Methods

3.1. Overview. First, we extract the raw bytes of malware to
mine features hidden in the malware. The raw bytes of the
malware are processed in two ways (i.e., extracting raw byte
stream data and extracting entropy sequence data). The
extracted data are processed based on three visualization
methods to obtain different kinds of visualization repre-
sentations. Then, three types of features (byte sequence level
RGB feature, location information level RGB feature, and
entropy sequence feature) are extracted based on the transfer
learning algorithms. At last, a malware classifier is trained
based on these features, and it would classify new malware
samples to identify their families. An overview of our
method is shown in Figure 1.

4 Security and Communication Networks
RGB scale I
_’ —
features —
RGB scale e
Training dat Visualization
raining data Feature representation
] Vi,V Vs, 0V,
g AN RGB scale 2 = SR AL -
— T T 11
Z | —»| Rawbytes features -
§ RGB scale 2 L] ﬂ
Entropy Entropy — Training for
’ — . .
sequence features — classification
Visualization L]
Family 1
Testing data
Family 2
[VL,V5 VS, V) .

Visualizations

Feature Model

alware

M

‘ AN
‘ —»{ Preprocess

===}

extraction

Family N

FiGure 1: Overview of the method.

Specifically, for the byte sequence level RGB feature, we
transform the raw bytes of malware into RGB image rep-
resentation in bytes sequence order and extract the bottle-
neck features based on the convolutional layer of the deep
learning network. For location information level RGB fea-
ture, we convert the malware into an RGB image repre-
sentation using a visualization method containing location
information. For entropy sequence feature, we first extract
the entropy sequence of the malware, then convert the
entropy sequence into a grayscale image representation, and
extract the bottleneck features. Finally, a classifier is trained
based on three types of features to classify malware.

3.2. The Byte Sequence Level RGB Feature. The features
extracted from malware have a significant impact on clas-
sification performance. The method based on the malware
visualization and texture features has been proved to be
useful in classifying malicious code. In the field of image
recognition, the deep learning model based on RGB images
has better results than most traditional image recognition
technologies. Therefore, this paper first extracts malware
features based on the deep learning model and RGB images
representation. This method mainly involves two steps: first,
it transforms the malicious code into an RGB visual rep-
resentation; second, it extracts the features contained
therein. However, different malware visualization features
would have different effects on the classification of malicious
codes. In this section, we first visualize the malicious code
based on byte sequence order and extract features as one of
the critical elements of malicious code classification.

3.2.1. The Byte Sequence RGB Visualization Method. This
paper visualizes the malware based on the raw bytes of
malware samples. The raw bytes of the malicious code are a
1, 0-bit data stream, and each byte contains 8-bit data.
Without processing malware samples, this paper directly
extracts features based on the raw bytes of the malicious code
to ensure that the malware image can contain all the features
of the malicious code. At the same time, it can improve the

efficiency of malware feature extraction and facilitate large-
scale malicious code detection.

When the byte data sequence of the malware is obtained,
it needs to be converted into RGB image representation,
which involves two key issues: first, how to convert malicious
code data into the pixel data of image; second, how to set the
image format (i.e., height and width). For the first issue, the
byte data of the malware are treated as 8-bit unsigned integer
data, and the value range of each byte data is [0, 255]. The
RGB channel data value range of each pixel is also [0, 255],
and each pixel contains three channels of red, green, and
blue. Therefore, every three bytes of data are combined into
one group. According to the one-to-one correspondence
relationship between each group of data and the three-
channel data of pixels, the byte data sequence is converted
into RGB image pixels in sequence order. The process is
shown in Figure 2.

For the second issue, the range of malicious code file size
is large. To ensure that the image has an appropriate aspect
ratio, this paper formulates different image size setting
standards based on the malware file size. The specific content
is shown in Table 1.

The size of the malware is different, and the malware
visualization image size is also different. To improve the
performance of malware classification and facilitate the
application of the deep learning algorithms, this paper
normalizes the image to a uniform size after the transfor-
mation. As shown in Figure 3, there are some malware
visualizations of malware samples. The image size of all
malicious code samples is unified to 224 * 224 = 3. It can be
seen from the figure that the transformed images of mali-
cious code samples of the same family have strong simi-
larities, and there are some differences between malicious
code samples of different families.

3.2.2. Feature Extraction of the Byte Sequence RGB Image.
In the field of image processing, deep learning algorithms have
been proven to handle various problems better than traditional
feature extraction algorithms (such as GIST and LBP).

Security and Communication Networks

Raw bytes

10011110 00000000 00000000 00000000
01000101 00000111 11011101 00001010

Pixel 1 Pixel 2
itteieteletnteleinteleinteinte Eaiieteieintninied-cfntininiinte
| 1
] 9B o0 0 || A0 07 74
! / | \ :: / | \
| rd
: ¥
| N
| R|G|B|il|R|G|B
I 1
| P

FIGURE 2: The transformation process of byte sequence RGB image.

TasLE 1: The byte sequence image conversion width.

File size (kB) Image width File size (kB) Image width
<10 16 100-200 192
10-30 32 200-500 256
30-60 64 500-1000 384
60-100 128 >1000 512

(1) C2LOP.gen!g

(2) C2LOPP

FIGURE 3: The examples of byte sequence RGB visualization of malware samples.

Moreover, in malware classification, deep learning algorithms
can obtain better classification results than texture feature ex-
traction algorithms. Therefore, this paper does not use tradi-
tional texture feature extraction algorithms but processes
malicious code images based on deep learning algorithms.
However, the number of variants of different malware families
is various. In some cases, the number of malicious code variants
of some families is small (for example, newly emerged malicious
code variants), which is not enough to form a training sample
set, making the classifier unable to effectively learn the char-
acteristics of the new family. Cui et al. [4] have pointed out that
the classification performance of the deep learning classifier is
not good enough when the malware samples of some families
are insufficient. Therefore, this paper does not directly use deep
learning algorithms but trains the classifier based on transfer
learning algorithms. Combined with the characteristics of
malware variant dataset, this paper trains the malware classifier

based on the deep learning network that has been trained on a
large-scale image dataset.

First, this paper extracts malicious code image features
based on a deep network model. In recent years, some deep
learning networks with better recognition effects have been
proposed (e.g., ResNet50 [29], Xception [30], and Inception
[31-34]). Different deep learning networks have different
structures and different performances. The VGG16 deep
network and VGG19 deep network [35] include 16-layer and
19-layer networks, respectively, which have achieved good
performance in the field of image recognition. Rezende et al.
[28] extracted the visualization features of the malware based
on the VGG16 network and achieved good performance.
However, as the network depth increases, the deep learning
network would face some problems, such as the degradation
problem [29], which refers to the fact that adding more
layers to the suitably deep network would lead to higher

training errors. But these problems are address by the
ResNet network. This makes it possible to train a network
with deeper layers on the dataset, and the number of net-
work layers could increase to more than 50, which has
achieved better results than the VGG16 deep network in the
field of image recognition. Besides, these deep networks have
many different advantages and have achieved better per-
formance than the VGG16 network in the field of image
recognition. Therefore, these networks may be able to
achieve better classification performance in malware clas-
sification. We evaluate the classification performance of
these deep networks and finally extract byte sequence RGB
image features based on the ResNet50 deep learning
network.

The deep learning algorithms have achieved good per-
formance in the field of image recognition, but as the network
deepens, the application of deep learning networks will en-
counter two limitations: vanishing/exploding gradients
problem [36-38] and degradation problem [29]. The problem
of vanishing/exploding gradients has been addressed by
normalized initialization [39, 40] and intermediate normal-
ization layers [32]. However, the deep learning network still
faces another problem: the degradation problem. As the
network depth increases, the accuracy will gradually increase
to saturation, and then, there will be a problem of rapid
decline. However, the problem is not caused by overfitting
[29]. In the same training round, a network with a deeper
network (degraded network) has a higher error rate than a
network with fewer layers [41]. But the degradation problem
could be addressed by the application of the residual network.
In the residual network, the residual unit is introduced, and its
structure is shown in Figure 4.

In the residual network, the residual mapping is defined
as the following:

H(x) = F(x) + x, (1)

where F(x) is the residual function. In the deep learning
network, the additional residual unit connection method is
called shortcut connection. In the residual network, this
connection is defined as the following:

y=F(x,W,) +x, (2)

where F(x,W;) represents the residual mapping to be
learned. For the example in Figure 4, the F (x, W;) in which ¢
represents ReLU [42], F + x represents the shortcut con-
nection. If the dimensions of X and F (x) are different in the
deep learning network (e.g., when changing the input/
output channels), this connection is defined as the following:

y=F(x,W;) + Wx, (3)

where W is a linear projection of the x to make it consistent
with the dimension of F(x). By importing residual values
and residual units into the network, the correlation between
the shallow and deep networks is enhanced, and the in-
fluence of the degradation problem is reduced. To evaluate
the performance of the Reset50 network, we conducted a lot
of experiments. The experimental results show that the
residual deep learning network ResNet50 can effectively

Security and Communication Networks

Weight layer

F(x) LReLU

X
identity

Weight layer

F(x) +x
FiGure 4: The residual unit.

extract byte sequence RGB image features. The structure of
the ResNet50 network is shown in Figure 5. The ResNet50
network includes 50 layers and about 3.8 x 10° parameters
in total. Inspired by the transfer learning algorithms, we
remove the fully connected layers of the network and use the
convolutional layer in the ResNet50 network to extract the
byte sequence RGB image features.

3.3. The Location Information Level RGB Feature. The byte
sequence level RGB image visualization method uses the raw
byte data of the malicious code as the original data of the
image pixels, and the locations of the pixels are arranged in
byte order, without further considering the location infor-
mation of the pixels. In this section, an image transformation
method containing location information is proposed. The
raw bytes of the malware are divided into two parts: location
information and pixel information. In this way, the con-
verted RGB image could contain richer information to
enhance the performance of malicious code classification.

3.3.1. The Location Information Level RGB Visualization
Method. In RGB images, the location of the pixel also has an
essential influence on the characteristics of the image. In this
section, the malware visualization is also based on the raw
bytes of malware, which also involves two key issues: first,
how to convert malicious code data into the pixel data of
image; second, how to set the image format. In this section,
the raw byte of the malware is still regarded as 8-bit unsigned
integer data, and every five bytes of data are a group. The first
two bytes of data in each group of data represent location
information, and the last three bytes of data represents the
pixel information of the RGB image. The process of location
information level RGB image is shown in Figure 6.
Specifically, the value range of each byte is [0, 255], and
we set the size of each image to 256 * 256. The data coor-
dinates of the bottom left corner of the image are set to (0, 0).
All pixels in the image are initialized to 0. For each group of
data, the first byte represents the X coordinate of the pixel in
the image, the second byte represents the Y coordinate, and
the last three bytes of data respectively represent the values
of the R, G, and B channels of each pixel in order. Then, each
group of data can be converted into a pixel in the image. The

Security and Communication Networks

3
A A

=)
v W

Image
7 X 7 conv, 64/2
Pool /2

1 x 1 conv, 64
3 x 3 conv, 64
1 x 1 conv, 256
1 x 1 conv, 128
3 x 3 conv, 128

1 x 1 conv, 512

1 x 1 conv, 256
AVG Pool
FC 1000
Result

3 X 3 convy, 256

1 x 1 conv, 1024

1 x 1 conv, 256
3 x 3 conv, 256
1 x 1 conv, 1024

FiGUure 5: The structure of the ResNet50 network.

Raw bytes

10011110 00000000 00000000 00000000
01000101 00000111 11011101 00001010

Pixel 1

|

| 9E 00 00 00 07

: o 7 N NS

I

I

I

! X Y R| G| B
I

I

I

I

I

I

I

I

I

I

I

I
[o8]
w1
o)

I

I

I

I

I

I

I

I

I

I

|

FIGURE 6: The transformation process of location information RGB image.

malware to be processed.

Input: image M;, (X,,,Y,.,R,..G,,,B,,)
) R, = (R, + R)%255
3) G, = (G, + G,)%255
(4) B = (B;+B,)%255
(5) Modify the pixel data of (X,,, Y,,) in M; to (R;, G,, B;)
(6) Return: image M;

The RGB image M; contains the information of the malware feature, and (X,,,Y,,

(1) Find the pixel (R;, G;, B;) to the coordinates (X,,, Y,,) in M;

R,.G,,;B,,) is a group of raw byte data of

ALGORITHM 1: Image pixel transformation.

image pixel processing method is shown in Algorithm 1.
Each group of data is added to the pixel data of the cor-
responding coordinate separately, and the sum value is used
as the final data of the image pixel. If the data are greater than
255, the 255 remainder operation is performed on the data.

The size of the RGB image is 256 * 256, and there is no
need to perform standardized operations on these images.
Some examples of the location information level RGB image
are shown in Figure 7. It can be seen that the location in-
formation RGB level image seems to contain “noise,” and
there are not many obvious blocks in the image. However,
some images still include noticeable lines and blocks. As
shown in Figure 7, the samples of similar families
C2LOP.gen!g and C2LOP.P exhibit different image features,

so it can be inferred that some similar family samples could
be classified based on these image characteristics.

3.3.2. Feature Extraction of the Location Information RGB
Image. The location information level RGB image shows a
big difference from the byte sequence level image, and the
performance of different deep learning networks is also
different. The ResNet network makes it possible to train a
network with deeper layers on the dataset, and the number
of network layers even could increase to 200, which has
achieved good performance. It has also been found that
different convolution kernels have different performance on
image recognition. In the process of image recognition, it is

(1) C2LOP.gen!g

Security and Communication Networks

(2) C2LOPP

FIGURE 7: The examples of location information RGB visualization of malware samples.

of great significance to quickly find the best convolution
kernel, and the problem is addressed by the Inception
network and Xception network. They use multiple filters of
different sizes to make the network “wider.” For the same
image, different convolution kernels extract different fea-
tures, so through the network training process, the computer
can automatically adjust the weight for the image to find the
optimal feature extraction method. This method enables the
deep learning network to achieve better performance under
the same depth. Therefore, the Xception deep network may
achieve better performance than VGG16 deep network in
malicious code classification. Based on this hypothesis, we
evaluate the classification performance of these deep net-
works and finally extract the location information level RGB
image features based on the Xception deep learning
networks.

Xception network is another improved model after the
Inception V1, V2, and V3 models proposed by Google.
Compared with the traditional convolutional neural net-
work, the Inception network model imports the Inception
module. It uses multiple filters of different sizes (including
1 % 1 convolution, 3 * 3 convolution, 5 * 5 convolution, and
maximum pooling) to make the network “wider.. For the
same image, different convolution kernels extract various
features; so, through the network training process, the
computer can automatically adjust the weight for the image
to find the optimal feature extraction method. This method
enables the deep learning network to achieve better per-
formance under the same depth. Besides, the Xception
network uses the depth-wise separable convolution module
in the Inception network to further enhance the perfor-
mance of the deep learning network. As shown in Figure 8, it
is an extreme version of the Inception model. For the input, a
1 * 1 convolution kernel is used for convolution operation to
obtain N channel data, and then, N 3 * 3 convolution kernels
are used to perform the convolution operation. Each channel
data are convolved so that each 3 * 3 convolution kernel is
convolved with one channel. At last, all the results are
merged as the output.

The depth-wise separable convolution used in Xception
is different from the Inception network in the following two
points: (1) the order of operations is different. The Xception
network first uses M 3 * 3 convolution kernels to convolve
the input data. It then uses N 1 * 1 convolution kernels and
M output results to perform convolution operations to

Concat

3x3] [3x3] [3x3] [3x3] [3x3] [3x3]

| | Output
| channels

1 x 1 conv

Input

FIGURE 8: An extreme version of Inception module.

generate N results. However, the Inception network first
performs a 1 * 1 convolution operation. (2) All processes in
the Inception network are followed by nonlinear operations
(i.e., ReLU). However, most of the depth-wise separable
convolution does not require nonlinear operations. The
improvements of these two aspects have enabled the
Xception network to have a better performance in the field of
image recognition. Moreover, the residual module is also
imported into the Xception network. The Xception network
has 36 convolutional layers for extracting image features,
which also uses multiple residual module connections. At
the end of the Xception network, a fully connected layer and
a logistic regression layer are used to classify images. The
network structure is shown in Figure 9. In the figure,
“Spconv” is the abbreviation of SeparableConv, which refers
to the use of a depth-wise separable convolution module. We
remove the fully connected layer in the Xception network
and extract the features of the image based on the con-
volutional layers of the Xception. These features are the
second part of the input features of the malicious code
variant classifier.

3.4. The Entropy Sequence Feature. The entropy distribution
of the raw byte data of malicious code is also one of the
essential characteristics of malicious code. In related re-
search, various entropy feature processing methods (e.g.,
linear features, the bag of words model) have achieved good

Security and Communication Networks

®©

Image, 299 x 299 x 3
3 % 3 conv, 64/2
3 x 3 conv, 64

3 % 3 Spcony, 128
3 x 3 Spcony, 128
3 x 3 Spcony, 256
3 x 3 Spconvy, 256
3 x 3 Spconv, 728
3 x 3 Spconv, 728
3 x 3 Spconv, 728

3 x 3 Spconv, 728

Max pool
Avg pool

3 x 3 Spconv, 728
3 x 3 Spconv, 728
3 x 3 Spconv, 728
3 x 3 Spconv, 728
3 x 3 Spcony, 728
3 x 3, Spconv,1536
3 x 3, Spconv,2048

v
Fully-connected
v
Logistic rfgression
Result

FIGURE 9: The structure of the Xception network.

results in the field of malicious code detection. Similar to the
development of image recognition technology, deep learning
algorithms enable the network to automatically learn the
features contained in images and can often achieve better
results. Therefore, we first extract the entropy sequence of
the malware, then visualize the entropy, and process the
entropy visualization based on the deep learning algorithms
to extract features for malware classification.

3.4.1. Entropy Sequence Extraction. The entropy is a mea-
sure of the randomness and uncertainty of data distribution.
To compute the entropy sequence of the malware, we first
divide the raw bytes of the malware into continuous data
blocks (the data are represented in hexadecimal: 00h-FFh),
then compute the entropy of each block, and finally connect
the entropy of each block according to the order of the
blocks to form the entropy sequence. The value range of each
byte is [0, 255]. It is crucial to ensure that all data in the block
can be used to compute the entropy value. So, the size of the
block is set to 256. When computing the entropy sequence, if
the length of the last block is less than 128 bytes, the block
will be discarded. Otherwise, the block is supplemented with
data zero to make its length reach 256.

For each block, the method of computing entropy is as
follows:

255

H(X) = =) p(x;) * log2p(x), (4)

i=0

where x; represents a specific raw byte value and p; rep-
resents the probability (frequency) of this value in the block,
H (x) represents the entropy value of the block, and the
range of its value is zero to eight. When all bytes in the block
are equal, the value of entropy is zero. If all the values in the
block are different, the value of entropy is eight. If the raw
byte of the malware is divided into N blocks, we represent
the entropy sequence as H, = hy, h,, h,,. Some examples of
the entropy sequence are shown in Figure 10. Figures 10(a)
and 10(b) show the entropy sequence of the malware
samples of family Rbot!gen. Figures 10(c) and 10(d) show
the entropy sequence of the malware samples of family
Adialer.C. It can be seen that the entropy sequences of the
same malware family samples are very similar, but the
entropy sequence distributions of different family samples
are quite different.

3.4.2. Entropy Sequence Visualization. This paper visualizes
the entropy sequence, which also involves the two critical
issues mentioned above: first, how to convert malicious code
data into the pixel data of image; second, how to set the
image format. For the first issue, the value range of the
entropy data is [0, 8], and the value range of image pixels is
[0, 255]. Therefore, this paper amplifies the entropy value
and processes each entropy value according to the following
formula:

P, =2"-1, (5)

where h; represents the entropy value of the block i in the
malware, P, represents the enlarged value, and its value
range is [0, 255], which is the same as the value range of
image pixels. This paper uses P;, as the pixel value of the
entropy image. For the second issue, this paper uses the
grayscale visualization method to process the entropy se-
quence. The image format of the entropy sequence is shown
in Table 2.

Moreover, the length of the entropy sequence of the
malware is different, and the size of the visualization image is
also different. To enhance the classification performance,
this paper also standardizes the grayscale entropy image and
modifies the image format to the same size. Some grayscale
images of the entropy sequence are shown in Figure 11. The
image size is unified to 224 * 224. It can be seen that the
entropy images of malware samples of the same family have
strong similarities, but the images of different families have
different features.

3.4.3. Entropy Grayscale Image Feature Extraction.
Several scholars have achieved good performance in
extracting grayscale image features based on deep learning
algorithms. Therefore, this paper also extracts the features of
the entropy grayscale images based on the deep learning
algorithms. After several experiments, the ResNet50 deep
learning network introduced in Section 3.2 could effectively
extract the features of the entropy image. In this section, the
features of the grayscale image of the entropy sequence are
also extracted based on the ResNet50 deep learning network
which is used as one of the input vectors of the final
malicious code classifier.

We extract features from the byte sequence RGB image
and the location information RGB image. Besides, we also
extract the entropy features from the raw bytes of the

10

Security and Communication Networks

8 I 8k
~ &
g 4t £ 4t
=] =
23] 23]
2+ 2k
0 0F
1 1 1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Block index (each block = 256 bytes) Block index (each block = 256 bytes)
(a) (b)
8 8
6 6 |
24t 24t
= g
] =
23] 23]
2+ 2k
0r 0
1 1 1 1 1 1 1 1 1 1
0 200 400 600 800 0 200 400 600 800

Block index (each block = 256 bytes)
(c)

Block index (each block = 256 bytes)
(d)

F1GURE 10: The entropy sequences of malware samples from different families. (a) Sample 1 of family Rbot!gen. (b) Sample 2 of family Rbot!
gen. (c) Sample 3 of family Adialer.C. (d) Sample 4 of family Adialer.C.

TaBLE 2: Entropy sequence image conversion width.

Sequence (KB) Image width

Sequence (KB) Image width

<10 32 100-200 384
10-30 64 200-500 512
30-60 128 0.500-1000 768
60-100 256 >1000 1024

malicious code. Finally, these three types of features are
combined to train a machine learning model for malware
classification.

4. Evaluation

4.1. Implementation and Setup. To evaluate the performance
of the proposed method, we implemented a prototype
system. The system is programmed in Python 2.7. The deep
learning part of the system is programmed by the Keras
library, and the machine learning part is programmed by the

Sklearn library. The system is deployed on a PC with an
Intel(R) Xeon(R) Gold 6139 CPU (2.3 GHz, 72 cores), a
TITAN RTX graphics card and 188 GB RAM.

4.1.1. Dataset. To evaluate the proposed method, our ex-
periments are conducted based on two malware datasets:
malimg dataset [3] and Big 2015 dataset [43]. The malimg
dataset consists of 9,339 malicious samples from 25 families.
All the malicious samples are classified by the Microsoft
security platform. The detailed distribution of the samples in

Security and Communication Networks

11

(a) (b)

FiGure 11: The examples of byte sequence RGB visualization of malware samples. (a) C2LOP.gen!g. (b) C2LOP.P.

3000 -

2000 |-

Number

1000 -

VB.AT
Yuner.A
Lolyda.AA1
C2LOP.P

Allaple.L
C2LOPgen!g

Allaple.A
Autorun.K
Lolyda.AA2
Lolyda.AA3
Alueron.gen!]

— — P
SZ<oZEX0M 288 g0
8§ £S5 8 5T 8ESH®H™®T
PEZEYXPHPESSsET IS
2 P a8 = A2

<= = = e
3 E E 8 © ESE E 828w =
2. S 8 Q =] 0~ & 3
s R 3 3JE<T2 g <
Emgs.—‘.g' o 9 —

E = E = = &

..D(/Jm =

o A

FiGure 12: The distribution of samples in the dataset.

the dataset is shown in Figure 12. The big 2015 dataset is
provided by the Microsoft Malware Classification Challenge
(BIG 2015) [43]. The dataset consists of 10,868 samples from
9 families (Ramnit, Lolipop, Kelihos_ver3, Vundo, Simda,
Tracur, Kelihos_verl, Obfuscator.ACY, and Gatak). All
samples are provided by Microsoft Research and North-
eastern University.

To ensure the accuracy and reliability of the experi-
mental results, this paper uses a 10-fold cross-validation
method. In the experiment, the dataset is divided into ten
parts. In each test process, nine parts are selected as the
training set, and the remaining one part is used as the test set.
A total of ten experiments are conducted, and finally, the
results of all experiments are combined to evaluate the
method.

4.2. Evaluation Metric. The evaluation matric in this paper
includes accuracy, precision, recall, receiver operating
characteristic (ROC) curve, and area under ROC (AUC)
curve. Accuracy: the proportion of the number of correct
classification of malware samples to the entire samples.
Precision: the ratio of true positive samples to the positive
samples classified by the classifier. Recall: the proportion of
true positive samples to entire positive samples in the
dataset. F1-measure is the weighted harmonic average of
precision and recall. ROC curve: the ordinate of the ROC
curve is the true positive rate and the abscissa is the false
positive rate. The true positive rate is also called recall. When
evaluating the generalization ability of two classifiers, the
area under the ROC curve (AUC) is usually compared. The
size of the AUC area represents the generalization ability of

12

the classifier. The related definition formulas are shown as
follows:

Ace - TP + TN
T TP+TN+FP+FN
TP
Recall)
TP + FN
.. TP
Precision = ——,
TP + FP
(6)
1 1(1 1)
—==—x[{=+=)
F, 2"\P R
F - 2x TP
' 2% TP+FP +FN’
FP
FPR=———
TN + FP

where the true positive (TP) samples refer to the malware
samples in which malicious code samples are correctly
classified into their corresponding families. The false positive
(FP) samples refer to the malware samples in which the
samples are misclassified into the specified family. The true
negative (TN) samples refer to the malware samples which
do not belong to the specified family and are indeed clas-
sified into other families. The false negative (FN) samples
refer to the malware samples of the specified family which
are misclassified into other families.

4.3. The Classification Performance of Three Kinds of Visu-
alization Features. We first evaluated the classification
performance based on different deep learning networks.
Then, we extracted the visualization features and further
evaluated the performance of three types of features based
on different machine learning algorithms. The experiments
in this section are conducted based on the malimg dataset.

4.3.1. The Classification Performance of the Byte Sequence
RGB Image Features. To evaluate the classification perfor-
mance of different deep learning networks, we first extract
malware byte-sequence visualization features based on nine
deep learning networks (i.e., VGG16, VGG19, ResNet50,
DenseNet, EfficientNet, InceptionResNet, InceptionV3,
Xception, and NasNet). Then, we train the classifier based on
the random forest algorithm. In the setting of each network,
all the deep learning networks use the default configuration
parameters in Keras. The classification performance is
shown in Figure 13.

It can be seen that, except for the poor performance of
the EfficientNet deep learning network, the other deep
learning networks can extract the features of malicious code
and achieve good classification performance. In the exper-
iment, all networks remove the last fully connected layer,
and the VGGI16 and VGGI9 networks also remove the
pooling layer after the convolutional layer (if only the last

Security and Communication Networks

1.00
0.95 +
0.90 +
g
8
o)
[aw
0.85 +
0.80 + -+ -
0.75 1 1 1 1 1 1 1 1 1
© o o — [ko @ =] b
L
= 2 % z £ = £ § Z
< 2 &8 § § =
E ¢ & 2
k=
—m— Acc —A— Recall
—eo— Pre —w— Fl-score

FIGURE 13: The performance of different deep learning networks
trained based on byte-sequence features.

fully connected layer is removed, the performance of mal-
ware classification will be poor). However, this leads to a
high dimension of image features extracted by the VGG16
and VGG19 networks (25088 and 100352, respectively). The
experimental results of ResNet50 and DenseNet201 net-
works are almost the same. In this paper, the ResNet50
network is temporarily selected for extracting byte sequence
level RGB image features.

We extract byte sequence level RGB image features based on
the ResNet50 network. Then, we conduct experiments to
evaluate the performance of different machine learning clas-
sifiers, which are trained based on random forest (RF), mul-
tilayer perceptron (MLP), k-nearest-neighbor (KNN), support
vector machines (SVM), decision tree (DT), and Gaussian
Naive Bayesian (NB) algorithms. Each sample has 2,048 features
that are extracted by the ResNet50 network. In the setting of
each classifier, the K value of the KNN classifier is set to 2, the
SVM uses a linear kernel function, and the remaining classifiers
use the default configuration parameters in SKlearn. The results
are shown in Table 3.

From Table 3, we can see that the performance of the
MLP classifier is relatively poor, which may be due to the
default configuration. The classification performance
could be improved by adjusting the parameters. KNN,
RF, and SVM classifiers achieved relatively better clas-
sification performance, all achieving about 98% classifi-
cation accuracy. In the experiment, the SVM classifier has
the best classification performance, and the classification
accuracy rate can reach 98.87%, but its training time is
relatively long (i.e., about 60s). However, the running
time on the test set is about 4 seconds, and the efficiency is
still relatively high, which proves that it is still suitable for
large-scale malicious code classification.

Security and Communication Networks

TaBLe 3: The performance of byte-sequence-feature-based
classifiers.

Classifier Training time (s) Acc (%) Fl-score (%) AUC

RF 2.64 97.97 97.87 0.9965
KNN 1.53 98.35 98.35 0.9890
MLP 157.90 90.36 88.91 0.9928
SVM 61.90 98.87 98.84 0.9996
DT 14.41 96.47 98.84 0.9559
NB 0.226 96.83 96.97 0.9813

The significance of the bold values given in the table is that, in the ex-
periment, the SVM classifier achieved the best classification performance,
and the classification accuracy rate can reach 98.87%.

4.3.2. The Classification Performance of the Location Infor-
mation RGB Image Features. To evaluate the classification
performance of different deep learning networks, we also
extract malware location information visualization features
based on nine different deep learning networks and then
train the classifier based on the random forest algorithm. In
the setting of each network, all the deep learning networks
use the default configuration parameters in Keras. The
classification performance is shown in Figure 14.

It can be seen that the classification performance of the
classifiers trained based on the location information level
RGB image features is worse than classifiers trained based on
the byte sequence level RGB image features. However, the
classification performance of the classifier trained based on
the features extracted by the DenseNet201, InceptionV3,
Xception, and NasNet networks could still reach 90%.

Inspired by the experiment in the previous section, we
also evaluate the classification performance of the classifier
trained based on these four types of features and the support
vector machine (SVM) algorithm. Among them, the NasNet
network extracts the features based on the linear kernel
function, and the optimal solution cannot be trained. The
performance of the other three classifiers is as follows: the
accuracy of the DenseNet201 network features could reach
95.58%, the accuracy of the InceptionV3 feature could reach
94.67%, and the accuracy of the Xception features could
reach 95.65%. It can be seen that the feature classification
extracted by the Xception deep learning network has the best
performance. Therefore, in this paper, the Xception network
is temporarily selected for extracting location information
level RGB image features.

We extract location information level RGB image fea-
tures based on the Xception network. Then, we also conduct
experiments to evaluate the performance of different ma-
chine learning classifiers. Each sample has 2,048 features that
are extracted by the Xception network. In the setting of each
classifier, the K value of the KNN classifier is set to 2, the
SVM uses a linear kernel function, and the remaining
classifiers use the default configuration parameters in
SKlearn. The results are shown in Table 4.

From Table 4, we can see that the performance of the
classifiers trained based on the location information level
features is poor than the byte-sequence-feature-based
classifiers. Among them, the NB classifier has the worst
performance, and its accuracy is less than 70%. The clas-
sification performance of KNN, RF, and SVM classifiers is

13
0.95
0.90
]
8
o)
(=]
0.85
0.80 1 1 1 1 1 1 1 1
© o) o — o~ -) =} -
— —_ ey > 3] 5}
© o 3 8 T zZz 7z £ Z
Y Q Z L Z o k= oy &
> > % 4z 2 £ B 3 =z
=4 2] 3} 8 O]
IR
2 g ¢ ¢
5
—=— Acc —A— Recall
—e— Pre —¥— Fl-score

FiGure 14: The performance of different deep learning networks
trained based on location-information features.

TaBLE 4: The performance of location-information-feature-based
classifiers.

Classifier Training time (s) Acc (%) Fl-score (%) AUC
RF 1.20 90.88 89.82 0.9843
KNN 1.61 91.91 91.78 0.9632
MLP 134.78 81.25 77.55 0.9835
SVM 67.94 95.65 95.66 0.9989
DT 10.19 86.28 86.35 0.9021
NB 0.10 69.70 68.12 0.9641

still relatively better than the others, all of which have
achieved a classification accuracy of more than 90%. Among
them, the SVM classifier has the best classification perfor-
mance, and the classification accuracy can reach 95.65%. But
in the experiment, the training time of the SVM classifier is
still a bit long, but the running time on the test set is still
about 4 seconds, and it still has practical application value.

4.3.3. The Classification Performance of the Entropy Visu-
alization Features. From the previous experiment, it can be
seen that the classification performance of classifiers trained
based on the features extracted by the ResNet50 network is
all relatively good. Therefore, this paper directly extracts the
entropy visualization features based on the ResNet50 net-
work and conducts experiments to evaluate the performance
of classifiers trained based on different machine learning
algorithms. Each sample has 2,048 features that are extracted
by the ResNet50 network. The setting of each classifier is the
same as the previous experiment. The K value of the KNN
classifier is set to 2, the SVM uses a linear kernel function,
and the remaining classifiers use the default configuration
parameters in SKlearn. The results are shown in Table 5.

14

TaBLE 5: The performance of location-information-feature-based
classifiers.

Classifier Training time (s) Acc (%) Fl-score (%) AUC
RF 2.07 86.56 86.77 0.9935
KNN 1.43 86.00 85.94 0.9828
MLP 91.62 82.79 81.99 0.9917
SVM 144.27 86.71 86.82 0.9957
DT 15.03 84.42 84.35 0.9514
NB 0.21 85.57 85.82 0.9707

From Table 5, we can see that the performance of the
classifiers trained based on the entropy visualization feature
is poor than the previous two feature-based classifiers. The
classification accuracy of each classifier is about 85%, among
which the KNN, RF, and SVM classifiers still have a rela-
tively better classification performance, and the classification
accuracy could reach 86%. The classification performance of
the SVM classifier is still the best, and the classification
accuracy can reach 86.71%. Analyzing the experimental
results, the reason for the decrease in classification accuracy
is mainly due to the poor classification effect for similar
families such as Allaple.L and Allaple.A. However, it has
achieved a better classification performance for the C2LOP.P
and C2LOP.gen!g and Swizzor.gen!j and Swizzor.gen!l
families, which is somewhat different from the classification
effect of the two types of features as mentioned above.

4.4. The Classification Performance of the Combined Features.
Based on visualization technology, this paper extracts three
types of features of malware: byte-sequence features, loca-
tion-information features, and entropy visualization fea-
tures. The length of the three types of features is 2,048. To
evaluate the impact of the three types of features on the
classification and whether the combination of the three types
of features can help improve the experimental performance,
this paper first trains different machine learning classifiers
based on the combined features, with the same parameter
settings as the previous experiment. The classification per-
formance is shown in Table 6.

It can be seen from Table 6 that the classifier based on
combined features performs very well. Except that the pa-
rameter settings of the MLP classifier may have problems,
resulting in its poor classification performance, the other
classifiers all achieved acceptable performance. Among
them, the classification accuracy of the RF, KNN, and SVM
classifiers have reached more than 99%, and the classifica-
tion accuracy of the SVM classifier even could reach 99.73%.
To further compare the classification performance of each
type of feature and the combined feature, this paper con-
ducts more experiments. The result is shown in Table 7.

In Table 7, RGB1 refers to byte-sequence features, RGB2
refers to location information level features, and Ent_gray
refers to entropy grayscale image features. R1, R2, and Ent
are the abbreviations for the three types of features, re-
spectively. From the results, we can see that the classifiers
trained based on three kinds of features all can achieve good
malicious code classification performance, and the

Security and Communication Networks

TaBLE 6: The performance of combined-feature-based classifiers.

Classifier Training time (s) Acc (%) Fl-score (%) AUC
RF 2.36 99.15 99.14 0.9997
KNN 7.25 99.10 99.09 0.9917
MLP 118.56 88.03 85.39 0.9902
SVM 120.02 99.73 99.73 0.9999
DT 26.55 98.13 98.11 0.9765
NB 0.64 98.68 98.68 0.9895

classification accuracy of the classifier trained based on byte
sequence level features can reach 98.865%. Therefore, we
first evaluated the performance of the classifiers based on the
byte-sequence features combined with other two kinds of
features separately and then evaluated the classification
performance based on the combination of three types of
features. From the experimental results, we can see that both
the location information visualization feature and the en-
tropy feature can improve the classification performance.

Moreover, the classification accuracy of the classifier
trained based on the combination of three types of features
has been further improved, and the classification accuracy
can reach 99.732%. It can be seen that the three types of
features all contribute to the final classification performance.
To further evaluate the impact of different features on the
classification performance, this paper compares the classi-
fication performance of different classifiers in each malware
family, and the result is shown in Figure 15.

It can be seen from Figure 15 that among the three types
of features, the classification performance of the byte-se-
quence-feature-based classifier is relatively better, but its
classification performance on C2LOP.P and C2LOP.gen!g
and Swizzor.gen!E and Swizzor.gen!I families is worse than
the other two features. However, the classification perfor-
mance of the combined features is best. Analyzing the
misclassified samples, similar family samples still have
similar characteristics, resulting in relatively low classifica-
tion performance in the Swizzor.gen!I and C2LOP.P fam-
ilies. This issue needs further research in the future. Overall,
this paper solves most of the sample classification confusion
problems of similar families by combining features, and the
application of combined features has better classification
performance and practical value than single features.

4.5. The Classification Performance of Different Image
Formats. The format of the image influences the texture
characteristics of the image. In this section, we conduct
experiments to evaluate the influence of image format. The
malicious code classification method studied in this paper is
developed on the traditional method of extracting image
GIST and other texture features. It is difficult to process
malicious code images of different formats based on the deep
learning network. Therefore, we extract the GIST texture
features of the malicious code images for classification to
evaluate the impact of the changes in the image format on
the malicious code classification performance. In the ex-
periment, the format of malicious code images is set to 8
different formats (original, 3232, 6464, 128 128,

Security and Communication Networks

15

TaBLE 7: The performance of classifiers trained based on different visualization features.

Features Acc (%) Pre (%) Recall (%) Fl-score (%)
RGB1 98.865 98.870 98.864 98.847
RGB2 95.653 95.755 95.655 95.662
Ent_gray 86.712 87.127 86.713 86.821
R1+R2 99.539 99.560 99.539 99.537
R1 +Ent 99.615 99.634 99.614 99.609
R1+R2 + Ent 99.732 99.743 99.733 99.730
1.0 - — Y- ———W— —
'S‘i'/\ .\=/. $— \l . \’/ —g— I\I/I =N
/ °
0.9 — A
[
oo
= 0.8 ®
<
g
< 07 ®
M A
0.6
0.5 - °
R E s g9 XM ®»s 582 4 x a2 92 Z 2 Q9 < g g g
EZ 5 5 5055582322832 8% ¢4 83
e s ®» P P EEPEBRE SES S SE PE R EE S
£ 8 85 & 9 = © 8 v o = E Q9 9 Y g § % 2 5 5 & =
=8 =5 8§ 8 < 33 2= < g 0O ==3 g 5 5 < = S
s ;%3 : T8 = S3°3¢°
A £ = 3
-m- RGB1 -A- Ent
-®- RGB2 -¥- R1+R2 +Ent
FiGUure 15: The performance of different visualization features on each family.
256 * 256, 512 x 512, 1,024 * 1,024, and 2, 048 * 2,048). The
experimental results are shown in Figure 16.
099 L It can be seen from Figure 16 that the uniform and

Percent
(=}
o
[e5]
T

Original

—m— Acc

—e— Pre

32%32

64%64
128%128 |
256256 [
512*512 -

Image standardization

—A— Recall

—w— Fl-score

1024*1024 -

2048*2048 -

FIGURE 16: The performance of different image formats.

standardized formats of malicious code images can improve
the accuracy of malicious code detection. The reason may
be that the sizes of malicious codes in the same family are
different, resulting in different sizes of converted images. In
this way, there are some differences in the extracted image
features, which may cause some confusion in the classifi-
cation of malicious codes in different families. After the
image format is unified, the difference in characteristics of
malicious codes of the same family is reduced, and the
classification performance is improved. At the same time,
as shown in the figure, the classification performance is best
when the malicious code image format is set to
1,024 = 1,024. However, the image format is modified to a
larger size, and the more time it takes to extract image
features. When the image format is set to 256 * 256, the
feature extraction time of the entire dataset is about 1-2
minutes, and when the image is set to 1,024 = 1,024, the
experimental time for extracting GIST texture features is
more than half an hour. Although the classification ac-
curacy has been improved, the efficiency is too low and

16

needs to be improved in practical applications. Therefore,
in our method, we resize all the malware images into a
uniform size, which has improved the classification
performance.

4.6. Compared with Other Malware Classification Methods.
The classification technology based on the malware visu-
alization features is a hot spot in recent research, and there
have been many significant research results. To evaluate the
proposed method, we compare the method with four famous
methods proposed in related research in recent years
(GIST + KNN [3], LBP + KNN [25], GIST + DSIFT + KNN
[6], and VGG16 (fine-tune) [28]) on the malimg dataset. The
experimental results are shown in Table 8. It can be seen that
the method proposed in this paper has the best classification
performance.

Naeem et al. [6] proposed a new method (GIST + DSIFT)
to extract more complex features and improved classification
performance. Besides, Rezende et al. [28] proposed a method
(VGGL6 (fine-tune)) to extract image features based on deep
learning and transfer learning algorithms, achieving a better
performance. These methods partially alleviate the problem of
malicious code confusion in similar families. However, it can
be seen that this paper has achieved the best classification
accuracy based on three types of visualization methods and
almost solved the problem of malware confusion of similar
families in the malimg dataset. However, for the efficiency,
due to the large number of features proposed in this paper, the
running time of the proposed method is a bit longer. The
training time of the experiment is about 120 seconds and the
running time on the test set is about 7 seconds, but it is still
applicable to the actual environment and can be used to detect
large-scale malicious code samples. To sum up, the method
proposed in this paper has achieved a good classification
performance on the malimg dataset, showing its superiority to
the other methods.

All the previous experiments were performed on the
malimg dataset. To further evaluate the performance of the
proposed method, we also conducted experiments to
compare our method with the other four methods on the big
2015 dataset. The experimental results are shown in Table 9.
It can be seen from Table 9 that the method proposed in this
paper still shows the best classification performance. The
training time on the Big2015 dataset is about 195.85 seconds,
and the running time is about 7 seconds. It is still applicable
to the actual environment.

In the experiment, VGG16 (fine-tune) has a better clas-
sification performance than the other three methods, which
proves that the deep learning algorithm can extract better
features in different datasets. The three types of features
proposed in this paper describe the malware samples more
detailed and achieve better classification performance. We
have conducted further research on samples that were mis-
classified by this method. The proposed method only has a
classification accuracy of 88% for Simda family samples, while
the classification accuracy of other families is almost 100%. It
could be found that the proposed method misclassifies some
malware samples of the Simda family into Vundo and

Security and Communication Networks

TaBLE 8: Proposed method compared with other malware classi-
fication methods on the malimg dataset.

Methods Acc (%) Recall (%) F,(%) RT (s)
GIST + KNN [3] 97.28 97.28 96.61 0.423
LBP + KNN [25] 97.87 97.88 97.86 0.052
GIST + DSIFT + RF [6] 98.53 98.53 98.49 0.026
VGG (fine-tune) [28] 98.84 98.84 9882 59.50
Our method 99.73 99.73 99.73 7.625

RT means running time.

TABLE 9: Proposed method compared with other malware classi-
fication methods on the Big2015 dataset.

Methods Acc (%) Recall (%) F, (%) RT (s)
GIST + KNN [3] 94.82 94.81 9475 0.621
LBP + KNN [25] 91.87 91.88 91.87 0.045
GIST + DSIFT + RF [6] 95.09 95.10 95.06 0.004
VGG16 (fine-tune) [28] 97.92 9793 9792 62.59
Our method 99.54 99.53 99.53 7.91

RT means running time.

Obfuscator.ACY families. The misclassified samples have
similar visual features with the samples of the two families,
which leads to the misclassification. In future research, more
in-depth research will be conducted on this issue.

Moreover, to further evaluate the classification perfor-
mance of the proposed method, we deeply compared the
classification performance with the method proposed by Cui
et al. [4] and Rezende et al. [28] on the malimg dataset for
each family. The result is shown in Figure 17. The two
methods proposed by Cui et al. [4] and Rezende et al. [28]
used the raw bytes of malware and deep learning algorithms
to achieve malicious code classification. Cui et al. [4] pointed
out that training the classifier directly based on the deep
learning algorithm and the malimg dataset is not a well
solution, because the samples of some families in the malimg
dataset is not enough for training, resulting in low classi-
fication accuracy. To improve the performance of the
classifier, they fine-tuned the malware samples in the dataset.
and Rezende et al. [28] trained the malware classifier based
on the transfer learning algorithm and also achieved good
classification performance.

The misclassification problem of similar families has
always been a relatively difficult problem to solve in related
research. In the malimg dataset, several methods have not
been able to solve the misclassification problem of Swiz-
zor.gen!E family and Swizzor.gen!I family, C2LOP.P family,
and C2LOP.gen!g family virtually. As shown in Figure 17,
the classification performance of the method proposed by
Cui et al. [4] on the four families is not good. The VGG16
(fine-tune) method [28] achieved a good classification
performance on the C2LOP.P and C2LOP.genlg families,
but the classification accuracy of the samples in the Swiz-
zor.gen!E family and Swizzor.gen!I family still could not
reach 80%. It still fails to solve the problem of sample
confusion between these two families.

Security and Communication Networks

1.0~ R —

54
o
|

Accuracy
j=}
o)
I

17

Adialer.C
Autorun.K
Rbot!gen

C2LOPgen!g
Agent.FYI

Swizzor.gen!l ==

Malex.gen!]
Instantaccess

Lolyda.AA2

o e

[=)} ~

| |
Swizzor.gen!E — —

Dialplatform.B

@]
Z
Z

[VGGl6
] Our method

VB.AT

— A = o = g K
JE B2 Z2TR2 S5t SR
= 0 << B § 2 £ 28 58 4
mE,_l--';::.OQCHCJo..c
= EQ S5 £ 5 £ 2= 2 4 =
< £ 0 % %§ § 3§ 5 < =S
iz S S % ¥ 2 A =
= O R | 535
o

FIGURE 17: Comparison with other methods on each malware family.

However, the proposed method has achieved good
classification performance in all these four families, and the
classification accuracy of each family could reach 90%. The
experimental results further prove that the proposed method
has a better classification performance than other methods,
especially for some similar family samples, which can
achieve higher classification accuracy.

5. Limitation and Discussion

In this paper, a ten-fold cross-validation experiment is
performed on the experimental dataset. From the experi-
mental results, the proposed method can achieve better
malware classification performance. There are two main
reasons why our method can achieve better classification
performance. The first reason is that we use different deep
networks. After a large number of experiments, these new
types of deep learning networks can achieve better perfor-
mance based on these three types of features. The second
reason is that we have proposed new malicious code features.
Based on the related research, we adopted a variety of
malicious code data representation methods and extracted a
variety of features, including RGB and entropy features.
These features can more accurately describe the malicious
code to help achieve a better classification performance. For
the entropy features, the entropy visualization method
proposed in this paper could improve the final classification
performance. However, the classification performance of the
entropy feature classifier still needs to be improved. In future
work, it is necessary to apply more methods to achieve
higher classification performance. Besides, the proposed
method extracts the features mainly based on the raw byte of
malicious code, and it still has some limitations. In future
research, the proposed method can be used combined with
different kinds of methods to solve various problems en-
countered in practical applications.

The combination of these three types of features effec-
tively improves the performance of malicious code

classification, and the selection of different deep learning
networks further improves the classification performance.
However, how to quickly find the relatively optimal deep
learning network according to the characteristics of the
dataset is indeed worthy of in-depth study. In future work,
we will conduct further research on the settings of the deep
network and image format to propose new malicious code
classification methods.

6. Conclusions and Future Work

This paper proposed a new malware classification method
based on multiple visualization features and the transfer
algorithm. First, the raw byte of malware is converted into
byte sequence RGB image, location information RGB
image, and entropy grayscale image, respectively. Then,
three types of features are extracted based on difterent deep
learning networks. Finally, the three types of features are
combined to train a classifier. We implement the method
and evaluate it on two custom datasets with a total of more
than 20,000 samples provided by the Malware Research Lab
and Microsoft Research. The experimental results show
that the proposed method can effectively facilitate us in
distinguishing malware variants of similar families, and the
values of classification accuracy on the two datasets all
could reach 99.5%, showing its superiority over other
methods. Moreover, this paper also proves that we could
solve the misclassification problem of malware samples
from similar families based on visual features. The visual
characteristics of malware are of great significance to
further improve the performance of malware classification
in the future.

In future work, we would further explore the entropy
feature extraction method and propose better malicious
code classification methods. Besides, with the rapid devel-
opment of deep learning algorithms and natural language
processing algorithms, we would conduct in-depth research

18

on how to improve the classification performance based on
new algorithms.

Data Availability

The malware samples used to support the finding of this
study are available at DOI: 10.1145/2016904.2016908 and
BIG 2015 (available at https://ww.kaggle.com/c/malware-
classification). These prior studies (and datasets) are cited
at relevant places within the text as references [3, 43].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are very thankful to Zhi-hao Yan, Zhi-jie Xie,
Xuan-zhen Guo, Hang Zhou, Rui-peng Wang, and Yuan-
chao Chen for their help in the preparation of experiment
and paper review. This research was funded by the Labo-
ratory of Network Security, College of Electronic Engi-
neering, National University of Defense Technology, Anhui
Province Key Laboratory of Cyberspace Security Situation
Awareness and Evaluation, Hefei 230037, China, and the
Natural Science Foundation of Anhui Provincial (grant
number 1908085QF291).

References

[1] SYMANTEG, “Internet security threat report,” May 2020, https://
www.broadcom.com/support/security-center/publications/
threat-report.

[2] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine
learning techniques for malware analysis,” Computers & Se-
curity, vol. 81, pp. 123-147, 2019.

[3] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath,
“Malware images: visualization and automatic classification,”
in Proceedings of the 8th International Symposium on Visu-
alization for Cyber Security, pp. 1-7, Pittsburgh, PA, USA, July
2011.

[4] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-g. Wang, and J. Chen,
“Detection of malicious code variants based on deep learn-
ing,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 7, pp. 3187-3196, 2018.

[5] L. Nataraj, V. Yegneswaran, P. Porras, and J. Zhang, “A
comparative assessment of malware classification using binary
texture analysis and dynamic analysis,” in Proceedings of the
4th ACM Workshop on Security and Artificial Intelligence,
pp. 21-30, Chicago, IL, USA, October 2011.

[6] H. Naeem, B. Guo, M. R. Naeem, F. Ullah, H. Aldabbas, and
M. S. Javed, “Identification of malicious code variants based
on image visualization,” Computers & Electrical Engineering,
vol. 76, pp. 225-237, 2019.

[7] Z. Tang, P. Wang, and J. Wang, “Convprotonet: deep pro-
totype induction towards better class representation for few-
shot malware classification,” Applied Sciences, vol. 10, no. 8,
p. 2847, 2020.

[8] M. Wojnowicz, G. Chisholm, M. Wolff, and X. Zhao,
“Wavelet decomposition of software entropy reveals symp-
toms of malicious code,” Journal of Innovation in Digital
Ecosystems, vol. 3, no. 2, pp. 130-140, 2016.

Security and Communication Networks

[9] M. Bat-Erdene, H. Park, H. Li, H. Lee, and M.-S. Choi,
“Entropy analysis to classify unknown packing algorithms for
malware detection,” International Journal of Information
Security, vol. 16, no. 3, pp. 227-248, 2017.

[10] L. Liu, X. He, L. Liu, L. Qing, Y. Fang, and J. Liu, “Capturing
the symptoms of malicious code in electronic documents by
file’s entropy signal combined with machine learning,” Ap-
plied Soft Computing, vol. 82, Article ID 105598, 2019.

[11] G. Canfora, F. Mercaldo, and C. A. Visaggio, “An hmm and
structural entropy based detector for android malware: an
empirical study,” Computers & Security, vol. 61, pp. 1-18,
2016.

[12] S. S. W. Piyanuntcharatsr, S. Adulkasem, and C. Chantrapornchai,
“On the comparison of malware detection methods using data mining
with two feature sets,” International Journal of Security and Its Ap-
Plications, vol. 9, no. 3, pp. 293-318, 2015.

[13] Z. Feng, S. Xiong, D. Cao et al., “A hybrid framework for
malware detection,” in Proceedings of the 2015 ACM Inter-
national Workshop on International Workshop on Security
and Privacy Analytics, pp. 19-26, San Antonio, TX, USA,
March 2015.

[14] E. Raff and C. Nicholas, “An alternative to ncd for large
sequences, lempel-ziv jaccard distance,” in Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1007-1015, Halifax, Canada,
August 2017.

[15] D. Kong and G. Yan, “Discriminant malware distance
learning on structural information for automated malware
classification,” in Proceedings of the 19th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, pp. 1357-1365, Chicago, IL, USA, August 2013.

[16] J. Upchurch and X. Zhou, “Variant: a malware similarity
testing framework,” in Proceedings of the 2015 10th Inter-
national Conference on Malicious and Unwanted Software
(MALWARE), pp. 31-39, IEEE, Fajardo, PR, USA, October
2015.

[17] N.Kawaguchiand K. Omote, “Malware function classification
using apis in initial behavior,” in Proceedings of the 2015 10th
Asia Joint Conference on Information Security, pp. 138-144,
IEEE, Kaohsiung City, Taiwan, May 2015.

[18] P. Vadrevu and R. Perdisci, “Maxs: scaling malware execution
with sequential multi-hypothesis testing,” in Proceedings of
the 11th ACM on Asia Conference on Computer and Com-
munications Security, pp. 771-782, Xi’an, China, May-June
2016.

[19] H. Kim, J. Kim, Y. Kim, I. Kim, K. J. Kim, and H. Kim,
“Improvement of malware detection and classification using
api call sequence alignment and visualization,” Cluster
Computing, vol. 22, no. 1, pp. 921-929, 2019.

[20] Y. Dai, H. Li, Y. Qian, R. Yang, and M. Zheng, “Smash: a
malware detection method based on multi-feature ensemble
learning,” IEEE Access, vol. 7, pp. 112 588-112597, 2019.

[21] C.-T. Lin, N.-J. Wang, H. Xiao, and C. Eckert, “Feature se-
lection and extraction for malware classification,” Journal of
Information Science and Engineering, vol. 31, no. 3, pp. 965-
992, 2015.

[22] K.Kosmidis and C. Kalloniatis, “Machine learning and images
for malware detection and clxassification,” in Proceedings of
the 2Ist Pan-Hellenic Conference on Informatics, pp. 1-6,
Larissa Greece, September 2017.

[23] H. Naeem, B. Guo, F. Ullah, and M. R. Naeem, “A cross-
platform malware variant classification based on image
representation,” KSII Transactions on Internet & Information
Systems, vol. 13, no. 7, 2019.

https://ww.kaggle.com/c/malware-classification
https://ww.kaggle.com/c/malware-classification
https://www.broadcom.com/support/security-center/publications/threat-report
https://www.broadcom.com/support/security-center/publications/threat-report
https://www.broadcom.com/support/security-center/publications/threat-report

Security and Communication Networks

[24] B. Xiaofang, C. Li, H. Weihua, and W. Qu, “Malware variant
detection using similarity search over content fingerprint,” in
Proceedings of the the 26th Chinese Control and Decision
Conference (2014 CCDC), pp. 5334-5339, IEEE, Changsha,
China, May-June 2014.

[25] H.Hashemi and A. Hamzeh, “Visual malware detection using
local malicious pattern,” Journal of Computer Virology and
Hacking Techniques, vol. 15, no. 1, pp. 1-14, 2019.

[26] J. Zhang, Z. Qin, H. Yin, L. Ou, S. Xiao, and Y. Hu, “Malware
variant detection using opcode image recognition with small
training sets,” in Proceedings of the 2016 25th International
Conference on Computer Communication and Networks
(ICCCN), pp. 1-9, IEEE, Waikoloa, HI, USA, August 2016.

[27] K. Han, B. Kang, and E. G. Im, “Malware analysis using vi-
sualized image matrices,” The Scientific World Journal,
vol. 2014, p. 15, Article ID 132713, 2014.

[28] E.Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos,
and P. de Geus, “Malicious software classification using vggl6
deep neural network’s bottleneck features,” in Information
Technology-New Generations, pp. 51-59, Springer, Berlin,
Germany, 2018.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 770-778, Las

Vegas, NV, USA, June 2016.

F. Chollet, “Xception: deep learning with depthwise separable

convolutions,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1251-1258,

Honolulu, HI, USA, July 2017.

[31] C. Szegedy, W. Liu, Y. Jia et al., “Going deeper with con-
volutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-9, Boston, MA, USA,
June 2015.

[32] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,”
2015, https://arxiv.org/abs/1502.03167.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2818-2826, Las Vegas, NV, USA,
June-July 2016.

[34] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections
on learning,” 2016, https://arxiv.org/abs/1602.07261.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” 2014, https://
arxiv.org/abs/1409.1556.

[36] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Trans-
actions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.

[37] S. Hochreiter, “Untersuchungen zu dynamischen neuronalen
netzen,” Diploma, Technische Universitit Miinchen, vol. 91,
no. 1, 1991.

[38] H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and
C. Schmid, “Aggregating local image descriptors into compact
codes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 9, pp. 1704-1716, 2011.

[39] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings
of the Thirteenth International Conference on Artificial In-
telligence and Statistics, pp. 249-256, Sardinia, Italy, May
2010.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: surpassing human-level performance on imagenet

(30

[41]

(42]

(43]

19

classification,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 1026-1034, Santiago,
Chile, December 2015.

K. He and J. Sun, “Convolutional neural networks at con-
strained time cost,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5353-5360,
Boston, MA, USA, June 2015.

V. Nair and G. E. Hinton, “Rectified linear units improve
restricted Boltzmann machines,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
Haifa, Israel, June 2010.

Microsoft, “Microsoft malware classification challenge (big
2015),” June 2020, https://www.kaggle.com/c/malware-
classification.

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/malware-classification

