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)is work introduces a novel data augmentation method for few-shot website fingerprinting (WF) attack where only a handful of
training samples per website are available for deep learning model optimization. Moving beyond earlier WF methods relying on
manually-engineered feature representations, more advanced deep learning alternatives demonstrate that learning feature
representations automatically from training data is superior. Nonetheless, this advantage is subject to an unrealistic assumption
that there exist many training samples per website, which otherwise will disappear. To address this, we introduce amodel-agnostic,
efficient, and harmonious data augmentation (HDA) method that can improve deep WF attacking methods significantly. HDA
involves both intrasample and intersample data transformations that can be used in a harmonious manner to expand a tiny
training dataset to an arbitrarily large collection, therefore effectively and explicitly addressing the intrinsic data scarcity problem.
We conducted expensive experiments to validate our HDA for boosting state-of-the-art deep learning WF attack models in both
closed-world and open-world attacking scenarios, at absence and presence of strong defense. For instance, in themore challenging
and realistic evaluation scenario with WTF-PAD-based defense, our HDA method surpasses the previous state-of-the-art results
by nearly 3% in classification accuracy in the 20-shot learning case. An earlier version of this work Chen et al. (2021) has been
presented as preprint in ArXiv (https://arxiv.org/abs/2101.10063).

1. Introduction

For privacy protection in accessing the Internet, an in-
creasing number of users have turned to anonymous net-
works. )e Onion Router (Tor) [1, 2] is one of the most
popular choices [3].

As a free and open-source software, Tor boosts anon-
ymous communication. It directs Internet traffic through a
free, worldwide, and volunteer overlay network with
thousands of relays, concealing a user’s location and usage
from anyone conducting network surveillance or traffic
analysis. Concretely, it encrypts the content of communi-
cation and sends the data through a route comprised of
successive random-selected Tor nodes. However, this re-
mains not completely secure due to exposure of data
transportation patterns before reaching Tor servers. For
instance, a local attacker would eavesdrop on the connection
between a user and the guard node of the Tor network, with
the attacking positions including any devices in the same

LAN or wireless network, switch, router, and compromised
Tor guard node (see Figure 1). By just analyzing the patterns
of data packets traffic without observing the content inside,
the attacker is likely to reason about which website a target
user is visiting. )is is often known as website fingerprinting
(WF) attack [4].

To implement a WF attack, the attacker needs first to
create a particular digital fingerprint for every individual
website and then learn some intrinsic pattern characteristics
of these fingerprints for accomplishing attack. Earlier
attacking methods rely on manually designed features based
on expert domain knowledge [4–13]. )ey are not only
inflexible but also susceptible to environmental changes over
time. )is limitation can now be solved by using more
advanced deep learning techniques [14]. )is is because
other than utilizing manually designed features, deep
learning methods can automatically learn feature repre-
sentations directly from training data and are more scalable
provided that up-to-date training data are accessible. A
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couple of latest state-of-the-art studies, deep fingerprinting
(DF) [15] and Var-CNN [16], have demonstrated this po-
tential in comparison to manual feature-based methods.
However, these deep learning solutions are not perfect, as
their success is established upon an unrealistic assumption
that a sufficiently large number (e.g. hundreds) of training
samples per website are available, that is, data hungry. When
only a small training dataset is given as typical in practical
use, their performances are not necessarily superior to
traditional methods [11–13]. It is always expensive, tedious,
or even infeasible to collect a vast training set in reality due
to highly frequent and continuous changes in Internet en-
vironments. Consequently, WF attack is fundamentally a
few-shot learning problem, which nevertheless is largely
unrecognized in the literature.

)e nature of few-shot WF attack is also considered in
the recent triplet fingerprinting method [17], under a
condition that there is a large set of relevant auxiliary
training samples for model pretraining. It is essentially a
transfer learning setting. )is will significantly limit its
scalability in practice as in-the-wild changes of Internet data
traffic conditions would render such assumptions to be
invalid at high probabilities. On the contrary, we introduce a
realistic, generic few-shot WF attack setting where only a
handful of training samples are available for every target
website, without making any domain-specific assumptions.
Clearly, triplet fingerprinting is not applicable in our setting
due to the need of auxiliary training data.

We summarize the contributions of this paper as
follows:

(I) We introduce a novel, practical few-shot website
fingerprinting attack problem, in which only a few
training samples are available without rich auxiliary
data. )is respects the intrinsic nature of highly
dynamic Internet traffic conditions and high cost of
collecting extensive training data in practice.

Highlighting the importance of few-shot learning
without any auxiliary data assumption for the first
time, we hope more future efforts would be dedi-
cated for solving this practically significant WF
attack challenge.

(II) To solve the proposed few-shot learning challenges,
we embrace the enormous potentials and advan-
tages of deep learning for WF attack by introducing
a new harmonious data augmentation (HDA)
method to explicitly solve the training data scarcity
problem in deep learning. Specifically, we augment
the original training data by rotating and masking-
out randomly individual samples and mixing
(linearly combining) sample pairs in arbitrary
proportions. With such intrasample and inter-
sample data transformations, our HDAmethod can
efficiently expand a tiny training dataset at any
scales.

(III) We benchmark the performance of few-shot WF
attack and demonstrate the efficacy of our data
augmentation method using existing state-of-the-
art deep learning models. In particular, we consider
5–20 shots per website/class in closed-world and
open-world settings, with and without defense. )e
results show that our method can improve the
performances of previous state-of-the-art deep
learning solutions [16, 18] significantly.

2. Related Work

2.1. Objectives, Scenarios, and Assumptions. )e objective of
WF attack is to identify which website a victim user is
interacting with among a set of monitored target websites
that the adversary is interested in detecting. Conceptually, it
is a multiclass classification problem with each website
regarded as a unique class. )ere are several scenarios with
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Figure 1: Illustration of data flow traffic between a user and target websites with a Tor network in-between. Despite being more secure by
anonymity, website fingerprinting attackers are still able to reason about which website a victim user is visiting by analyzing the data traffic
characteristics at multiple locations, as specified by red dash lines.
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different assumptions. )e most common scenario is closed-
world attack that assumes the user can only visit a small set of
websites and that the adversary collects samples to train on
all of them. Given that the websites in a closed-world setting
are far less than in the real world, this assumption is not
realistic. In an open-world scenario, the victim user is
considered to likely visit any other websites including those
monitored ones, as typically experienced in real-world ap-
plications. As a result, the adversary cannot collect data and
train for every website.

)e above two scenarios are focused on the range of
websites involved in WF attack, independent of WF defense.

)e WF defense means that the user takes some actions
to defend against a potential attack. )is would lead to
greater attack difficulty. Representative defense techniques
include Buflo [19], Tamaraw [20], Walkie-Talkie [21], WTF-
PAD [22], BiMorphing [23], DFD [24], FRONT [25], and
GLUE [25]. Among them, WTF-PAD is not the newest
defense method, but the main candidate to be deployed in
Tor. We considered WTF-PAD-based defense in our
evaluations.

In the literature, several common assumptions are made.
We briefly discussed three main assumptions. In user be-
havior, it is assumed that all Tor users browsed websites
sequentially, only opening a single tab at a time. In back-
ground traffic, it is assumed that the attacker is able to collect
all the clean traces generated by the victim’s visits against
dynamic background traffic. )is is increasingly possible, as
shown in [26], and the multiplexed TLS traffic can be split
into individual encrypted connections to each website. In
network condition, the attacker is assumed to have the same
conditions as the victim, including traffic conditions and
settings. To compare with the benchmark results, we follow
these general assumptions for fair evaluations.

Instead, we focus on addressing the following assump-
tion. Often, the attacker assumes that the training data fall
into a similar distribution as the deployment data. )is is a
particularly strong and artificial assumption as the network
condition is actually changing and evolving frequently. Such
a property enforces the attacker to update the training data
in order to have a robust attacking model over time. )is
implies that the attacker is not possible to collect a large set of
training data at each time due to high acquiring costs.
However, existing WF attack methods often ignore this
factor by assuming the availability of large training data. In
contrast, we study the largely ignored few-shot learning
setting in the WF attack. Specifically, we approach this
problem by explicitly solving the small training data issue via
synthesizing new labelled training data.

2.2.WebsiteFingerprintingAttackMethods. )e first pioneer
attack against the Tor network was evaluated by Herrmann
et al. [7] in 2009. It achieved an accuracy of 2.96% using
around 20 training samples per website in the closed-world
scenario. Later, Wang and Goldberg [10] proposed to
represent the traffic data using more fundamental Tor cells
(i.e., direction data) as a unit rather than TCP/IP packets.
)is representation is rather meaningful and informative as

it encodes essential characteristics of Tor data. By training a
kernel SVM classifier, a ground-breaking performance with
90.9% accuracy was achieved on 100 sites each with 40
training samples. In 2016, Panchenko et al. [13] proposed an
idea of sampling the features from a cumulative trace
representation and achieved 91.38% accuracy with 90
training instances per website. Hayes and Danezis [12]
exploited random decision forests to achieve similar results.
A typical design of these above methods is a two-stage
strategy including feature design and classifier learning. )is
is not only constrained by the limitations of hand features
but also lacks interaction between the two stages, making the
model performance inferior.

Motivated by the remarkable success of deep learning
techniques in computer vision and natural language pro-
cessing [27, 28], several deep learning WF attack methods
have been introduced which can well solve the weakness
mentioned above. )is is because deep learning methods
carry out feature learning and classification optimization
from the raw training data end-to-end. For example,
Rimmer et al. [29] applied deep learning methods (e.g.,
stacked-denoising autoencoders, recurrent neural networks,
and convolutional neural networks to WF attacks, assuming
sufficient training data. Later, Oh et al. [30] utilized
autoencoder (AE) to generate low-dimensional features to
improve the performance of WF attacks. Meanwhile, using a
popular neural network architecture called VGG network
[31] as the backbone, Sirinam et al. [15] proposed a deep
fingerprinting attack (DF) model that attains 90% accuracy
on 95 websites. However, this method needs at least a low-
data training set (e.g., 50 training samples per website);
otherwise, it will suffer from significant performance drop.
When using 20 training samples per website, DF can only hit
around 80% accuracy.

To overcome this limitation, Bhat et al. [16] developed
the Var-CNNmodel based on ResNet [18] and dilated causal
convolution [32, 33]. When small training sets (e.g., 100
samples per website) are available, it achieves superior
performance over DF but at dependence on less-realistic
time features and less-scalable hand-crafted statistical in-
formation. Meanwhile, Rahman et al. [34] focused on how to
utilize timing-related features in WF attacks.

A solution to few-shot learning is a recently proposed
triplet fingerprinting (TF) method [17]. )e key idea of TF is
to pretrain a metric model that can measure pairwise dis-
tances on new classes. When the pretraining dataset is
similar to the target data in distribution, TF can hit the
accuracy of 94.5% on 100 websites using only 20 training
samples per website. )is is a strong transfer learning sce-
nario. However, considering that the dynamics of network
conditions is highly unknown and uncontrollable, such a
transfer learning assumption is hardly valid in practice. In
light of this observation, in this work, we propose a more
realistic few-shot learning setting without assuming any
auxiliary data with similar data characteristics for model
pretraining. Hence, it is more scalable and generic for real-
world deployments. Under the proposed more challenging
few-shot setting, TF is unable to work properly due to in-
sufficient network initialization.
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2.3. Data Augmentation. Data augmentation is an impor-
tant element in deep learning due to its data-hungry nature
[14]. For example, random insertion, random swap, and
random deletion for text classification in natural language
processing [35], or geometric transformations (e.g., flip-
ping, rotation, translation, cropping, and scaling), color
space transformations (e.g., color casting, varying bright-
ness, and noise injection), and interimage mixup [36] for
image analysis [37–39]. )ese previous attempts have
shown the significance of different augmenting methods for
model performance on the respective tasks. Inspired by
these findings, we investigate the effectiveness of training
data augmentation extensively by adapting existing oper-
ations for deep learning WF attacks in few-shot learning
settings. To the best of our knowledge, this is the first
attempt of its kind. Crucially, we demonstrate that the
existing state-of-the-art deep WF attack method [16] sig-
nificantly benefits from using the proposed data aug-
mentation operations in varying evaluation scenarios. )is
result would be encouraging and influential for future
investigation of deep learning WF attack methods in
particular.

3. Method

3.1. Problem Definition. In website fingerprinting (WF)
attack, the objective is to detect which website a target user is
visiting. )e common observations are data traffic traces x

produced by one visit to a website y. Taking each website as a
specific class, this is essentially a multiclass classification
problem. For model training, a labelled training set D �

(xi, yi) 
N
i�1 is often provided, where yi ∈ 1, 2, . . . , K{ }

specifies one of K target websites. Two different settings are
often considered in model testing: (1) closed-world attack
where any test sample is assumed to belong to the target
websites/classes, and (2) open-world attack where the above
assumption is eliminated, i.e., a test trace may be produced
by a nontarget (unmonitored) website. )e latter is a more
realistic setting, yet presenting a more challenging task as
identifying if a test sample falls into target classes or not is
nontrivial.

3.1.1. Feature Representation. For the Tor network, the raw
representation of a specific traffic trace consists of a sequence
of temporally successive Tor cells travelling between a target
user and a website visited. It is derived from TCP/IP data.
Specifically, after those TCP/IP packets retransmitted are
discarded, TLS records are first reconstructed, and their
lengths are then rounded down to the nearest multiple of 512
to form the final sequence data x. In value, each x is a se-
quence of 1 (outgoing cell) and −1 (incoming cell), with a
variable length. )is raw representation is hence known as
the direction sample. Besides, temporal information about
interpacket time is another modality of data used, but
limited by high reliance on network conditions, i.e., not
stable and much more noise. Consequently, we mainly
consider the direction data samples in this study, which are
more scalable and generic.

3.2. Deep Learning for Website Fingerprinting Attack.
Most of existing WF attack methods rely on hand-crafted
feature representations [4–13]. )is strategy is not only
unscalable but also unsatisfactory in performance due to
limited and incomplete domain knowledge. Deep learning
methods provide a viable solution via learning directly more
effective and expressive representation from training data, as
shown in a few recent studies [15, 16]. In this work, we
advance this new direction further.

1D convolutional neural networks (CNN) [40] are
usually explored for WF attacks as the raw data are temporal
sequences. Building on the success of deep learning in
computer vision, we adopt the same high-level network
designs of standard 2D CNN models [41], whilst translating
them into 1D counterparts. )is is similar to [15, 16].

As shown in Figure 2, a CNN model consists of multiple
convolutional layers with nonlinear activation functions
such as ReLU [42] and fully-connected (FC) layers, char-
acterized by end-to-end feature extraction and classification.
With convolutional operations, the filters of each layer
transform input sequences using learnable parameters and
output new feature sequences. )is feature transformation is
conducted layer by layer in a hierarchical fashion. )e re-
ceptive field (kernel) with size 3 is often used in each layer to
capture local feature patterns. By stacking more layers and
pooling operations, the model can perceive the information
of larger regions and achieve translational invariance. An-
other effective method for enlarging the receptive field is
dilated causal convolutions [32, 33], which has been
exploited in [16].

)e feature representations f of WF samples are the
output of the global average pooling layer on top of the last
convolution layer. To obtain the classification probability
vector y � y1, y2, . . . , yK  ∈RK over K target classes, f is
fed into a FC layer and normalized by a softmax function.

For model training, we compute a cross-entropy ob-
jective loss function with the classification vector against the
ground-truth class label over all N training samples as

L � 
N

i�1


K

j�1
δ j � yi( log yi,j, (1)

where yi refers to the ground-truth class label of a training
sample xi and δ is a Dirac function. )e objective is to
maximize the probability of the ground-truth class in pre-
diction. )is loss function is differentiable, with its gradients
backpropagated to update all the learnable model
parameters.

Once the deep model is trained, we forward a given test
sample, obtain a classification probability vector, and take
the most likely class as a prediction in both closed-world and
open-world settings. For open-world setting, all unmoni-
tored websites are considered to belong to a background
class.

3.2.1. Discussion. While deep learning techniques have
advanced significantly in the last several years, it is still
assumed that a large set of labelled training samples is
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available. )is is not always true, for example, for the WF
attack problems. In real-world applications, an attacker is
usually faced with highly dynamic network environments. It
means that the distribution of raw features is evolving
continuously. As such, the training data need to update
frequently, which disables collection of large training data
with labels in practice due to prohibitively high labelling
costs. Consequently, only a small training set is accessible in
reality, making deep learning methods ineffective.

3.3. HarmoniousWebsite Fingerprinting Data Augmentation.
To address the above small training data challenge, we
propose an intuitive, novel harmonious data augmentation
(HDA) method. We introduce both intrasample and
intersample augmentation operations that can be applied in
a joint and harmonious manner for more effective data
expansion.

3.3.1. Intrasample Augmentation. )e key idea of intra-
sample augmentation is that given an individual training
sample, we introduce a certain degree of random data
perturbation and/or variation whilst keeping the same class

labels. Doing so allows us to generate an infinite number of
labelled training samples due to the nature of randomness.
We consider two perturbation operations: random rotation
and random masking.

Random rotation-based data augmentation means ro-
tating an original training sample forward or backward by
random steps to generate virtual samples (Figure 3(a)):

Rotate x, nstep, dir , (2)

where nstep and dir ∈ forward, backward{ } specify the steps
and the direction to rotate on an input sample x. )e hy-
pothesis behind is that class-sensitive information encoded
in a sample is distributed across different subsequences and
data traffic order is less important than signal patterns. After
a sample is rotated, the original class information is largely
preserved, i.e., semantically invariant. Hence, the same class
can be annotated for the rotated variants. However, this
hypothesis is more likely to stand under some certain
(unknown) degrees. We therefore introduce an upper bound
parameter Rmax so that the rotation range is limited at most
Rmax steps in both directions, nstep ≤Rmax.

In contrast, random masking introduces localized cor-
ruption to an original training sample by setting a random
subsequence to zero (Figure 3(b)). )is data augmentation is
written as

Mask x, nlen, loc( , (3)

where nlen and loc denote the length and location of the
subsequence that is masked out from an original sample x.
Rather than in form of subsequence, another strategy is to
randomly select individual positions to mask. We consider
this may introduce more significant corruption to the un-
derlying semantic information.

Conceptually, random masking simulates varying traffic
measurement errors in data transportation. Meanwhile, with
the same above hypothesis, such masking would not dra-
matically change the semantic class information provided
that the masking is subject to some limit, e.g., the length of
subsequences masked out Mlen. It hence offers a comple-
mentary data perturbation choice with respect to random
rotation.

3.3.2. Intersample Augmentation. Apart from data aug-
mentation on individual samples, we further introduce data
perturbation across two different samples to enrich the
limited training set.

We propose random mixing that generates virtual
samples and class labels by linear interpolation between two
original samples xi and xj as

x � λxi +(1 − λ)xj, (4)

y � λyi +(1 − λ)yj, (5)

where (yi, yj) are the one-hot class labels of xi and xj. )e
mixing parameter λ ∈ [0, 1] follows a Beta distribution:
λ ∼ β(α, α) with α> 0 the parameter that controls the
strength of interpolation. )is is in a similar spirit of mixup
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Figure 2: A deep learning pipeline for website fingerprinting attack
that conducts feature representation and website classification end-
to-end in a joint learning manner.
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in image understanding domain [36]. Unlike intrasample
augmentation above, random mixing changes the semantic
class information since original samples may be drawn from
different classes. It simplifies the data distribution by im-
posing a linear relationship between classes for complexity
minimization. As shown in Figure 3(c), only the common
features are remained in the mixed sample. If two original
samples are generated from visiting the same website, the
mixed sample reflects the shared characteristics with respect
to this website. Otherwise, it reflects the commonality of two
different websites.

While seemingly counterintuitive, we will show that such
a method brings positive contributions on top of random
masking and random rotation.

3.3.3. Combination and Compatibility. Different augmen-
tation operations can be applied on the same samples
without conflict to each other in a harmony. )ere is also no
particular constraint on the order of applying all the three
data augmentation operations in a combination. Given a
fixed set of parameters as discussed above, different aug-
mentation orders will result in different virtual samples.)is
makes little conceptual difference as the space of sample is
just infinite.

3.3.4. Augmentation Optimization. In our harmonious data
augmentation (HDA), three hyperparameters
Rmax, Mlen, α  are introduced. To generate meaningful
virtual samples, obtaining their optimal values is necessary;
otherwise, adversarial effects may even be imposed.

Instead of manual tuning, we adopt an automatic
Bayesian estimator, called Tree of Parzen Estimators (TPE)
[43]. )e conventional TPE can take only a single parameter
alone at a time. So, we need to optimize each of the three
hyperparameters independently. )is differs from our data

augmentation process where the three augmentation op-
erations are typically applied together, making the inde-
pendently tuned parameters of TPE suboptimal. )is is
because jointly applying three augmentations together
makes them interdependent.

For solving this problem, we propose a sequential op-
timization process that takes into account the interdepen-
dence property of different augmentation operations
gradually (see Algorithm 1). Specifically, we start with a
random, fixed order of applying our random rotation,
masking, and mixing operations. )en, we optimize from
the first one with TPE, move to the next one with all the
previous ones optimized and fixed, and stop by finishing the
last one. Each time, we still optimize a single hyperparameter
whilst keeping all the previous optimized ones fixed. In this
way, we expand the interdependence among different op-
erations sequentially.

3.4. <eoretical Foundation and Formulation. )e objective
of learning a WF attack model is equivalent to deriving a
function h ∈ H that fits the latent translation relationship
between raw feature vectors x ∈ X and corresponding
website class labels y ∈ Y, that is, fitting a joint distribution
P(X, Y). To this end, in deep learning, we often leverage a
loss function L defined to penalize the differences between
predictions h(x) and targets y. Weminimize the average loss
over the joint distribution:

R(h) �  L(h(x), y)dP(x, y), (6)

which is known as expected risk minimization [44].
However, the joint distribution is often unknown,

particularly for WF attacks with small training data. Given a
limited training dataset D � (xi, yi) 

N

i�1, the joint distribu-
tion can only be approximated by an empirical distribution
as
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Figure 3: Illustration of our data augmentation operations for deep learning WF attack, including (a) random rotation, (b) random
masking, and (c) random mixing.
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Pδ(x, y) �
1
N



N

i�1
δ x � xi, y � yi( , (7)

where δ(x � xi, y � yi) is a Dirac mass centered at a sample
(xi, yi). Accordingly, the expected risk can now be ap-
proximated by an empirical risk:

Rδ(h) �  L(h(x), y)dPδ(x, y)

�
1
N



N

i�1
L h xi( , yi( .

(8)

)e above approximation is in the empirical risk min-
imization (ERM) principle [44]. )e cross-entropy loss (1) is
a representative example, which essentially minimizes Rδ(h)

for the classification task.
While ERM is a common strategy, it suffers from a high

risk of poor generalization due to the tendency of memo-
rization, mainly when a large model is used [45]. To mitigate
this issue, we adopt the notion of vicinal distribution [46]
which can better approximate the true joint distribution. In
particular, the vicinal distribution Pυ in the data space is
defined as

Pυ(x, y) �
1
n



n

i�1
υ xi, yi | xi, yi( . (9)

Intuitively, Pυ measures the probability of finding a
virtual labelled sample (x, y) in the vicinity around an
original training sample (xi, yi).

Given such vicinal distributions, we first construct a
virtual dataset Dυ ≔ (xi, yi)

m
i�1 by sampling Pυ randomly and

then minimize an empirical vicinal risk to learn h as

Rυ(h) �
1
m



m

i�1
L h xi( , yi( . (10)

Clearly, at the core of this strategy is performing data
augmentation around original training samples. Rather than
computing a loss value for every single training sample, it
derives a local distribution centered at each individual
sample and generates more virtual training samples to re-
duce the negative memorization effect of deep learning. )is
is the key rationale of our data augmentation method.

3.4.1. Augmentation Formulation. We formulate the pro-
posed harmonious data augmentation operations in the
vicinal distribution manner. For intrasample augmentation
(including random rotation and masking), the vicinal dis-
tribution is defined as

υ(x, y | x, y) � T(x)δ(y � y), (11)

where T is a transformation operator.
For random rotation, given any length-n sample

x � x0, . . . , xi, . . . , xn−1 , we first define a circle matrix B for
forward rotation as

B(x) �

x0 x1 · · · xn−1

xn−1 x0 · · · xn−2

⋮ ⋮ ⋮

xn−1 xn−2 · · · x0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

)en, we sample the step size nstep uniformly from a
range of 1, . . . , Rmax . By one-hot representation of nstep, we
can obtain a rotation transformation as

Trot(x) � one-hot nstep B(x). (13)

For the backward case, we perform the same process as
above but with a backward rotation matrix instead.

For random masking, we similarly sample the start
position s uniformly in the range of 1, . . . , n − nlen  where
nlen is the length of the masked subsequence. )e masking
transformation can be represented by a matrix as

Mmask � diag 1 − 

s+nlen

i�s

Rowi(I)⎛⎝ ⎞⎠, (14)

where I is the identity matrix, 1 is the all-one vector, Rowi()

selects the ith row of amatrix, and diag() transforms a vector
to a diagonal matrix. Masking operation is finally conducted
by matrix multiplication as

Tmask(x) � xMmask. (15)

For intersample augmentation, random mixing in our
case, the vicinal distribution is defined as

Input: A training Xt,Yt , and validation Xv,Yv  set.
Output: Data augmentation with optimal parameters Baug.
1: Setting Baug � ϕ (empty set);
2: Sequencing data augmentation operations randomly;
3: while Enumerating augmentation operations do
4: Get the search space Saug of current augmentation A;
5: Using TPE on Saug to obtain the optimal parameter baug, with the model trained by Baug and A;
6: Baug � Baug ∪ baug
7: end while
8: return Baug

ALGORITHM 1: Data augmentation optimization.
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υ x, y | xi, yi, xj, yj  � δ x � λ · xi +(1 − λ) · xj, y � λ · yi +(1 − λ) · yj ,

(16)

where λ is a random variable drawn from a Beta distribution
β(α, α) and y is one-hot class label vector. )is local vicinity
is assumed to respect a linear structure with respect to class
labels.

4. Experiments

4.1. Experimental Setup

4.1.1. Datasets. We evaluated our data augmentation
method HDA on four standard WF attack datasets as below.
(1) AWF100 [29]: this dataset provides a total of 100 mon-
itored target websites, each with 2,500 raw feature traces. (2)
Wang100 [26]: this dataset gives 100 monitored websites with
each contributing 90 feature traces. (3) DF95,Nodef [15]: this
dataset gives 95 monitored websites with each contributing
1,000 feature traces. (4) ROWUM [29]: this dataset includes
CW100 and a large set of samples, each was generated by a
visit to a page of top 400,000 Alexa websites. (5) DF95,wtf−pad
[15]: unlike all the above datasets, this is a more challenging
dataset due to the presence of WTF-PAD-based defense
against WF attack. It has 95,000 raw feature samples from 95
websites. We considered both closed-world and open-world
WF attack scenarios using the above datasets.

4.1.2. Network Architectures. We used two different network
architectures for testing the generic benefits of the proposed
HDA method. (1) Var-CNN [16] is the current state-of-the-
art deep learning WF method. (2) ResNet-34 [18] is a strong
and popular network widely deployed in many different
fields such as computer vision.

4.1.3. Implementation Details. We conducted our experi-
ments in Keras [47]. In our experiments, we used the
standard training, validation, and test splits for all com-
petitors for fair comparisons. HDA was applied only to the
training set. We optimized HDA’s hyperparameters using
Var-CNN [16] as the deep learning model on CW100 in
closed-world setting and applied the same parameter setting
for all the other deep learning methods, datasets, and set-
tings. )is allows testing the generality and scalability of our
HDA method. For augmentation optimization, we set the
search space as 1 ∼ 50 with step 5 for forward/backward
Rmax (random rotation) 1 ∼ 200 with step 20 for Mlen
(random masking) and [0, 1] with step 0.1 for α (random
mixing). We selected the best value for each of these pa-
rameters with respect to the validation performance. )e
optimal parameter values we obtained are Rmax � 20,
Mlen � 180, and α � 0.1. We applied the same parameter
setting tuned on CW100 to all other datasets for both sim-
plicity and generalization test.

For saving storage, we performed online data aug-
mentation within each mini-batch without any data

preprocessing. In each experiment, we trained every deep
learning model for 150 epochs and used the checkpoint with
the best performance on the validation set for the model test.
We only used the direction feature data, without time se-
quences and hand-crafted features. We ran each experiment
10 times and reported the mean results and standard de-
viation as the final performance.

4.1.4. Why Not We Apply HDA to DF? On the one hand, we
found that DF is unstable while optimized by HDA. In some
experiments, DF+HDA can get better results than original
HDA, but not always so. On the other hand, the feature
extractor of TF is from DF. Hence, we just provide the best
result of TF following its recommended setting as baseline.

4.2. Closed-World WF Attack

4.2.1. Setting. We conducted the closed-world attack on
AWF100, Wang100, and DF95,Nodef . We separated each dataset
into training and test (70 samples per class) splits. We
considered few-shot settings with n ∈ 5, 10, 15, 20{ } training
samples per class. )e validation set was used to select the
best performing model for test. We used classification ac-
curacy as the performance metric. Besides deep network
models, we also compared our method with two conven-
tional hand-crafted feature-based methods: CUMUL [13]
and k-FP [12].

4.2.2. Results. )e results of different methods are compared
in Tables 1–3. We have the following observations: (1) TF
remains the best few-shot WF attack algorithm, especially
pretrained with similar datasets (pretrained and test with the
AWF dataset and test with the Wang dataset). (2) However,
deep learning methods (Var-CNN) become clearly stronger
when pretrained TF is faced with different distributions
across training and testing datasets (pretraining on AWF
and testing on Wang100 and DF95,Nodef ), suggesting a great
deal of potentials. In 10/15/20-shot cases, Var-CNN+HDA
achieves the best overall result on both Wang100 and
DF95,Nodef . In particular, on DF95,Nodef , the benefit from
HDA is significant, and Var-CNN+HDA surpasses TF with
a big margin of 13.2% in 20-shot case. (3) With our HDA
method for training data augmentation, every deep learning
method improves in all few-shot cases. For example, the 20-
shot accuracy of Var-CNN is increased from 78.7% to 90.7%
on AWF100, from 88.4% to 90.6% on Wang100 and from
68.1% to 91.3% on DF95,Nodef . Similarly, the 20-shot accuracy
of ResNet-34 is improved from 51.3% to 86.4% on AWF100,
from 85.9% to 87.4% on Wang100 and from 61.4% to 85.8%
on DF95,Nodef . (4) Our HDA can consistently improve dif-
ferent methods on varying datasets, suggesting good gen-
erality. (5) )e performance deviation of Var-CNN assisted
by our method HDA is the least among all the competitors,
implying strong stability.
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4.3. Open-World WF Attack

4.3.1. Setting. We conducted the open-world attack exper-
iments on the combination of ROWWUM400,000 and
AWF100. We treat the websites of AWF100 as target (mon-
itored) classes and those of ROWWUM400,000 as nontarget
(unmonitored) classes. In this test, we selected randomly
8,020 out of 400,000 unmonitored websites and separated
them into three disjoint sets sized at 20/1,000/7,000 for
training, validation, and test, respectively. In this scenario,
the precision and recall rates were used to evaluate model
performance due to the need for detecting nontarget classes
[48]. We considered the same two deep learning methods
(Resnet-34 and Var-CNN [16]) for comparisons.

4.3.2. Results. )e results of different methods are re-
ported in Table 4. We considered two settings, one is
tuned for best precision, and one for best recall. Overall,
we obtained similar trends as above that our HDA is
highly effective for improving both deep learning
methods. It is noted that unlike the closed-world scenario,
Var-CNN+HDA achieves very top results at most cases
under both tuning settings, even if it may not be the best
one. Similarly, Var-CNN+HDA remains to be more
stable and less sensitive to training sample size. Signifi-
cantly, our HDA method further enhances these strengths

by efficient data augmentation, leading to the more robust
WF attack solutions.

4.4. WF Attack against Defense

4.4.1. Setting. In contrast to the two above experiments, we
further tested a more challenging WF attack scenario with
defense involved. Defense changes the data traffic patterns to
be more similar to one another, therefore making the attack
more difficult. We considered the most popular defense,
WTF-PAD, widely deployed in the Tor network. We used the
DF95,wtf−pad dataset in this experiment. We used 100 random
samples per website and divided them into three sets for
training (20 samples), validation (10 samples), and test (70
samples), respectively.We reported the classification accuracy
as performance metric in the closed-world scenario. We help
the previous two deep learning methods (Resnet-34 and Var-
CNN [16]) withHDA, compared with the pretrained few-shot
method (TF [17]) and hand-crafted feature-based methods
(k-NN [11], k-FP [12], and CUMUL [13]).

4.4.2. Results. We reported the results of closed-world WF
attack under WTF-PAD-based defense in Table 5. We made
the following observations. (1) Some hand-crafted feature-
based methods (CUMUL) are superior over recent deep
learning methods (ResNet-34 and Var-CNN) at the few-shot
learning scenarios. )is is mainly because the latter suffers
from lacking enough training samples, resulting in model
overfitting. (2) Using our HDA for training data augmen-
tation, we can directly solve the data scarcity problem and
significantly boost the performances of previous deep
learning methods. As a result, Var-CNN+HDA outper-
forms the other competitors by a moderate margin, e.g.,
2.9% gap over the best competitor CUMUL. (3) ResNet-34 is
surpassed by Var-CNN continuously. By benefiting more
from our data augmentation, Var-CNN achieves the best
results across all different shot cases. )is implies that Var-
CNN has a higher desire for large training data with higher
performance potential, as compared to ResNet-34. (4) If TF
is not pretrained with a similar dataset, it will lose the ad-
vantage when a few more samples (20-shot) are provided.

4.5. Ablation Studies. We carried out a set of component
analysis experiments to examine the exact effect of different
designs of our method (HDA). We adopted the most
common closed-world attack scenario without defense on

Table 1: Results of closed-world WF attack on AWF100. Metrics: accuracy.

Method 5-shot 10-shot 15-shot 20-shot
CUMUL [13] 72.2 ± 1.7 79.7 ± 1.4 83.3 ± 2.0 85.9 ± 0.6
k-FP [12] 79.3 ± 1.0 83.9 ± 1.0 85.9 ± 0.6 87.5 ± 0.8
DF [15] 1.0 ± 0 1.4 ± 0.3 37.3 ± 10.0 70.0 ± 4.4
TF [17] 92.2 ± 0.6 93.9 ± 0.2 94.4 ± 0.3 94.5 ± 0.2
ResNet-34 [18] 14.5 ± 0.7 24.3 ± 1.5 40.3 ± 3.1 51.3 ± 6.4
Var-CNN [16] 17.9 ± 1.5 41.4 ± 4.0 65.6 ± 1.9 78.7 ± 1.5
ResNet-34 +HDA 34.8 ± 6.2 62.3 ± 8.1 78.8 ± 7.1 86.4 ± 2.8
Var-CNN+HDA 59.7 ± 1.5 74.7 ± 2.6 86.4 ± 1.3 90.7 ± 0.8

Table 2: Results of closed-world WF attack on Wang100. Metrics:
accuracy.

Method 5-shot 10-shot 15-shot 20-shot
TF [17] 84.5 ± 0.4 86.2 ± 0.4 86.6 ± 0.3 87.0 ± 0.3
ResNet-34 [18] 37.9 ± 7.0 60.1 ± 6.1 80.4 ± 0.9 85.9 ± 0.6
Var-CNN [16] 37.4 ± 2.8 72.5 ± 1.8 83.6 ± 1.2 88.4 ± 0.4
ResNet-34 +HDA 63.4 ± 6.3 82.6 ± 2.5 85.7 ± 0.7 87.4 ± 0.8
Var-CNN+HDA 76.9 ± 2.4 87.1 ± 0.6 89.8 ± 0.4 90.6 ± 0.4

Table 3: Results of closed-world WF attack on DF95,Nodef . Metrics:
accuracy.

Method 5-shot 10-shot 15-shot 20-shot
TF [17] 72.5 ± 0.5 76.4 ± 0.5 77.9 ± 0.3 78.1 ± 0.3
ResNet-34 [18] 22.3 ± 7.9 44.0 ± 2.8 53.7 ± 4.1 64.4 ± 3.8
Var-CNN [16] 21.1 ± 3.4 42.0 ± 5.2 57.6 ± 2.0 68.1 ± 4.8
ResNet-34 +HDA 58.2 ± 6.6 77.1 ± 4.0 81.8 ± 1.8 85.8 ± 1.8
Var-CNN+HDA 64.8 ± 5.1 85.3 ± 1.0 87.7 ± 1.7 91.3 ± 0.4
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the AWF100 dataset, following the same setting as Section
4.2. It is noteworthy that this dataset AWF100 is different
from the dataset in Section 4.2 because they are different
subsets. In this section, we evaluated the 15-shot learning
case in particular, using Var-CNN [16] as the deep learning
model backbone.

4.5.1. Individual Augmentation Operations. Recalling that
our data augmentation method (HDA) consists of three
different operations (random rotation, masking, and
mixing), we have demonstrated their performance ad-
vantages of them as a whole in varying test settings above.
For in-depth insights, examining their individual con-
tributions would be informative and necessary as well as
different combinations. We conducted these experiments
with an exhaustive set of operation combinations and
reported the results in Table 6.

It is observed that (1) each of the three operations makes
a significant difference in performance, with rotation and
masking the best individual operations that improve the
classification accuracy by 17.4%. (2) When jointly using any
two augmentation operations, the performance can be
further increased. )e combination of masking and mixing
gives the highest accuracy among them. (3) Combining all
three operations (HDA) achieves the best result with a
smaller deviation. )is suggests that all different operations
are complementary and compatible with each other.

4.5.2. Augmentation Optimization. For optimal data aug-
mentation, we propose a sequential optimization strategy
(see Algorithm 1) for capturing the interdependence be-
tween different augmentation operations applied. To eval-
uate its effect, we compared with a baseline algorithm that
independently optimizes each augmentation parameter.

As shown in Table 7, the proposed optimization algo-
rithm (see Algorithm 1) is clearly superior, validating our
consideration that there exists interdependence between
different augmentation operations when applied jointly on
the same samples. Note that we obtained this performance
gain at the same cost as the baseline counterpart. Besides, it is
worth noting that even with the simpler optimization, our
data augmentation method (HDA) can still greatly improve
the previous deep learning model Var-CNN and achieve
new state-of-the-art results (Table 7 vs. Table 1). )is further
validates that the proposed augmentation operations are
highly compatible with one another and can be applied
together well.

5. Conclusion

We presented a model-agnostic, simple yet surprisingly
effective data augmentation method, called HDA, for the
few-shot website fingerprinting attack. )is is an under-
studied and realistically critical problem, as in practice only a
handful of training samples per website can be feasibly
collected due to the inherent high dynamics of Internet
networks and expensive label collection cost. Importantly,
we focus on deep learning-based methods, a line of new
research efforts with vast potentials for future investigations.
In particular, our HDA method offers three different data
augmentation operations, including random rotation,
masking, and mixing in intrasample and intersample
fashion. )ey can be applied to the same training samples
harmoniously with high complement and compatibility.
Moreover, we introduce a sequential augmentation pa-
rameter optimization method that captures the interde-
pendence nature between different operations when applied
jointly. With recent state-of-the-art deep learning WF attack
models, we conducted extensive experiments on four

Table 4: Results of open-world WF attack on AWF100 (target
classes) + ROWWUM400, 000 (nontarget classes). Pre : precision and
Rec : recall. We reported two settings: one is tuned for best pre-
cision (top), and one for recall (bottom).

Method
Tuned for precision

5-shot 10-shot 15-shot 20-shot
Pre Rec Pre Rec Pre Rec Pre Rec

ResNet-34 [18] 32.5 4.7 42.1 6.6 50.4 21.8 61.3 39.6
Var-CNN [16] 39.7 2.7 58.8 9.2 74.2 35.8 78.0 54.4
ResNet-34 +HDA 72.7 0.8 91.7 8.7 91.5 43.8 92.6 55.1
Var-CNN+HDA 77.4 6.9 91.2 47.2 91.4 64.3 92.9 66.6

Tuned for recall
ResNet-34 [18] 12 25.6 19.2 37.8 30.2 54.5 34.9 68.6
Var-CNN [16] 13.9 27.1 26.7 52.8 37.4 73.9 42.2 82.6
ResNet-34 +HDA 21.1 37.4 36.2 68.9 45.7 89.2 47.2 91.4
Var-CNN+HDA 28.0 55.8 46.9 88.7 49.3 92.2 49.1 92.5

Table 5: Results of closed-world WF attack with WTF-PAD-based
defense on DF95,wtf−pad. Metrics: accuracy.

Method 5-shot 10-shot 15-shot 20-shot
k-NN [11] — — — 16.0
k-FP [12] — — — 57.0
CUMUL [13] — — — 60.3
TF [17] 39.8 ± 0.5 47.2 ± 1.1 50.1 ± 0.4 51.7 ± 0.5
ResNet-34 [18] 7.4 ± 0.5 9.4 ± 0.7 13.3 ± 1.3 12.3 ± 1.2
Var-CNN [16] 6.6 ± 0.3 9.2 ± 0.7 12.5 ± 0.8 19.2 ± 1.7
ResNet-34 +HDA 12.3 ± 1.9 28.1 ± 3.7 38.2 ± 6.2 47.7 ± 5.1
Var-CNN+HDA 25.3 ± 2.2 46.9 ± 1.9 48.7 ± 1.4 63.2 ± 1.8

Table 6: Effect of individual augmentation operations.

Augmentation operation Accuracy
None 75.0 ± 3.0
Random rotation 92.4 ± 0.3
Random masking 92.4 ± 0.8
Random mixing 86.7 ± 0.6
Random rotation +masking 92.7 ± 0.4
Random rotation +mixing 92.6 ± 0.7
Random masking +mixing 93.4 ± 0.7
HDA (ours) 93.5 ± 0.4

Table 7: Effect of augmentation optimization.

Augmentation optimization Accuracy
Independent 92.1 ± 0.5
Sequential (ours) 93.5 ± 0.4
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benchmark datasets to validate the efficacy of our HDA
method in both closed-world and open-world scenarios,
with and without defense. )e results show that the
proposed data augmentation method makes dramatic
differences in performance and enables previous deep
learning methods to outperform hand-crafted feature-
based counterparts in the few-shot learning setting for the
first time, often by a large margin, while pretrained-based
few-shot WF attack (TF) is placed in a new environment,
it cannot outperform our augmented method. )is is
achieved without making any artificial assumptions of
relevant, large auxiliary training data for model pre-
training. With our HDA method, collecting large training
data frequently is eliminated, whilst still achieving
stronger and more robust WF attacks. Finally, we per-
formed detailed component analysis to diagnose the effect
of individual model components.

5.1. Additional Discussion. Except data augmentation for
reducing the demand of data annotation in a few-shot
learning context, an alternative approach is semisupervised
learning, which has been extensively studied in e-mail
classification [49], intrusion detection [50], authorship at-
tribution [51], computer vision [52, 53], and so force. )e
key idea is to explore the structural knowledge (manifold
and cluster structures) of unlabeled data to increase the
volume of training data. Crucially, we believe that our
proposed HDA can benefit existing semisupervised learning
methods due to its algorithm agnostic nature. One limitation
with our HDA is that more training data will lead to higher
training cost. However, this is a general and common
problemwith all data augmentationmethods including ours.
To further boost the research of website fingerprinting, it is
necessary to connect website fingerprinting with other
fingerprinting fields, from the traditional fingerprint-based
biometric systems [54] to the newest collaborative intrusion
detection networks under passive message fingerprint attack
[55, 56]. )rough introducing the strategy which has pro-
duced marked effect in related fingerprinting fields, website
fingerprinting especially few-shot website fingerprinting
would go further.
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