
Research Article
A Dynamic Searchable Symmetric Encryption Scheme for
Multiuser with Forward and Backward Security

Xi Zhang,1 Ye Su ,1 and Jing Qin 1,2

1School of Mathematics, Shandong University, Jinan 250100, China
2State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

Correspondence should be addressed to Jing Qin; qinjing@sdu.edu.cn

Received 30 June 2020; Revised 23 August 2020; Accepted 24 September 2020; Published 20 October 2020

Academic Editor: A. Peinado

Copyright © 2020 Xi Zhang et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dynamic Searchable Symmetric Encryption for Multiuser (M-DSSE) is an advanced form of symmetric encryption. It extends the
traditional symmetric encryption to support the operations of adding and deleting the encrypted data and allow an authenticated
group of data users to retrieve their respective desired encrypted data in the dynamic database. However, M-DSSE would suffer
from the privacy concerns regarding forward and backward security. )e former allows an attacker to identify the keywords
contained in the added data by lunching file-injection attacks, while the latter allows to utilize the search results and the deleted
data to learn the content. To our knowledge, these privacy concerns for M-DSSE have not been fully considered in the existing
literatures. Taking account of this fact, we focus on the dynamic searchable symmetric encryption for multiuser meeting the needs
of forward and backward security. In order to propose a concrete scheme, the primitives of Pseudorandom Functions (PRF) and
the Homomorphic Message Authenticator (HMAC) are employed to construct the inverted index and update the search token.
)e proposed scheme is proven secure in the random model. And the performance analysis shows that the proposed scheme
achieves the enhanced security guarantees at the reasonable price of efficiency.

1. Introduction

Searchable encryption (SE) is popular among the various
cloud storage services because one can keep the ability to
selectively retrieve the encrypted data that he or she stored on
the cloud. And there are many traditional works [1–5] fo-
cusing on it. However, the traditional works cannot meet the
using needs or habits of the clients. It is because frequently
clients upload some new data and delete or modify some
encrypted data in cloud andmany clients often share data with
others. For example, a regional medical center needs to update
the local Electronic Health Records (EHRs) [6] periodically
and share them with other medical institutions to conduct
advanced research. )is means that the regional medical
center should have the ability of updating the encrypted data
and authorizing others to search over his data storage in cloud.

To address it, some dynamic searchable encryption
schemes [7–11] have been proposed to support data updates.

)ese works are designed for the single client that means
only the client itself can search on the cloud and cannot meet
the requirement to share data. Data sharing is widely used by
both individuals and organizations, and we introduce two
forms here: one is multiwriter/multireader and the other is
single writer/multireader. For ease of exposition, we call the
client who owns data the data owner and the clients who
share the data the data user. )e former means many data
owners and many data users, and there have been efforts to
design schemes for fine-grained keyword search [12, 13],
privacy-preserving attribute-based keyword search [14], and
rank keyword search in arbitrary language [15]. )e latter
means only one data owner and many data users who are
especially popular among companies, schools, and medical
institutions. It was named as dynamic searchable symmetric
encryption for multiuser (M-DSSE), which was also called
multiclient in [16], and it is the topic that we are interested
in.
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However, M-DSSE suffers from the privacy concerns
regarding forward and backward security. )e former is that
the adversary can use the file-injection attacks to compro-
mise the privacy of the data and keywords. )is attack was
proposed by Zhang et al. [17] in 2016. More specifically, one
can inject the carefully selected files and trick the client into
encrypting them, then identify the keyword by matching the
submitted search tokens and injected files, and consequently
get all files containing this keyword. )is behavior seriously
undermines the privacy of data, for example, the disclosure
of the patient’s identity information or home address in
EHRs that should be kept private. )e latter means that, in
most searchable encryption schemes, the identifier of the
deleted document still can be retrieved by the server in the
subsequent search. )en when the regional medical center
deletes some EHRs, not only the privacy of the patients will
be disclosed, but also the accuracy of the advanced research
will be affected.

Both attacks are simple but destructive. )erefore,
M-DSSE needs stronger security from a practical and safe
point of view, that is, Dynamic Searchable Symmetric En-
cryption for Multiuser with Forward and Backward Security
(FBM-DSSE). Although there are many works concentrating
on the dynamic symmetric searchable encryption schemes
with forward and backward security (FB-DSSE) [18–22],
most of them cannot be extended to FBM-DSSE directly. On
the one hand, if the method used in FB-DSSE is extended to
FBM-DSSE directly, the data owner may need to share the
whole key with all users. And users can do more rather than
search only. Specifically, users can change client’s data
without restrictions and destroy data's integrity and privacy.
On the other hand, the existing FB-DSSE schemes adopt some
special structures to achieve forward and backward security,
which is not suitable to extend to multiuser setting. For
example, Li et al. [23] reduce information leakage in SSE by
partitioning the inverted index into disjoint partitions and
generating subkeyword sets. When searching, the data owner
chooses subkeyword according to his own needs and the
server needs to delete all the touched blocks after each search.
)is search method is complex for users in M-DSSE and may
get incomplete search results due to untimely updates.
)erefore, it is not feasible to directly implement the methods
of FB-DSSE in FBM-DSSE, and it is still a problem that how
to achieve forward and backward security in M-DSSE.

Considering the serious consequences that these security
issues may bring and the inflexibility of the methods from
FB-DSSE to FBM-DSSE, we believe that solving security
problems in FBM-DSSE is of great practical significance.
Taking account of it, we focus on the Dynamic Searchable
Symmetric encryption schemes supporting multiuser with
Forward and Backward Security. In order to achieve this it,
we give a concrete FBM-DSSE scheme based on the Pseu-
dorandom Functions (PRF), the Homomorphic Message
Authenticator (HMAC) [24], and the bitmap index [25, 26].

Our contributions are summarized as follows:

)e proposed scheme is forward and backward secure.
We combine the homomorphic MAC and the bitmap
index to achieve secure and efficient updates of the

search token and use PRF to hide the specific corre-
spondence between files and indexes to protect the
update information from being leaked. Specifically, we
use pseudorandom functions to reorder files and the
keywords in index and the server could not identify the
specific relationship between them so that it could not
get any private information except the current search
results.
)e proposed scheme has rich functionality. It is ob-
vious that the proposed scheme supports update op-
erations and multiuser setting. It also supports
verifiability and can realize revocation of the user’s
access permission. Specifically, if the data owner wants
to cancel someone’s access right to the updated file but
retain the permission for the previously searched file,
he or she is not needed to send the updated search
token to the user. Furthermore, our scheme is easily
extended to support multifunctional search such as
wildcard search [27], similarity search (including
hamming distance and edit distance), fuzzy keyword
search [28], and disjunctive [29] (or conjunctive [30])
keyword search.
)e proposed scheme has a comprehensive security
analysis. We give the correctness of the scheme and the
rigorous security proof of forward and backward se-
curity according to the definitions in DSSE. And the
security of the proposed scheme can be reduced to the
existence of pseudorandom functions and the CPA-
secure symmetric encryption system, which provides a
concrete implementation favorable guarantee.

)e paper is organized as follows. Section 1 is the in-
troduction. Section 2 introduces the related work. Crypto-
graphic tools and notations are introduced in Section 3.
Section 4 presents the systemmodel, security model, and the
definition of the forward security and the backward security.
Section 5 mainly introduces the proposed scheme and the
security analysis. Section 6 shows simply how the proposed
scheme can be extended to support multifunctional search.
Section 7 gives the experiment result and its analyses. At last,
the paper is concluded in Section 8.

2. Related Works

Searchable encryption (SE) is popular among various cloud
storage services because it protects plaintext information
from being leaked to the compromised server while pre-
serving the search functionality. )ere are two areas in SE:
public key encryption with keyword search (PEKS) [2–5]
and searchable symmetric encryption (SSE). In our work, we
mainly talk about the SSE.

)e first symmetric searchable encryption (SSE) was
proposed by Song et al. [1] in 2000. )ey proposed a special
two-layer encryption scheme. Because this scheme needs to
scan the file, the searching time is linear to the length of the
files. )e followed work is that of Curtmola et al. [31]. )ey
constructed the first inverted index and achieved that the
amount of the server’s work is proportional to the number of
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files containing the queried keyword. )ere are also many
SSE schemes concentrating on rich queries [32–34]. How-
ever, those works mainly focused on searchable encryption
under static conditions, that is, there is no update of files.
Due to the universality of dynamic operation, it is important
and necessary to migrate it to the cloud services. )erefore,
the dynamic searchable encryption (DSSE) is more in line
with the practical situation.

In 2012, Kamara et al. [7] constructed a DSSE scheme
based on the inverted index technique and achieved sublinear
search complexity and CKA2-secure. And then they [8]
constructed another dynamic searchable encryption scheme
based on the red-black tree index and achieved parallel search
of keywords and parallel addition and deletion of files. )ere
are others scheme including Naveed et al. [9] based on the
blind storage, Xia et al. [10] based on the tree-based index, and
Guo et al. [11] based on the inverted index. At the same time,
DSSE schemes leak some information such as search pattern
(the pattern in search queries), size pattern [18] (the number
of search results), and access pattern (how the encrypted data
or indexes are accessed). )ese attracted people’s attention.
Zhang et al. [17] proposed a file-injection attack in 2016, and
the attacker can determine the keywords corresponding to the
token by injecting files containing different keywords. )e
effective attack calls for the stronger security of DSSE. )e
trivial way of downloading and then decrypting the full
encrypted files to obtain the needed files contradicts the
purpose of search encryption. )e ways of using secure two-
party computation, fully homomorphic encryption, and
oblivious RAM to realize the higher level of security waste
more local storage space and acquire high computational and
communication complexity. Both of them are very expensive
and impractical.

In 2014, the term of forward privacy and backward
privacy was first proposed by Stefanov et al. [18], and it is the
new secure goal that dynamic searchable encryption
schemes should meet in the practical level. Since 2014, some
schemes have been proposed to achieve it using different
methods, including but not limited to Stefanov et al.[18]
based on a hierarchical structure of logarithmic levels; Bost
[19] based on trapdoor permutations, and then they pro-
posed a forward and backward scheme relying on primitives
such as constrained pseudorandom functions and punc-
turable encryption schemes[35]; Wang et al.[20] based on
the proxy server; Sun et al.[21] based on the symmetric
puncture encryption primitive; and Kim et al.[22] based on
dual dictionary.

As for the DSSE for multiusers, some works have been
carried out. As for multiwriter/multireader, Nair and
Rajasree [13] used a bilinear accumulator to implement a
fine-grained multiuser solution for search control and access
control; Popa and Zeldovich [36] proposed a method for
encrypting different files with different keys. As for single
writer/multireader, Curtmola et al. [31] proposed the first
scheme structure based on broadcast encryption;Wang et al.
[20] proposed a multiuser forward secure dynamic
searchable symmetric encryption in 2018; Jarecki et al. [37]
used the forgotten PRF to generate keyword trapdoors.
However, the research on the Dynamic Searchable

Symmetric Encryption for multiusers with Forward and
Backward Security (FBM-DSSE) is not enough.

3. Cryptographic Tools and Notions

3.1. Cryptographic Tools

3.1.1. Pseudorandom Functions. )ere are security param-
eter λ and κ polynomial in λ.)ere are key spaceK � 0, 1{ }κ,
domain D, and output space R. Let F: K × D⟶R be a
keyed function. We define

AdvPRFA,F(λ) � Pr A
FK(·) 1λ􏼐 􏼑 � 1: K⟵K􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

− Pr A
ϕ(·)

(y) � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌,

(1)

as the advantage of the adversary A against the pseudor-
andomness of F, where K is a random element in key space
and ϕ: D⟶R is chosen in all functions from D to R. If
for any PPT adversary A, the advantage AdvPRFA,F(λ) is a
negligible function; then, we say that F is a negligible
function.

3.1.2. Homomorphic MAC. In this paper, we will use a
construction of a homomorphic message authenticator
scheme (HMAC) allowing for homomorphic evaluation and
arbitrary composition (i.e., outputs of previously authenti-
cated computations can be used as inputs for new ones). )e
scheme is simple and efficient and its security relies only on a
pseudorandom function.

A HMAC is 4-tuple of algorithms working as follows:
Setup: 1λ⟶ (sk, ek). For a security parameter 1λ, the
algorithm outputs the secret key sk and evaluation key
ek needed in the scheme.
Auth: (sk, τ, m)⟶ σ. )is algorithm inputs the secret
key sk, a label τ, and a message m ∈M, and it outputs
the corresponding tag σ.
Ver: (sk, m, P, σ)⟶ 0 or 1. )is algorithm inputs
the secret key sk, a program P � (f, τ1, . . . , τn), a
message m, and its tag σ, and it outputs 0 (reject) or 1
(accept).
Eval: (ek, f, σ1, . . . , σn)⟶ σ. )is algorithm inputs
the evaluation key sk, a circuit f: Mn⟶M, and
σ1, ..., σn, and it outputs a new tag σ.
We restrict that the arithmetic circuits f used in the
proposed scheme only has the additive gates, so the size
of the produced tags will not grow. )e concrete de-
scription of the HMAC scheme is shown in [24].

3.1.3. Symmetric Encryption. A symmetric encryption
consists of the following algorithms:

Gen: 1λ⟶ sk. For a security parameter 1λ, the al-
gorithm outputs the secret key sk needed in the scheme.
Enc: (sk, m)⟶ c. )is algorithm inputs the secret key
sk and a message m ∈M, and it outputs the
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corresponding ciphertext c. Since Enc may be ran-
domized, we write this as c⟵Encsk(m).
Dec: (sk, c ).)is algorithm inputs the secret key sk and
ciphertext c, and it outputs m or⊥. We assume that Dec
is deterministic, and so write m: � Decsk(c).
CPA-Secure: there is a symmetric encryption
Π � (Gen,Enc,Dec), and the IND-CPA experiment is
shown below.

PrivkCPAA,Π(n):

(1) k⟵Gen(1n).
(2) Send 1n to adversary A, and A can ask the random

oracle c⟵Encsk(m). At last, A outputs m0, m1,
where |m0| � |m1|.

(3) b⟵ R 0, 1{ }, c⟵Encsk(mb) and send it to A,
where c is named to the challenge ciphertext.

(4) A continues to ask the random oracle
c⟵Encsk(m) and outputs a bit b′.

(5) If b′ � b, then PrivkCPAA,Π(n) � 1, otherwise
PrivkCPAA,Π(n) � 0.

Definition 1. A symmetric encryption Π � Gen,Enc,Dec{ }

is CPA-Secure only if for all Probability Polynomial ad-
versary A, and there exists a negligible function negl:

Pr PrivkCPAA,Π(n) � 1􏽨 􏽩≤
1
2

+ negl(n). (2)

3.2. Notations. We show some notations used in the pro-
posed scheme in Table 1.

4. System Model and Security Model

4.1. SystemModel and SecurityModel. As shown in Figure 1,
the system model consists of three entities: the data owner,
data users, and the cloud server.

4.1.1. Data Owner. )e data owner extracts the keywords
from files and constructs the plain index. )en, he encrypts
all files and the index with different private keys and uploads
the encrypted EDB to the cloud server. Besides that, he is also
responsible for managing users and updating files. More
specifically, he distributes keys, updates tokens to users, and
sends the updated encrypted files and index to the cloud
server. And the data owner is assumed to be always trusted.

4.1.2. Cloud Server. )e main job of the cloud server is to
store the encrypted files and index from data owner and
perform searches for data users. When receiving the updated
information from the data owner, it updates the encrypted
database. Upon receiving the search requests from data
users, it performs search operation over the index and
returns the search results to data users. )e cloud server is
regarded as an honest but curious entity. )at is to say, it
performs algorithms honestly but will try its best to get more

valuable information. Besides, the cloud server may return
invalid or nonupdated search results to the data user because
of computation mistakes.

4.1.3. Data Users. Data users are authorized and shared with
some keys needed in the scheme by the data owner. When
they want to search files containing the interested keyword,
they send the search token to cloud server and receive the
search results. Furthermore, they can verify the validity of
the results with the help of the data owner.)e data users are
assumed to be always trusted.

4.2. Security Model. We use two games DSSEREALΓA(1λ)
and DSSEIDEALΓA,S(1λ) to show the security definition of
DSSE. )e DSSEREALΓA(1λ) is the same as the DSSE. And
the DSSEIDEALΓA,S(1λ) is conducted by simulator S with
the leakage of DSSE. )e leakage of DSSE is parameterized
by a functionL � (LStp,LSrch,LUpdt), which describes the
information leaked to the adversaryA. )e adversaryA will
interact with DSSEREALΓA(1λ) or DSSEIDEALΓA,S(1λ) and
guess. If the adversary A can correctly guess the game he
interacts only with a negligible advantage, then we can say
the DSSE is secure because of the leaked information limited
to the leakage function L.

DSSEREALΓA(1λ): the adversary A chooses a database
DB and inputs it, then this game performs the
Setup(1λ,DB) and outputs EDB. During the search
phase, the adversary A runs search query q or update
query (op, in), where op is the operation and the in is
the identifier of the file. )e game outputs the search
results by performing Search(q) or Update(op, in).
Eventually, A outputs a bit.
DSSEIDEALΓA,S(1λ): the adversary A chooses a data-
base DB and inputs it; then, the simulator S performs
the LStp(1λ,DB) and outputs EDB. During the search
phase, the adversary A runs search query q or update
query (op, in). )e simulator S outputs the search
results by performing the leakage functionLSrch(q) or
LUpdt(op, in). Eventually, A outputs a bit.

Definition 2. ADSSE scheme ΓisL -adaptively secure only if
for every PPT adversaryA, and there exists an efficient
simulator S and a negligible function negl such that

P DSSEREALΓA 1λ􏼐 􏼑 � 1􏽨 􏽩 − Pr DSSEIDEALΓA,S 1λ􏼐 􏼑 � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ negl 1λ􏼐 􏼑.

(3)

4.3. Forward and Backward Security. In 2016, Bost [19]
defined the traditional forward privacy that the server
cannot link the newly updated files with previously searched
keywords. And in Li et al.’s work [23], they further defined
the forward update privacy, strong forward search privacy,
and weak forward search privacy. )e forward update
privacy requires that the information leaked in update
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operation should not be more than the identifier and the
number of keywords of newly updated files. And the strong
forward search privacy implies fully oblivious search op-
eration, which is a too strong notion to achieve unless using
the expensive protocols such as ORAM or PIR. )e weak
forward search privacy means the leaked information is the
list of files containing the keyword w at the time t. Our
scheme can achieve forward update privacy and weak for-
ward search privacy, but for the consistent withmost studies,
we adopt the traditional forward privacy which is defined as
follows.

Definition 3. A L -adaptively secure DSSE scheme Γ is
forward secure if the update leakage function LUpdt can be
written as

L
Updt

(op, in) � L′ op, indi, μi( 􏼁( 􏼁, (4)

where (indi, μi) is the set of modified documents paired with
number μi of modified keywords for the updated document
indi. Specially, the leakage function LUpdt

(op, w, bs) � L′(bs) in this paper.
In 2014, the term of backward privacy was first proposed

by Stefanov et al. [18], and it was clearly defined by Bost et al.
[35] in 2017. )ey defined three backward privacy from
Type − I to Type − III, and Zuo et al. [26] formulated the
most secure definition Type − I− in 2019. Our construction
will adopt the latter, which is defined as follows.

Definition 4. A L -adaptively secure DSSE scheme Γ is
Type − I− backward private only if the search and update
leakage function LSrch andLUpdt can be written as

L
Updt

(op, w, ind) � L′(op), L
Srch

(w)

� L″(sp(w), rp(w),Time(w)),
(5)

where t is a timestamp, sp(w) � t : (t, w) ∈ Q is a search
pattern, rp(w) � bs represents all file identifiers that cur-
rently match w, and L′ and L′′ are stateless.

5. The Proposed Scheme

5.1. Overview. We mainly consider how to achieve forward
and backward security when the cloud server is semihonest
and the users are honest (the collusion between the cloud
server and the user is not considered here). In order to
achieve such a security goal, we use a pseudorandom
function to shuffle the order of files so that the cloud server
cannot identify the specific relationship between the index

Table 1: Notations (used in our scheme).

Notation Description
P1 A secure keyed PRF used to generate the key for HMAC.Auth algorithm
P2 A secure keyed PRF used to generate the key for HMAC.Eval algorithm
R{ } A secure PRF family used to generate the file’s column

l Maximum number of files corresponding to security parameters
H A secure keyed PRF used to generate the key of column
H1 A secure PRF used to generate the keyword’s hash
Q{ } A secure PRF family used to generate the row order of keywords

W )e set of keywords extracted from the file
F )e set of files
c To column c of the index 1≤ c≤ l

kc )e key corresponding to column c of the index
Cc )e ciphertext of the file corresponding to the cth column of the index
CF )e ciphertext of the set of the files F

CFt )e ciphertext of the set of the files F at time t

αt
i Plaintext of row i of index at time t

τ )e input label of HMAC
F′ )e file set that does not update
ft

c At time t, the plaintext of the file corresponding to column c of index
ΔF ΔF � f, op(f)􏼈 􏼉

ΔW ΔW � w, op(w)􏼈 􏼉

Cloud server

Data owner
Users 

Authorize 

Search 

Results 

Upload/
update data 

Download
data

Figure 1: Architecture of our scheme.
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and the files from the search results and cannot get any
private information.

First, it is necessary to ensure that the search token of the
keywords will be changed after the update; otherwise, the
cloud server will learn whether the newly updated docu-
ments match a previously searched keyword or not. Here, in
order to reduce the computational complexity of the index
update and facilitate the user to update the search token, we
adopt the HMAC technology. )e plain index is regarded as
the message m and HMAC.Auth(m) is regarded as the
symmetric key of the encrypted m. In this case, the data
owner only needs to send HMAC.Auth(Δm) to the user and
the user invokes the HMAC.Eval algorithm to get the latest
key, which can be used to generate a search token.

Second, in order to not let the cloud server obtain the
specific relationship between the index and the files, we
assign a key to each column. When an update occurs, we use
PRF to reorder the columns corresponding to the files and
re-encrypt those files with the new key. It can be seen that
our scheme is more suitable for scenarios where the ratio of
file updated is relatively large.

)ird, there will still be cases where the file has not been
updated and the relationship with the column of the index
has not changed. )e adversary cannot distinguish them
because the index has been updated with the CPA-secure
symmetric encryption scheme.

5.1.1. =e Bitmap Index. In this article, we use the bitmap
index which is an inverted index with O(1) search time.
Specifically, we first extract keywords from the files. )e
bitmap index is a matrix of 0 and 1. )e columns of the
matrix correspond to different files. )e rows of the matrix
correspond to the keywords. If the number of the ith row
and the jth column of the matrix is 1, it means that the
keyword is included in the file, otherwise vice versa. )e
advantage of the bitmap is that it can easily implement the
update of the index.

Take a simple example for simplicity, and there are 5 files
at time t.)e index of the keyword w corresponding to the ith
row is represented by a binary string 01001, which indicates
that the files corresponding to the 2nd and 5th column
contain w. At time t + 1, the index of w is updated and
become 01100, which means that the files corresponding to
columns 2 and 3 now contain w, and the file corresponding to
column 5 does not containw anymore. In order to update the
index and search token, the data owner only needs to change
the index from 01100 to 01001, which is an easy operation.

5.1.2. =e Homomorphic Message Authenticator. When data
updates, the data owner needs to update the search token and
send it to data users otherwise they cannot search on cloud
any more. In order to explain clearly and simplicity, we still
use the above example. )e data owner updates the search
token by calculating 01100 − 01001and sends the
HMAC.Auth(01100 − 01001) to data users. )en, users ex-
ecute HMAC.Eval and get the new search token. Since only
the data users have the evaluation key, the interaction does
not need the secret channel. Furthermore, the

communication overhead is only a HMAC tag which effi-
ciently reduces the transmission complexity and the whole
process is simple.

5.1.3. =e Pseudorandom Functions. )e Pseudorandom
Functions is mainly used to generate the bitmap index. For
example, there are 5 files f1, f2, f3, f4, f5 and 3 keywords
w1, w2, w3. And in time t, the files aremapped to (3, 4, 5, 1, 2)

and the keywords to (3, 1, 2) by pseudorandom functions.
)e former means the first column of index indicates f3, the
second one is f4, and so on. )e latter shows the first row of
index indicates w3, the second one is w1, and the last is w2.

5.2. Concrete Construction. Now, we are ready to give our
dynamic searchable symmetric encryption scheme for
multiuser with forward and backward security. See Al-
gorithm 1 for more information. Our scheme is based on the
framework of DSSE � (Setup,Update, Search) and calls
HMAC � (HMAC.Setup,HMAC.Auth,HMAC.Ver,
HMAC.Eval) and keyed PRF. )e scheme is defined by
Algorithm 1.

Setup: 1λ⟶ (PK, SK)

)e algorithm is run by the data owner. For a security
parameter 1λ, the algorithm outputs the PK and SKneeded in
the scheme.

Update: (SK,EDBt,ΔF,ΔW)⟶ (EDBt+1,Δσt
w)

)e algorithm is run by the data owner too. At the
beginning, the initial index and EDB are empty, so when
t � 0, it means that it is the first time for the data owner to
add the file. When t≠ 0, it means the normal update op-
erations. It should be noted that, in order to be consistent
with the DSSE structure, we have omitted the algorithm of
adding users in Algorithm 1 FBM-DSSE, and the algorithm
is defined as Algorithm 2: Adduser.

Search: (t, UL, w, E DBt)⟶ Ct
w

)is polynomial time algorithm is executed by the cloud
server and the users. When data users want to search w, he
runs the line 1 to 8, generates the search token Tru(w), and
sends it to cloud server. )en, the cloud server verifies the
legitimacy of the user and performs a search. Finally, the
cloud server outputs the search results.

Actually, we have omitted the decryption and verifica-
tion algorithms in Algorithm 1 FBM-DSSE for the same
reason. And the algorithms are defined as Algorithm 3:
Decrypt and Algorithm 4: Verify.

5.3. Security Analysis. In this section, we first present the
correctness of the proposed scheme and then give the se-
curity analysis.

5.3.1. Correctness. if the user wants to search for files
containing the keyword w at time t, he executes lines 1–8 of
the search algorithm and then sends the search token of w to
the cloud server. )e ciphertext index saved in cloud is
generated by the same pseudorandom function, which en-
sures the correctness of the searched keywords. Secondly,
according to the bitmap index generation process and the

6 Security and Communication Networks



Setup:1λ⟶ (PK, SK)

(1) input a security parameter λ
(2) generate (P1, P2, R{ }, H, H1,WK,WEK, FK, Q{ })

(3) set PK � (P1, P2, H, H1)

(4) set SK � (WK,WEK, FK, R{ }, Q{ })

Update:(SK, EDBt,ΔF,ΔW)⟶ (EDBt+1,Δσt
w)

data owner:
(1) if t � 0 then
(2) extract keywords W � w{ }n from the files Ft

(3) attach keys with column identifiers c (0≤ c≤ l)

(4) for each column identifier c

(5) kc⟵H(FK, c)

(6) (match files to column identifiers and encrypt files)
(7) for each file f ∈ Ft

(8) c⟵R(f)

(9) Cc⟵Enckc
(f)

(10) if c that does not match files
(11) rc⟵ R 0, 1{ }∗

(12) Cc⟵Enckc
(rc)

(13) CFt⟵CFt ⋃Cc

(14) (generate bitmap index)
(15) for each keyword w ∈Wt

(16) kw⟵P1(WK, H1(w))

(17) ekw⟵P2(WEK, H1(w))

(18) αt
w � (aw1, aw2, . . . , awl):

(19) awc � 1⟺w ∈ f an d R(f) � c

(20) σt
w⟵HMAC.Auth(kw, τ, αt

w)

(21) βt
w⟵Encσt

w
(αt

w)

(22) i⟵Qt(σt
w)

(23) (At)T � (αt
1, αt

2, . . . , αt
i , . . . , αt

|W|)
T

(24) (Bt)T � (βt
1, β

t
2, . . . , βt

i , . . . , βt
|W|)

T

(25) send EDBt � (t, Bt, CFt , Qt) to cloud server
(26) else if
(27) forming the ΔF
(28) for each file f ∈ ΔF
(29) if op(f) � add ormodify
(30) f⟵ the newf

(31) if op(f) � del
(32) r⟵ R 0, 1{ }∗

(33) f⟵ r

(34) (reorder)
(35) Rt+1⟵ ( R{ }, t + 1)

(36) Ft+1⟵F′ ⋃ΔF
(37) for each file f ∈ Ft+1

(38) ct+1⟵Rt+1(f)

(39) (generate the new index)
(40) for each w ∈ ΔW
(41) if the op(w) � add
(42) Wt+1⟵w⋃W

(43) kw⟵P1(WEK, H1(w))

(44) ekw⟵P2(WEK, H1(w))

(45) if the op(w) � del
(46) Wt+1⟵W − w

(47) Qt+1⟵ ( Q{ }, t + 1)

(48) for each w ∈Wt+1

(49) αt+1
w � (aw1, aw2, . . . , awl)

(50) σt+1
w ⟵HMAC.Auth(kw, τ, αt+1

w )

(51) βt+1
w ⟵Encσt+1

w
(αt+1

w )

(52) it+1⟵Qt+1(σt+1
w )

ALGORITHM 1: Continued.

Security and Communication Networks 7



cloud server being semihonest, the cloud sever will search 1
in the index and return corresponding files, so the returned
file does contain the keyword w.

5.3.2. Security analysis. )en, we will show the security
analysis of the proposed scheme.

Theorem 1 (adaptive security of FBM-DSSE). Let P1, P2, H

be secure PRF, Π1 � (Setup, Enc,Dec) be a CPA-secure
symmetric encryption, and Π2 � (HMAC.Setup,

HMAC.Auth,HMAC.Ver,HMAC.Eval) be a secure homo-
morphic message authenticator scheme. We define that

LFBM−DSSE � L
Search
FBM−DSSE,L

Update
FBM−DSSE􏼐 􏼑, (6)

where LSearch
FBM−DSSE(w) � (Time(w), rp(w), sp(w)) and

L
Update
FBM−DSSE � bs. =en, FBM-DSSE is LFBM−DSSE -adaptively

secure.

Proof. As mentioned above, the server is the semihonest
adversaryA who correctly follows the protocol but attempts
to use themessages received to learn information that should
remain private. )e challenger C is responsible for gener-
ating EDB and the search tokens of w. )e simulator S

(53) Δαt
w⟵ αt+1

w − αt
w

(54) Δσt
w⟵HMAC.Auth(kw, τ,Δαt

w)

(55) (At)T � (αt
1, αt

2, . . . , αt
i , . . . , αt

|Wt+1 |
)T

(56) (Bt)T � (βt
1, β

t
2, . . . , βt

i , . . . , βt
|Wt+1 |)

T

(57) EDBt+1⟵ (t + 1, Bt+1, CFt+1 , Qt+1)

(58) send EDBt+1 to cloud server
(59) send Δλt

w � (w,Δσt
w)􏼈 􏼉 to users

Search:(t, UL, w, E DBt)⟶ Ct
w

user
(1) if there is no updation, then
(2) σt

w⟵ (t, w, λt
w)

(3) Tru(w)⟵PK.Enc(σt
w)

(4) else
(5) ekw⟵P2(WEK, H1(w))

(6) σt+1
w ⟵HMAC.Eval(ekw, σt

w,Δσt
w)

(7) Tru(w)⟵PK.Enc(σt+1
w )

(8) sendsTru(w) to cloud server
cloud server:
(9) if u cannot be found in UL, then
(10) output error
(11) else
(12) σt

w⟵PK.Dec(Tru(w))

(13) i⟵Qt(σt
w)

(14) αt
i⟵Decσt

w
(βt

i)

(15) if aic � 1(0≤ c≤ l)

(16) Ct
w⟵Ct

w⋃(c, Ct
c)

(17) returns Ct
w and βt

i to user

ALGORITHM 1: FBM-DSSE.

Adduser:(u, SK)⟶ UL andUSK
(1) UL⟵UL⋃ u{ }

(2) USK⟵ (WEK, P2, H1, FK, λt
w � (w, σt

w)􏼈 􏼉)

(3) sends UL � u{ } to cloud server

ALGORITHM 2: Adduser.

Decrypt:(Ct
w, H, FK)⟶ Fw

(1) kc⟵H(FK, c)

(2) ft
c⟵Deckc

(Ct
c)

ALGORITHM 3: Decrypt.

Verify:(w, βt
i , (αt

i )′, σt
w)⟶ reject or accept

(1) transform βt
i to (αt

i )′ and send (w, βt
i , (αt

i )′, σ
t
w)

to data owner
(2) if 0⟵HMAC.Ver(kw, (αt

i )′,P, σt+1
w )

(3) returns “reject”
(4) if 1⟵HMAC.Ver(ki, στi , (αt

i )′,P, σt+1
w )

(5) returns “accept”

ALGORITHM 4: Verify.

8 Security and Communication Networks



simulates the view between A and C according to the
leakage functions LFBM−DSSE.

Game G0: G0 is the same as the real world game
DSSEREALFBM−DSSE

A (λ), and there is

Pr DSSEREALFBM−DSSE
A (λ) � 1􏽨 􏽩 � Pr G0 � 1􏼂 􏼃. (7)

Game G1: in G1, when querying H to generate the key
for a column c, the challengerC chooses a new random
key if the column c is never queried before and stores it
in a table Key. Otherwise, return the key corresponding
to w in the table Key.)e adversaryA cannot be able to
distinguish between G0 and G1, otherwise we can build
an adversary B1 to distinguish between H and a truly
random function. More formally,

Pr G0 � 1􏼂 􏼃 − Pr G1 � 1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤AdvPRFF,B1
(λ). (8)

Game G2: in G2, we model the R as a table just like H in
G1; then, we can build an adversary B2 to distinguish
between R and a truly random function, and there is

Pr G1 � 1􏼂 􏼃 − Pr G2 � 1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤AdvPRFF,B2
(λ). (9)

Similarly, we build the G3 forP1 and G4 for P2.
Game G5: in G5, as shown in Algorithm 1, in the update
stage, the challenger C randomly picks a string for
every keyword w as the updated index and gets the new
EDB. Now, we will show that the adversaryA gets more
things than the new EDB is negligible.

(1) In the update stage, Q changed the order of the
keywords in the new index. )e two search tokens
were σt

w and σt+1
w . )e adversary could not get

specific information about the keywords based on
them. Even if the index corresponding to the
keyword has not changed, HMAC.Auth will gen-
erate a corresponding label for a string of 0. Oth-
erwise, it would conflict with the authentication of
HMAC.

(2) )e probability of using the search token corre-
sponding to the keyword w to decrypt the indexes
of other keywords w is negligible. Even if the in-
dexes are the same, because the difference among
keywords decides that in corresponding keys, it is
impossible to achieve Decσt

w′
(Encσt

w
(αt

w′)), where
w′ ≠w, otherwise it will contradict the security of
symmetric encryption.

(3) Similarly, even if the file has not changed and the
corresponding encryption key has not changed, it is
impossible for an adversary A to obtain relevant
information about the file based on the ciphertext
of the index because symmetric encryption is CPA-
secure.

(4) Obviously, for an adversary A who does not have
the ek, even if he obtains Δσt

w, he will not be able to

obtain a new key. Otherwise, there will be an ad-
versary that can break the security of HMAC.

Simulator.We can replace the searched keywordwwith
sp(w) in G5 to simulate the simulator S. And now we
are ready to show that G5 and Simulator S are in-
distinguishable. For update, it is obvious since we
choose new index for each update in G5. For search, S
chooses a new search token according to the
LSearch

FBM−DSSE(w) which can be modeled by tables and
does the encryption. So,

Pr G5 � 1􏼂 􏼃 � Pr DSSEIDEALFBM−DSSE
A,S (λ) � 1􏽨 􏽩.

(10)

Finally,

Pr DSSEREALFBM−DSSE
A (λ) � 1􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

− Pr DSSEIDEALFBM−DSSE
A,S (λ) � 1􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌≤ ε,
(11)

where ε is negligible, which completes the proof. □

Corollary 1 (adaptive forward privacy of FBM-DSSE). FBM-
DSSE is forward private.

Proof. From )eorem 1, we can infer that FBM-DSSE
achieves forward privacy because the leakage function
L

Update
FBM−DSSE(w) of FBM-DSSE does not leak more infor-

mation than that defined in Definition 3. □

Corollary 2 (adaptive Type − I− backward privacy of FBM-
DSSE). FBM-DSSE is Type − I− backward private.

Proof. From )eorem 1, we can get the conclusion that
FBM-DSSE does achieve Type–I backward privacy since the
leakage functions of FB-DSSE only leaks the same infor-
mation as defined in Definition 4. □

6. Multifunctional Search

Due to using the bitmap index, our scheme is easily extended
to support multifunctional search. Specifically, Hu et al. [29]
proposed an efficient and secure multifunctional searchable
symmetric encryption schemes which supports wildcard
search, similarity search (including hamming distance and edit
distance), fuzzy keyword search, and disjunctive keyword
search simultaneously. Hu’s scheme builds a bloom filter for
every keyword followed by a encryption index I′ � Enc(ks,

Fw, w, r d), where ks is the symmetric private key and r d is the
random value generated by a random function. If one replaces
the encryption index in [29] with our bitmap index, the new
scheme can achieve all the functional searches in [29].

As for the conjunctive keyword search, the primary
schemes first search for one keyword at a time and then
collect the results together. Our scheme can achieve a more
effective way. First, data users provide keywords’ search
token to the server; then, the server decrypts the

Security and Communication Networks 9
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corresponding rows in the bitmap index, conducts the
conjunctive operation, and finally returns the result set.

7. Performance Analysis

In this section, we first summarize the comparisons between
our scheme and prior forward private schemes. See Table 2,
where F/B in security, respectively, shows the forward
privacy/backward privacy, where B1 means Type − I back-
ward privacy, B1− describes Type − I− backward privacy,
and B3 indicates Type − III backward privacy. NA/A means
the scheme is nonadaptive/adaptive indistinguishability
security; D/S in dynamism column describes dynamic or
static; S/M shows single/multi; R in the column of com-
putable complexity denotes the round in search phase; Do
represents the date owner; D denotes the number of doc-
uments in the document collection; N is the number of
keyword/file-identifier pairs; aw/dw is the number of added/
deleted entries for keyword w; W is the collection of distinct
keywords; tma is the computational time of a modular ad-
dition; D(w) is the number of files currently matching
keyword w; m means the number of subkeywords; and uw is
the number of the keywords whose D(w) has changed.

)en, we evaluate the performance of the proposed
scheme. We implement our scheme using LINUX in
Windows 10 with an Intel Core i7-8550U CPU 2.00GHz
processor and 16GB memory. We simulate the update al-
gorithm and search algorithm on this machine to evaluate
the computation overhead time cost of our scheme. In our
experiment, the size of each file is 50 kB, the number of the
keywords is 5,000, and the symmetric encryption scheme
and public key encryption scheme are AES and RSA, re-
spectively. We simulate the number of files on 10,000 to
100,000 by an increase of 10,000 each time.

In the update phase, the data owner needs l times
(number of columns) symmetric encryption operations, |W|

times index homomorphic message authentication, and |W|

times symmetric encryption; Figure 2 shows the total time
required to generate the index.

In the search phase, the user only needs to perform the
public key encryption operation once, and if there is an
update, he needs to perform another homomorphic oper-
ation (when only one keyword is searched); Figures 3 and 4
illustrate the time cost of search token generation for users
and search time for the cloud server.

In the search phase, the server needs to perform a public
key decryption operation and a symmetric decryption op-
eration. Figure 5 displays that the time cost of search for
server which is mainly in the RSA.

)ese figures illustrate that the effect of the increase in
the number of files on the search phase is linear, which is
reasonable but an exponential growth for index generation.
)e crux of our scheme is the update algorithm, so we
concluded that the proposed scheme is more suitable for
small databases and achieves the enhanced security guar-
antees at the reasonable price of efficiency.

In order to simplify the update algorithm, we propose
two more efficient methods for updating at the cost of losing
some security. It is a tradeoff between efficiency and security.
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Figure 2: Index generation time.
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One is a new update algorithm named the cycleΔt. For
files that will not be updated in the short term, the data
owner calculates the ciphertext of time t to time t + Δt and
Δt is a cycle. When the data owner is updated at time t, he
arranges them in the corresponding column in chrono-
logical order. If the update time is t′ ∈ t, t + Δt{ }, the data
owner only needs to upload the files that need to be changed
and a certain amount of dummy data without downloading
the files that does not change. Taking t � 3 as an example, the
specific description is as follows.

Suppose there are f1, f2, f3, f4, f5 and the time periods
are, respectively, t, t + 1, t + 2, t + 3. Call R in advance from t

to t + 3 and they are mapped to (1, 2, 3, 4, 5),

(3, 4, 5, 1, 2), (2, 3, 4, 5, 1), (4, 5, 1, 2, 3). When the data
owner updates data at time t, he encrypts the f1 with
kc1, kc4, kc5, kc3 (where kci means the i column’s key), the f2
with kc2, kc5, kc1, kc4, the f3 with kc3, kc1, kc2, kc5, the f4 with
kc4, kc2, kc3, kc1, and the f5 with kc5, kc3, kc4, kc2 and sends

c1: E kc1, f1( 􏼁 E kc1, f3( 􏼁
����

���� E kc1, f2( 􏼁
����

����E kc1, f4( 􏼁,

c2: E kc2, f2( 􏼁 E kc2, f4( 􏼁
����

���� E kc2, f3( 􏼁
����

����E kc2, f5( 􏼁,

c3: E kc3, f3( 􏼁 E kc3, f5( 􏼁
����

���� E kc3, f4( 􏼁
����

����E kc3, f1( 􏼁,

c4: E kc4, f4( 􏼁 E kc4, f1( 􏼁
����

���� E kc4, f5( 􏼁
����

����E kc4, f2( 􏼁,

c5: E kc5, f5( 􏼁 E kc5, f2( 􏼁
����

���� E kc5, f1( 􏼁
����

����E kc5, f3( 􏼁,

(12)

to the server.
When the user is searching at time t and the search result

is f1, f3, f5􏼈 􏼉, the server just returns E(kc1, f1), E(kc3, f3),

E(kc5, f5). )is new update algorithm cycleΔt can efficiently
reduce the communication complexity of updates during the
period.

Another method is that the data owner can use a proxy
server. )e proxy server is semihonest in the sense that it
honestly runs the protocols but is curious to obtain privacy
information. Additionally, it cannot collude with the cloud
server. )e proxy server is mainly responsible for the update
of the database. Specifically, the data owner calculates the

updated ciphertext together with the proxy server and stores
it on the proxy server. And then proxy server interacts with
the cloud server according to the specified time period and
updates the ciphertext. Moreover, it is also responsible for
updating the trapdoor. And we are studying further how to
construct a FBM-DSSE scheme under a proxy server or a
malicious server in the future.

8. Conclusions

In this work, we propose a Dynamic Searchable Symmetric
encryption scheme for multiuser with Forward and
Backward Security (FBM-DSSE). )e proposed scheme
realizes the Forward and Backward Security in Dynamic
Searchable Symmetric encryption for multiuser. More
specifically, the proposed scheme adopts a keyed pseu-
dorandom function to hide the correspondence between
files and indexes, takes symmetric encryption to improve
the efficiency of file encryption and update, and uses
HMAC to improve the efficiency of updating search to-
kens as files are changed. Furthermore, our scheme also
supports verifiability and can be extended to multifunc-
tional search. Further research work aims to reduce the
computational complexity and communication com-
plexity of the data owner and server. It will also combine
access control to achieve fine-grained user management
and file search.
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