
Research Article
Fast Software Implementation of Serial Test and Approximate
Entropy Test of Binary Sequence

Xian-wei Yang,1 Xue-qiu Zhan ,1 Hong-juan Kang,2 and Ying Luo3

1Wuxi Institute of Technology, Wuxi, China
2Sichuan Changhong Electric Co., Ltd., Chengdu, China
3Sichuan Innovation Center of Industrial Cyber Security Co., Ltd., Chengdu, China

Correspondence should be addressed to Xue-qiu Zhan; zhanxq@wxit.edu.cn

Received 18 June 2021; Revised 6 August 2021; Accepted 23 August 2021; Published 16 September 2021

Academic Editor: Stelvio Cimato

Copyright © 2021 Xian-wei Yang et al.-is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In many cryptographic applications, random numbers and pseudorandom numbers are required. Many cryptographic protocols
require using random or pseudorandom numbers at various points, e.g., for auxiliary data in digital signatures or challenges in
authentication protocols. In NIST SP800-22, the focus is on the need for randomness for encryption purposes and describes how
to apply a set of statistical randomness tests. -ese tests can be used to evaluate the data generated by cryptographic algorithms.
-is paper will study the fast software implementation of the serial test and the approximate entropy test and propose two types of
fast implementations of these tests. -e first method is to follow the basic steps of these tests and replace bit operations with byte
operations. -rough this method, compared with the implementation of Fast NIST STS, the efficiency of the serial test and
approximate entropy test is increased by 2.164 and 2.100 times, respectively. -e second method is based on the first method,
combining the statistical characteristics of subsequences of different lengths and further combining the two detections with
different detection parameters. In this way, compared to the individual implementation of these tests, the efficiency has been
significantly improved. Compared with the implementation of Fast NIST STS, the efficiency of this paper is increased by
4.078 times.

1. Introduction

In cryptography, random numbers and pseudorandom
numbers are widely used in applications. For example, use a
randomly generated key in a cryptographic system.-ere are
also random or pseudorandom numbers required to be used
at various points in cryptographic protocols, for example, for
auxiliary data in digital signatures or challenges in au-
thentication protocols.

-e random bit sequence can be explained by the result
of an unbiased “fair” coin flip, with the sides of the coin
marked as “0” and “1.” -e probability that each flip pro-
duces a “0” or “1” is 1/2, and the results of each coin toss are
independent of each other. Unbiased, fair coins are perfect
random bitstream generators because 0 and 1 values will be
randomly distributed, and all elements in the sequence are
generated independently of each other. -e value of any

element in the sequence is unpredictable and has nothing to
do with all previously generated elements.

-e SP 800-22 [1] issued by the National Institute of
Standards and Technology (NIST) discusses the randomness
test of random number and pseudorandom number gen-
erators. -ese tests can be applied to fields such as cryp-
tography, modeling, and simulation. In NIST SP800-22, the
focus is on the need for randomness for encryption purposes
and describes applying a set of statistical randomness tests.
Germany released the BSI AIS 30 specification [2]. In 2009,
the National Cryptography Administration (NCA) of China
issued a randomness test specification [3]. In addition, re-
search on random sequences is in full swing, and a large
number of new statistical tests have been proposed [4].-ere
are two basic types of random sequence generators: random
number generator (RNG) and pseudorandom number
generator (PRNG) [5]. In cryptographic applications, both

Hindawi
Security and Communication Networks
Volume 2021, Article ID 1375954, 10 pages
https://doi.org/10.1155/2021/1375954

mailto:zhanxq@wxit.edu.cn
https://orcid.org/0000-0002-3902-9754
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1375954


generators produce zero and a stream divided into subse-
quences or blocks.

-ese tests can be used to evaluate the data stream
generated by the cryptographic algorithm, thereby providing
useful reference data for the theoretical analysis of the al-
gorithm [6–8]. -is approach can reduce the workload of
theoretical analysis and detect security risks that cannot be
found by other analytical methods. For example, in the
competition of AES [9, 10], randomness detection is used to
evaluate candidate cryptographic algorithms [11]. ZUC
[12, 13] has officially become a cryptographic algorithm of
LTE and executed many randomness tests. Parameter of
these detections can be recommended or be adjusted
[14–16].

Some researchers study the rapid implementation of all
NIST STS tests and achieved interesting speedups in most of
the tests [17]. Q-value is introduced, and the distribution of
Q-value is closer to a uniform distribution than P value,
which can reduce the false detection rate [18].When the runs
distribution test is applied on some well-known good de-
terministic random bit generators (DRBGs), the test results
show apparent bias from randomness [19]. A new DFT test
method for the long sequence is proposed, and this DFT test
reconstructs the statistics to follow the chi-square distri-
bution [20].

In this paper, we study the fast implementation of the
serial test and the approximate entropy test and propose two
types of fast implementation of these tests. -e first fast
implementation method is to follow the basic steps
according to these tests. In this implementation, the effi-
ciency of the serial test and the approximate entropy test is
increased by 2.164 and 2.100 times, respectively, compared
with the basic implementation. -e second one is to merge
these tests. Relative to the individual implementation of
these tests, the efficiency has been improved in this
implementation. Compared with the basic implementation,
the best efficiency of this method is increased by 4.078 times,
and the effect is significant.

-is paper is organized as follows. Section 2 presents an
introduction to these statistical tests. Section 3 discusses the
serial test, the approximate entropy test, and the basic
implementation. Sections 4 and 5 present two types of fast
implementation of these tests. Section 6 presents the soft-
ware implementation results of these methods. Section 7
concludes the paper.

2. Introduction of Statistical Tests

By performing various statistical tests on the sequences, it is
possible to compare and evaluate sequences with random
sequences. Both characterization and description of the
properties of random sequences can be done through
probability. -ere are countless possible statistical tests to
assess the presence or absence of a pattern, which indi-
cates that the sequence is nonrandom. -ese test methods
are designed for the different characteristics of the se-
quence, mainly based on the different focus of the se-
quence characteristics, and there are also some test
methods that have no significant differences in the

principles. -erefore when choosing a randomness test
method, it is necessary to consider all aspects of the
random characteristics of the test sequence, but also to
take into account the efficiency of the test. In addition, one
must be careful when interpreting the results of statistical
tests to avoid erroneous conclusions about specific gen-
erators [21].

-e randomness of the test sequence is essential to test
whether it is truly random or the gap between it and true
randomness. Randomness testing usually uses hypothesis
testing. Hypothesis testing is to propose certain assumptions
about the population in order to infer certain properties of
the population when the population distribution is unknown
or only its form is known. However, its parameters are not
known, and then, make judgments on the proposed hy-
potheses based on the sample. Random hypothesis testing
means that a certain aspect of a truly random sequence
conforms to a specific distribution. If the sequence to be
tested is random, then the sequence to be tested should also
conform to this specific distribution in this respect. Take a
certain statistical value V of a random sequence that con-
forms to the chi-square distribution with n degrees of
freedom as an example. Null hypothesis (null hypothesis)
H0: the sequence is random if the statistical value V of the
sequence to be tested obeys the χ2(n) distribution. Alter-
native hypothesis Hα: the sequence is not random if the
statistical value V of the sequence to be tested does not obey
the χ2(n) distribution. -e opposite of this null hypothesis
is the alternative hypothesis, which is that the sequence is
not random. By testing each application, a decision or
conclusion is derived. Based on the generated sequence,
determine whether to accept the null hypothesis H0. Under
the original hypothesis, the theoretical reference distri-
bution of the statistical data is determined by mathematical
methods, and the critical value is determined. During the
test, the statistical value of the tested sequence is calculated
and compared with the critical value. If the test statistic
value does not exceed the critical value, the null hypothesis
H0 of randomness is accepted. Otherwise, accept the al-
ternative hypothesis Ha.

-ere are two possible outcomes of statistical hypothesis
testing, namely, accepting H0 or accepting Ha.

Two types of errors may occur with this method. First, if
the data is random, then we conclude that the data is
nonrandom. -is conclusion is called a type I error. Second,
if the data is nonrandom, then we conclude that the data is
random. -is conclusion is called a type II error. -e
probability of a type I error is called the significance level of
the test, and this probability is usually denoted as α. Typi-
cally, α is selected in the range of [0.001, 0.01], and the value
of α in cryptography is about 0.01. In the test, α is the
probability that when the test shows that the sequence is
truly random, it is not a random sequence.-e probability of
a type II error is usually denoted as β. In the test, β is the
probability that the test will indicate that the sequence is
random when it is not. β is not a fixed value, which is
different from α.-ere are many ways to select data, they can
be nonrandom, and each different way can produce different
β. One of the main goals of the test is to minimize the

2 Security and Communication Networks



possibility of making type II errors. Table 1 below correlates
the true state of the data with the test conclusion.

In order to reflect the strength of the evidence against the
null hypothesis, the P value can be calculated using test
statistics. In all tests, the P value is the probability that the
sequence generated by the perfect random number gener-
ator has less randomness than the sequence to be tested.
When the sequence seems to have perfect randomness, the P

value is equal to 1, and when the sequence seems to be
completely nonrandom, the P value is equal to 0. When the
P value ≥α, the null hypothesis H0 is accepted, which means
that the sequence appears to be random. When the P value
<α, the alternative hypothesis Ha is accepted, which means
that the sequence appears nonrandom.

In the test, the P value can be calculated with the test
statistic. -e P value represents the probability that the
sequence generated by the perfect random number gener-
ator is less random than the sequence being tested.When the
P value is 1, it means that the sequence seems to have perfect
randomness, and when the P value is 0, it means that the
sequence seems to be completely nonrandom.When P ≥α, it
means that the null hypothesis is credible, which reflects that
the sequence seems to be random. When P <α, it means that
the null hypothesis is unreliable, which reflects that the
sequence seems to be nonrandom. -e P value is the
strength of evidence for accepting the null hypothesis.

-e NIST SP800-22 is a statistical test suite consisting of
16 tests, and the test suite of NCA consists of 15 tests. Table 2
lists all of the tests. Serial test and approximate entropy test
are the tests of the two test suites.

3. Serial Test and Approximate Entropy Test

3.1. Definitions and Symbols. Table 3 lists all of the symbols
and their meanings used in this paper.

-e establishment of the incomplete gamma function is
based on the approximate formula [22], which can be ap-
proximated by continuous fraction expansion or series
expansion according to the values of its parameters a and x.

Gamma function and incomplete gamma function are
defined as

Γ(x) � 
∞

0
e

− t
t
x− 1dt, x> 0,

P(a, x) �
c(a, x)

Γ(a)
�

1
Γ(a)


x

0
e

− t
t
a− 1dt,

Q(a, x) � 1 − P(a, x) �
Γ(a, x)

Γ(a)
�

1
Γ(a)


∞

x
e

− t
t
a− 1dt.

(1)

3.2. Serial Test. -is section describes the serial tests, such as
the test description, the technical details, the testing strategy,
and the purpose of this test.

-e frequency of all possible m-bit subsequences in the
entire sequence is the focus of the serial test. From the results
of this test, it can be determined whether the frequency of
occurrence of the 2m m-bit subsequences of the random
sequence is roughly in line with expectations. -e proba-
bility of all subsequent m-bit in the random sequence is the
same, and when m is 1, the serial test has the same utility as
the frequency test.

For different values of n, the sequence is expanded by
appending the first m-1 bits to the end of the sequence to
form an expanded sequence ε′ � (ε1, ε2, . . . , εn, ε1, . . . , εm−1).
-e serial test is based on testing the uniformity of distri-
butions of subsequences of given lengths in the circularised
string ε′. Set

ψ2
m �

2m

n


i1 ···im

vi1···im
−

n

2m
 

2
�
2m

n


i1 ···im

v
2
i1···im

− n. (2)

Here, ψ2
0 � ψ2

−1 � 0. -us, ψ2
m is a χ2 type of statistic, but

it is a common mistake to assume that ψ2
m has the χ2 dis-

tribution. -e corresponding generalized serial statistics for
the testing of randomness are ∇ψ2

m and ∇2ψ2
m:

∇ψ2
m � ψ2

m − ψ2
m−1,

∇2ψ2
m � ψ2

m − 2ψ2
m−1 + ψ2

m−2.
(3)

Table 1: Conclusions of statistical hypothesis testing.

True situation Accept H0 Accept Ha

Data is random No error Type I error
Data is not random Type II error No error

Table 2: -e tests of NIST SP800-22 and NCA randomness test
specification.

Items NIST NCA
Monobit test √ √
Frequency test within a block √ √
Poker test × √
Serial test √ √
Runs test √ √
Runs distribution test × √
Test for the longest run of ones in a block √ √
Binary derivative test × √
Autocorrelation test × √
Binary matrix rank test √ √
Cumulative sums test √ √
Approximate entropy test √ √
Linear complexity test √ √
Maurer’s universal statistical test √ √
Discrete Fourier transform test √ √
Nonoverlapping template matching test √ ×

Overlapping template matching test √ ×

Lempel–Ziv compression test √ ×

Random excursions test √ ×

Random excursions variant test √ ×

Security and Communication Networks 3



-en, ∇ψ2
m and∇ψ2

m−1 have the χ2 distribution with 2m −

1 and 2m − 2 degrees of freedom, respectively. -us, for
small values of m, m≤ log2(n) − 2, one can find the
corresponding 2m P values from the standard formulas:

P − value1 � igamc 2m− 2
,
∇ψ2

m

2
 ,

P − value2 � igamc 2m− 3
,∇
∇ψ2

m

2

2

 .

(4)

Denote by vi1
vi2

, . . . , vim
the frequency of m-bit pattern

i1i2 . . . im, vi1
vi2

. . . vim−1
the frequency of (m − 1)-bit pattern

i1i2 . . . im−1, and vi1
vi2

. . . vim−2
the frequency of (m − 2)-bit

pattern i1i2 . . . im−2, respectively.
-e steps of the serial test (Algorithm 1) are as follows.
Note that choose m such that m≤ log2(n) − 2. -e bit

length of subsequence m and the sample length n are proposed
m � 2 and 5 and n � 1000000 in specification [3], respectively.

3.3. Approximate Entropy Test. -e frequency of all possible
overlappingm-bit patterns in the sequence is the focus of the
approximate entropy test.-rough this test, the frequency of
two adjacent lengths’ (m and m+ 1) subsequences can be
compared with the expected result.

-e repetitive pattern in the string is a feature of ap-
proximate entropy. Set

C
m
i �

vi1i2 ···im

n
,

Φ(m)
� 

2m

i�1
C

m
i ln C

m
i .

(5)

-e approximate entropy ApEn(m), m≥ 1, is defined as

ApEn(m) � Φ(m)
−Φ(m− 1)

, (6)

with ApEn(0) � −Φ(1).
ApEn(m) measures the logarithmic frequency with which

blocks of length m that are close together. -us, a smaller
ApEn(m) value indicates strong regularity in the sequence,
while larger values indicate irregularities in the sequence.

For a fixed block length m, one should expect that, in
long random strings, ApEn(m) ∼ ln 2. -e limited dis-
tribution is consistent with the distribution of a random
variable with 2m degrees of freedom. -is fact provides the
basis for statistical testing. -us, with
χ2(obs) � n[ln 2 − ApEn(m)]), the reported P value is

P − value � igamc 2m− 1
,
χ2(obs)

2
 . (7)

-e steps of the approximate entropy (Algorithm 2) test
are as follows.

Note that choose m such that m≤ log2(n) − 2. -e bit
length of subsequence m and the sample length n are
proposed m � 2 and 5 and n � 1000000 in specification [3],
respectively.

-e second step of the serial test and the approximate
entropy test is to determine the frequency of all possible m-
bit subsequences of ε′ � (ε1, ε2, . . . , εn, ε1, . . . , εm−1). Algo-
rithm 3 is a basic implementation of Step 2 based on bits’
operations.

We note by LOAD the data loading operation. Left and
right shifts will be denoted SHIFT. By CMP means the
compare operation.

-e computational complexity of Algorithm 3 is mn

LOAD, 2mn ADD, mn SHIFT, and mn OR. -e compu-
tational complexity of Algorithm 4 is n/8 LOAD, n(m + 7)/8
ADD, n SUB, n(m + 7)/8 SHIFT, n AND, n(m + 7)/8 OR,
and E′ � (E1, E2, . . . , En/8, E1) CMP.

4. Fast Implementation

4.1. Hotspots. After determining the key parts of the pro-
gram, we can start to optimize the code. During the running
of the program, there are two situations for time allocation.
In some programs, more than 99% of the time is used for
inner loop calculations. In other programs, 99% of the time
is used to read and write data, and less than 1% of the time is
used to calculate the data. It is important to optimize these
parts of the code instead of the parts of the code that spend a
small amount of time. Optimizing the less critical parts of
the code not only wastes time but also makes the code more
difficult to maintain.

Table 3: Symbols.

Symbols Meaning
ε -e original input string of zero and one bits to be tested
εi -e ith bit in the original sequence ε
n -e number of bits in the stream being tested
m -e number of bits in a substring (block) being tested
vi1

, vi2, . . . , vit -e frequency of the t-bit pattern i1i2 . . . it
∇Ψ2m(obs) A measure of how well the observed values match the expected value
∇2Ψ2m(obs) A measure of how well the observed values match the expected value
H0 -e null hypothesis; i.e., the statement that the sequence is random
Igamc -e incomplete gamma function
log(x) -e natural logarithm of x: log(x) � loge(x) � ln(x)

A -e significance level
& -e and operator
| -e or operator

4 Security and Communication Networks



We can use the profiler in the compiler to profile how
much time each function costs. It can also be done with
third-party analyzers, such as AQtime, Intel VTune, and
AMD Code Analyst.

Due to the short time interval, time measurement re-
quires very high resolution. Users can use the Query-
PerformanceCounter or GetTickCount functions for
millisecond resolution in Windows. Use the time stamp
counter in the CPU to get a higher resolution RDTSC. -is
instruction counts at the CPU clock frequency.

We need to identify the most time-consuming hotspots
of the basic implementation of the serial test and the ap-
proximate entropy test. -e Hotspots analysis helps un-
derstand these tests and identify steps that take a long time to
execute (hotspots). Intel VTune amplifier identifies that Step
2 of the serial test is the most time-consuming hotspot of this
test. In the serial test, this step determines vi1

vi2
. . . vim

,
vi1

vi2
. . . vim−1

, and vi1
vi2

. . . vim−2
and the frequency of all

possible m-bit, (m − 1)-bit, and (m − 2)-bit subsequence,
respectively. -en, the Intel VTune amplifier identifies that
Step 2 of the approximate entropy test is the most time-
consuming hotspots of this test. -is step determines
vi1

vi2
. . . vim

the frequency of all possiblem-bit subsequences.
All the operations of Algorithm 3 are based on bit op-

erations, which seriously reduce the performance of these
tests.

In practice, a binary sequence is in the form of an octet
string. -is octet string needs to be converted into a bit
string, and then, the bit string is sent into Algorithm 3 to
determine the frequency of all possible m-bit subsequences.

Algorithm 3 is replaced by bit operations with byte
operations, and the performance will be significantly
improved.

4.2. Fast Implementation Based on Octet Operation. In
practice, a binary sequence is almost in the form of the octet
string, so we assume that n is divided by (8|n) -e random
byte is a byte sequence formed by combining random bits by
bit-by-bit splicing.

Denote E � (E1, E2, . . . , En/8) the octet string of the
binary sequence ε � ε1, ε1, . . . , εn of length n, with
Ei � ε8i−7, ε8i−6 . . . , ε8i, i � 1, 2, . . . , n/8. Because the value of
the parameter m is less than 8, the extended octets are not
more than one octet (8 bits). Extend the sequence by
appending the first octet to the end of the octet string and
E′ � (E1, E2, . . . , En/8, E1) to form the augmented octet
string E′. Algorithm 4 determines the frequency based on
multiple bits’ operations.

4.3. Analysis of Computational Complexity. -is section
analyses and compares the number of arithmetic operations
of the above algorithms. Because Step 2 is the most time-
consuming, so the main task is to analyze the computational
complexity of Algorithm 3 based on bit string and bit op-
erations and Algorithm 4 based on octet string and multibit
operations.

Unroll Step 2.2 of Algorithm 4, which can reduce many
operations. -e CMP operation is clear, and the left and

right shift number does not need to be calculated. -e
computational complexity is reduced to n/8 LOAD, n ADD,
n(m + 7)/8 SHIFT, n AND, and n(m + 7)/8 OR.

-e efficiency of the loop depends on the micropro-
cessor’s ability to predict the control branch of the loop. A
loop with a small and fixed repeat count and no branches
inside can be predicted perfectly. It is best to avoid loop
unrolling on processors with microoperation cache because
it is important to save the use of microoperation cache. -e
unrolled loop takes up more space in the code cache or
microoperation cache. If there are specific advantages to be
gained, such as eliminating the if branch, the programmer
should manually unroll a loop.

Loop unrolling of Algorithm 4 has many advantages.
-en, if the branch is eliminated, the CMP operation is
removed, and the left and right shift numbers are cleared.

-e computational complexity of Algorithm 3 (based on
bit string) and Algorithm 4 (based on octet string) is pro-
vided in Table 4.

For example, when the value of m is 3, the execution
numbers of Algorithms 3 and 4 are 15n and 3.625n,
respectively.

-e serial test determines the frequency of all possible j-
bit patterns, with j � 1, 2, 3, 4, and 5. In Algorithm 3 (based
on bit string), the sum of operations of the serial test (with
j � 1, 2, 3, 4, and 5) is


5

m�1
5mn � 75n. (8)

In Algorithm 4 (based on octet string), the sum of
operations of the serial test (with j � 1, 2, 3, 4, and 5) is



5

m�1

n(2m + 23)

8
� 18.125n. (9)

In contrast to the number of arithmetic operations of the
above two algorithms, it is shown that Algorithm 4 based on
the octet string is superior to Algorithm 3 based on bit string,
in the serial test. Table 5 shows the number of arithmetic
operations of the above two algorithms.

-e approximate entropy test determines the frequency
of all possible j-bit patterns, with j � 2, 3, 5, and 6. In Al-
gorithm 3 (based on bit string), the sum of operations of the
approximate entropy test is


m�2,3,5,6

5mn � 80n. (10)

In Algorithm 4 (based on octet string), the sum of
operations of the approximate entropy test is


m�2,3,5,6

n(2m + 23)

8
� 15.5n. (11)

In contrast to the number of arithmetic operations of the
above two algorithms, it is shown that Algorithm 4 based on
octet string is superior to Algorithm 3 based on bit string, in
the approximate entropy test. Table 6 shows the number of
arithmetic operations of the above two algorithms.

Security and Communication Networks 5



However, different instructions cost different cycles.
Integer operations are usually very fast. On most micro-
processors, most simple integer operations (such as addi-
tion, subtraction, comparison, bit operations, and shift
operations) only take one clock cycle. Multiplication and
division require longer clock cycles. Usually, integer mul-
tiplication requires 3-4 clock cycles, and integer division
requires 40–80 clock cycles. In addition, it may take longer to
access data from RAM compared to the time required to
perform calculations on the data. If it is cached, it only takes
2-3 clock cycles to read or write the variables in the memory,
while if it is not cached, it takes hundreds of clock cycles [23].
So, the exact time consuming of these algorithms needs to do
many different experiments.

5. Further Optimizing

5.1. Merging 6ese Two Tests. As mentioned earlier,
accessing data from RAM may take longer than the time it
takes to perform calculations on the data. -is is why all
modern computers have a memory cache. Generally, there
are a level 1 data cache, a level 2 cache, and a level 3 cache. If

the total size of all data in the program is greater than the
level 2 cache and the data is scattered in the memory or
accessed in a nonsequential manner, memory access may be
the largest time-consuming operation in the program. If it is
cached, it only takes 2-3 clock cycles to read or write a
variable in the memory, while if it is not cached, it takes
hundreds of clock cycles.

-e sequence size is 125000 bytes, which is bigger than
most of the level-1 cache, so these data cannot be cached.
Loading sequence data in memory costs many clock cycles,
and memory access is the time-consuming operation
(hotspots) in these tests. -e size of the sequence cannot be
reduced, and the cache of the CPU is fixed.-e best thing we
can do is reduce the loading times of data to improve the
performance of these tests. Many specifications propose to
perform both the serial test and the entropy test.

Step 2 of the serial test and Step 2 of the approximate
entropy test have similar functions and call the same al-
gorithm so that these tests may be merged. -e values of m
are proposed in specification [3]. In the serial test, the values
are m � 2 and 5, which need to determine the frequency of 1-
bit, 2-bit, 3-bit, 4-bit, and 5-bit pattern. In the approximate

Input: a binary sequence ε � ε1, ε1, . . . , εn of length n. m is the bit length of subsequence.
Output: pass or not.
Step 1: extend the sequence by appending the first (m − 1) bits to the end of the sequence ε′ � (ε1, ε2, . . . , εn, ε1, . . . , εm−1)

Step 2: determine vi1
vi2

. . . vim
, vi1

vi2
. . . vim−1

, and vi1
vi2

. . . vim−2
and the frequency of all possible m-bit, (m − 1)-bit, and (m − 2)-bit

subsequence, respectively.
Step 3: compute ψ2

m, ψ2
m−1, and ψ2

m−2. ψ2
m � 2m/ni1 ···im

v2i1 ···im
− n. ψ2

m−1 � 2m− 1/ni1 ···im
v2i1 ···im

− nψ2
m−2 � 2m−2/ni1 ···im

v2i1 ···im
− n.

Step 4: compute ∇ψ2
m and ∇2ψ2

m. ∇ψ2
m � ψ2

m − ψ2
m−1∇

2ψ2
m � ψ2

m − 2ψ2
m−1 + ψ2

m−2.
Step 5: compute P values. P − value1 � igamc(2m− 2,∇ψ2

m/2)P − value1 � igamc(2m−3,∇ψ2
m/2).

Step 6: if P − value1≥ α and P − value2≥ α, the sequence passes the test. Otherwise, return not pass.

ALGORITHM 1: Serial test.

Input: a binary sequence ε � ε1, ε1, . . . , εn of length n. m is the bit length of subsequence
Output: pass or not
Step 1: extend the sequence by appending the first m-1 bits to the end of the sequence ε′ � (ε1, ε2, · · · , εn, ε1, · · · , εm−1).
Step 2: determine vi1

vi2
. . . vim

the frequency of all possible m-bit subsequences.
Step 3: compute Cm

i , for each value of i. Cm
i � vi1 i2 ...im

/n.
Step 4: compute Φ(m)Φ(m) � 

2m

i�1 Cm
i ln Cm

i .
Step 5: repeat Steps 1–4, replacing m by m+1.
Step 6: compute χ2 � n[ln 2 − ApEn(m)] with ApEn(m) � Φ(m) −Φ(m−1).
Step 7: compute P values. P − value � igamc(2m− 1, χ2/2).
Step 8: if P − value≥ α, the sequence passes the test. Otherwise, return not pass.

ALGORITHM 2: Approximate entropy test.

Input: A extended binary sequence ε′ � (ε1, ε2, . . . , εn, ε1, . . . , εm−1) of length n + m − 1. m is the bit length of subsequence.
Output: vw, for each value of w � i1i2 · · · im.
Step 1: vi1i2 ···im

� 0, for each value of i.
Step 2: for i � 1, 2, . . . , n, do: 2.1 x � 0. 2.2 for j � 0, 1, . . . , m − 1, do: x � 2x + εi+j. 2.3 vx � vx + 1.
Step 3: return vw, for each value of w � i1i2 . . . im.

ALGORITHM 3: Determine the frequency of all possible m-bit subsequence (bit string).

6 Security and Communication Networks



entropy test, the values are m � 2 and 5, which need to
determine the frequency of 2-bit, 3-bit, 5-bit, and 6-bit
pattern so one can determine the frequency of i-bit patterns,
with i � 1, 2, . . . , 6.

-ere are many benefits to the merger of the six cases.
Firstly, lots of the same operations of Algorithm 4 can be
combined. For example, the large number of loading op-
erations only need to execute one time with m � 1, 2, . . . , 6,
and the loading data operations reduce 5n/8, which en-
hances the efficiency of data. Secondly, the number of calling
algorithms can be greatly reduced, which further speeds up
the test performance.

Algorithm 5 shows the emerged test based on multibit,
which is the merger of the serial test and the approximate
entropy test.

Algorithm 6 shows the merger of the six cases, which
determine the frequency of the i-bit pattern, with
i � 1, 2, . . . , 6.

In Step 2.2, the conditions of j are 1≤ j≤ 6 and
8< k + j≤ 16, which ensure the validity of the results. For
example, k� 13, v2y(j� 2) is valid, and v5y(j� 3) is invalid. It
is recommended to unroll the loop of j and k in pro-
gramming, reducing lots of operations.

-e codes of Algorithm 6 are shown in Appendix, with
loop unrolling.

5.1.1. Computational Complexity. -is section analyses the
number of arithmetic operations of the above algorithms.

Algorithm 5 shows the emerged test based on multibit,
which is the merger of the serial test and the approximate
entropy test. -e most time-consuming step of this test still
is Step 2, which calls Algorithm 6, to determine the fre-
quency of all possible j-bit patterns, with j � 1, 2, . . . , 6. In
Algorithm 6, Step 1 and Step 3 do basic operations, and Step
2 is the crucial step and the most time-consuming step.

-e computational complexity of Algorithm 6 is n/8
LOAD, 6n ADD, 7n/4 SHIFT, 6n AND, and n/8 OR. -e
details are provided in Table 7.

In the implementation of these two tests, different al-
gorithms have different performances. Table 8 lists the
number of operations of Algorithms 3, 4, and 6 in the serial
test and the approximate entropy test.

6. Experimental Results

-is section shows the experimental results of the above
algorithm. In contrast to the performance of these algo-
rithms, it is shown that Algorithm 4 (based on octet string)

and Algorithm 6 (based on the merger of these tests) are
superior to Algorithm 1 (based on bit string).

At first, it shows the way to perform analysis of the above
algorithms. -e first step is to set a time counter Ts before
the algorithm to be analyzed, and set another time counter
Te after the algorithm. -en, run the application and get the
elapsed time Ti � Te − Ts. Repeat Step 1 and Step 2 k times
(k is odd), and get multiple values of the elapsed time
Ti(i � 1, 2, . . . , k). By the descending order of these values,
T1′T2′ ≥ . . . ≥Tk

′, and the intermediate value T(k+1)/2 is the
elapsed time of the algorithm.

We can use the command RDTSC to get the current
time. RDTSC instruction loads the current value of the
processor’s time stamp counter (64-bit counter). -e pro-
cessor monotonically increments the timestamp counter
every clock cycle and resets it to 0 every time the processor is
reset. -e RDTSC instruction is not serialized. It does not
have to wait until all previous instructions have been exe-
cuted to read the counter.

We measure our algorithms and these tests on a personal
computer. -is computer has one Intel Core i3-3240@
3400MHzCPUwith four cores.Measurements use one core.
-e compiler used to compile our C code is Intel C++
Compiler XE 12.0.

-e input data of Algorithm 3 is a bit string of length
1000000, and the input data of Algorithms 4 and 8 is the
octet string of byte length 125000, which is converted from
that binary string.

Algorithm 3 (based on bit string) and Algorithm 4 (based
on octet string) can be used to determine the frequency of
them-bit pattern. Algorithm 6 (based on octet string) can be
used to determine the frequency of the i-bit pattern with
m � 1, 2, . . . , 6.

In the serial test, one should determine the frequency of
1-bit, 2-bit, 3-bit, 4-bit, and 5-bit patterns. In the approx-
imate entropy test, one should determine the frequency of 2-
bit, 3-bit, 5-bit, and 6-bit patterns. Algorithm 6 can complete
this task.

Input: a extended octet string E′ � (E1, E2, . . . , En/8, E1) of octet length n/8 + 1. m is the bit length of subsequence.
Output: vw, for each value of w � i1i2 . . . im.
Step 1: vi1 i2 ...im

� 0, for each value of i. M � 2m − 1.
Step 2: for i � 1, 2, . . . , n/8, do: 2.1 x � 0. 2.2 for j � 0, 1, . . . , m − 1, do. k � 8 − j − m if k≥ 0, then: x � (Ei≫ k) & M if k< 0, then:

x � ((Ei≪ (−k))|(Ei+1≪ (8 + k))) & M vx � vx + 1
Step 3: return vw, for each value of w � i1i2 . . . im.

ALGORITHM 4: Determine the frequency of all possible m-bit subsequence (octet string).

Table 4: -e computational complexity of Algorithms 3 and 4.

Execution number
Operations Algorithm 3 Algorithm 3
LOAD mn n/8
ADD 2mn n

SHIFT mn n(m + 7)/8
AND 0 n

OR mn n(m − 1)/8

Security and Communication Networks 7



On the same test platform, we use the NIST STS source
code provided by NIST, the source code of Fast NIST STS
from [17], and the implementation of this paper to test serial

test and approximate entropy test. Table 9 shows the per-
formance of the original implementation NIST STS, the
implementation Fast NIST STS from [17], and our new
implementation.

-e original implementation of NIST STS is based on
bits when performing serial tests and approximate entropy
tests. -is makes the detection time increase significantly
when m increases. For example, when m� 2, it takes 32.844
milliseconds to perform the serial test, and when m� 9, the
time increases to 169.163 milliseconds. In addition, the
original implementations of NIST STS and Fast NIST STS
both perform detection for a single parameter m when

Table 5: -e number of operations of Algorithms 3 and 4 in the serial test.

Operations
Execution number of serial test

Calling algorithm 3 Calling algorithm 4
LOAD 15n 0.625n

ADD 30n 5n

SHIFT 15n 6.25n

AND 0.5 n

OR 15n 1.25n

Table 6: -e number of operations of Algorithms 3 and 4 in the approximate entropy test.

Operations
Execution number of approximate entropy test

Calling algorithm 3 Calling algorithm 4
LOAD 16n 0.5n

ADD 32n 4n

SHIFT 16n 5.5n

AND 0 4n

OR 16n 1.5n

Input: an octet string E � (E1, E2, . . . , En/8) of octet length n/8.
Output: pass or not pass
Step 1: extend the sequence by appending the first octet to the end of the sequence E′ � (E1, E2, · · · , En/8, E1).
Step 2: call Algorithm 6 to determine vi1

vi2
. . . vim

the frequency of all possible j-bit pattern, with j � 1, 2, . . . , 6.
Step 3: compute ψ2

j , j � 1, 2, . . . , 5. ψ2
j � 2j/ni1 ···ij

v2i1 ···ij
− n.

Step 4: compute ∇ψ2
j and ∇2ψ2

j , j � 1, 2, . . . , 5. ∇ψ2
j � ψ2

j − ψ2
j−1∇

2ψ2
j � ψ2

j − 2ψ2
j−1 + ψ2

j−2.
Step 5: compute P values of the serial test, j � 2, 5P1ST(j) � igamc((2j−2,∇ψ2

j/2)P2ST(j) � igamc((2j−3,∇ψ2
j/2).

Step 6: pass the serial test, if P1ST(j)≥ α, P2ST(j)≥ α, j � 2 and 5. Otherwise, not pass.
Step 7: compute C

j
i � vi1i2 ···ij

/n, for each value of i.
Step 8: compute Φ(j), j � 2, 3, 5, 6Φ(j) � 

2m
i�1C

j
i ln C

j
i , j � 2, 3, 5, and 6.

Step 9: compute χ2 � n[ln 2 − ApEn(j)] with ApEn(j) � Φ(j) −Φ(j−1), j � 2, 3, 5, and 6.
Step 10: compute P values of the approximate entropy test. PAET(j) � igamc(2j− 1, χ2/2), j � 2 and 5.
Step 11: pass the approximate entropy test, if PAET(2)≥ α, j � 2 and 5. Otherwise, not pass.

ALGORITHM 5: Merged test based on multibit.

Input: a extended octet string E′ � (E1, E2, . . . , En/8, E1) of octet length n/8 + 1.
Output: v1w, v2w, v3w, v4w, v5w, and v6w, for each value of w � i1i2 . . . ij, i � 1, 2, . . . , 6.
Step 1: v1w � v2w � v3w � v4w � v5w � v6w � 0, for each value of w � i1i2 . . . ij, i � 1, 2, . . . , 6. Mj � 2j − 1, i � 1, 2, . . . , 6.
Step 2: For i � 1, 2, . . . , n/8, do: 2.1Z � (Ei≪ 8)|Ei+1 2.2 for k � 15, 14, . . . , 3, do x � Z≫ k for j � MAX(9 − k, 1), . . . ,MIN(16 − k, 6)

do. y � x&Mjvjy � vjy + 1.
Step 3: Return v1w, v2w, v3w, v4w, v5w, and v6w.

ALGORITHM 6: Determine the frequency of all possible m-bit subsequence with m � 1, 2, . . . , 6.

Table 7: -e number of operations of Algorithm 6.

Operations Algorithm 6
LOAD 0.125n

ADD 6n

SHIFT 1.75n

AND 6n

OR 0.125n

8 Security and Communication Networks



performing serial tests and approximate entropy tests. -is
makesm� 2 andm� 5 need to perform corresponding tests,
respectively.

It can be seen from Table 9 that the efficiency of the serial
test and the approximate entropy test are increased by 2.164
and 2.100 times separately, compared with the imple-
mentation of Fast NIST STS, and the execution efficiency of
the merge test has been significantly improved. Its execution
time is very close to that of the serial test or approximate
entropy test alone. At the same time, the efficiency of the
merge test reached 4.078 times that of Fast NIST STS.

In most applications, all the detection items of the test
suit need to be executed. -erefore, the algorithm proposed
in this paper has very important value in practical appli-
cations and can significantly reduce the execution time of
these two detection algorithms.

7. Conclusions

In this paper, we study the fast implementation of the serial
test and the approximate entropy test and propose two types
of fast implementation of these tests.

-e first fast implementation method is to follow the
basic steps according to these tests and then call Algorithm 4
to determine the frequency of the m-bit pattern. In this
implementation, the efficiency of the serial test and the
approximate entropy test are increased by 2.164 and 2.100
times separately, compared with the implementation of Fast
NIST STS. -e second one is to merge these tests, combine
the steps, and call Algorithm 6 to determine the frequency of
all the possible values of m. In this implementation, the
efficiency has been greatly improved relative to the indi-
vidual implementation of these tests, and the improvement
is much more significant compared with the basic imple-
mentation based on bits’ operations. -e best efficiency of
this method is increased by 4.078 times, comparing to the
implementation of Fast NIST STS.

In conclusion, we propose the fast implementation
method based on merging tests and combining the fre-
quency of the subsequences. -is method not only can be
used in the merging test but also can be used to only do the
serial test or only do the approximate entropy test.

Data Availability

-e raw/processed data required to reproduce these findings
cannot be shared at this time as the data also form part of an
ongoing study.

Conflicts of Interest

-e authors declare that they have no conflicts of interest
regarding the publication of this article.

References

[1] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and M. Barker, “A
statistical test suite for the validation of random number
generators and pseudo random number generators for
cryptographic applications,” [EB/OL]. Version STS-2.1, NIST
Special Publication 800-22rev1a, 2010.

[2] BSI AIS-20 and AIS-30, Application Notes and Interpretation
of the Scheme Functionality Classes and Evaluation Method-
ology for Deterministic and Physical Random Number Gen-
erators, German Federal Office for Information Security,
Berlin, Germany, 2008.

[3] National Cryptography Administration, Randomness Test
Specification, National Cryptography Administration, Beijing,
China, 2009.

[4] B. Y. Ryabko and A. I. Pestunov, ““Book stack” as a new
statistical test for random numbers,” Problems of Information
Transmission, vol. 40, no. 1, pp. 66–71, 2004.

[5] E. Barker and J. Kelsey, “Recommendation for random
number generation using deterministic random bit genera-
tors, [EB/OL]. revision 1, NIST special publication 800-
90Ar1,” 2015, http://csrc.nist.gov/publications/PubsDrafts.
html#SP-800-90-A.

Table 8: -e number of operations of Algorithms 3, 4, and 6.

Operations
Serial test and approximate entropy test

Algorithm 3 Algorithm 4 Algorithm 6
LOAD 31n 1.125n 0.125n

ADD 62n 9n 6n

SHIFT 31n 11.75n 1.75n

AND 0 9n 6n

OR 31n 2.75n 0.125n

Table 9: -e performance of the original implementation NIST STS, the implementation Fast NIST STS from [17], and our new
implementation. Merged test is a combined test of the serial test (m� 2 and 5) and approximate entropy test (m� 2 and 5).

Tests NIST STS [1] (ms) Fast NIST STS [17] (ms) Our (ms) Speedup our vs. Fast NIST STS
Serial test (m� 2) 32.844 0.627 0.546 1.148
Serial test (m� 5) 64.610 0.630 0.575 1.096
Serial test (m� 2 and 5) 96.163 1.283 0.593 2.164
Approximate entropy test (m� 2) 36.046 0.636 0.553 1.150
Approximate entropy test (m� 5) 50.831 0.647 0.58 1.116
Approximate entropy test (m� 2 and 5) 124.506 1.262 0.601 2.100
Merged test 220.313 2.561 0.628 4.078

Security and Communication Networks 9

http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-90-A
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-90-A


[6] H. Chen, Security Test on Cryptographic Algorithms and
Design of Key Cryptographic Components, Institute of Soft-
ware, Chinese Academy of Sciences, Beijing, China, 2004.

[7] E. Filiol, “A new statistical testing for symmetric ciphers and
hash functions,” in Proceedings of International Conference on
Information and Communications Security, pp. 342–353,
Singapore, December 2002.

[8] F. Pareschi, R. Rovatti, and G. Setti, “On statistical tests for
randomness included in the NIST SP800-22 test suite and
based on the binomial distribution,” IEEE Transactions on
Information Forensics and Security, vol. 7, no. 2, pp. 491–500,
2012.

[9] J. Daemen and V. Rijmen, 6e Design of Rijndael: AES-the
Advanced Encryption Standard, Springer, Heidelberg, Ger-
many, 2002.

[10] D. G. Feng andW. L.Wu,Design and Analysis of Block Cipher,
Tsinghua University Press, Beijing, China, 2000.

[11] J. Soto and B. H. Lawrence, Randomness Testing of the Ad-
vanced Encryption Standard Finalist Candidates, Computer
Security Division, NIST, Gaithersburg, ML, USA, 2000.

[12] ETSI/SAGE, TS 35.222 Specification of the 3GPP Confiden-
tiality and Integrity Algorithms 128-EEA3 & 128-EIA3,
Document 2: ZUC Specification [S/OL], 2011, http://www.
3gpp.org/DynaReport/35-series.htm.

[13] X. T. Feng, “ZUC algorithm: 3GPP LTE international en-
cryption standard,” Information Security and Communica-
tions Privacy, vol. 9, no. 12, pp. 45-46, 2012.

[14] W. W. Tsang, L. C. K. Hui, and K. P. Chow, “Tuning the
collision test for power,” in Proceedings of the 27th Austral-
asian Conference on Computer Science, pp. 23–30, Australian
Computer Society, New Zealand, Oceania, January 2004.

[15] K. Hamano and T. Kaneko, “Correction of overlapping
template matching test included in NIST randomness test
suite,” IEICE-Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 90, no. 19,
pp. 1788–1792, 2007.

[16] F. Pareschi, R. Rovatti, and G. Setti, “Second-level NIST
randomness tests for improving test reliability,” in Proceed-
ings of the 2007 IEEE International Symposium on Circuits and
Systems, pp. 1437–1440, New Orleans, LA, USA, May 2007.

[17] M. Sys and Z. Riha, “Faster randomness testing with the NIST
statistical test suite,” in Proceedings of the International
Conference on Security, Privacy, and Applied Cryptography
Engineering, pp. 272–284, Springer, Pune, India, October
2014.

[18] J. Zhuang, Y. Ma, S. Y Zhu, J. Q. Lin, and J. W. Jing, “Q_Value
test: a new method on randomness statistical test,” Journal of
Cryptologic Research, vol. 3, no. 2, pp. 192–201, 2016.

[19] L. M. Fan, H. Chen, M. H. Chen, and S. Gao, “Corrected runs
distribution test for pseudorandom number generators,”
Electronics Letters, vol. 52, no. 4, pp. 281–283, 2016.

[20] M. H. Chen, H. Chen, L. M. Fan, S. F. Zhu, and D. G. Feo, “A
new discrete Fourier transform randomness test,” Science
China(Information Sciences), vol. 62, no. 3, pp. 90–105, 2019.

[21] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, Boca Raton,
FL, USA, 1997.

[22] W. Press, S. Teukolsky, and W. Vetterling, Numerical Recipes
in C: 6e Art of Scientific Computing, Cambridge University
Press, Cambridge, England, 2nd edition, 1993.

[23] I. Corporation, “Intel advanced vector extensions program-
ming preference [EB/OL],” 2011, https://software.intel.com/
sites/default/files/m/f/7/c/36945.

10 Security and Communication Networks

http://www.3gpp.org/DynaReport/35-series.htm
http://www.3gpp.org/DynaReport/35-series.htm
https://software.intel.com/sites/default/files/m/f/7/c/36945
https://software.intel.com/sites/default/files/m/f/7/c/36945

