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)e main objective of multiagent reinforcement learning is to achieve a global optimal policy. It is difficult to evaluate the value
function with high-dimensional state space. )erefore, we transfer the problem of multiagent reinforcement learning into a dis-
tributed optimization problem with constraint terms. In this problem, all agents share the space of states and actions, but each agent
only obtains its own local reward.)en, we propose a distributed optimization with fractional order dynamics to solve this problem.
Moreover, we prove the convergence of the proposed algorithm and illustrate its effectiveness with a numerical example.

1. Introduction

In recent years, reinforcement learning [1] has received much
attention from the society and succeeded remarkably in many
areas such as machine learning and artificial intelligence [2]. As
we all know, in reinforcement learning, an agent determines the
optimal strategy under the feedback of rewards via constantly
interacting with the environment. )e function of the policy
maps possible states to possible actions. Although reinforcement
learning has made great achievements in single agent, it remains
challenging in the application of multiagent [3]. )e goal of the
multiagent system is to enable several agents with simple in-
telligence, but it is easy tomanage and control to realize complex
intelligence through mutual cooperation. While reducing the
complexity of system modeling, the robustness, reliability, and
flexibility of the system should be improved [4, 5].

In this paper, the objective of this paper is to investigate
multiagent reinforcement learning (MARL), where each
agent exchanges information with their neighbors in net-
work systems [6]. All agents share the state space and action
except local rewards. )e purpose of the MARL is to

determine the global optimal policy, and a feasible way is to
construct a central controller, where each agent must ex-
change information with the central controller [7], which
makes decisions for all of them. However, with the increase
of state dimensions, the computation of the central con-
troller becomes extensively heavy. )e whole system would
collapse if the central controller was attacked.

)en, we try to replace the centralized algorithm
mentioned above with distributed control [8, 9]. Consis-
tency protocol based on design enables all agents to achieve
the same state [10–13]. In [14], Zhang et al. proposed a
continuous-time distributed version of the gradient algo-
rithm. As far as we know, most of the gradient methods use
integer order iteration. In fact, fractional order has been
developed for 300 years and used to solve many kinds of
problems such as control applications and systems’ theory
[15–17]. In comparison with the traditional integer order
algorithm, the fractional order algorithm has more design
freedom and potential to obtain better convergence per-
formance [18, 19].

Hereinafter, the contributions of the paper are listed:
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(1) We transform the multiagent strategy evaluation
problem into a distributed optimization problem
with a consensus constraint

(2) We construct the fractional order dynamics and
prove the convergence of the algorithm

(3) We take a numerical example to verify the superi-
ority of the proposed fractional order algorithm

)e rest organization of this paper is listed as follows.
Section 2 introduces some problems of formulation on
MARL and fractional order calculus. Section 3 transforms
the multiagent strategy evaluation problem into the opti-
mization problem with a consensus constraint, proposes an
algorithm with fractional order dynamics, and proves that
the algorithm asymptotically converge to an exact solution.
Section 4 presents a simulation example, and we summarize
the work in Section 5.

2. Problem Formulation

2.1. Notations. Let R, Rn, and Rn×m represent the real
number set, n-dimensional real column vector set, and n×m
real matrix set, respectively. AT represents the transpose of
A. ‖A‖ � (

n
i�1 

n
i�1 aij)

1/2, ‖X‖G �
������
XTGX

√
, and 〈A, B〉 �

ATB. (S, A{ }n
i�1, P, Ri 

n

i�1, c) represents a multiagent Mar-
kov decision process (MDP), where S is the state space and
A is the joint action space. Pa is the probability of transition
from st to st+1 when the agent takes the joint action a and
[Pπ]s,s′ � Ea∼π(·|s)[Pa]s,s′ , Ri(s, a) is the local reward when
agent i takes joint action a at state s and c ∈ (0, 1) is a
discount parameter. π(a|s) represents the condition of
probability when the agent takes joint action a at state s. )e
reward function of agent i is defined when follows a joint
policy π at state s as follows:

R
π
i (s) � Ea∼π(·|s) Ri(s, a) , (1)

where the right-hand side of the equation means that
there is a probability for all possible choices of action a,
and we calculate the expected value for all rewards of
agent i:

R
π
c (s) �

1
n



n

i�1
R
π
i (s), (2)

where Rπ
c (s) represents the average of the local rewards.

2.2.Graph theory. )e graph is expressed asG(V,E), where
G represents a graph,V is the set of vertices, andE is the set
of edges in G. If any edge in the graph is undirected, the
graph is named as undirected graph [20]. In graph, A �

[aij] ∈ Rn×n is the adjacency matrix with aij ≠ 0 if i, j  ∈ E,
aij � 0 otherwise. D � diag[d1, d2, . . . , d3] is the degree
matrix with di � 

n
j�1 aij and Laplacian matrix is L � D − A.

Moreover, if the graph is connected, L has the following two
properties:

(1) Laplacian matrix is a semipositive definite matrix

(2) )e minimum eigenvalue is 0 because the sum of
every row of the Laplace matrix is 0

)e minimum nonzero eigenvalue is defined as the al-
gebraic connectivity of the graph.

Assumption 1. )e undirected graph mentioned in the
following text is connected.

Lemma 1 (see [21]). 0e frequency distributed model is
defined for a fractional order system Dαx(t) � u(t), where
α ∈ (0, 1) as follows:

zz(ω, t)

zz
� − ωz(ω, t) + u(t),

y(t) � 
∞

0
μα(ω)z(ω, t)dω,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

where μα � sin(απ)/ωαπ.

Definition 1 (see [22]). )e αth order Caputo derivative is

D
α
f(t) �

1
Γ(n − α)


t

0
(t − τ)

n− 1− α
f

(n)
(τ)dτ, (4)

where α ∈ (n − 1, n), n ∈ N, Γ(t) � 
∞
0 τt− 1e− τdτ is Gamma

function, and fn(t) is the nth order derivative of f(t).

2.3. Policy Evaluation. To measure the benefits of agents in
its current state, we establish the following value function,
which represents the value of the cumulative return obtained
by agents starting from the state st, adopting a certain
strategy π:

V
π
(s) � Eπ 

∞

m�1
c

m
R
π
c st+m+1( |st � s⎡⎣ ⎤⎦. (5)

We construct Bellman equation based on Vπ ∈ R|S| and
Rπ

c ∈ R
|S|:

Vπ
� Rπ

c + cPπVπ
. (6)

It is difficult to evaluate Vπ directly if the dimension of
the state space is very large. )erefore, we use
Vθ(s) � ϕT(s)θ to approximate Vπ , where θ ∈ Rd is the
vector and ϕ(s): S⟶ Rd, which is a particular function
for state s. Indeed, solving equation (6) is equivalent to
obtain the vector θ via Vθ ≈ Vπ . In other words, it means to
minimize the mean square error about 1/2‖Vθ − Vπ‖2D,
whereD � diag μπ(s), s ∈ S , ∈∈R‖S‖×‖S‖ is a diagonal matrix
determined by the stationary distribution. We construct the
equation as follows:

f(θ) �
1
2
ΠΦ Vθ − cPπVθ − Rπ

c( 
����

����
2
D

+
ρ
2
‖θ‖

2
, (7)

where ρ is a regularization parameter and ΠΦ is a projection
operator in the column subspace of Φ. It is not difficult to
rewrite ΠΦ as ΠΦ � Φ(ΦTDΦ)− 1ΦTD substituting ΠΦ into
(7):
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f(θ) �
ρ
2
‖θ‖

2
+
1
2
ΠΦ Vθ − cPπVθ − Rπ

c( 
����

����
2
D

�
ρ
2
‖θ‖

2
+
1
2
Vθ − cPπVθ − Rπ

c( 
TΠT

ΦDΠΦ × Vθ − cPπVθ − Rπ
c( 

�
ρ
2
‖θ‖

2
+
1
2
Vθ − cPπVθ − Rπ

c( 
TDΦ ΦTDΦ 

− 1
ΦTD × Vθ − cPπVθ − Rπ

c( 

�
ρ
2
‖θ‖

2
+
1
2
ΦTD Vθ − cPπVθ − Rπ

c( 
����

����
2
ΦTDΦ( )

− 1

�
ρ
2
‖θ‖

2
+
1
2
ΦTD Φ − cPπΦ( θ − ΦTDR

π
c

����
����
2
ΦTDΦ( )

− 1

�
ρ
2
‖θ‖

2
+
1
2
‖Aθ − b‖

2
C− 1 ,

(8)

where A� ΦTD(Φ − cPπΦ) � Es∼μπ[ϕ(s)(ϕ(s) − cϕ(s′))T],
C � ΦTDΦ � Es∼μπ[ϕ(s)ϕT(s)], and b � ΦTDRπ

c �

Es∼μπ[Rπ
c (s)ϕ(s)].

)e minimum value of θ in equation (8) is unique if A is
a full rank matrix and C is a positive definite matrix. In
practice, it is difficult to get the expectations in the compact
form when the distribution is unknown. We replace ex-
pectation with the average as follows:

A �
1
p



P

t�1
At,

b �
1
p



P

t�1
bt,

C �
1
p



P

t�1
Ct,

(9)

where At � ϕ(st)φT(st),φ(st)(ϕ(st)ϕ(st+1))
T, Ct � ϕ

(st)ϕ
T(st), and bt � Rπ

c (st)ϕ(st).

We assume that the sample size p approaches infinity to
make sure its confidence level. In these sequences, each state
is attached at least once.)en, we reconstruct equation (8) as
follows:

f(θ)�
1
2
‖Aθ − b‖

2
C

− 1 +
ρ
2
‖θ‖

2
. (10)

Noteworthy, in a shared space, the agent observes the
states and actions of the neighbors, but only observes the
local rewards of its own. In other words, we get A and C
except b. So, we define bi � (1/p) 

p
t�1 bt,i with

bt,i � Rπ
i (st, at)ϕ(st). )en, we rewrite equation (10) as

follows:

min
θ∈Rd

1
n



n

t�1

1
2

Aθ − bi

����
����
2
C− 1 +

ρ
2
‖θ‖

2
. (11)

3. Fractional Order Dynamics for
Policy Evaluation

Hereinbefore, the aim of policy evaluation becomes to
minimize the object function. Now, we rewrite (11) as
follows:

minθi
1
n



n

i�1

1
2

Aθi − bi

����
����
2
C

− 1 +
ρ
2
θi

����
����
2
,

s.t. θi� θj.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

We define θ ∈ Rn d as a factor concatenating all θi: θ �

[θT
1 , θT

2 , . . . θnT]T ∈ Rn d and the aggregative function f as
f(θ) � 

n
i�1 f(θi). As we all know, the consensus constraint

(12) is expressed as

minθ
1
2

Aθ − bi

������

������

2

C
-1 +

ρ
2
‖θ‖

2
,

s.t. Lθ � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(13)

where b � [b
T

1 , b
T

2 , . . . b
T

n ]T ∈ Rnd, L ∈ Rn×n, L � L⊗ Id ∈
Rnd×nd, A� A⊗ In ∈ Rnd×nd, and C� C⊗ In ∈∈Rnd×nd. Based
on (13), we formulate the following the augmented
Lagrangian:

L(θ, λ) � f(θ) +〈λ, Lθ〉 +
1
2
θTLθ, (14)

where λ ∈ Rn d is the Lagrange multiplier.
It is feasible to design a fractional order continuous-time

optimization algorithm from primal-dual viewpoint, gra-
dient descend for primal variable θ, and gradient ascent for
dual variable λ via (14). Both of them are updated according
to the fractional order law:

D
α1θ(t) � − ∇θ(t)L(θ(t), λ(t)),

D
α2λ(t) � ∇λ(t)L(θ(t), λ(t)),

⎧⎪⎨

⎪⎩
(15)
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where 0< α1 < 2, 0< α2 < 1, ∇θ(t)L(θ(t), λ(t)), and
∇λ(t)L(θ(t), λ(t)) are gradient of (θ(t), λ(t)) on variables
θ(t) and λ(t), respectively. We express the detail of (15) in
Algorithm 1.

)e aim of the distributed algorithm is to obtain the
solution of the value function. )e proposed algorithm has
more potential to get better convergence performance and
design freedom than the conventional integer order.
Hereinafter, we provide the following convergence
conclusion.

Theorem 1. Under Assumption 1, let θ(t) and λ(t) be
generated according to Algorithm 1. If 0< α1, α2 < 1, then θ(t)
asymptotically converges to the optimal solution.

Proof. We obtain the detailed dynamics of θ(t) and λ(t):

D
α1θ(t) � − A

T
C

− 1
b + ρI + L θ(t) + A

T
C

− 1
b − Lλ(t),

D
α2λ(t) � Lθ((t),

⎧⎪⎨

⎪⎩

(16)

where I is an identity matrix. We consider the equilibrium of
(16):

0 � − A
T

C
− 1

b + ρI + L θ
∗

+ A
T

C
− 1
b − Lλ∗,

0 � Lθ∗.

⎧⎪⎪⎨

⎪⎪⎩
(17)

)en, we combine (16) and (17), and according to the
facts Dα1θ

∗
� 0, Dα2λ∗� 0,

D
α1θ(t) � − A

T
C

− 1
b + ρI + L 

θ(t) − Lλ(t),

D
α2λ(t) � Lθ(t).

⎧⎪⎪⎨

⎪⎪⎩
(18)

)rough Lemma 1, we reconstruct (18) as follows:

zz1(ω, t)
zt

� − ωz1(ω, t) − A
T

C
− 1

b + ρI + L 
θ(t) − Lλ(t),

θ(t) � 
∞

0
μα1(ω)z1(ω, t)dω

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

and

π

zz2(ω, t)
zt

� − ωz2(ω, t) + Lθ(t),

λ(t) � 
∞

0
μα2z2(ω, t)dω.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(20)

We construct the Lyapunov function as follows:

V1 �
1
2


∞

0


2

i�1
μαi

(ω) zi(ω, t)
����

����
2dω. (21)

)en,

V1
.

� 
∞

0


2

i�1
μαi

(ω)〈zi(ω, t),
zzi(ω, t)

zt
〉dω

� 
∞

0
μα1(ω)〈z1(ω, t), − ωz1(ω, t) − A

T
C

− 1
b + ρI + L 

θ(t) − Lλ(t)〉0ω + 
∞

0
μα2(ω)〈z2(ω, t) − ωz2(ω, t) + Lθ(t)〉0ω

� − 
∞

0


2

i�1
μαi

(ω) zi(ω, t)
����

����
2dω +〈θ(t), − A

T
C

− 1
b + ρI + L 

θ(t) − Lλ(t)〉 +〈λ(t), Lθ(t)〉

� − 
∞

0


2

i�1
μαi

(ω) zi(ω, t)
����

����
2dω −

θ(t)T A
T

C
− 1

b + ρI + L 
θ(t)≤ 0.

(22)

We obtain the result according to the Lasalle invariance
principle.

Hereinafter, we improve the convergence conclusion of
)eorem 1 by extending α1 from (0,1) to (1,2).

Theorem 2. Under Assumption 1, let θ(t) and λ(t)

be generated according to Algorithm 1. If 1< α1 < 2, α1 +

α2 � 2, then θ(t) asymptotically converges to the optimal
solution.

Proof. Under the condition α1 � 1 + α1, we rewrite the
dynamics with the condition of )eorem 1 as follows:

_�θ a(t) � − A
T

C
− 1

b + ρI + L 
θ(t) − Lλ(t),

D
α1θ(t) �

θa(t),

D
α2θ(t) � Lθ(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

Due to α1 � 1 + α1 and α1 + α2 � 2,

_λ(t) � D
α1D

α2λ(t) � D
α1[Lθ(t)] � La

θ(t). (24)

Under the condition of (23) and (24), we obtain the
frequency distributed model by Lemma 1 as follows:
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_θa(t) � − A
T

C
− 1

b + ρI + L 
θ(t) − Lλ(t),

zz1(ω, t)
zt

� − ωz1(ω, t) +
θa(t),

θ(t) � 
∞

0
μα1(ω)z1(ω, t)dω,

_λ(t) � Lθa(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

We construct the Lyapunov function:

V2 �
1
2

θa(t)
�����

�����
2

+
1
2
‖λ(t)‖2. (26)

)en,

V2
.

�〈θa(t), θa(t)〉 +〈λ(t), _λ(t)〉

�〈θa(t), − A
T

C
− 1

b + ρI + L 
θa(t) − Lλ(t)〉

+〈λ(t), Lθa(t)〉

� −
θa(t)T A

T
C

− 1
b + ρI + L 

θ(t)≤ 0.

(27)

)rough the LaSalle invariance principle, we obtain the
result.

4. Experimental Simulation

In this section, we provide an example to illustrate the
effectiveness of the proposed algorithm. )ere are 20
states in the multiagent reinforcement learning. We set
d � 5, regularization parameter ρ � 0.1, and discount
parameter c � 0.5. )ere are 4 agents in the connected
network in Figure 1. State s is a randomly generated 5-
dimensional column vector, the dimension of ϕ(s) is a
cosine function, and P is a randomly generated 5-di-
mensional matrix.

)en, we randomly generate the matrices A , C, bi as
follows:

A �

0.9797 0.5949 0.1174 0.0855 0.7303

0.4389 0.2622 0.2967 0.2625 0.4886

0.1111 0.6028 0.3188 0.8010 0.5785

0.2581 0.7112 0.4242 0.0292 0.2373

0.4087 0.2217 0.5079 0.9289 0.4588

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

0.2500 0.0000 0.0000 0.0000 0.0000

0.0000 0.2500 0.0000 0.0000 0.0000

0.0000 0.0000 0.2500 0.0000 0.0000

0.0000 0.0000 0.0000 0.2500 0.0000

0.0000 0.0000 0.0000 0.0000 0.2500

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b1 � [0.9631, 0.5468, 0.5211, 0.2316, 0.4889]
T
,

b2 � [0.6241, 0.6791, 0.3955, 0.3674, 0.9880]
T
,

b3 � [0.0377, 0.8852, 0.9133, 0.7962, 0.0987]
T
,

b4 � [0.2619, 0.3354, 0.6797, 0.1366, 0.7212]
T
.

(28)

Before the simulation, it is necessary to obtain the so-
lution of the multiagent reinforcement learning:

θ∗ � [− 0.0756, 0.0211, 0.5362, 0.0508, 0.6956]
T
. (29)

We show the comparison about the fractional order
algorithm with the conventional integer order one. In
Figures 2 and 3, the curve illustrates almost the same
convergence performance as the conventional integer
order when α is 0.995. In Figures 4 and 5, the fractional
order algorithm achieves a faster convergent rate than
that of the integer order algorithm. Simulation results
illustrate the convergence about the integer order and the
fractional order. Furthermore, the proposed distributed

Initialization: θi � 0 ∈ Rd, λi � 0 ∈ Rd.
Update
For t≤ 50
Dα1θi(t) � − ((AT C− 1 A + ρI)θi(t) − AT C− 1bi + Liλ(t) + Liθ(t)), Dα2λi(t) � Liθ(t)

End
Return θ

ALGORITHM 1
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algorithm with fractional order dynamics has more
design freedom to achieve a better performance than that
of the conventional first-order algorithm.

5. Conclusion

In this paper, the value function problem of the multiagent
reinforcement learning was transformed as a distributed opti-
mization problem with a consensus constraint. )en, we pro-
posed a distributed algorithm with fractional order dynamics to
solve this problem. Besides, we proved the asymptotic con-
vergence of the algorithm by Lyapunov functions and illustrated
the effectiveness of the proposed algorithm with an example. In
the future, we will consider applying reinforcement learning to
the recommendation system, so as to get better results [23].

Data Availability

)e .m and .slx data used to support the findings of this study
have been deposited in the Github repository (97weiD/
data_DPEFOD).
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