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Aiming at the privacy protection of lightweight nodes based on Bloom filters in blockchain, this paper proposes a new privacy
protection method. Considering the superimposition effect of query information, node and Bloom filter are regarded as the two
parties of the game. A privacy protection mechanism based on the mixed strategy Nash equilibrium is proposed to judge the
information query. On this basis, a Bloom filter privacy protection algorithm is proposed when the probability of information
query and privacy, not being leaked, is less than the node privacy protection. It is based on variable factor disturbance, adjusting
the number of bits’ set to 1 in the Bloom filter to improve the privacy protection performance in different scenarios. +e
experiment uses Bitcoin transaction data from 2009 to 2019 as the test data to verify the effectiveness, reliability, and superiority of
the method.

1. Introduction

In recent years, the research and application of blockchain
technology have shown explosive growth. It is considered to
be the fifth disruptive innovation in the computing para-
digm after mainframes, personal computers, the Internet,
and mobile/social networks. Blockchain technology is highly
transparent, decentralized, detrusted, and collectively
maintained. It can be enabling decentralized credit-based
interactions in distributed networks where nodes do not
need to trust each other [1–4]. Blockchain-based applica-
tions are becoming increasingly widespread and cover a
wide range of fields, including financial services, reputation
systems, the Internet of +ings, and security services [5–10].

However, blockchain nodes require a certain amount of
disk space to download complete ledger information. And as
the scale of blockchain usage grows, verifying the correctness
of broadcast blocks and transactions will also bring con-
siderable overhead to nodes. Such problems will become
more acute when users use resource-constrained devices,

such as mobile devices, smartphones, sensor devices, em-
bedded systems, and virtual private servers [11, 12].
Nakamoto proposed a Simplified Payment Verification
(SPV) lightweight node [13], which was extended to use
Bloom filters to receive node-related transactions. With the
continuous expansion of blockchain applications, SPV
nodes have become the most common form of blockchain
nodes [14–17].

+e SPV node does not store the entire blockchain, nor
does it verify all transactions in the system. It only receives a
subset of transactions filtered by the connected full nodes.
+is request for specific data reveals transaction information
related to the node unintentionally. A third party in the
network can associate related transactions with users by
tracking the data requested by the SPV node, thereby posing
a threat to privacy and security [18–20]. For example, in
digital currency applications, analyzing transactional in-
formation can provide access to a user’s transaction patterns
and enable the deduction of user identity and location in-
formation; in financial applications, if a significant amount
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of transactional information is obtained, it is possible to both
trace individual account transaction details that contain user
privacy information and analyze macrofinancial trends that
include core company data; in energy industry applications,
blockchain is often used to enable peer-to-peer energy ex-
change where transaction data can potentially reveal sen-
sitive information such as energy transmission [21–26].
With the development of IoTand sensor technology, privacy
protection research for lightweight nodes of blockchain has
become the focus and difficult research.

2. Related Work

Bloom filter and its application in privacy protection is
always a hot research topic. Mullin [27, 28], respectively,
proposed the calculation method of the false positive rate of
Bloom filter; Bianchi et al. [29] quantified the privacy
properties of Bloom filters, but when attackers can access
multiple Bloom filters from the same entity, their analysis
cannot solve the privacy problem; Yeh et al. [30] proposed a
dual-level Bloom filter mechanism to solve privacy and
performance efficiency issues. In the first level, unrelated IP
lists are excluded, and the second level further determines
the relevance of the desired lists. +e issues’ universality
needs to be further verified and improved.

Blockchain privacy protection methods are mainly
around data distortion, data encryption, and restricted re-
lease [31]. CoinParty [32] adopts a secure multiparty
computation protocol to implement an improved scheme
that can guarantee the effectiveness of the mixing-coin
process in the case of a malicious operation or failure of
some hybrid nodes. +e lightning network [33] enables
secure out-of-chain transactions. In the lightning network,
the majority of the transaction details between the users are
implemented offline. Bao et al. [34] present Lockmix, pro-
viding users with a mixed service by using blind signature
and multisignature schemes to prevent attackers from
linking the input addresses to the output addresses. Ruffing
et al. [35] design ValueShuffle, a mixing protocol that en-
sures the anonymity of mixing participants and confiden-
tiality of payment values by combining CoinJoin with
Confidential Transactions and additionally Stealth Ad-
dresses. Liu et al. [36] propose an unlinkable coin mixing
scheme that uses ring signatures with elliptic curve digital
signature algorithms (ECDSA) to hide coin transfers be-
tween addresses.

+e privacy protection of lightweight nodes in the
blockchain has gradually expanded in recent years. Nojima
and Kadobayashi [37] proposed a cryptographic security
privacy protection Bloom filter protocol based on the blind
signature, but the additional computational load will be
generated on the SPV node. Gervais et al. [18] analyzed the
privacy protection effect of Bloom filters in lightweight
nodes and provided a solution. +eir solution is to set the
Bloom filter in accordance with different analysis results.
Every time the SPV node needs to query the address, it needs
to reset the Bloom filter. +eir solution lacks systemicity,
completeness, and flexibility. Kanemura et al. [38] proposed
a privacy-preserving Bloom filter design for Bitcoin’s SPV

client based on c-Deniability, but it is necessary to obtain the
number of unique Bitcoin addresses that have appeared
from the last checkpoint. Qin et al. [39] designed SPV
protocol to replace the Bloom filter by using Private In-
formation Retrieval (PIR) to create a fully private and high
performance query, but the client needs to obtain the
available block headers independently and query the PIR
database in an appropriate order. +e occupation of
bandwidth resources needs to be further optimized, and the
proposed protocol is static that cannot reflect the latest state
of the blockchain in real time. Henry et al. [40] proposed to
make PIR scheme for blockchain transactions to address the
problem of fetching transactions privately, which is suitable
and efficient for blockchain transactions. Jiang et al. [41]
propose a privacy-preserving thin client authentication
scheme (PTAS) that uses the concept of PIR to enable thin
clients to function properly as full-node users while pro-
tecting their privacy. Li et al. [42] design a d-differentially
private mechanism based on trusted hardware to secure
queries from SPV clients so that semihonest adversaries
cannot acquire the real access pattern. Niu et al. [43] propose
an efficient transactional query scheme for privacy-pre-
serving lightweight clients running Intel Software Guard
Extensions (SGX) enclave on the full node, using a secure
enclave to serve transactional query requests from light-
weight clients. Le et al. [44] propose a two-tree oblivious
random access memory (ORAM) construction to protect
SPV clients’ requests from a potentially malicious server.
Zhou et al. [45] proposed a privacy-preserving two-factor
user authentication protocol for the SPV nodes in the Bit-
coin network that meets all the security requirements and
has provable security.

Game theory was proposed by von Neumann and
Morgenstern [46], and in the 1950s, Nash proposed the Nash
equilibrium theory [47]. In the strategy combination at the
Nash equilibrium point, when the strategy of others does not
change, the corresponding benefit is the best. At this time,
each rational participant will not or cannot change his
strategy in order not to reduce his own benefit. Based on this,
this paper proposes a new privacy protection method for
lightweight nodes in blockchain and conducts experimental
verification. +e main contributions are as follows:

(1) Propose a privacy protection mechanism based on
mixed strategy Nash equilibrium, combined with
historical query records and the privacy protection
threshold of SPV nodes, to discriminate the address
information that needs to be inserted into the Bloom
filter for query.

(2) A privacy protection algorithm based on the variable
factor adjustment of the Bloom filter is proposed.
+rough the disturbance of the variable factor, it
increases the number of bits setting to 1 in the Bloom
filter, thereby improving its privacy protection
performance.

(3) +e blockchain Bitcoin ledger data is used as the test
data set to verify the feasibility, reliability, and ef-
fectiveness of the method proposed in this paper.
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+e remainder of the paper is organized as follows.
Section 3 establishes the system model and attack model;
Section 4 proposes a privacy protectionmechanism based on
the mixed strategy Nash equilibrium and a privacy pro-
tection algorithm based on the variable factor disturbance of
the Bloom filter; Section 5 uses the Bitcoin ledger’s data as
data set to verify the method; Section 6 summarizes the full
text.

3. SPVNodePrivacy ProtectionModel Based on
Bloom Filter

To reduce the communication load running on resource-
constrained devices, the SPV node does not store complete
ledger information, nor does it verify all transactions in the
system. It constructs Bloom filters by embedding all
transaction addresses it has used. +e Bloom filter com-
pleting the initial handshake agreement is outsourced to the
full node [13]. Whenever a full node receives transaction
information, it will first check whether its input/output
address matches the Bloom filter of the SPV node. If it
matches, the full node will forward the received transaction
to the SPV node, as shown in Figure 1.

It is assumed that an attacker can eavesdrop on the
communication link to obtain one or more Bloom filters
related to the SPV node. +e attacker can also obtain the
parameters used to create the Bloom filter (for example, the
target false positive rate, the number of hash functions, the
number of bits). Since the blockchain is an open network
system that is distributed and jointly maintained, the at-
tacker can also access all address/transaction information
appearing in the blockchain and their respective execution
order, as shown in Figure 2.

4. SPV Node Privacy Protection Method

SPV nodes need to query transaction data related to their
addresses, and the transaction data in the blockchain is
updated in real time. As the number of additions increases,
even if a single query is within the tolerable range of SPV
node’s privacy leakage, superimposing the address infor-
mation obtained multiple times may exceed the tolerance of
the SPV node to privacy leakage. +is paper regards the SPV
node and the Bloom filter as the two parties of the game.
According to the game theory, the Bloom filter is not
hijacked and will not leak privacy/may be hijacked and the
privacy is leaked & adding addresses directly/not adding
addresses directly is adopted by both parties. In this pro-
cessing, analyze the strategy and the corresponding benefits
the two parties can be obtained and establish a game
mechanism as the basis for realizing the privacy protection
of SPV nodes. On this basis, a variable factor adjustment
algorithm is used to enhance the privacy protection per-
formance of the Bloom filter, thereby further ensuring the
security of the address information query service required by
the SPV node.

+is paper considers the superimposition effect of each
query of address information and records the insertion
operation of the address information by the Bloom filter
through feedback. When the address needs to be inserted
again, it will combine the previous records to calculate the
corresponding benefits in different states.+e game is played
based on these gains to obtain the Nash equilibrium so as to
obtain the probability that the privacy is not leaked when the
address information is inserted at this time. At the same
time, the SPV node sets a threshold according to its own
tolerance for privacy leakage. +e larger the threshold, the
lower the user’s tolerance and the stronger the awareness of
privacy protection. Compare this threshold with the prob-
ability of privacy not being leaked. If the probability value is
greater than the threshold, this address information will be
added to the Bloom filter. Else the Bloom filter will be
disturbed by a variable factor to adjust. +e method’s
flowchart is shown in Figure 3.

4.1. SPVNode Privacy ProtectionMechanism Based onMixed
Strategy Nash Equilibrium. In this paper, the SPV node and
Bloom filter are regarded as the two parties of the game. It is
assumed that both parties of the game are rational, and their
decision making is in order. However, the strategy adopted
by the first decision maker cannot be observed by the latter.
Simultaneous decision making is a static game. +e game
strategies adopted by both sides are natural. For SPV nodes,
the strategies that can be adopted are “add addresses di-
rectly” or “not add addresses directly”; for Bloom filters, the
game strategies that can be adopted are “not hijacked or
“hijacked.” Different game strategies adopted by the two
parties in the game will bring different benefits. When
calculating the benefits of both parties, the influence of the
private information that the Bloom filter has obtained in the
past must also be considered. Based on benefits, there may be
Nash equilibrium in the game, and the probability that the
Bloom filter is not hijacked can be obtained through the
Nash equilibrium. SPV nodes can set a threshold in the
privacy protection policy according to their tolerance for
privacy leakage. Only when the probability of not hijacked is
higher than the threshold is allowed to add addresses. After
each address addition is completed, the SPV node records
the addition. It is a factor in the benefit calculation of the
same Bloom filter in the subsequent game. +e more ad-
dresses are added, the more private information may be
obtained according to the superposition effect, and the
greater the probability of leaking user’s privacy. +erefore,
the corresponding benefits of the same Bloom filter in
different times of address addition are different. +e
probability that it is not hijacked should also decrease until it
is lower than the threshold set by the SPV node. At that time,
the Bloom filter will no longer add an address.

+e combination states of Bloom filter and SPV node are
State1 (not hijacked, add address directly), State2 (hijacked,
add address directly), State3 (hijacked, not add address
directly), and State4 (not hijacked, not add address directly).

Security and Communication Networks 3



Theorem 1. 6ere is a Nash equilibrium in the game between
the SPV node and Bloom filter.

Proof. SPV node and Bloom filter are the two parties of the
game, and their state set is a finite set, so it is a finite strategic

game. According to the existence theorem of Nash equi-
librium, that is, every finite strategic game has at least one
Nash equilibrium [48].

Suppose the discounted value of the effect of inserting
address information on the SPV node is η, and the
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Figure 1: Schematic diagram of SPV node.
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Figure 2: SPV node attack model based on Bloom filter.
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discounted value of the effect on Bloom filter is μ. Define the
corresponding benefits when the two sides of the game adopt
different strategies.

Definition 1. S_earning_State1 represents the earning of the
SPV node when the Bloom filter is not hijacked and the SPV
node adds the address directly.

+is earning can be seen as the benefit that the SPV node
obtains by allowing the addition of addresses to the Bloom
filter in a safe state. Assuming that every time an address is
inserted into the Bloom filter, the SPV node’s earning is
s_earning_State1; then, the nth time the address is inserted:

S earning State1 � s earning State1 + · · · + s earning State1 × ηn− 1
 

� s earning State1 ×
1 − ηn

1 − η
.

(1)

Definition 2. B_earning_State1 represents the earning of the
Bloom filter when the Bloom filter is not hijacked and the
SPV node adds the address directly.

+is earning can be seen as the benefit of the Bloom filter
that obtains the address added by the SPV node in a safe state
and realizes its service function. Assuming that every time an
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equilibrium
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algorithm
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Add directly

Address information to
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�e history of
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Figure 3: Privacy protection method of SPV node.
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address is inserted into the Bloom filter, the Bloom filter’s
earning is b_earning_State1, then the nth time the address is
inserted:

B earning State1 � b earning State1 + · · · + b earning State1 × μn− 1
 

� b earning State1 ×
1 − μn

1 − μ
.

(2)

Definition 3. S_loss_State2 represents the loss of the SPV
node when the Bloom filter is hijacked, and the SPV node
adds the address directly.

+is loss can be seen as the loss of privacy information
leakage due to the SPV node allowing to add addresses to the

Bloom filter that in an insecure state. Assuming that each
time an address is inserted into the Bloom filter, the SPV
node’s loss is s_loss_State2, then the nth time the address is
inserted:

S loss_State2 � s loss State2 + · · · + s loss State2 × ηn− 1
 

� s loss State2 ×
1 − ηn

1 − η
.

(3)

Definition 4. B_earning_State2 represents the earning of the
Bloom filter when the Bloom filter is hijacked and the SPV
node adds the address directly.

+is earning can be regarded as the benefit that the
Bloom filter obtains address information exceeding the level

of privacy protection that the SPV node can tolerate. As-
suming that every time an address is inserted into the Bloom
filter, the Bloom filter’s earning is b_earning_State2, then the
nth time the address is inserted:

B earning State2 � b earning State2 + · · · + b earning State2 × μn− 1
 

� b earning State2 ×
1 − μn

1 − μ
.

(4)

Definition 5. S_earning_State3 represents the earning of the
SPV node when the Bloom filter is hijacked and the SPV
node does not add the address directly.

+is earning can be seen as the benefit that the SPV node
has not added an address to the Bloom filter which in an

insecure state and protected its own private information
successfully. Assuming that each time an address is inserted
into the Bloom filter, the SPV’s earning is s_earning_State3,
then the nth time the address is inserted:

S earning State3 � s earning State3 + · · · + s earning State3 × ηn− 1

� s earning_State3 ×
1 − ηn

1 − η
.

(5)
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Definition 6. B_loss_State3 represents the loss of the Bloom
filter when the Bloom filter is hijacked and the SPV node
does not add the address directly.

+e loss can be regarded as the loss caused by the Bloom
filter not realizing its own service function. Assuming that
every time an address is inserted into the Bloom filter, the
Bloom filter’s loss is b_loss_State3; then, the nth time the
address is inserted:

B loss_State3 � b loss_State3 + · · · + b loss_State3 × μn− 1

　 � b loss_State3 ×
1 − μn

1 − μ
.

(6)

Definition 7. S_loss_State4 represents the loss of the SPV
node when the Bloom filter is not hijacked and the SPV node
does not add the address directly.

+e loss can be regarded as the loss caused by the SPV
node, which does not add an address to the Bloom filter in a
safe state so that the required service cannot be achieved.
Assuming that every time an address is inserted into the
Bloom filter, the SPV node’s loss is s_loss_State4; then, the
nth time the address is inserted:

　S loss_State4 � s loss_State4 + · · · + s loss_State4 × ηn− 1

� s loss_State4 ×
1 − ηn

1 − η
.

(7)

Definition 8. B_earning_State4 represents the earning of the
Bloom filter when the Bloom filter is not hijacked and the
SPV node does not add the address directly.

+e earning can be regarded as the benefit of the Bloom
filter failing to realize its own service function in a safe state,
and the value is 0.+e earning of the SPV node in Definition
1 is also the loss of the SPV node in Definition 7, namely
S_loss_State4� S_earning_State1. Based on the above
analysis of earnings and losses, the game matrix of both
parties is shown in Table 1.

Theorem 2. 6ere is no pure strategy Nash equilibrium in
the game matrix of SPV node and Bloom filter; the mixed
strategy Nash equilibrium needs to be calculated.

Proof. From the perspective of the Bloom filter,

(1) When the SPV node selects “add the address di-
rectly,” the Bloom filter can obtain greater benefits in
the “hijacked” state, that is, B_earning_State2>
B_earning_State1

(2) When the SPV node selects “not add the address
directly,” the Bloom filter can obtain greater benefits
in the “not hijacked” state, that is, 0>-B_loss_State3
From the perspective of SPV nodes:

(3) When the Bloom filter is in the “not hijacked” state,
the SPV node chooses “add the address directly” to
be greater than the benefit obtained by “not add the
address directly,” that is, S_earning_State1>-
S_earning_State1

(4) When the Bloom filter is in the “hijacked” state, the
SPV node chooses “not add the address directly” to
be greater than the benefit obtained by “add the
address directly,” that is, S_earning_State3>-
S_loss_State2

Complete
Assuming that the probability of SPV node “add the

address directly” is x, then the probability of “not add the
address directly” is 1 − x, and the mixed strategy probability
matrix of SPV node is Ps[x, 1 − x]; assuming that the
probability of the Bloom filter “not hijacked” is y, then the
probability of “hijacked” is 1 − y, and the mixed strategy
probability matrix of the Bloom filter is Pb[y, 1 − y]. +e
earning matrix of the SPV node and the Bloom filter are
represented by MS and MB, respectively. +e earning ES of
the SPV node is shown in the following equation:

　S loss_State4 � s loss_State4 + · · · + s loss_State4 × ηn− 1

� s loss_State4 ×
1 − ηn

1 − η
.

(8)

ES takes the derivative of x to get the following:

dES

dx
� 2 × y × S earning_State1 − (S loss_State2 + S_earning_State3) ×(1 − y). (9)

Let the above formula be equal to 0, combined with the
related definitions above, the probability y that the Bloom
filter is not hijacked is obtained as follows:

y �
s loss_State2 + s_earning_State3

2 × s earning_State1 + s_loss_State2 + s_earning_State3
 . (10)
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4.2. Bloom Filter Privacy Protection Algorithm Based on
Variable Factor Disturbance. In order to improve the pri-
vacy protection performance when querying address in-
formation through Bloom filters, this section proposes a
Bloom filter privacy protection algorithm based on variable
factor disturbance.

Bloom filter is a space-saving probabilistic data structure,
mainly used to test the membership of elements [49, 50]. In
the blockchain, it represents a collection of address elements
A � @1, @2, . . . , @m , a total of m address elements are
mapped to a bit vector V of length n through k mutually
independent hash functions, and the Bloom filter B ex-
presses the overall address information through the vector
V.

Let p represent the probability that any bit in the vectorV
is 0, and the probability of being 1 is 1 − p. In this paper, the
perturbation factor α is added to perturb the probability to
adjust the privacy protection performance provided by the
Bloom filter. Among them, α is the probability value which
represents the probability that any bit that has been set to 0 is
still set to 0 after random disturbance. Assuming that the
value of the hash function obeys a uniform distribution,
when all the inserted address elements are mapped, the
probability that any bit is 0:

p′ � α 1 −
1
n

 
km

≈ αe
−

km

n
 

� αp.

(11)

When an element that does not belong to the inserted
address set A is misjudged as true, the corresponding po-
sition of the element in the vector V is set to 1. +at is, the
false positive rate is

Pf � 1 − p′( 
k

≈ (1 − αp)
k

� 1 − αe
− (km/n)

 
k

� exp k ln 1 − e
ln α− (km/n)

  .

(12)

Given the target false positive rate Pt of the Bloom filter,
when the number of bits n of the Bloom filter and the
number of hash functions k is constant, the number of
inserted address elements of the Bloom filter m can be
calculated by the following equation:

m � −
n

k
 ln

1 − P
1/k
t

α
 . (13)

It can be seen from (13) that the more the hash function
k, the more the number of bits that can be mapped in the
address element, the more element information can be
expressed, and the false positive rate may decrease. However,
as the number of bits set to 1 increases, the false positive rate
may also increase. +erefore, in (12), let
g(k) � k ln(1 − eln α− (km/n)), and function g(k) and k reach
the minimum at the same time and take the derivative of k
for g(k) to obtain the following:

dg(k)

dk
� ln 1 − e

ln α− (km/n)
  +

km

n

e
ln α− (km/n)

1 − e
ln α− (km/n)

 . (14)

Let dg(k)/dk � 0, solve for kmin to get eln α− (km/n) � 1/2.
When k� kmin, g(k) reaches the minimum value:

kmin �
n

m
ln(2α). (15)

+e value range of the added privacy protection variable
factor α can be further determined α ∈ [1/2em/n, 1]. When
the value of α is 1, it means that the probability distribution
of the hash function is not disturbed. At this time, the
privacy protection performance is the effect provided by the
initialization of the Bloom filter.

According to equation (12) of false positive rate, the
calculation formula of the number of bits n of the Bloom
filter can be obtained:

n � −
km

ln 1 − Pt
1/k

 /α 
. (16)

+e function n(k) and k can reach the minimum at the
same time. To obtain the minimum number of bits n of the
Bloom filter, take the derivative of k to obtain the following:

dn(k)

dk
�

m ln 1 − P
1/k
t /α  − m 1/ 1 − P

1/k
t  P

1/k
t ln P

1/k
t 

ln 1 − P
1/k
t /α  

2 ,

(17)

Let dn(k)/dk � 0, get (1 − P1/k
t )ln(1 − P1/k

t ) � P1/k
t ln

P1/k
t + (1 − P1/k

t )ln α, let P1/k
t � x; by derivation on the left

and right sides of the above formula separately, get
lnx/α + ln(1 − x) � − 2. Derivative to get x � 1/2, that is,
Pt

1/k � 1/2; combining (15), get the number of bits of Bloom
filter:

n � −
m ln Pt

ln 2 ln(2α)
. (18)

Table 1: Game matrix of privacy protection mechanism.

SPV node
Bloom filter

Not hijacked Hijacked
Add the address directly [S_earning_State1, B_earning_State1] [− S_loss_State2, B_earning_State2]
Not add the address directly [− S_loss_State4, B_earning_State4] [S_earning_State3, − B_loss_State3]
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Among all the positive values that the attacker correctly
guessed, the probability of the j true positive values matching
the Bloom filter is Ph(j), as shown in the following equation:

Ph(j) �
N

N + F
·

N − 1
(N + F) − 1

· · ·
N − j + 1

(N + F) − j + 1

� 

j− 1

i�0

N − i

(N + F) − i

� 

j− 1

i�0

N − i

N +|R − N|Pf(m) − i
.

(19)

N represents the number of addresses inserted into the
Bloom filter, R represents the number of all existing ad-
dresses in the network, and F represents the number of all
false positive addresses, but the attacker does not know.
+erefore, the attacker can correctly guess the probability of
all addresses inserted into Bloom filter B as follows:

Ph(N) �
N!F!

(N + F)!

� 
N− 1

i�0

N − i

N + F − i

� 
N− 1

i�0

N − i

N +|R − N|Pf(m) − i
.

(20)

Ph(j) is used to represent the privacy degree provided by
the Bloom filter.+e higher the privacy degree, the worse the
privacy protection performance it can provide, and the lower
the value of the privacy degree, the better the privacy per-
formance it can provide.

When an attacker obtains more than two Bloom filters
belonging to the same SPV node, the common elements of
different filters can be obtained by calculating the inter-
section between each pair of Bloom filters. Given b Bloom
filters belonging to the same SPV node, the attacker can
estimate the number of elements inserted in each filter by
formula (13). Suppose that Bloom filters B1, . . ., Bb are sorted
in ascending order by the number of insertable elements.
According to (21), the more Bloom filters can be obtained by
an attacker, the smaller error in the classification of the real
address, and the larger Ph(.) value, the worse the privacy
protection effect provided by the Bloom filter.

Ph(j) ≈

j− 1

i�0

N − i

N − i +|R|∀jPf mj 
. (21)

4.3. Working Flow of the Method

4.3.1. Insertion of Addresses

(a) Calculate the game benefit of SPV node and Bloom
filter separately with the address information to be
inserted

(b) Determine the probability y that the address infor-
mation will not be leaked through Nash equilibrium

(c) Select the threshold β according to the privacy tol-
erance of the SPV node

(d) Compare y with the threshold β in Table 2 to de-
termine whether this piece of address information
can be directly added to the Bloom filter. If it can be
added directly, ignore step (c)

(e) Add this process as a historical record to the his-
torical information

4.3.2. 6e Generation of Address Elements

(a) Calculate the k hash addresses of address element
@1, that is, h1(@1), h2(@1) . . . hk(@1)

(b) Set the k positions corresponding to the Bloom filter,
that is, B[h1(@1)] � B[h2(@1)] · · · B[hk(@1)], as
shown in Figure 4

4.3.3. 6e Perturbation of Variable Factors. According to
different scenarios of the Bloom filter, the variable factor α is
selected. As shown in Figure 5, the bit setting to 0 is still set to
0 randomly. Among them, scenario 1 is that the number of
inserted addresses matches the capacity of the Bloom filter,
scenario 2 is that part of the address capacity is reserved
when the Bloom filter is initialized, scenario 3 is the ex-
pansion when the number of inserted addresses exceeds the
maximum capacity of the Bloom filter, and scenario 4 is
multiple Bloom filter, the detailed introduction of each scene
will be carried out in Section 5.2;

4.3.4. Query of Addresses

(a) Calculate the k hash addresses corresponding to @x,
that is h1(@x), h2(@x) . . . hk(@x).

(b) Check the k corresponding positions of the Bloom
filter vector; that is, B[h1(@x)] �

B[h2(@x)] · · · B[hk(@x)], whether they are all 1, as
shown in Figure 6. As long as one of the bits is 0, @x
is not in the query set; if all corresponding bits are all
1, then @xmay be in the query set, but it may not be
the real query result, and a false positive may occur at
this time.
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5. Experimental Verification

5.1. Experimental Settings. Bitcoin is the most successful
blockchain application so far. +is paper selects transaction
data in Bitcoin as experimental data. Using the parser in [51],
we analyzed the genesis block from 2009 to the end of
December 2019 and collected nearly 29 million different
addresses [52]. In the experiment, a Bitcoin wallet is con-
structed based on the standard Bitcoinj library [53]. In the
current implementation of the SPV node, when the Bitcoin
address is inserted into the Bloom filter, the address and its
public key hash will be added at the same time, so m� 2N.
Bitcoin developers believe that a false positive rate of 0.1%
can provide a better privacy effect [54], so the target false
positive rate in this paper is 0.1% as a reference.+e blue line
represents the experimental data with the variable factor
adjustment algorithm (α� 0.75) and the red line represents
the experimental data without the variable factor adjustment
algorithm.

5.2. Privacy Protection Performance of Bloom Filter and the
Comparison

5.2.1. Privacy Protection Performance of Single Bloom Filter

Scenario 1. +e number of inserted addresses matches the
Bloom filter capacity.

Set the total capacity E from 2 to 500 and the corre-
sponding number of inserted addresses from 1 to 250. +e
probability of guessing all the inserted addresses is shown in
Figure 7, and the probability of guessing anyone inserted
address is shown in Figure 8. It can be seen that the
probability of privacy leakage is close to 0. +e difference
between the algorithm with and without variable factor
adjustment is not significant, and both can obtain the best
privacy protection effect.

Scenario 2. Reserve part of the address capacity when the
Bloom filter is initialized.

Addresses are inserted sequentially when the Bloom
filter is initialized, and the privacy degree Ph is recorded. Set
the total capacity E as a fixed value, and take 100 and 200,
respectively, as shown in Figures 9 and 10. It can be seen
from the figure that with variable factor adjustment, the
value of Ph approaches 0, and the privacy protection effect is
far better than without variable factor adjustment.

Scenario 3. Expand when the number of inserted addresses
exceeds the maximum capacity of the Bloom filter.

Take the initial capacity E� 100. When the number of
inserted addresses N is greater than 50, the Bloom filter
needs to be expanded. +e expanded capacity is the initial
capacity, as shown in Figures 11 and 12. It can be seen from
the figure that with the variable factor adjustment, the value
of Ph approaches 0, and the privacy protection effect is far
better than without the variable factor adjustment.

5.2.2. Privacy Protection Performance of Multiple Bloom
Filters. +e privacy protection values that can be provided
by adding filters are shown in Table 3. Among them, the
target false positive rate is, respectively, 0.05% and 0.1%.+e
numbers of addresses that can be inserted into the 5 Bloom
filters are 50, 100, 200, 500, and 1000, respectively. +e
maximum capacity of the Bloom filter is set to exactly match
the number of inserted addresses. +e value of b, respec-
tively, represents the number of Bloom filters acquired by
the attacker. It can be seen from Table 3 that the more the
number of filters obtained by the attacker, the more serious
the privacy degree leakage.

+e Ph(.) values obtained by the methods of capacity
expansion, addition, and disturbance are shown in Table 4.
Among them, the target false positive rate is 0.1%, and the
number of inserted addresses is 50, 100, 150, 200, and 250,
respectively. It can be seen from the table that there is little
difference in the privacy degree between the expansion and
the addition of filters. +e expansion method has a slight
advantage. +e degree of privacy protection under the two
methods reveals almost all private information with prob-
ability 1 when the number of inserted addresses is small. +e
Ph(.) value generated by the disturbance method is much
lower than the first two methods, which can produce a better
privacy protection effect. Among them, the best effect is
when the disturbance factor is closing to 1/2.

5.3. 6e Effectiveness of the Mixed Strategy Nash Equilibrium
Privacy Protection Mechanism and the Comparison. +is
section uses scenario 2 as an example for testing. +e mixed
strategy Nash equilibrium privacy protection mechanism is
compared and analyzed with the situation without it. In the
experiment, the maximum capacity of the Bloom filter is
200. Each time 50 addresses are randomly selected to insert
the Bloom filter from 100 addresses. Repeat 50 times to
observe the probability that at least one of the inserted
addresses can be guessed by the attacker. Repeat this ex-
periment 100 times and take the average of the 100 ex-
perimental results as the final experimental result, as shown
in Figures 13–16, where the gray line indicates that no
privacy protection mechanism is added, the dark blue line
indicates the Gervaisy et al.’s [18] solution, and the
remaining lines indicate that privacy protection mechanism
is added. Level 0-4 respectively corresponds to the privacy
leakage tolerance in Table 2.

It can be seen from Figure 13 that as the number of times
of address insertion increases, the probability of privacy
leakage increases with or without adding a privacy pro-
tection mechanism. +is is due to the superimposing effect

Table 2: +e relationship between privacy leakage tolerance and
threshold.

Level Privacy leakage tolerance +reshold β
0 Extremely high [0, 0.2]
1 High (0.2, 0.4]
2 Medium (0.4, 0.6]
3 Low (0.6, 0.8]
4 Extremely low (0.8, 1]
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of private information as the number of insertions increases.
With the increase in the number of insertions, the privacy
information leakage of SPV nodes also increases. Even if
some privacy information itself does not exceed the toler-
ance of SPV nodes for privacy leakage, the combined privacy
information disclosed may exceed the tolerance of the node.
In comparison, the privacy leakage probability of adding a
privacy protection mechanism is always lower than that of
not adding it. It can be seen from the figure that when the set
privacy tolerance is lower, the probability of privacy leakage
also decreases significantly. When the privacy tolerance is
the lowest, the privacy leakage probability is close to Ger-
vaisy et al.’s solution, and both have good privacy protection
performance.

It can be seen from Figure 14 that as the number of
insertions increases, the effectiveness of the adding and not
adding privacy protection mechanism are decreasing. +at
is, as the number of insertions increases, the attacker may
obtain the privacy information of the SPV node has also
increased. It can be seen from the figure that after adding the
privacy protection mechanism, the downward trend has
slowed down.

Figure 15 shows the comparison of the time required to
return query results. It can be seen from the figure that as the
degree of privacy tolerance decreases, the return time of the
query result becomes larger. +is is because when the SPV
node has a low tolerance for privacy leakage, the probability
that the inserted address information which will not be

@1

0 0 1 0 0 0 0 0 …… 0 0 0 01 1 1

h1 (@1) h2 (@1) h3 (@1) hk (@1)

0

Figure 4: Insertion of address elements.

0 0 1 0 0 0 0 0 …… 0 0 0 01 1 10

0 1 0 0 0 0 …… 01 1 101 1 1 1 0

Figure 5: Perturbation of variable factors.

@1

0 0 1 0 0 0 0 0 …… 0 0 0 01 1 1

h1 (@1) h2 (@1) h3 (@1) hk (@1)

0

@2 @3 @4

Figure 6: Query of address elements.
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leaked is easily higher than the privacy leakage tolerance of
the node, and the Bloom filter needs to be adjusted by a
variable factor.

Figure 16 shows the comparison of average bandwidth
cost per query when the number of queries reaches 10, 20, 30,
40, and 50, respectively. It can be seen from the figures that the
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Figure 9: Ph(.) for E� 100 and N increased to 50.
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Figure 10: Ph(.) for E� 200 and N increased to 100.
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mechanism proposed in this paper is better than the solution
of Gervais et al. in terms of average bandwidth cost. +is is
because the false alarm rate Pf of the Bloom filter constructed
by the solution of Gervais et al. is close to the target false alarm
rate. While the mechanism of this paper appropriately re-
duces the false alarm rate while ensuring privacy perfor-
mance, the number of addresses feedback by the full node is
reduced, thereby reducing the bandwidth cost.

In addition to the storage space required to initialize the
Bloom filter and the pregeneration of N Bitcoin addresses,
the algorithm proposed in this paper does not generate

additional overhead on the SPV node.When the Bloom filter
is initialized, the SPV node needs to be stored locally: the
number of addresses embedded in the file manager (4 bytes);
the target false positive rate Pt (8 bytes); the value of α
selected by the user (8 bytes); Bloom filter flag (2 bytes) and
insertion address. +e SPV node can add a pointer to the
ECKey class of Bitcoinj to link each Bitcoin address to the
corresponding Bloom filter.+e size of the pointer is about 2
bytes/address. +erefore, the storage required to initialize
each Bloom filter is approximately 2N+ 22 bytes. +e
method proposed in this paper requires only a small amount
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Figure 12: Ph (1) when the expansion is fixed.

Table 3: Ph(.) with additional filter disturbance factor α� 0.51.

Target false positive rate Pt � 0.05% Pt � 0.1%
Privacy degree Ph(1) Ph (N) Ph (1) Ph (N)
b� 1 0.0035 0 0.0017 0
b� 2 0.8754 0 0.6371 0
b� 3 0.9999 0.9843 0.9994 0.8803
b� 4 1 1 1 0.9999
b� 5 1 1 1 1

Table 4: Ph (.) values using expansion, addition, and perturbation, respectively.

Number of inserted addresses Privacy degree Expansion Addition α� 0.51 α� 0.6 α� 1

N� 50
Ph(1) 0.0017 0.0017 0.0018 0.0018 0.0017
Ph (25) 0 0 0 0 0
Ph (50) 0 0 0 0 0

N� 100
Ph (1) 0.2673 0.6371 0.0018 0.0048 0.2676
Ph (25) 0 0 0 0 0
Ph (50) 0 0 0 0 0

N� 150
Ph (1) 0.9238 0.9994 0.0018 0.007 0.9239
Ph (25) 0.0697 0.9809 0 0 0.0699
Ph (50) 0 0.8814 0 0 0

N� 200
Ph (1) 0.9938 1 0.0018 0.0085 0.9938
Ph (25) 0.8094 1 0 0 0.8096
Ph (50) 0.2645 0.9999 0 0 0.2648

N� 250
Ph (1) 0.9992 1 0.0018 0.0096 0.9992
Ph (25) 0.9734 1 0 0 0.9735
Ph (50) 0.8385 1 0 0 0.8386
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of modification to the existing SPV node, and such overhead
can be tolerated in the implementation of the existing SPV
node.

6. Conclusions

In blockchain applications, lightweight nodes with limited
resources mainly use Bloom filters to obtain relevant in-
formation. +is kind of request for specific data uninten-
tionally reveals the node’s private information. In response
to such problems, this paper proposes a new privacy pro-
tection method for lightweight nodes in blockchain. Aiming
at the superimposition effect of multiple information queries
that may exceed the node’s tolerance for privacy leakage, a
privacy protection mechanism based on mixed strategy
Nash equilibrium is proposed. Based on this, in the case that
the probability of information query and privacy not being
leaked is less than the node privacy protection, a Bloom filter
privacy protection algorithm based on variable factor is
proposed. Experimental results show that the method
proposed in this paper is feasible, effective, reliable, and
superior. It can be deployed and applied on existing light-
weight nodes.

With the development of IoT and sensor technology,
lightweight nodes have become more and more. Resource
consumption is the most important issue in the privacy
protection of lightweight nodes. +e method in this paper
will be further optimized in the actual deployment and
application in the next step to save node resource con-
sumption. +e current privacy protection threshold is set by
human experience. +e future work will quantify the user’s
privacy requirements and the node’s computing and storage
resources to generate the corresponding privacy protection
threshold.
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