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With the development of deep learning, breakthroughs have been made in the field of semantic segmentation. However, it is
difficult to generate a fine mask on the same medical images because medical images have low contrast, high resolution, and
insufficient semantic information. In most scenarios, existing approaches mostly use a pooling layer to reduce the resolution of
feature maps. Therefore, it is difficult for them to consider the whole image features, resulting in information loss and performance
degradation. In this paper, a multiscale asymmetric encoder-decoder semantic segmentation network is proposed. The network
consists of two parts, which perform feature extraction and image restoration on the input, respectively. The encoder network
obtains multiscale feature information by connecting multiple ASPP modules to form a feature pyramid. Meanwhile, the
upsampling layer of each decoder can be connected to the feature map generated by the corresponding ASPP module. Finally, the
classification information of each pixel is obtained through the sigmoid function. The performance of the proposed method can be
verified on publicly available datasets. The experimental evidence shows that the proposed method can take full advantage of

multiscale feature information and achieve superior performance with less inference computational cost.

1. Introduction

Since the proposal of AlexNet [1] by Professor Hinton in
2012, computer vision has made breakthroughs in image
classification, target detection [2, 3], and semantic seg-
mentation [4]. Alternatively, computer-aided diagnosis
systems based on neural network convolution have been
widely used in many medical image analysis tasks.
Segmentation is one of the most important and popular
tasks in medical image analysis. It plays a vital role in disease
diagnosis, surgical planning, and prognostic evaluation. We
urgently should improve the efficiency of doctors’ diagnoses
to save patients’ lives. Medical image segmentation methods
and theories are many, including borders, thresholds, re-
gional growth, statistics, graph theory, active contour, in-
formation theory, fuzzy set theory, and neural network. Due
to the large hints of computing power, neural networks have
gradually become the preferred technology for semantic

segmentation tasks and have achieved excellent results in
various competitions.

From [5, 6], it can be seen that the features of the bottom
layer (such as the output of layers 1, 2, and 3) are more biased
toward the basic units of the image, such as points, lines, and
edge contours, while the high-level semantic features are
layers 4 and 5. It is more abstract and more similar to the
semantic information of the image, more like a region. Based
on the above understanding, the focus of the semantic
segmentation network is how to better combine high-level
semantic information with low-level feature information. In
medical image segmentation tasks, FCN [6] and U-Net [7]
are the mainstream network models. The other architectures
[8-12] use different mechanisms (long jump connection,
pyramid pooling, and so on) as part of the decoding
mechanism. The difference between these architectures lies
mainly in the decoder network. The decoder has the task of
the encoder to learn distinguishable characteristics (lower
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resolution) of semantic mapping pixel space (higher reso-
lution) to obtain a dense classification. Semantic segmen-
tation has the ability to not only distinguish the pixel level
but also learn the characteristics of the different stages re-
quired in the encoder.

In some recent work, RSANet [13] employs residual
semantic-guided attention mechanism (RSAM) to fuse the
multiscale features from LCNet for improving detection
performance efficiently. In ALNet [14], the encoder adopts a
novel residual module to abstract feature representations.
Swin transformer [15] introduced transformer in semantic
segmentation to increase the model’s ability to capture long-
distance information.

To reduce the computational complexity and improve
the training speed, the traditional encoder-decoder must use
many downsampling processes, which will cause some small
features to be lost in the downsampling process, and it is
impossible to accurately classify each pixel. To solve the
problem of information loss, we propose a new multiscale
fusion method of asymmetric encoder-decoder network (J-
Net) to enhance the use of multiscale feature information,
while shortening the information flow channel. The con-
tributions of our works are threefold:

(i) An asymmetric encoder-decoder network is pro-
posed to further reduce the loss of information in
the downsampling process.

(ii) Proposing a new connection method between the
encoder network and the decoder network can
reduce unnecessary information flow.

(iii) Experimental results show that our framework
better integrates features of different scales and
achieves excellent performance with less compu-
tational cost.

The rest of this article is organized as follows. In Section
2, several backbone architectures used in modern semantic
segmentation are reviewed. In Section 3, the J-Net structure
and its concept are proposed. Section 4 compares FCN [4],
DeepLab [16-19], and U-Net [7] and verifies the effective-
ness of J-Net. Section 5 summarizes the advantages and
disadvantages of J-Net in other fields.

2. Related Work

Since the proposal of FCN in 2015 [4], convolutional neural
network has made considerable progress in the field of image
segmentation. It has been shown that the main factor af-
fecting image segmentation is how to expand the local re-
ceptive field and keep the loss of features in the process of
downsampling. There are some mainstream technologies to
obtain global information as follows (see Figure 1 for
illustration).

2.1. Upsampling. The maximum change of FCN [4] com-
pared with classification neural networks is that the clas-
sification network will add some convolutional layer at the
end of the network so that a two-dimensional feature map
can be obtained, followed by softmax to obtain the
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classification information of each pixel. This is the beginning
of using convolutional neural networks to solve semantic
segmentation problems. But in this way, direct upsampling
only uses high-level semantic information and ignores low-
level features, which affects the segmentation effect.

2.2. Encoder-Decoder. The encoder-decoder is a concept in
the NLP field, not a specific algorithm, but a framework to
solve problems. The model consists of two parts: the en-
coder network (feature extractor) and the decoder network
(generator). The image features are extracted by stacking
multiple feature extraction blocks (Conv+ BN + RELU),
and the local receptive field is expanded by repeated
downsampling to obtain larger global features. The func-
tion of the decoder network (generator) is to generate the
high-level feature vector into the target vector. This method
also has defects. For input with a large amount of infor-
mation, the encoder process will lead to the loss of
information.

To solve this problem, many researchers have made
various attempts. For example, the U-Net [7] uses skip-
connect operation, and the feature map of each convo-
lution layer of U-Net will be concatenated to the corre-
sponding upsampling layer. In SegNet [20], the decoder
uses the pooled indexes calculated in the max-pooling
process to calculate the nonlinear upsampling of the
corresponding encoder. In addition to the above two
methods, there are other variants, such as using fixed
(sparse) index array to sample or use replication
upsampling. However, these methods consume more
memory, require a longer convergence time, and do not
perform well.

2.3. Atrous Convolution. Multiple downsampling will lead to
information loss, which will make the network miss smaller
targets when performing detection tasks and affect the final
results of the network. In DeepLab [16-19], atrous convo-
lution has been proposed. There are two functions of atrous
convolution: one is to control the receptive field and the
other is to adjust the resolution. Firstly, by adjusting the hole
convolution rate, the receptive field in the center of the
convolution core increases. Secondly, by setting the stride
size, the hole convolution can increase the receptive field and
reduce the resolution.

3. Method

To solve the problem of information loss caused by multiple
downsampling, we propose an asymmetric multiscale en-
coder-decoder model. The proposed network is a modified
FPN [21]. We change the way to get global features and
reduce the proportion of encoders.

3.1. Network Architecture. The network architecture is
shown in Figure 2. The multiscale feature fusion asymmetric
encoder-decoder network consists of two parts: a larger
encoder and a smaller decoder. This asymmetric structure



Security and Communication Networks

’ \ 4 L7
1 1
Prediction $
[T
2x

——
=}
u
"

|

\

1
b |
! : 1
2x | i ¢ Atrous | |
1 . 1
Lo Convolution |
I |
xi ! g !

I
! l
Lol |
LT |
Lo t } |
! l
I : |

|
I Image Image /

’ N S

FIGURE 1: Alternative architectures to capture multiscale context. (a) Upsampling block. (b) Encoder-decoder block. (c) Atrous convolution

block.
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FiGure 2: Network architecture.

reduces the redundancy of the network structure using
ResNet as the encoder. At the same time, ASPP is performed
on feature maps of different scales to obtain multiscale
information, followed by softmax to obtain the classification
information of each pixel. The feature extraction module
consists of a 3 x 3 convolutional layer, BN layer, and RELU
activation function layer. In the feature recovery module, the
input is the feature pyramid generated by the ASPP of two
feature maps, which are merged through the concatenated
operation as an input to the next feature recovery module.
The ASPP operation uses hole convolution to obtain feature
pyramids on the same feature map and at the same time uses
stride size to control the size of the output feature map
unchanged, which is conducive to the fusion of multiscale
features.

The encoder network uses hole convolution to obtain a
feature map of a specific scale and sets different hole con-
volution rates to obtain a larger local receptive field without
losing feature information. There is no need to maintain the
same decoding stage size as the feature extraction stage

because the encoder network no longer uses downsampling
multiple times.

3.2. Asymmetric Encoder-Decoder. U-Net is one of the
earliest algorithms using a full convolution network for
semantic segmentation. The symmetrical encoder-decoder
structure including the compressed path and extended path
used in this paper was innovative at that time, and it affected
the design of the following segmentation networks to a
certain extent. The symmetrical structure is to fully integrate
feature information of different scales. The network archi-
tecture is illustrated in Figure 3(b).

In conventional computer vision tasks, compressed
image resolution is mainly achieved through a pooling
layer or a convolutional layer (stride=2). Similarly, when
we do semantic segmentation or target detection, the main
purpose of the compressed path is to expand the local
receptive field of the convolution kernel to obtain global
information. We can use other methods to obtain global
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FIGURE 3: (a) Asymmetric encoder-decoder. (b) Symmetric encoder-decoder.

features, such as using a larger convolution kernel or hole
convolution.

In this paper, we choose to stack multiple holes in
convolution to reduce the use of downsampling. Using this
method, the network can obtain a larger local receptive field
without losing information, reduce the size of the decoder,
and improve the training speed. The network architecture is
illustrated in Figure 3(a).

The encoder is used as the feature extractor. Different
from the use of VGG [22] as the backbone in FPN [21], here
we use ResNet [23] as the backbone network. The use of a
large number of skip-connect greatly improves the utiliza-
tion rate of low-level features and can make the encoder
network deeper. As a mask generator, the main purpose of
the encoder is to restore the highly abstract feature vector to
a mask image with the same size as the original image. In
order to strengthen the high-level semantic features, we
redesigned the encoder. The decoder consists of the repeated
application of 3 x 3 convolutions (unpadded convolutions),
each followed by a rectified linear unit (RELU) and a batch
normalization unit (BN). Following the feature extractor, we
use a dropout unit (Dropout) to prevent overfitting. In the
final upsampling step, we restore the number of feature map
sizes to the same as that of the input.

3.3. Multiscale Feature Map. In the field of object seg-
mentation, one of the most basic principles is that the larger
the receptive field of the final predicted pixel, the better the
effect of capturing more contextual information and making
more accurate predictions.

To obtain a larger receiving field, the mainstream
method is to use large convolution kernels, hole convolu-
tion, and stack downsampling to reduce feature resolution so
that convolution kernels of the same size can obtain larger
local receptive fields.

For a large convolution kernel, due to its large size, it
consumes several computing resources in network training.
It is proposed in AlexNet [1] that multiple small convolution
kernels can be connected in series to achieve the same

receptive field as a large convolution kernel. However, the
effective receptive field obtained using multiple stacked
small convolution kernels is different from the theoretical
receptive field [17]. Since these convolutions correspond to
the difference between the effective receptive field and the
theoretical receptive field, the feature information of the
detected target is lost.

To solve this problem, we connect multiple atrous
convolutions in parallel to form a spatial pyramid (ASPP)
[16-19]. ASPP uses atrous convolutions with different di-
lation rates to perform different convolution operations on
the feature map. It does not increase the number of pa-
rameters while obtaining a receptive field that exceeds the
size of its convolution kernel. The most important thing is
that the size of the feature map has not changed after the hole
convolution operation. So, ASPP does not affect the original
feature extraction operation of the encoder.

3.4. Feature Fusion. The feature pyramid is currently an
important part of the target detection, semantic segmen-
tation, behavior recognition, etc. It has excellent perfor-
mance for improving model performance. References
[9-12, 24-27] demonstrated various methods for con-
structing feature pyramids. The feature pyramid has a fea-
ture map of different scales. Targets of different sizes can
have appropriate feature representations at the corre-
sponding scales. By fusing multiscale information, targets of
different sizes can be predicted at different scales. It im-
proves the performance of the model very well. So, the most
important thing to determine the mask is to obtain high-
level semantic information (position, category, and so on)
and low-level features (shape, color, and so on).

The serial use of ASPP allows us to obtain a richer view
and combine feature information of different scales. We
perform the atrous convolution operation on the advanced
feature map to expand the range of the predicted receptive
field of each pixel, combine intermediate features to con-
strain the approximate shape of the mask, and finally
combine them with low-level features to standardize the
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edges of the mask. This multiscale feature fusion shortens the
information flow path and at the same time increases the
information flow path between the encoder and decoder and
finally achieves the repeated use of important features.

4. Experiments

4.1. Datasets. The liver segmentation dataset has two sets:
training set and test set, and the size of all images in the
dataset is 512 x 512. The training set has 400 liver CT images
and the corresponding segmentation template, and the
verification set has a total of 20 liver CT images and the
corresponding segmentation template. There are two cate-
gories of segmentation templates (liver and background).
The EM dataset has two sets: training set and test set, and
the size of all images in the dataset is 512 x 512. The training
set has 90 EM images and the corresponding segmentation
template, and the verification set has 30 EM images and the
corresponding segmentation template. There are two cate-
gories of segmentation templates (liver and background).

4.2. Implementation Details. We use the Adam algorithm as
an optimizer, and the initial learning rate is set to 0.001.
When using the gradient descent algorithm to optimize the
objective function when getting closer and closer to the
global minimum of the loss value, the learning rate should
become smaller to make the model as close as possible to this
point, and cosine annealing [28] can be achieved through the
cosine function reduce the learning rate. The principle of
cosine annealing is as follows:

i I i Teur
Mt = Nmin +5(’1max - ﬂmin)(l + COS( ’Ii ﬂ)), (1)

1

where i is the number of runs (index value); #,,,, and 7.
respectively, represent the maximum and minimum values
of the learning rate and define the range of the learning rate;
T, indicates how many epochs are currently executed; and
T, indicates the total number of epochs in the i — th run.

4.3. Experimental Results. To verify the effectiveness of the
method in this paper, the traditional FCN, U-Net, and
DeepLab networks were compared, the same data and pa-
rameter settings were used for training, and the trained
model was verified with the test datasets.

For the comparative experiment [29, 30], we chose the
Dice coeflicient, precision coefficient, and recall coefficient
as the evaluation criteria to measure the quality of the model.
These evaluation criteria are as follows:

_ 2(RegNRy)
(Reeg) +(Rge)
where the R

«eg Tepresents the predicted segmentation result
and R, represents the segmentation result of ground truth.
When applied to a binary segmentation task, it evaluates the
degree of overlap between the predicted value R, and the
true value Ry.

(2)

TABLE 1: Segmentation results produced by different methods on
the liver datasets.

Method Backbone Precision Dice Recall
FCN-8s VGGI16 0.8787 0.8537 0.8420
DeepLab-v3+ ResNet101 0.8773 0.8642 0.8605
U-Net — 0.8774 0.9172 0.9622
J-Net ResNet101 0.8836 09118 0.9637

TaBLE 2: Segmentation results produced by different methods on
the EM datasets.

Method Dice
DeepLab-v3+ 0.9185
FCN 0.9364
J-Net 0.9376
TP
P=——— 3
TP + FP 3)

where TP (true positive) represents predicting the positive
class as a positive class number and FP (false positive)
represents predicting the negative class as a positive class
number. Precision indicates how many of the samples whose
predictions are positive are truly positive samples.

TP

R= -,
TP + EN

(4)
where TP (true positive) represents predicting the positive
class as a positive class number and FN (false negative)
represents predicting the positive class as a negative class
number. Recall rate indicates how many positive examples in
the sample are predicted correctly.

For fair comparison, all the baselines are performed using
the same hardware platform with a single NVIDIA GTX 3080
GPU. The minimum batch size is set to 4 (4 images per GPU);
to stabilize the training at the beginning, the number of warm-
up iterations has been extended from 30 to 50. Dice loss [12] is
used as the loss function, Adam is used as the optimizer, the
initial learning rate is 0.001, the minimum batch size is 4, and
the epoch is 300. We need to consider overfitting when
choosing an encoder network, so dropout [10] has been used
to improve the generalization of the network. Tables 1 and 2
compare our J-Net with selected state-of-the-art networks.

The results in Table 1 indicate, for the liver dataset, that
the encoder-decoder model is substantially more accurate
than other segmentation models. We compare our method
with FCN, DeepLab-v3+, and U-Net in liver segmentation
tasks. The precision coefficient and recall coefficient of J-Net
are 0.8836 and 0.9678 which are better than those of FCN,
Deeplab-v3+, and U-Net, and ] Net’s DICE coeflicient of
0.9129 is slightly lower than U-Net’s DICE coefficient of
0.9172. However, the gap is not big. On the whole, the
performance of J-Net is better than the that of above three
algorithms. These all prove the effectiveness of our encoder-
decoder architecture.

The segmentation results of liver dataset by different
networks are shown in Figure 4. The figure shows the visual
comparison on liver val set. From left to right are input
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FIGURE 4: Segmentation results of liver datasets are compared among our J-Net and the other three proposed models. (a) J-Net. (b) U-Net.

(c) FCN. (d) DeepLab-v3+.

images, ground truth, and segmentation predicted from
J-Net (Figure 4(a)), U-Net (Figure 4(b)), FCN (Figure 4(c)),
and DeepLab-v3+ (Figure 4(d)).

Table 2 shows the results for the EM datasets. We
compare our method with FCN and DeepLab-v3+ in EM
segmentation tasks. It can be seen from Table 2 that the Dice

coefficient of J-Net is 0.9376 and that of other two networks
is 0.9185 and 0.9364. On the whole, the performance of J-Net
is better than that of the above two algorithms.

The segmentation results of EM datasets by different
networks are shown in Figure 5. Figure 5 shows the visual
comparison on EM val set. From left to right are input
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FIGURE 5: Segmentation results of EM datasets are compared among our J-Net and other two proposed models. (a) DeepLab-v3+. (b) FCN.

(c) J-Net.

images, ground truth, and segmentation outputs from
DeepLab-v3+ (Figure 5(a)), FCN (Figure 5(b)), and J-Net
(Figure 5(c)).

5. Conclusions

This article analyzed previous works on medical image
segmentation, proposed a new architecture (J-Net), and
discussed the effect of the information flow path on feature
extraction. By connecting ASPP modules in series, changing
the encoder network, and reducing the size of the decoder
network, an asymmetric encoder-decoder network is
designed.

When faced with a complex boundary in segmentation,
there is a situation of unstable training (frequent loss
fluctuations), mainly because J-Net pays too much attention
to high-level semantics and low-level features and neglects to
reuse other features. A large number of experiments on the
challenging liver datasets and EM datasets have proved the

effectiveness of our method. The strategies proposed in this
work may be extended to other medical imaging applications
and even routine computer vision tasks.

Data Availability

The data used to support the findings of this study are
available online.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work was supported in part by the Science and Tech-
nology Innovation Development Program of Jilin City under
Grant (no. 201831769 and no. 20190104204) and “Thirteenth



Five-Year” Science and Technology Project of Jilin Province

Education Department Contract Number:
JJKH20200234K].
References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,”
Communication of the ACM, vol. 25, pp. 1097-1105, 2012.

[2] J. Redmon, S. Divvala, R. B. Girshick, and A. Farhadi, “You
only look once: unified, real-time object detection,” in Pro-
ceedings of the 2016 IEEE Conference on Computer Vision And
Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016.

[3] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN:
towards real-time object detection with region proposal
networks,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 39, pp. 1137-1149, 2015.

[4] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 4,
pp. 640651, 2017.

[5] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in Proceedings of the European
Conference on Computer Vision, pp. 818-833, Zurich, Swit-
zerland, September 2014.

[6] S. Liu and H. Di, “Receptive field block net for accurate and
fast object detection,” in Proceedings of the European Con-
ference on Computer Vision (ECCV), pp. 385-400, Munich,
Germany, September 2018.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
Proceedings of the International Conference on Medical image
computing and computer-assisted intervention, vol. 9351,
Munich, Germany, 2015.

[8] S. Liu, D. Huang, and Y. Wang, “Learning spatial fusion for
single-shot object detection,” 2019, https://arxiv.org/abs/1911.
09516.

[9] D. Zhang, H. Zhang, J. Tang, M. Wang, X. Hua, and Q. Sun,
“Feature pyramid transformer,” in Proceedings of the Euro-
pean Conference on Computer Vision, Glasgow, UK, July 2020.

[10] Q. Chen, Y. Wang, T. Yang, X. Zhang, J. Cheng, and J. Sun,
“You only look one-level feature,” 2021, https://arxiv.org/abs/
2103.09460.

[11] Q.Zhao, T. Sheng, Y. Wang et al., “M2det: a single-shot object
detector based on multi-level feature pyramid network,” in
Proceedings of the 2019 AAAI Conference on Artificial Intel-
ligence, vol. 33, Honolulu, HI, USA, 2019.

[12] P.Zhou, B. Ni, C. Geng, J. Hu, and Y. Xu, “Scale-transferrable
object detection,” in Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp- 528-537, Salt Lake City, UT, USA, June 2018.

[13] Q. Zhou, Y. Wang, Y. Fan et al., “AGLNet: towards real-time
semantic segmentation of self-driving images via attention-
guided lightweight network,” Applied Soft Computing, vol. 96,
2021.

[14] Q. Zhou, J. Wang, J. Liu, S. Li, W. Ou, and X. Jin, “RSANet:
towards real-time object detection with residual semantic-
guided attention feature pyramid network,” Mobile Networks
and Applications, vol. 26, no. 1, pp. 77-87, 2021.

[15] Z. Liu, Y. Lin, Y. Cao et al., “Swin transformer: hierarchical
vision transformer using shifted windows,” 2021, https://
arxiv.org/abs/2103.14030.

[16] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille, “DeepLab: semantic image segmentation with

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

Security and Communication Networks

deep convolutional nets, atrous convolution, and fully con-
nected CRFs,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 4, pp. 834-848, 2018.

L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Re-
thinking atrous convolution for semantic image segmenta-
tion,” 2017, https://arxiv.org/abs/1706.05587.

L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for se-
mantic image segmentation,” in Proceedings of the European
Conference on Computer Vision (ECCV), pp. 801-818,
Munich, Germany, September 2018.

W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the
effective receptive field in deep convolutional neural net-
works,” 2017, https://arxiv.org/pdf/1910.06041.pdf.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: a
deep convolutional encoder-decoder architecture for image
segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 12, pp. 2481-2495, 2017.
T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, vol. 106, pp. 936-964, Honolulu, HI,
USA, July 2017.

S. Karen and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” 2014, https://arxiv.
org/abs/1409.1556.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol. 90,
pp. 770-778, Las Vegas, NV, USA, June 2016.

M. Tan, R. Pang, and Q. V. Le, “EfficientDet: scalable and
efficient object detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 2020.

S. Qiao, L. Chen, and A. Yuille, “Detectors: detecting objects
with recursive feature pyramid and switchable atrous con-
volution,” 2020, https://arxiv.org/abs/2006.02334.

G. Ghiasi, T. Lin, R. Pang, and Q. V. Le, “NAS-FPN.: learning
scalable feature pyramid architecture for object detection,” in
Proceedings of the 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 2019.

D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” 2015, https://arxiv.org/abs/1412.6980.

F. Milletari, N. Navab, and S. Ahmadi, “V-net: fully con-
volutional neural networks for volumetric medical image
segmentation,” in Proceedings of the 2016 4th International
Conference on 3D Vision (3DV), Stanford, CA, USA, 2016.
A. A. Taha and A. Hanbury, “Metrics for evaluating 3D
medical image segmentation: analysis, selection, and tool,”
BMC Medical Imaging, vol. 15, no. 1, pp. 29-28, 2015.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.


https://arxiv.org/abs/1911.09516
https://arxiv.org/abs/1911.09516
https://arxiv.org/abs/2103.09460
https://arxiv.org/abs/2103.09460
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/2103.14030
https://arxiv.org/abs/1706.05587
https://arxiv.org/pdf/1910.06041.pdf
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2006.02334
https://arxiv.org/abs/1412.6980

