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Traditional machine learning-based steganalysis methods on compressed speech have achieved great success in the field of
communication security. However, previous studies lacked mathematical modeling of the correlation between codewords, and
there is still room for improvement in steganalysis for small-sized and low embedding rate samples. To deal with the challenge, we
use Bayesian networks to measure different types of correlations between codewords in linear prediction code and present
F3SNet—a four-step strategy: embedding, encoding, attention, and classification for quantization index modulation steganalysis
of compressed speech based on the hierarchical attention network. Among them, embedding converts codewords into high-
density numerical vectors, encoding uses thememory characteristics of LSTM to retainmore information by distributing it among
all its vectors, and attention further determines which vectors have a greater impact on the final classification result. To evaluate
the performance of F3SNet, wemake a comprehensive comparison of F3SNet with existing steganographymethods. Experimental
results show that F3SNet surpasses the state-of-the-art methods, particularly for small-sized and low embedding rate samples.

1. Introduction

As an effective way to secretly transfer information over the
Internet, steganography uses the redundancy of digital
carriers to accomplish secret information embedding. In
recent years, due to the pervasiveness of streaming media
technologies, VoIP steganography and their countermea-
sures have become one of the hot topics in information
hiding [1–3].

Among many VoIP applications for band-limited
channels and wireless communication, speech coders such
as G.729, G.713.1, Adaptive Multirate (AMR), and Enhanced
Full Rate (EFR) have become essential components in
mobile and wireless communication. How to exploit the
redundancy existing in the encoding process to achieve
steganography is a new research hotspot. Some methods
which embed secret messages into the bitstream during the
encoding process have been proposed, such as quantization
index modulation (QIM) steganography [4–6], fixed

codebook (FCB) steganography [7–9], and pitch modulation
(PM) steganography [10, 11].

As the counterpart of steganography, steganalysis is not
only to ensure that steganography is not maliciously abused
but also a key technique for evaluating the performance of
steganography algorithms. Machine learning algorithms,
especially support vector machine (SVM), have been widely
used in the field of steganalysis of both traditional media and
VoIP streams. For QIM steganography, S. Li et al. proposed a
variety of detection methods [12, 13]. In [12], they presented
a statistical model to extract the quantitative feature vectors
of the index distribution characteristics (IDC). In another
work, Li et al. [13] further presented a model called the
quantization codeword correlation network (QCCN) to
quantify the correlation characteristics of the vertices in the
correlation network. For FCB steganography, Miao et al. [14]
first presented a Markov Transition Probabilities- (MTP-)
based detection method and an entropy-based detection
method to detect the steganography of compressed speech.
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To improve the performance, Ren et al. [15] used the sta-
tistical probability of Same Pulse Position (SPP) in the same
track to accurately distinguish covers from stegos. For PM
steganography, Liu et al. [16] extracted the statistics of the
high-frequency spectrum and the mel-cepstrum coefficients
of the second-order derivative for detecting audio steg-
anography. Li et al. [17] proposed a network model to
quantify the correlation characteristics of the adaptive
codebook. Undoubtedly, steganalysis of compressed speech
based on machine learning has made great progress.

However, such methods mentioned above are facing
some challenges. Firstly, as steganography becomes more
sophisticated [7, 8, 18], the extracted statistical features for
steganalysis are evolving from low dimensions and sim-
plicity to high dimensions and complexity [19]. Secondly,
information hiding technology is gradually developing to-
wards randomization and fine granularity, that is, within the
allowable range of carrier distortion, secret information is
first divided into small segments, and then, carriers of
different lengths are randomly selected to achieve fine-
grained steganography with different embedding rates.
Nevertheless, most existing steganalysis methods do not
perform well [14, 15], especially for small-sized and low
embedding rate samples.

Fortunately, the emergence of neural networks (NNs)
has brought hope to deal with these challenges. In 2018, Lin
et al. [20] first introduced neural networks (NNs) to the
steganalysis of compressed speech. &ey proposed Re-
current Neural Network- (RNN-) based steganalysis model
(RNN-SM) to detect the disparities in codeword correla-
tions caused by QIM steganography. In 2019, Chen et al.
proposed a steganalytic scheme by combining RNN and
Convolutional Neural Network (CNN) for FCB steg-
anography. However, sequence coding based on CNN or
RNN is still a local coding method, and it models the local
dependency of input information. In [21], Vaswani et al.
argued that the attention mechanism can completely re-
place LSTM and convolutional neural networks. Inspired
by their work, we integrate the attention mechanism and
RNN and propose a deep network model to mine infor-
mation that reflects changes in the correlation between
codewords before and after steganography.

In this paper, we introduce F3SNet, a four-step strategy
for QIM steganalysis based on hierarchical encoding rep-
resentations. In F3SNet, the RNN encoder is used to keep
much more information by being distributed among all its
vectors, and the attention mechanism is used to decide
which vectors should be paid more attention to.&e practice
has proved that F3SNet is very sensitive to the weak signal
changes brought by steganography, especially for small-size
and low embedding rate samples.

In summary, this work makes the following
contributions:

(1) We first use the Bayesian network (BN) to establish a
framework for uncertainty knowledge expression
and reasoning and then calculate the link strength
between different nodes as a measure of the strength
of the codeword correlation. &e process of

quantification analysis serves as an essential step
towards effective detection using a deep learning
framework.

(2) We present F3SNet, a four-step strategy for QIM
steganalysis method based on the hierarchical at-
tention network. &rough a four-step strategy, we
encode the numerical codeword vectors into mul-
tiple memory vectors, then select a set of vectors that
have the greatest impact on the classification result to
prevent information overload, and finally achieve
efficient steganography classification, even in special
cases, such as small size and low embedding rate.

(3) To evaluate the performance of F3SNet, we perform
comprehensive experiments on detection accuracy
(ACC), false positive rate (FPR), and false negative
rate (FNR) of the algorithm under different lengths
and different embedding rates. Furthermore, we
compare F3SNet with several existing algorithms,
such as IDC [12], QCCN [13], RNN-SM [20], and
FCEM [22] methods under different embedding
rates and different lengths. &e experimental results
show that our algorithm is superior to other state-of-
the-art algorithms.

&e rest of the paper is structured as follows. Section 2
reviews related work on existing steganography and steg-
analysis of compressed speech. Section 3 provides an
overview of linear prediction analysis and QIM steganog-
raphy. Section 4 discusses correlations using the Bayesian
network. Section 5 details the design and implementation of
F3SNet, followed by experiments and discussions in Section
6. Finally, we conclude the paper and discuss future work in
Section 7.

2. Related Works

In 2010, Ding and Ping [23] used the histogram features of
the pulse position parameter to train the SVM classifier to
distinguish cover and stego speech. In 2011, Huang et al. [24]
employed the second detection and regression analysis not
only to detect the hidden message but also to estimate the
length of embedded messages. However, their method is a
relatively dedicated steganography method. Li et al. [12]
designed statistical models to extract the quantitative feature
vectors of these characteristics for detecting QIM steg-
anography using the SVM classifier. Furthermore, Li et al.
[13] built a QCCN model, extracted feature vectors from
split quantization codewords, and then trained a high-
performance SVM classifier.

In addition, for FCB steganography, Miao et al. [14] used
the Markov property of speech parameters to propose a
detection method based on MTP and entropy in 2013. Ren
et al. [15] proposed an AMR steganalysis algorithm based on
the probability of the same pulse position in the same track
in 2015. For better performance, in 2016, Tian et al. [19]
characterized AMR speech exploiting the statistical prop-
erties of pulse pairs and presented a steganalysis of AMR
speech based on the multidimensional feature selection
mechanism. For pitch modulation steganography, Li et al.
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[17] proposed a network model to quantify the correlation
between the adaptive codebook.&e SVM classifier was used
in the above three papers.

In recent years, with the application of different types of
deep learning, many novel algorithms have been proposed
for steganalysis and forgery based on image, audio, and
video [25–27]. Compared with the conventional methods
with handcrafted features [13, 19, 28, 29], the algorithms
based on deep learning can significantly improve the de-
tection performance. In 2015, Qian et al. [30] proposed a
customized CNN for image steganalysis. &e model could
capture the complex dependencies in images and achieve
better detection performance than the Spatial Rich Model
(SRM). Xu et al. [31, 32] proposed a CNN architecture that is
more suitable for image steganalysis and enhanced it by
improving the statistical model in the subsequent layers and
preventing overfitting. Ye et al. [33] proposed a CNN-based
image steganalysis method, which uses an activation func-
tion called truncated linear unit (TLU), and improved the
steganalysis ability by incorporating the knowledge of se-
lection channel. In 2016, Paulin et al. [34] presented an audio
steganalysis method using deep belief networks (DBN).
Compared with SVM and Gaussian mixture model (GMM),
the proposed DBN-based steganalysis method could get
higher classification accuracy. In 2017, Chen et al. [35]
designed a novel CNN to detect audio steganography in the
time domain. However, due to different signal character-
istics, these algorithms are difficult to directly apply to
compressed speech.

In 2018, Lin et al. [20] proposed the codeword corre-
lationmodel based on RNN.&ey used a supervised learning
framework to train RNN-SM. Experiments showed that
RNN-SM achieved better detection results regardless of
short sample length or low embedding rate. In 2019, Chen
et al. [36] proposed a steganalytic scheme by combining
RNN and CNN. &ey utilized RNN to extract higher level
contextual representations of FCBs and CNN to fuse spatial-
temporal features for the steganalysis. Experiments results
validated that their method outperforms the existing state-
of-the-art methods. In 2019 and 2020, Hao et al. [22, 37]
successively proposed hierarchical representation network
and multihead attention-based network to extract correla-
tion features for QIM steganalysis. Both methods signifi-
cantly improve the best result especially in detecting both
short and low embedded speech samples. Inspired by their
work, we proposed a new model called F3SNet based on the
hierarchical attention network to model the spatial and
temporal characteristics of the quantization index in LPC
and further improve the accuracy of detecting CNV steg-
anography [4].

3. Background

3.1. Linear Prediction Analysis. As the basis of low-rate
speech coding, the basic idea of linear predictive analysis
(LPA) is to use the correlation of the speech signal to ap-
proximate the sample value at the current moment with the
linear combination of several past speech samples. Linear
predictive coding is mainly divided into three processes:

LPA, line spectrum pair (LSP) analysis, and vector quan-
tization (VQ). First, the speech signal can be regarded as the
output produced by an input sequence μ(n) exciting an all-
pole system H(z). &e transfer function of the system is

H(z) �
G

1 − 
p
i�1 αiz

− i
, (1)

where G is a constant, p is the order of the model, and αi is a
real number. &e p prediction coefficients form a p-di-
mensional vector, which is the linear prediction coefficient.

However, the LPC coefficient fluctuates greatly, and the
error of a certain LPC coefficient will make a greater impact
on the entire frequency domain. &erefore, the LPC coef-
ficient is not suitable for direct quantization and needs to be
further transformed into the line spectrum frequency pa-
rameter LSF (line spectrum frequency). To further balance
the bit rate and quantization accuracy, vector quantization
technology is used to search the codebook for the codeword
vector C

→
k that is closest to the vector p

→ to be quantized in a
certain distance, and the sequence number k of the code-
word vector is obtained as the quantization result.

3.2. QIM Steganography. &e intrinsic essence of QIM
steganography is that there is redundancy in the quanti-
zation codebook, and the suboptimal codebook parameters
caused by steganography have little impact on the speech
quality.

Chen et al. first proposed a steganography method
suitable for QIM of static digital carriers such as image, text,
audio, and video [38]. Assume that the secret information to
be transmitted is from the set S � sk|1≤ k≤ n . &e sender
wants to hide secret information sk. First, the codebook D is
divided into n disjoint subsets C � ck|1≤ k≤ n . &en, he
(or she) establishes the mapping: f: sk⟶ ck. For the input
vector X to be quantized, only the codeword closest to X is
searched in subcodebook f(sk). &e receiver extracts secret
information by checking which part of the codebook the
codeword belongs to.

In 2009, Xiao et al. [4] combined the QIM method with
VQ in the encoding process of compressed speech and
proposed a novel steganography algorithm based on com-
plementary neighbor vertices (CNV). Given N codewords,
every codeword is m-dimensional. Xiao et al. used graph
theory to establish a graph G(V, E) in the code space, which
can be defined as follows:

V � Vi|0≤ i≤N, |Vi|� m ,

E � 〈vi, vj〉|d Vi, Vj  �

��������������



m

i�1
xi − yi( 

2⎛⎝ ⎞⎠


⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where Vi is the ith codeword in the codebook. Each edge
represents a certain relationship between codewords, and
the weight of the edge is defined as the Euclidean distance
between any two codewords. In Xiao’s paper, he gave a graph
construction algorithm and proved that the graph can be
two-colorable. In the process, the vertices of the same color
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were assigned to the same subset. &e dyeing operations
were repeated until all vertices have been assigned, to obtain
different partitioned subsets of the codebook. Finally, each
codeword is in the opposite part to its nearest neighbor.
Suppose X is the input value to be quantized. In this case, the
additional quantization distortion caused by CNV steg-
anography can be given:

L(X, Y) � d(XY) − d(XY). (3)

It can be proved that the algorithm can minimize the
signal distortion and significantly improve the undetect-
ability and robustness of CNV steganography. &is paper
implements steganalysis for the CNV algorithm.

4. Codewords Correlation Modeling
and Analysis

To fully describe the correlation between codewords in LPC,
we use the BN to model the codewords and then analyze the
correlation. BN can be represented as a 2-tuple 〈G, θ〉, where
G � (V, E) denotes a directed acyclic graph and θ denotes a
set of conditional probabilities, called network parameters.

Suppose there are S frames, each of which contains N

codewords. V and E represent the set of vertices and the set
of edges in the directed graph G, respectively, which can be
expressed as follows:

V � V1[m], V2[m], . . . , VN[m] , m ∈ 0, 1, . . . , S − 1{ },

E � 〈vi, vj〉 |vi ∈ V1[i], V2[i], . . . , VN[i] , vj ∈ V1[j], V2[j], . . . , VN[j]  ,

⎧⎨

⎩ (4)

where L(0≤L≤ (S − 1)) denotes the relative distance of
different frames. If j − i � 0, 〈vi, vj〉 stands for the edge in
the interframe. If j − i≥ 1, 〈vi, vj〉 stands for the edge in the
intraframe. Once the vertices and edges of the directed
graph G are determined, the network parameters θ can be
computed to characterize the dependencies between the
vertices. &erefore, the following formula can be
established:

Θ � P Λi|Vi( , i � 1, 2, . . . , N , (5)

where Vi is the set of parent nodes of node Λi. &e
construction of BN includes structure learning and pa-
rameter learning, and parameter learning depends on
structure learning. Structure learning refers to finding a
network structure that is as similar as possible to the data
for any given dataset D � D1, D2, . . . , Dn}. In the paper,
the K2 algorithm based on Bayesian scoring rules is used
to find the network with the largest probability under a
given dataset. According to the Bayesian formula,

P(G|D) �
P(G)P(D|G)

P(D)
, (6)

where P (G) is the prior knowledge of the network structure
G and the dataset D is known information and is inde-
pendent of the network structure, and we have

max argGP(G|D) � max argGP(G)P(D|G). (7)

Since P(G)P(D|G)∝ log P(G) + log P(D|G), the
Bayesian score is defined as follows:

Score(G, D) � log P(G) + log P(D|G). (8)

Assuming that the prior distribution of the parameter Θ
obeys the Dirichlet distribution, let ri represent the number
of values of the ith variable, qi represent the number of

possible values of the parent node of the ith variable, mijk

represent the number of samples whose parent node is the
jth value when the ith node in the Bayesian network takes
the kth value, and αijk is a hyperparameter, and
α(ij∗) � kαijk, mij∗ � kmijk; then,

Score(G, D) � 
n

i�1


qi

j�1
log
Γ αij⋆ 

Γ αij⋆ + mij⋆ 
+ 

ri

k�1
log
Γ αijk + mijk 

Γ αijk 
⎡⎢⎣ ⎤⎥⎦,

(9)

where Γ(·) is the gamma function and n represents the
number of variables. It has been proved that the K2 algo-
rithm can almost learn the Bayesian network when the node
priority is completely correct.

To verify the effectiveness of BN, we select a 40-second
speech segment, compress it with a G.729 vocoder, and
then extract 4000 sets of quantized codewords. In the
experiment, we construct the BN with 9 vertices and then
perform parameter learning. Using the above K2 algo-
rithm, the learned network structure is shown in Figure 1.
&e intraframe codeword correlation is mainly reflected
between codeword l1 and codeword l2 and between
codeword l1 and codeword l3, and the interframe corre-
lation is mainly reflected in the first codewords of the two
consecutive frames. How to measure and visualize the link
strength between different codewords? For that purpose,
Imme [39] proposed a measurement method for discrete
Bayesian networks based on mutual information and
conditional mutual information. In his method, X and Z

are both the parent nodes of Y, and P(y|x, z) is given by
the conditional probability table of y; given x and z, link
strength is defined as

LSblind(X⟶ Y) � E(Y|Z) − E(Y|X, Z), (10)

where
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E(Y|Z) �
1

#(X)#(Z)


x,y,z

P(y|x, z)log2
#(X)

xP(y|x, z)
,

E(Y|X, Z) �
1

#(X)#(Z)


x,y,z

P(y|x, z)log2 P(y|x, z),

(11)

where #(X) denotes the number of discrete states of X.
Conveniently, the LinkStrength package in MATLAB’s
Bayes Net Toolbox (BNT) provides functions to calculate
and visualize entropy, connection strength, and link
strength for discrete Bayesian networks. For simplicity, we
only use link strength in this paper. Figure 2 shows blind
average link strength.

In the link strength graph, the value of the link strength is
indicated by the number next to the arrow. As indicated by
the blind average link strength in Figure 2, most links are
quite strong. Especially, the link strengths between the first
codewords of two consecutive frames are 3.472 and 3.582,
respectively, which are the two connections with the largest
value. &is demonstrates that the correlation between
consecutive frames is the strongest. Next, it can be observed
that in three consecutive frames, the link strength between
the first codeword and the third codeword is greater than the
link strength between the first codeword and the second
codeword. For example, in the first frame, the former value is
1.996 and the latter value is 1.953, which is 4.3% higher.&is
implies that the correlation between the first and the third
codeword is stronger than that between the first and the
second codeword. Furthermore, the absence of links be-
tween other vertices does not mean that there are no cor-
relations between them. It is just that the correlations are too
weak and optimized by the learned model. Of course, the
weak links can be measured by manually adding the link
relationship in the graph.

As can be seen, the correlations between codewords in
LPC are complex. &e correlation measure proposed in [20]
uses conditional probability, provided that it is based on the
Markovian modeling of the codeword sequence. However,
our method is based on Bayesian networks, which are closer
to the true distribution of the codeword sequence. &us, it is
necessary to find a novel method to improve the traditional
detection method. Steganalysis based on deep learning can
automatically extract the intrinsic features of the carrier,
avoiding the complexity of establishing the model. &ere-
fore, we propose a steganalysis method that utilizes the
advantages of RNN and attention mechanism.

5. Proposed Method

Till now, we can formally present our F3SNet, which is an
architecture based on a hierarchical attention network. &e
structure is shown in Figure 3. It includes an embedding
layer, multilayer attention layer, and a classifier. Among
them, the multilayer attention layer adopts a two-layer
structure and includes a single codeword encoder, a code-
word attention layer, a codeword sequence encoder, and a
codeword sequence attention layer.

&e steganography classification is briefly summarized as
follows. Simply feed in an input array and get the codeword
vectors and codeword sequence matrices. &e codeword
vectors are taken as the input and sent to the first attention
layer. &e compressed vector representations of the code-
words are provided by LSTM, and then, some important
vectors that can reflect the correlation of the codeword are
extracted by the attention mechanism. Simultaneously, these
codeword sequence matrices enter the second attention
layer. After the same operation, a sequence-level expression
that summarizes all information in the entire speech is
obtained. Finally, the obtained representations are further
used as classification features to achieve steganography
classification by a fully connected network. For the con-
venience of verification, we choose keras as the steganalysis
framework. Below we describe the details of different
components.

5.1. Input. As we know, speech has a hierarchical structure
similar to that of a document, which can be divided into
different sentences, and each sentence contains a corre-
sponding number of words. As a result, one speech can be
divided into codeword sequences and codewords. Each
codeword sequence and codeword contains unique infor-
mation. To fully mine this information, we use a hierarchical
attention network to model the structure of the quantized
codewords. Here, two types of input data with different
shapes are required.

Assume that there are S frames in a given speech sample
of duration L(s). We extract the codeword index and pack
all indices of a speech sample into a vector X with size
(S × 3). X1 is the first layer input, and the format is as
follows:

V1 V4 V7 V9

V8V6V5V3V2

Figure 1: 9-node Bayesian network structure.

1.996 2.079 2.097

1.953 1.977 2.033

3.472 3.582V1 V4 V7

V9

V8

V6

V5

V3

V2

Figure 2: Link strengths using blind average.
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X1 � l00, l10, l20, l01, l11, l21, . . . , l0(S−1), l1(S−1), l2(S−1) , (12)

where lij(0≤ i≤ 2, 0≤ j≤ S − 1) denotes the ith index in the
jth frame. For the second layer input, we take the L-len
speech as a unit and pack the codeword indices of the S

frame into a matrix as

X2 �

l00 l01 · · · l0(S−1)

l10 l11 · · · l1(S−1)

l20 l21 · · · l2(S−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

5.2. Embed. &e embedding layer is used as the first hidden
layer in our model, which converts the quantized codeword
index sequence (QIS) into a fixed-size vector sequence.
&rough the embedding layer, a continuous, distributed QIS
representation can be obtained and can effectively charac-
terize the correlations between different codewords. In
principle, a set of two-dimensional tensors with shape
(batchsize, S × 3) is fed into the embedding layer. And, they
are used as ‘indices’ to select a permutation of inner trainable
weights matrix WMax num×D, where D represents the output
dimension of the embedding layer.

In our experiment, matrix WMax num×D is initialized
randomly, which is regarded as a part of the deep learning
model, and updated during the model learning process.
After multiple epochs, the entire correlations between
codewords are correctly expressed. Using this learned
weight, the final outputs are a batch of 3-dimensional tensors
with shape (batchsize, S × 3, D), which are the encoded
representations.

As can be seen in Section 6.3, the comparison between
model #1 and #4 shows that the embedding layer can sig-
nificantly improve the classification accuracy.

5.3. Encode. &e embedding layer is followed by the LSTM
coding layer. LSTM mainly processes the encoded sequence
from left to right through three-gated logics (forgetting gate,
input gate, and output gate) and returns an ordered list of
hidden states h1, h2, . . . , hT  as well as an ordered list of
output vectors y1, y2, . . . , yT . As shown in Figure 4, the
LSTM cell remembers values over arbitrary time intervals,
while the three gates regulate the flow of information into
and out of the cell.

&ere are eight groups of parameters that need to be
learned throughout the LSTM network, which are the
weight matrices and the corresponding bias terms of the
three gates. &e parameters are defined as follows: for-
gotten gate weight matrix Wf and its bias term bf, input
gate weight matrix Wi and its bias term bi, output gate
weight matrix Wo and its bias term bo, and cell state weight
matrix Wc and its bias term bc. For clarity, the four weight
matrices are further subdivided into Wif, Whf, Wii, Whi,
Wio, Who, Wic, and Whc. Taking the forget gate as an
example, the calculation process of giving the control
factor and retaining how much memory is given. In each
LSTM cell, the two weight matrices connecting the input
node to the hidden node are, respectively, the input
weights (Wif) and the hidden node feedback weights
(Whf). First, the network output ht−1 at time t − 1 is
combined with the current network input xt and then
linearly transformed to obtain uT

f. &e mathematical
process is briefly described as follows:

u
t
f � Wif Whf 

xt

ht−1
  + bf. (14)

&en, uT
f is mapped to 0 ∼ q(1) by the nonlinear acti-

vation function to obtain the control factor of the forget gate,
which can be described as

F3SNet: A Four-Step Strategy for QIM Steganalysis of Compressed Speech
Batch
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....Input
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…

Figure 3: &e model based on the hierarchical attention network.
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ft � f u
T
f . (15)

In a similar way, the control factor it of the input gate
and the control factor ot of the output gate can be calculated.
At each time step t, LSTM cell outputs two vectors: the
memory ct from the current block and the output ht of the
current block, i.e.,

ct � ft · ct−1 + it · f u
t
c ,

ht � f u
t
o  · f ct( ,

⎧⎪⎨

⎪⎩
(16)

where the symbol f(·) represents the activation function,
two types of activation functions ReLU or Tanh are used in
the LSTM cell, and symbol “·” means multiplication by
elements. Finally, LSTM will give an output sequence of
dimension L × P × Q (Q � M × D), where L is the length of
the samples, P is the batch size,M is the hidden size, andD is
the network direction (D � 1 indicates a one-direction
network; D � 2 indicates a bidirection network). In the
work, the output vectors HLSTM

T � [h1′, . . . , hT
′] of the LSTM

layer further serve as input for the attention layer.

5.4.Attend. As mentioned above, the encoder is able to keep
much more information by distributing it among all its
vectors. Moreover, not all vectors contribute equally to the
final classification. Hence, the attention mechanism (AM) is
introduced to extract such vectors that are important to the
steganalysis and aggregate the representation of those in-
formative vectors to form the feature vectors. As illustrated
in Figure 5, attention can be divided into two steps. One is to
calculate the attention distribution based on all input in-
formation; the other is to calculate the weighted average of
the input information based on the attention distribution.

Given the input sequence HLSTM
T , and then it is passed to

a dense layer with activation tanh. A set of intermediate
vectors is obtained:

U � u1, . . . , uT  � tan h WH
LSTM
T  ∈RDu×N

� tan h W h1′, . . . , hT
′ ( ,

(17)

where W is the parameter matrix of the dense layer. &e
attention distribution can be then derived by comparing the
output ut of the dense layer with a trainable context vector u

and normalizing with a softmax:

αnt �
exp s ut, un( ( 

kexp s uj, un  
. (18)

Using the scaled dot product model, the scoring function
is obtained, denoted as s(ut, un) � uT

t un/
��
D

√
(D is the di-

mension of the input vector). Let αnj represent the weight of
the j-th input concerned by the n-th output. For each input
vector, get the weighted average output vector h′

′
n:

hn
″ � 

T

t�1
αntht
′, (19)

where n, t ∈ [1, T] is the position of the output and input
vector sequence. Finally, the output vector sequence HATT �

[h1″, . . . , hT
″] containing the most information is obtained,

which is used as a classification feature for steganalysis.

5.5. Classify. After several neural network layers, high-level
reasoning in F3SNet is done via a fully connected (FC)
classifier. &e classifier is shown in Figure 3. &e FC layer
calculates the probability that the speech sample belongs to a
normal set and stego set. No matter how many FC layers are
passed, it is still regarded as a linear transformation, which
implements the conversion from the P × Q feature matrix to
the P × 2 classification result matrix. Assume that the pa-
rameters in the FC layers of our network, namely, the
weights and bias terms, are denoted by WF(size, 2 × Q) and
bF (size 2), respectively. Note that each batch of samples
shares the same set of parameters. &e output array
y(sizeP × 2) can be calculated as

y � σ htWF + bF( , (20)

where σ is the sigmoid function.
In a nutshell, there are three reasons why F3SNet is

effective for small samples and low embedding rate samples.
Firstly, the embedding layer is more conducive to expressing
the correlation between codewords. Secondly, and most
importantly, the integration of multilayer RNN and AM
facilitates the extraction of speech spatiotemporal features.
&irdly, similar to words, sentences, and paragraphs in NLP
that can express information of different dimensions, more
features can be extracted from the two dimensions of
codewords and sequences. &e following experiment can
well prove the effectiveness of F3SNet.

6. Experiments and Discussions

6.1. Experimental Setup. To the best of our knowledge, there
is no public database in speech steganography and steg-
analysis to date. Previous works used self-generated speech
samples for experimentation. To facilitate the comparison of
algorithm performance, we use the speech sample set
published by Lin et al. on GitHub (https://github.com/
fjxmlzn/NN-SM/). In this paper, we divide the original

Xt
ht-1

Xt

Xt

ht-1

Xt
ht-1

ht-1

ht

ftX

X
it

bf

bc

bi

Wo = [Wio,Who]

Wi = [Wii,Whi]

Wf = [Wif,Whf]

Wc = [Wic,Whc]

bo

Ot
f

f

f

g

h

X

Output Gate

State

Input Gate

Forget Gate

Figure 4: Internal structure diagram of an LSTM cell.
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samples into 5-second samples of equal length and then
convert the audio into PCM format with 8KHz sampling
rate, 16 bits per sample, and stereo by Cool Edit Pro 2.1.
Finally, a cover database with a total of 5120 different speech
samples isestablished.

As described in Section 3.2, the steganography method
was involved in the experiment, namely, CNV steganog-
raphy [4]. For each sample in the cover database, several bits
of randomly generated secret data are separately embedded
into the cover speech. &e actual number of embedded bits
depends on sample length and embedding rate. At the same
time, different sample lengths and different embedding rates
also have a direct impact on the detection accuracy of the
proposed steganalysis algorithm. Additionally, the normal
signals are assigned to the negative category, and the stego
samples were selected from the positive and negative cat-
egories to construct a training set and a test set, respectively.
To evaluate the performance of F3SNet, three statistical
indicators are used to measure the classification efficacy of
F3SNet, i.e., false positive rate (FPR), false negative rate
(FNR), and accuracy (ACC).

Firstly, to evaluate the effect of different sample lengths
on the performance of F3SNet, we give the sample lengths of
0.1 , 0.2 s, 0.4 s, 0.6 s, 0.8 s, 1 s, 2 s, 4 s, and 5 s with 20% and
40% embedding rate, respectively. As mentioned before,
many existing algorithms have good detection accuracy for
large-sized samples, but they do not perform well for small-
sized samples. &erefore, we focus on how well F3SNet
performs for small-sized samples.

&en, to evaluate the effectiveness of F3SNet at different
embedding rates, the normal signals and the stego signals
with different embedding rates (ER) are grouped. &erefore,
embedding rates in the experiment are chosen to be 100%,
80%, 60%, 40%, 20%, and 10%, respectively. At the same
time, we focus on the performance of F3SNet for small-sized

samples. &e length of the sample is set to 0.2 s and 1 s in the
experiment.

&irdly, as described above, for steganography based on
compressed speech, researchers have successively developed
a variety of steganalysis methods. Among them, the typical
algorithms are IDC [12], QCCN [13], RNN-SM [20], and
FCEM [22]. Below we will compare the performance of these
state-of-the-art algorithms and F3SNet using different
lengths and different embedding rates.

6.2. Determining Hyperparameters of F3SNet. &e hyper-
parameters in our model involved include the output di-
mension of the embedding layer, the number of LSTM
hidden units, the recurrent layers of LSTM, the dropout rate,
batch size, epoch, and so on. All these hyperparameters are
determined by cross-validation on the training set and
validation set.

For a given network model, hyperparameters such as the
dimension of the embedding layer, the number of LSTM
hidden unit, and the recurrent layers of LSTM are deter-
mined by cross-validation on the training set and validation
set. Taking into account classification accuracy and training
time, we collect a total of 102, 400 speech samples with a
length of 1 s (cut from the above database) and then divide
them into the training set and validation set in 7: 3 ratio. To
optimize the tuning process of the model, the Adam opti-
mizer was used for model training. &e learning rate is done
in the default way.

In our implementation, the programs run on a single
GPU in the deep learning server, which has “Intel (R) Xeon
(R) CPU E5-2620 V4 @ 2.10 GHZ ,” 64GB memory, and 4
NVIDIA GeForce GTX 2080 Ti GPUs. Moreover, the
memory size and processing power of the GPU are 11GB
and 11.3 TFLOPS in double precision, respectively.

hn″

h1′q h2′ hT′

α1 α2 αT

Softmax

DenseDense Dense

ff f

…

…

Figure 5: &e attention mechanism.
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Normally, it has the ability to accommodate most of the
implementation in deep learning architecture. &us, based
on the GPU server resources in our lab, the final parameters
are as follows. Batch size was set to 128.&e dimension of the
embedding layer is 100.&e dimension of word LSTM is 100.
&e dimension of sentence LSTM is 50. &e recurrent layer
of LSTM is 1. It is worth mentioning that the current pa-
rameter values are not necessarily optimal, and one may find
a more balanced point of accuracy and time cost through
experiments.

6.3. Comparison with Different Network Model. Different
models have different learning capabilities. Generally
speaking, the more complex themodel, the stronger the deep
learning capabilities, but the greater the resource overhead.
Here, we use classification accuracy and training time as
evaluation metrics to compare six types of models, as shown
in Table 1. As can be seen from the above, F3SNet uses a
hierarchical attention model. Models #2, #3, and #4 are
variants obtained by modifying the proposed model in the
paper. For example, model #2 only considers a single-layer
attention structure, model #3 does not use a LSTM layer,
and model #4 does not use an embedding layer. In addition,
model #5 and #6 are the two deep learning models pro-
posed before [20, 22], and both are compared here.

For the classification accuracy metric, 1 s speech samples
are selected, and the embedding rate starts from 0.1 and
increases at a growth rate of 10%. After 10 iterations, the
maximum accuracy is plotted on the Y-axis and the em-
bedding rate is plotted on the X-axis, as shown in Figure 6.
We can find that, as the embedding rate increases, the
classification accuracy of all models is significantly im-
proved, and F3SNet is the best among all embedding rates,
which shows that the model has excellentsteganography
feature learning capabilities. It can be said that the em-
bedding layer and multilayer attention mechanism make
F3SNet show better performance. However, it can be seen
from Figure 7 that the training time of model #1 is relatively
long, which is a price that must be paid to improve accuracy.
In some applications, the time overhead is an “acceptable
metric” and the accuracy is a “satisficing metric.” &at is, the
classifier is required to achieve a certain accuracy within the
acceptable range of time overhead. Ourmodel can be applied
to these occasions.

6.4. Performance Testing

6.4.1. Test Results at Different Lengths. In the experiment,
nine different length speech samples with 20% and 40%
embedding rates were selected to test the validity of F3SNet
under different conditions, especially for short samples. &e
results are listed in Table 2.

Clearly, for 0.1 s samples, our algorithm still achieves
70.12% and 83.98% detection rates when the embedding
rates are 20% and 40%, respectively, which is significantly
better than the state-of-art algorithms. In addition, for each
fixed embedding rate, the detection accuracy is proportional
to the sample length. &is means that the longer the sample,

the higher the detection accuracy. When the sample length is
increased to 5 , the detection accuracy of the proposed al-
gorithm corresponding to the above two embedding rates
reaches 95.46% and 99.9%, respectively. Furthermore, it can
be seen that, as the speech length gradually increases to 5 s,
the detection accuracy of the algorithm under each candi-
date length fluctuates within a relatively small range.
However, when the sample length changes from 1 s to 5 s, the
detection accuracy increases more clearly. Taking the em-
bedding rate of 40% as an example, the sample length was
increased from 0.1 s to 1 s, and the detection accuracy in-
creased by 10.65%. However, the sample increased from 1 s
to 5 s, and the detection accuracy only increased by 5.27%.

From another angle, we can make some observations
about FNR and FPR. Regardless of the embedding rate, the
FNR of different lengths is significantly greater than the FPR.
&is shows that the missed detection rate is higher than the
false alarm rate in our detection algorithm. &erefore, the
algorithm is suitable for some application environments that
do not require high missing detection rates, such as online
real-time detection.

6.4.2. Test Results at Different Embedding Rates. &is ex-
periment evaluates the performance of F3SNet with fixed
length and different embedding rates. &e results are shown
in Table 3.

From the experimental results above, we can find that
there is a positive relationship between the detection ac-
curacy rate and embedding rate (ER in Table 3). For samples
with a length of 0.2 s, when the embedding rate is 10%, the
detection accuracy is 62.3%, and as the embedding rate rises
to 40%, the detection accuracy is up to 87.11%. Finally, the
detection accuracy ends up at 98.88% under 100% em-
bedding rate.

At the same time, for fixed-length samples, when the
embedding rate is low, the embedding rate increases by a
certain percentage, and the accuracy rate increases ac-
cordingly. However, when the embedding increases to a
certain value, the increase in accuracy is not significant.
Similarly, for a 0.2-second sample, the embedding rate
ranges from 20% to 100%, each time increasing by 20%, and
the ratios of the increase in detection accuracy are12.4%,
7.27%, 2.84%, and 1.66%, respectively. In addition, two
conclusions can be drawn from the horizontal comparison
of different sample lengths. First, the longer the sample, the
higher the detection rate. Second, when the embedding rate
is lower, the sample length increases by a certain value and
the detection accuracy increases more significantly.

6.4.3. Comparison with Existing Algorithms. We focus on
comparing the detection accuracy of various algorithms for
different sample lengths (0.2 s, 0.4 s, 0.6 s, 0.8 s, 1 s, and 2 s)
with embedding rates 20%, 40%, and 60%, respectively. &e
results are shown in Figures 8–10 . Comparing, we conclude
that, as the sample length increases, the detection accuracy of
all algorithms participating in the comparison keeps in-
creasing, and FNR and FPR keep decreasing, despite
occasional fluctuations. In addition, according to the
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Table 1: Experiment with different types of network models.

Number Network model Hyperparameters

Model #1 F3SNet

&e dimension of embedding layer� 100, the number of word
LSTM hidden unit� 100, the number of sentence LSTM hidden

unit� 50, dropout� 0.5, dropout_recurrent� 0.5, batch
size� 128, and epoch� 50

Model #2 Embedding + LSTM+Self_Attention +Dense
&e dimension of embedding layer� 100, the number of LSTM
hidden unit� 100, dropout� 0.5, dropout_recurrent� 0.5, batch

size� 128, and epoch� 50

Model #3 Embedding + Self_Attention + Self_Attention +Dense &e dimension of embedding layer� 100, dropout� 0.5,
batchsize� 128, epoch� 50.

Model #4 LSTM+Self_Attention +BiLSTM+Self_Attention +Dense
&e number of word LSTM hidden unit� 100, the number of

sentence LSTM hidden unit� 100, dropout� 0.5,
dropout_recurrent� 0.5, batch size� 128, and epoch� 50

Model #5 Embedding +Multi-head Attention +Dense ([22]) &e dimension of embedding layer� 100, heads� 8,
head_size� 32, dropout� 0.5, batchsize� 128, epoch� 50.

Model #6 LSTM+LSTM+Dense ([20]) &e number of the first LSTM hidden unit� 50, the number of the
second LSTM hidden unit� 50, batch size� 128, and epoch� 50
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Figure 6: &e accuracy of different models.
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Figure 7: &e time cost of different models.
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Table 3: Detection results under different embedding rates (sample length: 0.2 s and 1 s).

Sample length (s) Embedding rate (%) ACC (%) FNR (%) FPR (%)

0.2

10 62.30 58.763 13.666
20 74.71 37.451 13.417
40 87.11 17.083 8.549
60 94.38 7.892 3.271
80 97.22 3.783 1.770
100 98.88 1.130 1.116

1

10 71.19 33.845 23.582
20 83.45 16.488 16.618
40 94.63 4.762 5.962
60 98.44 1.760 1.366
80 99.51 0.869 0.098
100 99.95 0.095 0

Table 2: Detection results for different length samples (embedding rate: 20% and 40%).

Embedding rate (%) Sample length (s) ACC (%) FNR (%) FPR (%)

20

0.1 70.12 47.328 12.266
0.2 74.71 37.451 13.417
0.4 76.46 32.393 14.608
0.6 80.18 25.911 15.306
0.8 81.59 21.816 14.694
1.0 83.45 16.488 16.618
2.0 90.58 11.868 6.961
4.0 94.63 4.485 6.3
5.0 95.46 5.769 3.274

40

0.1 83.98 25.882 6.225
0.2 87.11 17.083 8.549
0.4 90.53 11.874 7.094
0.6 92.48 8.847 6.238
0.8 95.07 5.058 4.804
1.0 94.63 4.762 5.962
2.0 98.14 2.649 1.069
4.0 99.66 0.294 0.390
5.0 99.90 0 0.194
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Figure 8: Performance comparison under 20% embedding rate. (a) ACC under different sample lengths. (b) FPR under different sample
lengths. (c) FNR under different sample lengths.
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Figure 9: Performance comparison under 40% embedding rate. (a) ACC under different sample lengths. (b) FPR under different sample
lengths. (c) FNR under different sample lengths.
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Figure 10: Performance comparison under 60% embedding rate. (a) ACC under different sample lengths. (b) FPR under different sample
lengths. (c) FNR under different sample lengths.
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Figure 11: Performance comparison for 0.2 s samples. (a) ACC under different embedding rates. (b) FPR under different embedding rates.
(c) FNR under different embedding rates.
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performance distribution curve in Figure 8, the five types
of algorithms can be divided into three different perfor-
mance ranges. &e detection algorithms IDC and QCCN
based on traditional machine learning have poor per-
formance, RNN-SM is in the middle, and FCEM and
F3SNet have the best performance. And, among all the
algorithms, the performance of F3SNet has obvious ad-
vantages. On average, F3SNet leads RNN-SM by about
15.41% and FCEM by about 2.48%. Furthermore, from the
longitudinal comparison of the three graphs, two con-
clusions can be drawn. Firstly, in the case of 20% em-
bedding rate, ACC, FPR, and FPR fluctuate significantly,
indicating that the detection efficiency is low at this time
and it is susceptible to noise. Secondly, when the sample
length is fixed, the higher the embedding rate, the higher
the detection accuracy and the lower the FPR and FNR.
For example, with a fixed length of 0.2 s, when the

embedding rate is 20%, the accuracy of F3SNet is about
74%. If the embedding rate is increased to 40%, the de-
tection accuracy will increase to 87%.

In addition, to further evaluate the performance of
F3SNet, the detection accuracy of different algorithms under
different embedding rates (10%, 20%, 40%, 60%, 80%, and
100%) is tested. Here, we select three samples with lengths of
0.2 s, 0.8 s, and 2 sseparately for the experiment. &e results
are presented in Figures 11–13. We can see that, as the
embedding rate increases, the detection accuracy of all al-
gorithms is increasing, and F3SNet has the best performance
among all algorithms. Taking 2 s as an example, when the
embedding rate is 20%, the detection accuracy of F3SNet
can reach 90.58%. In contrast, the other algorithms are
64.7%, 66.45%, 68.35%, and 87.89%, respectively. Besides,
IDC, QCCN, and RNN-SM can hardly obtain effective
detection.
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Figure 12: Performance comparison for 0.8 s samples. (a) ACC under different embedding rates. (b) FPR under different embedding rates.
(c) FNR under different embedding rates.
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Figure 13: Performance comparison for 2 s samples. (a) ACC under different embedding rates. (b) FPR under different embedding rates.
(c) FNR under different embedding rates.
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7. Conclusion and Future Work

In this paper, we mainly focus on how to use the hierarchical
attention network to detect the disparities in the correlation
of LPC coefficients before and after steganography. First, to
demonstrate the existence and complexity of the correlation,
we performed Bayesian network modeling on the quantized
codeword index and then calculated the link strength be-
tween different nodes as a measure of the strength of the
codewords’ correlation. &en, we propose a four-step
strategy for QIM steganalysis based on HAN, which can
automatically extract the features reflecting the correlation.

In the proposed model, the LSTM layer and the attention
layer are two core components. &e former considers
possible dependencies in the codebook structure because of
its memory properties in time series, and the latter further
determines which vectors have a greater impact on the final
classification result, thereby effectively avoiding information
overload. Experimental results showed that even for speech
with a length of 1 s, F3SNet could effectively detect QIM
steganography under an embedding rate of 10% and out-
performs FCEM by about 5.27%.

It must be noted that F3SNet currently can only detect
QIM steganography. A future research suggestion would be
extending the method to detect other steganography with
compressed speech.
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